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Abstract. Functional encryption generates sophisticated keys for users
so that they can learn specific functions of the encrypted message. We
provide a generic construction of chosen ciphertext attacks (CCA) secure
public-key functional encryption (PKFE) for all polynomial-size circuits.
Our PKFE produces succinct ciphertexts that are independent of the size
and depth of the circuit class under consideration.

We accomplish our goal in two steps. First, we define a new crypto-
graphic tool called constrained witness pseudorandom function (CW-
PRF) which is motivated by combining WPRF of Zhandry (TCC 2016)
and constrained PRF of Boneh and Waters (ASIACRYPT 2013). More
specifically, CWPRF computes pseudorandom values associated with NP
statements and generates constrained keys for boolean functions. We can
recompute the pseudorandom value corresponding to a particular state-
ment either using a public evaluation key with a valid witness for the
statement or applying a constrained key for a function that satisfies the
statement. We construct CWPRF by coupling indistinguishability ob-
fuscation (iO) and CPRF supporting all polynomial-size functions.

In the second and main technical step, we show a generic construction of
a CCA secure PKFE for all circuits utilizing our CWPRF. It has been
observed that obtaining PKFE supporting all circuits is already a com-
plex task and iO-based constructions of PKFEs are only proven to be
chosen plaintext attacks (CPA) secure. On the other hand, existing CCA
secure functional encryption schemes are designed for specific functions
such as equality testing, membership testing, linear function etc. We em-
phasize that our construction presents the first CCA secure PKFE for
all circuits along with succinct ciphertexts.

Keywords: constrained witness pseudorandom function, functional en-
cryption, obfuscation.

1 Introduction

An essential research trend in cryptography is to investigate relationships among
existing primitives and establish concrete security for the primitives that have
several valuable applications. Exploring such correlations provide new insights
concerning the structure and security of the considered primitive. Consequently,



generic approaches in building cryptographic primitives is a significant aspect of
research.

In this paper, we generically construct a public-key functional encryption
(PKFE) scheme for all polynomial-size functions that is secure against active
adversaries. The concept of PKFE is being formalized by Boneh, Sahai and Wa-
ters [10]. The main importance of functional encryption (FE) lies in the fact
that it simply subsumes most of the advanced public-key primitives including
identity-based encryption (IBE), attribute-based encryption (ABE) and predi-
cate encryption (PE). The goal of PKFE is to generate secret-keys dedicated
to a class of functions so that a particular secret-key enables a user to learn a
specific function of the publicly encrypted message, but remains oblivious about
the plain message.

Traditionally, encryption schemes are constructed to satisfy indistinguisha-
bility against chosen plaintext attacks (IND-CPA) where the adversary is not
given access to the decryption oracle. Intuitively, IND-CPA security for PKFE
[10] guarantees that an adversary can not distinguish between encryption of mes-
sages m0 and m1 even when it has polynomially many secret-keys for functions
f satisfying f(m0) = f(m1). However, over time the cryptographic community
has shifted towards achieving indistinguishability against chosen ciphertext at-
tacks (IND-CCA) for many FE schemes [12,32,21] — one of the main reasons
is the fact that IND-CCA security withstands against attackers that can make
decryption queries to keys it did not ask before and hence the encryption be-
comes non-malleable [13,1]. We refer [31] for an exceptional discussion on the
significance of IND-CCA security.

To fulfil the goal of achieving IND-CCA secure PKFE, we can either generi-
cally transform existing IND-CPA secure PKFEs into IND-CCA secure schemes
or we directly construct IND-CCA secure PKFE schemes. However, the direct
construction of IND-CCA secure FE has been rarely studied in the literature.
In case of generic transformation, one of the efficient approaches is the Fujisaki-
Okamoto [14] transformation. Although it induces very low ciphertext overhead,
the security is proved in the random oracle model [2]. Another option is to fol-
low Naor-Yung dual encryption technique [25] which appends a non-interactive
zero-knowledge (NIZK) proof [6,29] determining the ciphertext is well-formed.
This approach is expensive as we need to compute NIZK proof of the encryption
circuit in a gate-by-gate manner. Moreover, the ciphertext overhead is quite high
as the proof size grows linearly with the size of the encryption circuit.

These techniques have been well studied in the context of plain public-key
encryption (PKE). While there are a number of research for IND-CCA secure
PKE [13,12,23,20], very little can be found on IND-CCA secure FE. The aim of
all prior works was centred in demonstrating IND-CCA secure FE for specific
function classes, e.g. IBE (equality testing) [19], ABE (membership testing) [21],
PE (certain relation circuits) [5,21] and inner product FE (linear functions) [3].
Evidently, IND-CPA secure PKFE for all circuits is already quite complex [15,18]
to achieve and new cryptographic tools or techniques are required to realize the
stronger security.
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Our Results. In this work, we explore a direct generic construction of IND-
CCA secure PKFE scheme for all polynomial size boolean functions. To reach
our goal, we first formalize a new cryptographic tool called constrained witness
pseudorandom function (CWPRF). We give construction of CWPRF using an
indistinguishability obfuscation (iO) [15] and a constrained pseudorandom func-
tion (CPRF) [11].

Formalization of CWPRF. Zhandry introduced the notion of WPRF [34]
to generate pseudorandom values associated to statements of an NP language
L. More precisely, WPRF has a secret function key fk and a public evaluation
key ek such that the secret-key fk is used to compute a pseudorandom value
y = F(fk, x) for any statement x (of a fixed length) and the public-key ek along
with a witness w helps to recover y if the witness proves that x is in the language.
A constrained WPRF is a natural extension of normal WPRF. For a circuit C,
a CWPRF is capable of generating a constrained key fkC using the secret-key fk
so that fkC enables one to produce the pseudorandom value F(fk, x) if C(x) = 1.
Thus, CWPRF provides finer access control to the pseudorandom values as we
can embed any functionality into the constrained keys.

Security of CWPRF. The security notions of CWPRF are defined to com-
bine the security of two related primitives CPRF [11] and WPRF [34]. Mainly,
we consider two flavors of security: pseudorandomness and function privacy. The
CWPRF is said to satisfy pseudorandomness at a given statement x 6∈ L if an
adversary is unable to distinguish F(fk, x) from a random element even when
the adversary gets polynomially many F-values F(fk, x′) for statements x′ 6= x
and many constrained keys fkC such that C(x) = 0. The function privacy of
CWPRF ensures that an adversary, given oracle access to F(fk, ·), cannot distin-
guish between two constrained keys fkC0

and fkC1
for two different circuits C0

and C1 unless the keys are trivially separated. A formal discussion on security
of CWPRF is given in Sec. 2.3.

Construction of CWPRF. We provide a generic construction of CWPRF
using indistinguishability obfuscation (iO) and CPRF. Informally, iO makes
a program unintelligible in a way that the obfuscated program preserves the
functionality of the original program. Our CWPRF is built upon the iO-based
CPRF of Boneh et al. [9] where they have used subexponential security of iO to
achieve function privacy. However, our application requires only a weak version
of function privacy for CWPRF and fortunately, the underlying CPRF of [9]
satisfies this weak function privacy assuming a polynomially secure iO (Remark
D.11 of [8]). In weak function privacy, the adversary’s ability of distinguishing
between two constrained keys fkC0

and fkC1
is negligible whenever C0 and C1

are equivalent circuits. Therefore, a polynomially secure iO [18] is sufficient for
our CWPRF (described in Sec. 3) and its applications mentioned below.

CCA secure PKFE. To demonstrate the power of CWPRF, we describe a
generic construction of CCA secure PKFE for all polynomial size boolean cir-
cuits. The building strategy is inspired by the simulation secure secret-key FE
(SKFE) given by Boneh, Kim and Montgomery [7] in the context of proving
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that simulation based function privacy is impossible to achieve for CPRF. We
emphasize that this impossibility result is restricted to simulation based privacy
whereas our work deals with indistinguishability based privacy of the primitives.

We utilize our CWPRF and the puncturable WPRF (PWPRF) proposed by
Pal and Dutta [28] to build the PKFE. Note that, a PWPRF is a restricted class
of CWPRF where the constrains are point functions. Specifically, the psudoran-
domness of PWPRF and the weak function privacy of CWPRF are employed to
realize our full adaptive CCA secure PKFE in Sec. 4. Apart from CCA security,
our PKFE enjoys an optimal size ciphertext which has not been achieved before
for FEs that supports all polynomial size circuits. In particular, encryption of a
message m has a size of |m|+ poly(λ) where |m| denotes the bit-size of m and λ
is the security parameter. The optimality of the PKFE implies succinctness of
ciphertexts [15] meaning that the size of ciphertexts is independent of the circuit
sizes or even the depths. Existing PKFE for all circuits [15] (based on iO) which
satisfies such succinctness property does not achieve optimality of ciphertexts or
strong CCA security.

In an additional application, we utilize the pseudorandomness property of
CWPRF to develop a tag-based CCA secure ABE for all circuits. Similar to
the PKFE, our ABE also produces an optimal size ciphertext. Recently, such
an optimal size CCA secure ABE has been constructed from WPRF and non-
interactive zap [27] with a motivation to get a multi-attribute fully homomorphic
encryption scheme. On the other hand, our ABE (described in App. D.2) is much
simpler and relies solely on our CWPRF and a psudorandom generator (PRG).

Related Works. Realizing CCA security has been one of the primary goals of
the research community after CPA security is confirmed for a particular prim-
itive. For instance, a variety of IND-CCA secure PKEs [13,12,30,22,23,33,20]
are proposed starting from a IND-CPA secure PKEs. Some of these techniques
have been translated to design more advanced IND-CCA secure encryption such
as ABE and PE. Goyal et al. [17] extended the procedure given by Canetti,
Halevi, and Katz [12], of achieving any IND-CCA secure PKE from IND-CCA
secure IBE, in case of key-policy ABE where they required that the IND-CPA
secure ABE must satisfy delegatability. In a subsequent work, Yamada et al. [32]
proposed generic transformations which take advantage of certain delegatability
and verifiability properties of existing IND-CPA secure ABEs to convert these
into IND-CCA secure schemes. To make a larger class of encryption schemes
IND-CCA secure, Nandi and Pandit [24] extended the framework of [32] by in-
troducing a weak version of delegatability and verifiability that must be present
in the original schemes. Recently, Koppula and Waters [21] presented a black box
transformation for IND-CCA security of any ABE or (one-sided) PE utilizing a
hinting PRG along with the IND-CPA security of the considered primitive.

Blömer and Liske [5] showed a non-generic IND-CCA secure PE using the
methodology of well-formedness proofs. Benhamouda et al. [3] constructed IND-
CCA secure FEs for linear functionality from projective hash functions with
homomorphic properties. Very recently, Pal and Dutta [27] directly built IND-
CCA secure IBE and ABE for all circuits using WPRF. It can be noted that the
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focus of all previous works was to consider a particular function class and depict
IND-CCA security for FE associated to that class. On the contrary, we describe
a IND-CCA secure PKFE for all circuits via a new cryptographic tool that we
believe to have more potential applications in other aspects of cryptography.

2 Preliminaries

Notations. We denote the security parameter by λ, a natural number. For
m ∈ {0, 1}∗, |m| indicated the size of the string m. To denote the sampling of
an element s uniformly at random from a set S, we use the notation s← S. For
any probabilistic polynomial time (PPT) algorithm A, we define r ← A(s) to
denote the process of computing r by executing A with an input s using a fresh
randomness (unless A is a deterministic algorithm). All circuits and functions
are of polynomial size. We say negl is a negligible function in an input parameter
λ, if for all c > 0, there exists λ0 such that negl(λ) < λ−c for all λ > λ0.

2.1 Pseudorandom Generator

Definition 1 [Pseudorandom Generator] A pseudorandom generator (PRG) is
a deterministic polynomial time algorithm PRG that on input a seed s ∈ {0, 1}λ
outputs a string of length `(λ) such that the following holds:
– output expansion: We require `(λ) > λ for all λ.
– pseudorandomness security : For all PPT adversary A and s← {0, 1}λ, r ←
{0, 1}`(λ) the following advantage

AdvPRGA (λ) = |Pr[A(1λ,PRG(s)) = 1] − Pr[A(1λ, r) = 1] |

is a negligible function of λ.

2.2 Constrained Pseudorandom Function

Definition 2 [Constrained Pseudorandom Function] A constrained pseudoran-
dom function (CPRF) is defined for a circuit class {Cλ}λ∈N and a domain X .
It consists of four PPT algorithms Setup, ConKey, ConEval, Eval that work as
follows:
• Setup(1λ) → msk: The setup algorithm outputs a master secret-key msk.
• ConKey(msk, C) → skC : The constrained key algorithm generates a con-

strained key skC corresponding to a circuit C ∈ Cλ.
• ConEval(skC , x) → y: The constrained evaluation algorithm outputs a value
y ∈ Y using the constrained skC for an input x ∈ X .
• Eval(msk, x)→ y: The evaluation algorithm outputs an element y ∈ Y using

the master secret-key msk for a string x ∈ X .

A CPRF must satisfy the following requirements.

Definition 3 (Correctness) For all λ ∈ N,msk ← Setup(1λ), x ∈ X , C ∈ Cλ,
and skC ← ConKey(msk, C) we have

correctness of ConEval. Pr[ConEval(skC , x) = Eval(msk, x) s.t. C(x) = 1] = 1
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Definition 4 [Adaptive Pseudorandomness] For a security parameter λ ∈ N, a
circuit class {Cλ}λ∈N and a bit b ∈ {0, 1}, we define the experiment Adp-INDCPRF

A
(1λ, b) between a challenger and a PPT adversary A in the following manner:
Setup: The challenger runs msk ← Setup(1λ) and prepares two empty sets Qc
and Qx.

Queries: After setup, A can make queries to the following oracles at any point
of the experiment.
– constrained key queries. On input a circuit C ∈ Cλ, the challenger returns a

constrained key skC ← ConKey(msk, C) and updates the set Qc ← Qc∪{C}.
– evaluation queries. On input x ∈ X , the challenger returns a pseudorandom

value y ← Eval(msk, x) and updates the set Qx ← Qx ∪ {x}.
Challenge: At some point, A submits a challenge string x∗ ∈ X . If b = 0, the
challenger returns y ← Eval(msk, x∗) to A, otherwise it returns y ← Y.

Guess: Eventually, A outputs a guess b′ ∈ {0, 1}. The challenger returns 1 if
b = b′, x∗ 6∈ Qx and C(x∗) = 0 for all C ∈ Qc.
A CPRF is said to be adaptively secure if the following advantage is a negligible
function of λ:

AdvAdp-INDA,CPRF(λ) = |Pr[Adp-INDCPRF
A (1λ, b) = 1]− 1

2 |

Definition 5 [Selective Pseudorandomness] We define a security experiment
Sel-INDCPRF

A (1λ, b) for selective security of CPRF similarly to the experiment
Adp-INDCPRF

A (1λ, b) except that the adversary A submits the challenge state-
ment x∗ ∈ X before any oracle query. We define the advantage AdvSel-INDA,CPRF(λ)
accordingly and say that the CPRF is selectively secure if the quantity is a neg-
ligible function of λ.

Definition 6 [Function Privacy] For a security parameter λ ∈ N, a circuit class
{Cλ}λ∈N and a bit b ∈ {0, 1}, we define the experiment FP-INDCPRF

A (1λ, b) be-
tween a challenger and a PPT adversary A in the following manner:
Setup: The challenger runs msk← Setup(1λ) and prepares two empty sets Qc,c
and Qx.

Queries: In any arbitrary order, A can make queries to the following oracles.
– constrained key queries. On input a pair of circuits (C0, C1) ∈ Cλ × Cλ, the

challenger returns a constrained key skCb ← ConKey(msk, Cb) and updates
the set Qc,c ← Qc,c ∪ {(C0, C1)}.

– evaluation queries. On input x ∈ X , the challenger returns a pseudorandom
value y ← Eval(msk, x) and updates the set Qx ← Qx ∪ {x}.

Guess: Finally, A outputs a guess b′ ∈ {0, 1}. The challenger returns 1 if b = b′

and the following conditions hold:
1. C0(x) = C1(x) for all (C0, C1) ∈ Qc,c and x ∈ Qx,
2. S(C0)∩ S(C ′0) = S(C1)∩ S(C ′1) for any two distinct pairs (C0, C1), (C ′0, C

′
1)

of Qc,c where S(C) = {x ∈ X : C(x) = 1}
A CPRF is said to be function private if the following advantage is a negligible
function of λ:

AdvFP-INDA,CPRF(λ) = |Pr[FP-INDCPRF
A (1λ, b) = 1]− 1

2 |
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The restrictions on constrained key queries in Def. 6 is necessary to prevent
A in trivially distinguishing the keys skC0

and skC1
. This has been discussed

in [8] with several examples. We define a weaker version of function privacy
where an adversary is restricted to submit pair of circuits (C0, C1) such that
C0(x) = C1(x) for all x ∈ X . Hence, the above two conditions are not needed in
this case. We call this notion as weak function privacy. It is trivial to verify that
a function private CPRF (Def. 6) is also weak function private.

Definition 7 [Weak Function Privacy] We define a security experiment
wFP-INDCPRF

A (1λ, b) for weak function privacy security of CPRF similarly to
the experiment FP-INDCPRF

A (1λ, b) except that all the constrained key queries
{(C0, C1)} of the adversary A must satisfy the condition that C0(x) = C1(x)
for all x ∈ X and the challenger returns 1 only if b = b′ in the guess step. We
define the advantage AdvwFP-INDA,CPRF (λ) accordingly and say that the CPRF is weak
function private if the quantity is a negligible function of λ.

2.3 Constrained Witness Pseudorandom Functions

Definition 8 [Constrained Witness Pseudorandom Functions] A constrained
witness pseudorandom function (CWPRF) is defined for a circuit class {Cλ}λ∈N
and an NP language L with a relation R : X ×W → {0, 1}. It consists of five
PPT algorithms Gen, ConKey, F, ConF, Eval that work as follows:
• Gen(1λ, R) → (fk, ek): The generation algorithm outputs a secret function

key fk and a public evaluation key ek.
• ConKey(fk, C)→ fkC : The constrained key algorithm generates a constrained

key fkC corresponding to a circuit C ∈ Cλ.
• F(fk, x) → y: The pseudorandom function outputs an element y ∈ Y using

the secret function key fk for a string x ∈ X .
• ConF(fkC , x) → y: The constrained pseudorandom function algorithm out-

puts a value y ∈ Yutilizing the constrained key fkC for an input x ∈ X .
• Eval(ek, x, w) → y: The evaluation algorithm outputs a value y ∈ Y using

the public evaluation key ek and a witness w ∈ W for a string x ∈ X .

A CWPRF must satisfy the following requirements.

Definition 9 (Correctness) For all λ ∈ N, (fk, ek) ← Gen(1λ, R), x ∈ X , w ∈
W, C ∈ Cλ, and fkC ← ConKey(fk, C) we have

– correctness of ConF. Pr[ConF(fkC , x) = F(fk, x) s.t. C(x) = 1] = 1
– correctness of Eval. Pr[Eval(ek, x, w) = F(fk, x) s.t. R(x,w) = 1] = 1

Definition 10 [Adaptive Pseudorandomness] For a security parameter λ ∈ N,
a circuit class {Cλ}λ∈N, an NP language L with a relation R : X ×W → {0, 1}
and a bit b ∈ {0, 1}, we define the experiment Adp-INDCWPRF

A (1λ, b) between a
challenger and a PPT adversary A in the following manner:
Setup: The challenger runs (fk, ek) ← Gen(1λ, R) and sends ek to A. It also
prepares two empty sets Qc and Qx.

Queries: After setup, A can make queries to the following oracles at any point
of the experiment.
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– constrained key queries. On input a circuit C ∈ Cλ, the challenger returns a
constrained key fkC ← ConKey(fk, C) and updates the set Qc ← Qc ∪ {C}.

– pseudorandom function queries. On input x ∈ X , the challenger returns a
pseudorandom value y ← F(fk, x) and updates the set Qx ← Qx ∪ {x}.

Challenge: At some point, A submits a challenge string x∗ ∈ X \ L. If b = 0,
the challenger returns y ← F(fk, x∗) to A, otherwise it returns y ← Y.

Guess: Eventually, A outputs a guess b′ ∈ {0, 1}. The challenger returns 1 if
b = b′, x∗ 6∈ Qx and C(x∗) = 0 for all C ∈ Qc.
A CWPRF is said to be adaptively secure if the following advantage is a negligible
function of λ:

AdvAdp-INDA,CWPRF(λ) = |Pr[Adp-INDCWPRF
A (1λ, b) = 1]− 1

2 |

Definition 11 [Selective Pseudorandomness] We define a security experiment
Sel-INDCWPRF

A (1λ, b) for selective security of CWPRF similarly to the experiment
Adp-INDCWPRF

A (1λ, b) except that the adversary A submits the challenge state-
ment x∗ ∈ X \ L before setup phase. We define the advantage AdvSel-INDA,CWPRF(λ)
accordingly and say that the CWPRF is selectively secure if the quantity is a
negligible function of λ.

Definition 12 [Function Privacy] For a security parameter λ ∈ N, a circuit
class {Cλ}λ∈N, an NP language L with a relation R : X ×W → {0, 1} and a bit
b ∈ {0, 1}, we define the experiment FP-INDCWPRF

A (1λ, b) between a challenger
and a PPT adversary A in the following manner:
Setup: The challenger runs (fk, ek) ← Gen(1λ, R) and sends ek to A. It also
prepares two empty sets Qc,c and Qx.

Queries: A can make queries to the following oracles in any arbitrary order.
– constrained key queries. On input a pair of circuits (C0, C1) ∈ Cλ × Cλ, the

challenger returns a constrained key fkCb ← ConKey(fk, Cb) and updates the
set Qc,c ← Qc,c ∪ {(C0, C1)}.

– pseudorandom function queries. On input x ∈ X , the challenger returns a
pseudorandom value y ← F(fk, x) and updates the set Qx ← Qx ∪ {x}.

Guess: Finally, A outputs a guess b′ ∈ {0, 1}. The challenger returns 1 if b = b′

and the following conditions hold:
1. C0(x) = C1(x) for all (C0, C1) ∈ Qc,c and x ∈ Qx,
2. C0(x) = C1(x) for all (C0, C1) ∈ Qc,c and x ∈ L,
3. S(C0)∩ S(C ′0) = S(C1)∩ S(C ′1) for any two distinct pairs (C0, C1), (C ′0, C

′
1)

of Qc,c where S(C) = {x ∈ X : C(x) = 1}
A CWPRF is said to be function private if the following advantage is a negligible
function of λ:

AdvFP-INDA,CWPRF(λ) = |Pr[FP-INDCWPRF
A (1λ, b) = 1]− 1

2 |

Definition 13 [Weak Function Privacy] We define a security experiment
wFP-INDCWPRF

A (1λ, b) for weak function privacy security of CWPRF similarly to
the experiment FP-INDCWPRF

A (1λ, b) except that all the constrained key queries
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{(C0, C1)} of the adversary A must satisfy the condition that C0(x) = C1(x) for
all x ∈ X and the challenger returns 1 only if b = b′ in the guess step. We de-
fine the advantage AdvwFP-INDA,CWPRF(λ) accordingly and say that the CWPRF is weak
function private if the quantity is a negligible function of λ.

2.4 Puncturable Witness Pseudorandom Function

A puncturable WPRF (PWPRF) [28] is a special case of CWPRF where the con-
strained keys are generated only for the point circuits, that is the circuit class
{Cλ}λ∈N contains circuits of the form Cx′ for a particular point x′ ∈ X and
Cx′(x) = 1 if and only if x 6= x′. Specifically, a PWPRF for an NP language L
with a relation R : X ×W → {0, 1} is defined by a set of five PPT algorithms
Gen, PuncKey, F, PuncF, Eval which work in an identical way as regular CWPRF
except that the PuncKey algorithm takes in a string x ∈ X instead of a circuit C.
For correctness, we require that for all λ ∈ N, (fk, ek)← Gen(1λ, R), x ∈ X , w ∈
W, C ∈ Cλ, and fkx′ ← PuncKey(fk, x′) we have

– correctness of PuncF. Pr[PuncF(fkx′ , x) = F(fk, x) s.t. x 6= x′] = 1
– correctness of Eval. Pr[Eval(ek, x, w) = F(fk, x) s.t. R(x,w) = 1] = 1

We can define the Adp-IND and Sel-IND security notions of PWPRF in a similar
fashion as we have described the security for CWPRF in Def. 10 and Def. 11 (Sec.
3). The pseudorandomness of PWPRF states that the value F(fk, x∗) remains
pseudorandom even when an adversary gets a punctured key fkx∗ where x∗ is
the challenge statement lying outside the language L. A formal description of
the security notions is provided in App. A.

2.5 Functional Encryption

Definition 14 [Public-key Functional Encryption] A public-key functional en-
cryption (PKFE) is defined for a class of functions {Fλ}λ∈N and a message space
M. It consists of four PPT algorithms Setup, KeyGen, Enc, Dec that work as
follows:
• Setup(1λ) → (msk, pp): The Setup algorithm outputs a master secret-key
msk and a public parameter pp.
• KeyGen(msk, f)→ skf : The key generation algorithm generates a secret-key
skf corresponding to a function f ∈ Fλ, and outputs .
• Enc(pp, m) → ct: The encryption algorithm outputs a ciphertext ct by en-

crypting a message m ∈M using the public parameter pp.
• Dec(skf , ct) → y: The decryption algorithm decrypts the ciphertext ct using

the secret-key skf and outputs a value y.

A PKFE must satisfy the following requirements.

Definition 15 (Correctness) For all λ ∈ N, (msk, pp) ← Setup(1λ),m ∈ M,
f ∈ Fλ and skf ← KeyGen(msk, f) we have

– correctness of Dec. Pr[Dec(skf ,Enc(pp,m)) = f(m)] = 1− negl(λ)

Definition 16 [Adaptive Indistinguishability CCA security] For a security pa-
rameter λ ∈ N, a function class {Fλ}λ∈N, a message spaceM and a bit b ∈ {0, 1},
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we define the experiment Adp-INDCCAPKFE
A (1λ, b) between a challenger and a

PPT adversary A in the following manner:
Setup: The challenger runs (msk, pp) ← Setup(1λ) and sends pp to A. It also
prepares two empty sets Qf and Qct,f .

Queries: After setup, A can query to the following oracles at any point of the
experiment.
– secret-key queries. On input a function f ∈ Fλ, the challenger returns a

secret-key skf ← KeyGen(msk, f) and updates the set Qf ← Qf ∪ {f}.
– decryption queries. On input a ciphertext, function pair (ct, f), the challenger

computes skf ← KeyGen(msk, f) and returns Dec(skf , ct). It also updates
Qct,f ← Qct,f ∪ {(ct, f)}

Challenge: At some point, A submits a pair of challenge messages (m0,m1) ∈
M×M. The challenger returns ct∗ ← Enc(pp,mb) to A.

Guess: Eventually, A outputs a guess b′ ∈ {0, 1}. The challenger returns 1 if
b = b′ and f(m0) = f(m1) holds for all f ∈ Qf and for all (ct∗, f) ∈ Qct,f .

A PKFE is said to be adaptive indistinguishability CCA secure if the following
advantage is a negligible function of λ:

AdvAdp-INDCCA
A,PKFE (λ) = |Pr[Adp-INDCCAPKFE

A (1λ, b) = 1]− 1
2 |

2.6 Indistinguishability Obfuscation

Definition 17 [Indistinguishability Obfuscation] An indistinguishability obfus-
cator for a class of circuits {Cλ} is a PPT algorithm iO which satisfies the
following properties:
– Functionality : For all security parameter λ ∈ N, for all C ∈ Cλ, for all inputs
x, we require that

Pr[C̃(x) = C(x) : C̃ ← iO(1λ, C)] = 1

– Indistinguishability : For any PPT distinguisher D and for all pair of cir-
cuits C0, C1 ∈ Cλ that compute the same function and are of same size, the
following advantage is a negligible function of λ:

AdviOD (λ) = |Pr[D(C̃, C0, C1) = b s.t. C̃ ← iO(1λ, Cb), b← {0, 1}] − 1
2 |

3 Construction of CWPRF from CPRF and iO

Our construction of CWPRF is inspired by the iO based PRF constructions of
[8,26]. Specifically, we replace the PRF in the construction of [26] with a suitable
CPRF that supports any polynomial size circuits. For constrain hiding, we require
that the ConEval algorithm of the underlying CPRF to output pseudorandom
values for inputs x such that C(x) = 0. This is due to the fact that if ConEval
outputs ⊥ on inputs where the circuit evaluates to zero then the constrained
key skC reveals information about the circuit. One such CPRF is the iO-based
construction of [8] that we may choose to instantiate our CWPRF.
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We build of a selectively secure CWPRF = (Gen, ConKey, F, ConF, Eval)
for an NP language L with a witness relation R : X × W → {0, 1} using an
indistinguishability obfuscator iO and a CPRF = (Setup, ConKey, ConEval, Eval)
for a class of circuits {Cλ}λ∈N and a domain X . The CWPRF works as follows:

CWPRF.Gen(1λ, R): It computes a master secret-key msk ← CPRF.Setup(1λ)

and generate an obfuscated circuit F̃ ← iO(1λ, Fmsk,R) where the circuit
Fmsk,R is defined as follows:

Fmsk,R(x,w) =

{
CPRF.Eval(msk, x) if R(x,w) = 1

⊥ otherwise

It then outputs the function secret-key as fk = msk and the public evaluation
key as ek = F̃ .

CWPRF.ConKey(fk, C): For a circuit C ∈ Cλ, the constrained key algorithm uses
fk = msk and returns fkC ← CPRF.ConKey(msk, C).

CWPRF.ConF(fkC , x): For any x ∈ X , the constrained evaluation algorithm out-
puts CPRF.ConEval(fkC , x).

CWPRF.F(fk, x): Using the function secret-key as fk = msk, it outputs the pseu-
dorandom value corresponding to an x ∈ X as CPRF.Eval(msk, x) ∈ Y.

CWPRF.Eval(ek, x,w): It takes the evaluation key ek = F̃ and outputs F̃ (x,w)
for x ∈ X and w ∈ W.

Correctness. The correctness of CWPRF.ConF algorithm directly follows from
the correctness of CPRF.ConEval. For the correctness of CWPRF.Eval, we note
that if w is a valid witness of the statement x then Fmsk,R(x,w) = F̃ (x,w) =
CPRF.Eval(msk, x) holds by the correctness of iO. Therefore, CWPRF.Eval(ek,
x,w) = CWPRF.F(fk, x) if R(x,w) = 1.

Theorem 1 The constrained witness pseudorandom function CWPRF described
above is Sel-IND secure (as per Def. 11) assuming the iO is a secure indistin-
guishability obfuscator (as per Def. 17) and the CPRF is Sel-IND secure (as per
Def. 5).

Theorem 2 The constrained witness pseudorandom function CWPRF described
above is wFP-IND secure (as per Def. 13) assuming the iO is a secure indistin-
guishability obfuscator (as per Def. 17) and the CPRF is wFP-IND secure (as per
Def. 7).

Proof Sketch. In the Sel-IND game of CWPRF, the challenger computes a circuit
Ex∗ which is satisfied by all inputs other than the challenge statement x∗. Now, it
sets sk∗ ← CPRF.ConKey(msk, Ex∗) and defines ek = iO(1λ, F̃ ) where F̃ (x,w) =

CPRF.ConEval(sk∗, x) if R(x,w) = 1, 0 otherwise. The circuits Fmsk,R and F̃
are equivalent since x∗ 6∈ L. Therefore, an adversary cannot detect the change
in the evaluation key ek by the security of iO and CWPRF.F(fk, x∗) remains
pseudorandom by the Sel-IND security of CPRF.

11



To show the wFP-IND security of CWPRF, we follow the similar technique as
above. The challenger picks a random statement x∗, computes r∗ = CPRF.Eval
(msk, x∗), sk∗ ← CPRF.ConKey(msk, Ex∗) and then sets ek = iO(1λ, F̃x∗,r∗).

The circuit F̃x∗,r∗(x,w) = CPRF.ConEval(sk∗, x) if R(x,w) = 1 and returns r∗

if x = x∗, 0 otherwise. The security of iO guarantees that this change in ek
remains indistinguishable to an adversary. Finally, we can show that WCPRF
satisfies wFP-IND security under the assumption of wFP-IND security of CPRF.
We give formal proofs in App. B.

Remark 1 The CPRF of Boneh et al. [8] requires that the underlying PRF and
iO to be secure against subexponential adversaries (Theorem 3.3 of [8]) as their
aim was to achieve (strong) function privacy (Def. 6). If the challenger circuits
given by an adversary (in the security game of Def. 6) differs only on a poly-
nomial number of points, then polynomial security of the PRF and iO suffices
(Remaark D.11 of [8]). Since the weak function privacy (Def. 7) restricts the
challenge circuits to be equivalent, we are able to base the security of CWPRF
relying on CPRF and iO both secure against polynomial time adversaries.

4 Construction of CCA secure PKFE from CWPRF

Our generic construction of PKFE only requires CWPRF along with a pseudoran-
dom generator. Mainly, we translate the SKFE of Boneh et al. [8] in public-key
setting and more importantly we achieve security against active adversaries.
Formally, we build a PKFE = (Setup, KeyGen, Enc, Dec) for all polynomial-size
boolean functions having input space M = {0, 1}`. Let us consider a length
doubling PRG with domain {0, 1}λ for some λ ∈ N. We take a PWPRF =
(Gen, PuncKey, F, PuncF, Eval)1 for the NP language L = {r ∈ {0, 1}2λ :
∃ s s.t. PRG(s) = r} with relation R and a CWPRF = (Gen, ConKey, F, ConF,
Eval) for the NP language Lek = {(r, c) ∈ {0, 1}2λ+` : ∃ (s,m) s.t. c = m ⊕
PWPRF.Eval(ek, r, s)} with a relation Rek where ek is an evaluation key of PW-
PRF. The PWPRF has a domain of size 2λ and the CWPRF has a domain of
size 2λ + `. We assume that the CWPRF is associated with a class of boolean
functions taking inputs from {0, 1}2λ+`.

PKFE.Setup(1λ): The setup algorithm proceeds as follows:
1. Generate a key pair (fk, ek) ← PWPRF.Gen(1λ, R) for a relation R de-

fined by the language L as above.
2. Define a language Lek with a relation Rek as above and generate a key

pair (fk′, ek′)← CWPRF.Gen(1λ, Rek).
3. Return the master secret-key as msk = (fk, fk′) and the public parameter

as pp = (ek, ek′).
PKFE.KeyGen(msk, f): The key generation algorithm produces a secret-key cor-

responding to the boolean function f with input length ` as follows:
1. Parse msk = (fk, fk′).

1 We assume that the co-domain of the pseudorandom function is {0, 1}` [28].
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2. Define a circuit Cf,fk with constants f and fk as

Cf,fk(r, c) =

{
1 if f(PWPRF.F(fk, r)⊕ c) = 1

0 otherwise

3. Compute the constrained key fk′Cf,fk ← CWPRF.ConKey(fk′, Cf,fk).

4. Return the secret-key skf = fk′Cf,fk .

PKFE.Enc(pp, m): The encryption algorithm computes a ciphertext for the mes-
sage m ∈ {0, 1}` as follows:
1. Parse pp = (ek, ek′).
2. Pick a random string s← {0, 1}λ and set r = PRG(s).
3. Use PWPRF to compute c = m⊕ PWPRF.Eval(ek, r, s) where s acts like

a witness for the statement r of the language L.
4. Set a statement (r, c) of the language Lek with a witness (s,m) and

generate a pseudorandom value v = CWPRF.Eval(ek′, (r, c), (s,m)).
5. Return the ciphertext as ct = (r, c, v).

PKFE.Dec(skf , ct): The decryption algorithm proceeds as follows:
1. Parse skf = fk′Cf,fk and ct = (r, c, v).

2. Extract the statement (r, c) of the language Lek from the ciphertext ct
and compute a pseudorandom value v′ = CWPRF.ConF(fkCf,fk , (r, c)).

3. Return 1 if v = v′ and 0 otherwise.

Correctness. Let skf = fk′Cf,fk be a secret-key corresponding to a function

f and ct = (r, c, v) be a ciphertext encrypting a message m. To show the
correctness of decryption algorithm, we first note that if Cf,fk(r, c) = 1 then
by the correctness of CWPRF.ConF (Def. 8), it holds with probability 1 that
CWPRF.ConF(fk′Cf,fk , (r, c)) = CWPRF.F(fk′, (r, c)) = CWPRF.Eval(ek′, (r, c), (s,

m)) = v. Now, by the definition of the circuit Cf,fk and correctness of PW-
PRF.Eval, we have Cf,fk(r, c) = 1 holds if

1 = f(PWPRF.F(fk, r)⊕ c) = f(PWPRF.Eval(ek, r, s)⊕ c) = f(m)

since c = PWPRF.Eval(ek, r, s) ⊕m. Hence, the decryption successfully returns
f(m) = 1 by checking CWPRF.ConF(fk′Cf,fk , (r, c)) = v. On the other hand,

the correctness of CWPRF.Eval (Def. 8) and the pseudorandomness property of
CWPRF (Def. 11) together implies that

v = CWPRF.Eval(ek′, (r, c), (s,m)) = CWPRF.F(fk′, (r, c))

remains pseudorandom with overwhelming probability if we have a constrained
key fk′Cf,fk such that Cf,fk(r, c) = 0. Hence, the decryption returns f(m) = 0 with

high probability by checking CWPRF.ConF(fk′Cf,fk , (r, c)) 6= v.

Succinctness. An FE scheme is said to be succinct [16] if the size of the cipher-
text is independent of the size of the computing function and may grow with the
depth of the function. In our PKFE construction above, the size of a ciphertext
ct = (r, c, v) encrypting a message m ∈ {0, 1}` is given by |ct| = |r|+ |c|+ |v| =
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2λ + ` + poly(λ, `) = |m| + poly(λ) where we assume that ` is a polynomial
in the security parameter λ. The ciphertext is completely independent of the
size of the computing function. Therefore, our PKFE produces not only succinct
ciphertexts, the size is optimal for any public-key system. On the other hand,
the iO-based PKFE of [15] uses fully homomorphic encryption (FHE) to en-
crypt messages and a NIZK proof system to prove a the well-formedness of FHE
ciphertexts. Thus, the ciphertext size of [15] is not optimal and the ciphertext
overhead is also huge in comparison to the ciphertext of our PKFE.

Theorem 3 The public-key functional encryption scheme PKFE described above
is Adp-INDCCA secure (as per Def. 16) assuming the PRG is secure (as per Def.
1), the PWPRF is Sel-IND secure (as per Def. 19) and the CWPRF is wFP-IND
secure (as per Def. 13).

Proof. The security analysis involves a sequence of hybrid experiments and prov-
ing indistinguishability between the experiments. The main idea of the proof is
to mask the challenge message with a pseudorandom value corresponding to a
statement of PWPRF that does not have any witness. Therefore, the evaluation
key of PWPRF will not help any PPT adversary A to learn anything about the
challenge message by the Sel-IND security of PWPRF. However, the main chal-
lenge comes into simulating the queries of the active adversary where we need to
utilize the wFP-IND security of CWPRF. Let Hi be the event that the challenger
outputs 1 in the i-th hybrid experiment.

Hybd0: We describe the hybrid 0 which is the standard Adp-INDCCA(1λ, b) ex-
periment as described in Def. 16:

Setup: The challenger generates two pair of keys (fk, ek)← PWPRF.Gen(1λ, R),
(fk′, ek′) ← CWPRF.Gen(1λ, Rek) and sends pp = (ek, ek′) to A. It creates two
empty sets Qf and Qct,f .

Queries: A can query to the following oracles at any point of the experiment.
– secret-key queries. On input a function f ∈ Fλ, the challenger computes
fk′Cf,fk ← CWPRF.ConKey(fk′, Cf,fk) and returns skf = fk′Cf,fk . It updates the

set Qf ← Qf ∪ {f}.
– decryption queries. On input a ciphertext-function pair (ct, f), the challenger

parses ct = (r, c, v). It computes fk′Cf,fk ← CWPRF.ConKey(fk′, Cf,fk) and

sets v′ = CWPRF.ConF(fk′Cf,fk , (r, c)). It outputs 1 if v′ = v, 0 otherwise. It

updates Qct,f ← Qct,f ∪ (ct, f)
Challenge: The adversary A submits a pair of challenge messages (m0,m1) ∈
{0, 1}` × {0, 1}`. The challenger proceeds as follows:

1. Pick s∗ ← {0, 1}λ and set r∗ = PRG(s∗).
2. Mask the challenge message as c∗ = mb ⊕ PWPRF.Eval(ek, r∗, s∗).
3. Compute a pseudorandom value v∗ = CWPRF.Eval(ek′, (r∗, c∗), (s∗,mb)).
4. Return the challenge ciphertext ct∗ = (r∗, c∗, v∗) to A.

Guess: The adversary A outputs a guess b′ ∈ {0, 1}. The challenger returns 1
if b = b′ and f(m0) = f(m1) holds for all f ∈ Qf and for all (ct∗, f) ∈ Qct,f .
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Hybd1: It is exactly the same as hybrid 0 except that the challenger uses the
master secret-key msk = (fk, fk′) to compute ct∗ as follows:

Challenge: The adversary A submits a pair of challenge messages (m0,m1) ∈
{0, 1}` × {0, 1}`. The challenger proceeds as follows:

1. Pick s∗ ← {0, 1}λ and set r∗ = PRG(s∗).
2. Mask the challenge message as c∗ = mb ⊕ PWPRF.F(fk, r∗).
3. Compute a pseudorandom value v∗ = CWPRF.F(fk′, (r∗, c∗)).
4. Return the challenge ciphertext ct∗ = (r∗, c∗, v∗) to A.

We note that the ciphertext distributions in both the hybrids are identical since
by the correctness of PWPRF.Eval and CWPRF.Eval we have

PWPRF.Eval(ek, r∗, s∗) = PWPRF.F(fk, r∗) and

CWPRF.Eval(ek′, (r∗, c∗), (s∗,mb)) = CWPRF.F(fk′, (r∗, c∗)).

Therefore, Hybd0 and Hybd1 are identically distributed from A’s view and we
have Pr[H0] = Pr[H1].

Hybd2: In this hybrid, the challenger chooses r∗ uniformly at random from
{0, 1}2λ instead of computing it as r∗ = PRG(s∗) for some s∗ ∈ {0, 1}λ. The rest
of the experiment is same as Hybd1. We indicate the change below.

Challenge: The adversary A submits a pair of challenge messages (m0,m1) ∈
{0, 1}` × {0, 1}`. The challenger proceeds as follows:

1. Set r∗ ← {0, 1}2λ.
2. Mask the challenge message as c∗ = mb ⊕ PWPRF.F(fk, r∗).
3. Compute a pseudorandom value v∗ = CWPRF.F(fk′, (r∗, c∗)).
4. Return the challenge ciphertext ct∗ = (r∗, c∗, v∗) to A.

The security of PRG (Def. 1) implies |Pr[H1]− Pr[H2]| = AdvPRGB1
(λ) = negl(λ).

Hybd3: The challenger modifies hybrid 2 using a punctured key which allows it
to avoid the secret function key fk during the secret-key and decryption queries.
We describe this hybrid as follows:

Setup: The challenger generates two pair of keys (fk, ek)← PWPRF.Gen(1λ, R),
(fk′, ek′) ← CWPRF.Gen(1λ, Rek) and sends pp = (ek, ek′) to A. It creates two
empty sets Qf and Qct,f . Next, the challenger picks r∗ ← {0, 1}2λ (to be used
in the challenge phase to mask mb) in advance and computes a punctured key
fkr∗ ← PWPRF.PuncKey(fk, r∗) and the pseudorandom value u∗ ← PWPRF.F(fk, r∗)
in the setup itself.

Queries: A can query to the following oracles at any point of the experiment.
– secret-key queries. On input a function f ∈ Fλ, the challenger defines the

circuit

Cf,fkr∗ ,u
∗ (r, c) =

{
1 if (r = r∗ ∧ f(u∗ ⊕ c) = 1) ∨ (f(PWPRF.PuncF(fkr∗ , r)⊕ c) = 1)

0 otherwise

Then, it returns the secret-key skf as the constrained key fk′Cf,fkr∗ ,u∗
←

CWPRF.ConKey(fk′, Cf,fkr∗ ,u∗). It updates the set Qf ← Qf ∪ {f}.
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– decryption queries. On input a ciphertext, function pair (ct, f), the chal-

lenger parses ct = (r, c, v). It defines a circuit Cf,fkr∗ ,u∗ as above and

computes fk′Cf,fkr∗ ,u∗
← CWPRF.ConKey(fk′, Cf,fkr∗ ,u∗). Then, it sets v′ =

CWPRF.ConF(fk′Cf,fkr∗ ,u∗
, (r, c)) and outputs 1 if v′ = v, 0 otherwise. It up-

dates Qct,f ← Qct,f ∪ (ct, f).
Challenge: The adversary A submits a pair of challenge messages (m0,m1) ∈
{0, 1}` × {0, 1}`. The challenger proceeds as follows:

1. Mask the challenge message as c∗ = mb ⊕ u∗.
2. Compute a pseudorandom value v∗ = CWPRF.F(fk′, (r∗, c∗)).
3. Return the challenge ciphertext ct∗ = (r∗, c∗, v∗) to A.

Guess: A outputs a guess b′ ∈ {0, 1}. The challenger returns 1 if b = b′ and
f(m0) = f(m1) holds for all f ∈ Qf and for all (ct∗, f) ∈ Qct,f .

We show in Lemma 1 that the advantage of A in distinguishing between the
hybrids 2 and 3 is negligible in λ, however the proof is shifted to App. C.1.

Lemma 1 Assuming wFP-IND security of CWPRF, |Pr[H2]−Pr[H3]| = negl(λ).

Hybd4: This is exactly the same as Hybd3 except that we pick u∗ uniformly at
random from the co-domain Y of PWPRF.F(fk, ·) instead of computing u∗ ←
PWPRF.F(fk, r∗) for some r∗ ∈ {0, 1}2λ. The Sel-IND security of PWPRF guar-
antees that hybrids 3 and 4 are indistinguishable for any PPT adversary A as
shown in Lemma 2. We prove this lemma in App. C.2.

Lemma 2 Assuming Sel-IND security of PWPRF, |Pr[H3]− Pr[H4]| = negl(λ).

Finally, we note that in hybrid 4 the challenge message mb is masked into c∗ =
mb ⊕ u∗ where u∗ is chosen as uniformly at random from Y, indicating that
the challenge bit b is statistically hidden inside c∗. This in turn implies that
A’s advantage in guessing the bit b in hybrid 4 is at most 1

2 even when it has
access to the key generation and decryption oracles. This completes the proof of
Adp-INDCCA security of our PKFE.

5 Conclusion

In this work, we propose a generalized variant of WPRF called constrained WPRF
which provides finer access control to the pseudorandom values associated with
NP statements. We discuss a generic construction of CWPRF from iO and CPRF.
More importantly, the pseudorandomness and function privacy of our CWPRF
enable us to achieve an adaptive IND-CCA secure PKFE for all polynomial-size
functions. To the best of our knowledge, existing PKFEs are either IND-CPA
secure or supports specific class of functions. Additionally, our PKFE produces
optimal size ciphertexts which in turn implies succinctness. In literature, such
a succinct PKFE gives rise to an iO for all circuits [4]. Thus, it can be believed
that CWPRF is as good as iO, however, a direct construction of iO from CWPRF
would be more interesting which we leave as future work.
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A Pseudorandomness Security of PWPRF

In this section, we describe the pseudorandomness security notions of PWPRF
= (Gen, PunKey, F, PunF, Eval) for an NP language L with a witness relation
R : X ×W → {0, 1}.
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Definition 18 [Adaptive Pseudorandomness] For a security parameter λ ∈ N,
an NP language L with a relation R : X × W → {0, 1} and a bit b ∈ {0, 1},
we define the experiment Adp-INDPWPRF

A (1λ, b) between a challenger and a PPT
adversary A in the following manner:
Setup: The challenger runs (fk, ek) ← Gen(1λ, R) and sends ek to A. It also
prepares an empty set Qx.

Queries: After setup, A can make queries to the following oracle at any point
of the experiment.
– pseudorandom function queries. On input x ∈ X , the challenger returns a

pseudorandom value y ← F(fk, x) and updates the set Qx ← Qx ∪ {x}.
Challenge: At some point, A submits a challenge string x∗ ∈ X \ L. The
challenger computes fkx∗ ← PuncKey(fk, x∗) and sets y0 ← F(fk, x∗), y1 ← Y.
Finally, it returns (fkx∗ , yb) to A.

Guess: Eventually, A outputs a guess b′ ∈ {0, 1}. The challenger returns 1 if
b = b′ and x∗ 6∈ Qx.

A PWPRF is said to be adaptively secure if the following advantage is a negligible
function of λ:

AdvAdp-INDA,PWPRF(λ) = |Pr[Adp-INDPWPRF
A (1λ, b) = 1]− 1

2 |

Definition 19 [Selective Pseudorandomness] We define a security experiment
Sel-INDPWPRF

A (1λ, b) for selective security of PWPRF similarly to the experiment
Adp-INDPWPRF

A (1λ, b) except that the adversary A submits the challenge state-
ment x∗ ∈ X \ L before setup phase. We define the advantage AdvSel-INDA,PWPRF(λ)
accordingly and say that the PWPRF is selectively secure if the quantity is a
negligible function of λ.

B Security Analysis of CWPRF

B.1 Proof of Theorem 1

Proof. We prove the security using two hybrid experiments. The first one is
Hybd0 which is the standard experiment Sel-INDCWPRF

A (1λ, b) as described in
Def. 11. In the second experiment Hybd1, we modify the public evaluation key
and argue the indistinguishability between the hybrids relying on the security of
iO. Finally, we conclude the proof using the Sel-IND security of CPRF.

Hybd0: The challenger proceeds as specified in Sel-INDCWPRF
A (1λ, b) of Def. 11.

Upon receiving the challenge statement x∗ ∈ X \ L from the adversary A,
the challenger generates msk ← CPRF.Setup(1λ), computes a circuit Fmsk,R

(as defined in the CWPRF construction above), obfuscates the circuit as F̃ =

iO(1λ, Fmsk,R), and sets fk = msk, ek = F̃ . It computes y0 ← CPRF.Eval(msk, x∗)
and y1 ← Y. The adversary A gets (ek, yb) and makes query to the con-
strained key oracle CWPRF.ConKey(fk, ·) and the pseudorandom function oracle
CWPRF.F(fk, ·) for any polynomial number of times. Let Qc, Qx be the set of all
constrained key queries and pseudorandom function queries respectively, made
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by A during the experiment. The challenger outputs 1 if A can guess the bit b
correctly and x∗ 6∈ Qc, C(x∗) = 0 for all C ∈ Qc.
Hybd1: It is the same Hybd0 except that the circuit Fmsk,R is modified to a new
circuit Fsk∗,R given by

Fsk∗,R(x,w) =

{
CPRF.ConEval(sk∗, x) if R(x,w) = 1

⊥ otherwise

where sk∗ is defined as follows. The challenge statement x∗ is used to build a
circuit Ex∗ such that Ex∗(x) = 1 for all x ∈ X \ {x∗} and Ex∗(x

∗) = 0. Then
the challenger computes a constrained key sk∗ ← CPRF.ConKey(msk, Ex∗) and
generates ek = iO(1λ, Fsk∗,R). The rest of the experiment is the same as Hybd0.
First, we observe that the two circuits Fmsk,R and Fsk∗,R are equivalent. For
any x ∈ X \ {x∗}, it holds that CPRF.Eval(msk, x) = CPRF.ConEval(sk∗, x) due
to the functionality of Ex∗ , which implies Fmsk,R(x,w) = Fsk∗,R(x,w) for all
x ∈ X \ {x∗} and w ∈ W. By the descriptions of both the circuits, we see that
Fmsk,R(x∗, w) = Fsk∗,R(x∗, w) =⊥ as x∗ 6∈ L. Hence, for any PPT distinguisher,
the distributions of iO(1λ, Fmsk,R) and iO(1λ, Fsk∗,R) are indistinguishable by
the security of iO (Def. 17). Therefore, Hybd0 and Hybd1 are indistinguishable
from A’s point of view.

Next, we prove that the advantage of A in Hybd1 is negligible based on
the Sel-IND security of CPRF. Let B be an adversary of Sel-INDCPRF

A (1λ, b) ex-
periment (Def. 5). Note that, B has access to the oracles CPRF.ConKey(msk, ·)
and CPRF.Eval(msk, ·) where msk← CPRF.Setup(1λ) is generated by the CPRF-
challenger. The CWPRF-adversary A sends the challenge statement x∗ and B
simulates the experiment for A as follows:

B(1λ, x∗):

1. B sends x∗ to its challenger and receives yb according to the challenge bit b
where y0 = CPRF.Eval(msk, x∗) and y1 ← Y.

2. Next, B computes Ex∗ and asks for a constrained key from its challenger. It
receives a key sk∗ ← CPRF.ConKey(msk, Ex∗).

3. B generates an obfuscated circuit ek = iO(1λ, Fsk∗,R) for a circuit Fsk∗,R as
described in Hybd1 and sends (ek, yb) to A.

4. Whenever B receives a constrained key query from A corresponding to a
circuit C satisfying C(x∗) = 0, it uses the oracle CPRF.ConKey(msk, ·) to
produce a reply for A.

5. A makes pseudorandom function query for a value x ∈ X \ {x∗} to which B
replies with the oracle CPRF.Eval(msk, ·).

6. Finally, A submits a guess bit b′ which B forwards to its challenger.

First we note that B is an admissible adversary since C(x∗) = 0 for all C ∈
Qc∪{Ex∗} where Qc is the set of constrained key queries made by A and x 6= x∗

for all x ∈ Qx where Qx denotes the set of pseudorandom function queries of A.
Hence, the advantage of B in breaking the Sel-IND security of CPRF is the same
as the advantage of A in guessing the challenge bit in Hybd1. The advantage of
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Constants: a constrained key sk∗, a string x∗, a value r∗ and the relation circuit R
Inputs: a statement x ∈ X and a witness w ∈ W

1. If R(x,w) = 1
2. If x 6= x∗

3. return CPRF.ConEval(sk∗, x)
4. If x = x∗

5. return r∗

6. else return ⊥

Fig. 1: Description of circuit Fsk∗,x∗,r∗,R

A in breaking the Sel-IND security of CWPRF is negligible in λ since the CPRF
is Sel-IND secure.

B.2 Proof of Theorem 2

Proof. The security analysis involves two hybrid experiments where the first hy-
brid is the standard experiment wFP-INDCWPRF

A (1λ, b) between an adversary A
and a challenger as described in Def. 13 and the second hybrid modifies the pub-
lic evaluation key depending on the security of the iO. Finally, we show that the
advantage of A in the second hybrid is negligible due to the wFP-IND security
of the CPRF.

Hybd0: It is the same as wFP-INDCWPRF
A (1λ, b) of Def. 13. The challenger gen-

erates msk ← CPRF.Setup(1λ), sets the secret function key fk = msk and sends
the public evaluation key ek = iO(1λ, Fmsk,R) to A where the circuit Fmsk,R is as
defined in the construction. Upon receiving ek, the adversary makes two kind of
queries. It sends a pair of circuits (C0, C1) for a constrained key query to which
A receives a key of the form CWPRF.ConKey(fk, Cb) and it can ask pseudoran-
dom value for an input x ∈ X to which A receives CWPRF.F(fk, x). Let Qc,c
be the set of all constrained key queries made by A during the experiment. The
challenger outputs 1 if A can guess the bit b correctly and C0(x) = C1(x) for all
(C0, C1) ∈ Qc,c and x ∈ X .

Hybd1: It is the same Hybd0 except that the circuit Fmsk,R is replaced with a
new circuit Fsk∗,x∗,r∗,R described in Fig. 1. The challenger picks an arbitrary
x∗ ∈ X and define a circuit Ex∗ such that Ex∗(x) = 1 for all x ∈ X \ {x∗} and
Ex∗(x

∗) = 0. Then it computes a constrained key sk∗ ← CPRF.ConKey(msk, Ex∗)
and generates ek = iO(1λ, Fsk∗,x∗,r∗,R) where r∗ ← CPRF.Eval(msk, x∗). The rest
of the experiment is the same as the standard one described in Hybd0. It is trivial
to observe that the two circuits Fmsk,R and Fsk∗,x∗,r∗,R are functionally equiva-
lent since CPRF.Eval(msk, x) = CPRF.ConEval(sk∗, x) for any x ∈ X \ {x∗} due
to the definition of Ex∗ . Therefore, for any PPT distinguisher, the distributions
of iO(1λ, Fmsk,R) and iO(1λ, Fsk∗,x∗,r∗,R) are indistinguishable by the security
of iO (Def. 17). Therefore, the advantage of A in distinguishing between Hybd0
and Hybd1 is negligible.

Next, we conclude the proof by showing that the advantage of A in guess-
ing the challenge bit in Hybd1 is negligible based on the wFP-IND security of
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CPRF. Let B be an adversary of wFP-IND experiment (Def. 7) of CPRF. Note
that, B has access of two oracles: the first one returns CPRF.ConKey(msk, Cb)
on input (C0, C1) according to the challenge bit b and the second one outputs
CPRF.Eval(msk, x) on input a string x ∈ X where msk ← CPRF.Setup(1λ) is
generated by the CPRF-challenger. The adversary B simulates the experiment
for A as follows:

B(1λ):

1. B selects a random x∗ from X and defines Ex∗ as in the previous hybrid. It
asks a constrained key query for (Ex∗ , Ex∗) and an evaluation query for x∗

from its challenger. In response, it receives a key sk∗ and a pseudorandom
value r∗.

2. B generates an obfuscated circuit ek = iO(1λ, Fsk∗,x∗,r∗,R) for a circuit
Fsk∗,x∗,r∗,R as described in Fig. 1 and sends ek to A.

3. Whenever B receives a constrained key query for a pair of equivalent circuits
(C0, C1) fromA, it forwards to its challenger who returns a key CPRF.ConKey
(msk, Cb). Then, B sends the key to A.

4. A makes pseudorandom function query for a value x ∈ X to which B replies
with the oracle CPRF.Eval(msk, ·).

5. Finally, A submits a guess bit b′ which B forwards to its challenger.

We observe that B is an admissible adversary since for all (C0, C1) ∈ Qc,c ∪
{(Ex∗ , Ex∗)} it holds that C0(x) = C1(x) ∀x ∈ X . Therefore, B perfectly simu-
lates Hybd1 for A. This implies that the advantage of A in guessing the challenge
bit is negligible in λ by wFP-IND security of the CPRF.

C Missing Parts of Theorem 3

C.1 Proof of Lemma 1

Proof. We will prove this by contradiction. Suppose, the PKFE adversary A’s
advantage in hybrids 2 differs by a non-negligible quantity from its advantage in
hybrid 3, i.e. there exists a polynomial p(λ) such that

|Pr[H2]− Pr[H3]| ≥ 1
p(λ)

holds for sufficiently many λ ∈ N. We use A to construct a CWPRF adver-
sary B for the wFP-IND security experiment wFP-INDCWPRF

B (1λ, β) as described
in Def. 13 for some β ∈ {0, 1}. For a key pair (fk, ek) ← PWPRF.Gen(1λ, R),
the CWPRF-challenger generates (fk′, ek′) ← CWPRF.Gen(1λ, Rek) and sends
ek′ to B. We note that the NP relation circuit Rek is public and the PW-
PRF key pair (fk, ek) is made available to B by the CWPRF challenger as an
auxiliary information. There are two oracles to which B can query. Firstly,
it can send a pair of equivalent circuits (C0, C1) and learn a constrained key
fk′Cβ ← CWPRF.ConKey(fk′, Cβ). Secondly, it may send a string x and learn a

pseudorandom value y ← CWPRF.F(fk′, x). Now, B simulates the adversary A
as follows.
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B(1λ, (fk, ek), ek′) :

1. It sends the master public-key pp = (ek, ek′) to A.
2. It picks a random string r∗ ← {0, 1}2λ and computes the punctured key

fkr∗ ← PWPRF.PuncKey(fk, r∗) and the pseudorandom value u∗ ← PWPRF.F
(fk, r∗). It takes an empty set Qf .

3. WheneverA queries for a secret-key corresponding to a function f , the adver-
sary B computes a pair of circuits as Ĉf,0 = Cf,fk (as defined in the PKFE con-

struction) and Ĉf,1 = Cf,fkr∗ ,u∗ . Now, B sends (Ĉf,0, Ĉf,1) to the constrained

key oracle and receives a constrained key fk′
Ĉf,β
← CWPRF.ConKey(fk′, Ĉf,β)

which is forwarded to A as the secret-key skf . The adversary B updates the
set Qf ← Qf ∪ {f}.

4. A can also query for decryption of a ciphertext-function pair (ct = (r, c, v), f)

at any point of the experiment. First, B creates the circuit pair (Ĉf,0, Ĉf,1)

as in step 3 and learns a constrained key fk′
Ĉf,β
← CWPRF.ConKey(fk′, Ĉf,β)

from its oracle. Then, it returns 1 if v = CWPRF.ConF(fk′
Ĉf,β

, (r, c)), 0 oth-

erwise. The adversary B updates the sets Qf ← Qf ∪ {f}.
5. Let m0,m1 ∈ {0, 1}` be the challenge messages given by A. Now, B chooses
b← {0, 1} and proceeds by masking the challenge message as c∗ = mb ⊕ u∗.
Then, B makes a pseudorandom function query on the input (r∗, c∗) and
gets v∗ = CWPRF.F(fk′, (r∗, c∗)). Finally, it returns the challenge ciphertext
as ct∗ = (r∗, c∗, v∗).

6. At the end, A outputs a guess bit which B returns as its own guess.

First, we show that B is an admissible adversary of the wFP-IND game. The
correctness of PWPRF.PuncF, it holds that PWPRF.F(fk, r) (used in the circuits
Cf,fk) is equal to PWPRF.PuncF(fkr∗ , r) (used in the circuits Cf,fkr∗ ,u∗) for all
r 6= r∗. Therefore, the circuits Cf,fk and Cf,fkr∗ ,u∗ are equivalent for all f ∈ Qf .
Now, if β = 0, then B perfectly simulates the hybrid 2 as the secret-keys are
computed using the circuits of the form Cf,fk where the secret function key fk is
hardcoded. If β = 1 then B perfectly simulates the hybrid 3 as the secret-keys
are produced utilizing the circuits of the form Cf,fkr∗ ,u∗ where the punctured
key fkr∗ is constant. Therefore, for infinitely many λ, it holds that

AdvwFP-INDB,CWPRF(λ) = |Pr[H2]− Pr[H3]| ≥ 1
p(λ) .

This is a contradiction as CWPRF is wFP-IND secure and hence we have |Pr[H2]−
Pr[H3]| = negl(λ).

C.2 Proof of Lemma 2

Proof. We prove the lemma by contradiction. We assume that PKFE adversary
A’s advantage in hybrids 3 differs by a non-negligible quantity from its advantage
in hybrid 4. Consequently, there exists a polynomial p(λ) such that

|Pr[H3]− Pr[H4]| ≥ 1
p(λ)
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holds for sufficiently many λ ∈ N. Now, we construct a PWPRF adversary B
for the Sel-IND security experiment Sel-INDPWPRF

B (1λ, β) as described in Def. 19
for some β ∈ {0, 1}. First, B chooses a challenge statement r∗ ← {0, 1}2λ and
sends it to the PWPRF-challenger. The challenger picks a challenge bit β and
generates a key pair (fk, ek) ← PWPRF.Gen(1λ, R). It computes a punctured
key fkr∗ ← PWPRF.PuncKey(fk, r∗) and a pseudorandom value u∗ depending
on β. Finally, B receives (ek, fkr∗ , u

∗) from it’s challenger. Now, B simulates the
adversary A as follows.

B(1λ, ek, fkr∗ , r
∗, u∗) :

1. It generates a key pair (fk′, ek′)← CWPRF.Gen(1λ, Rek) and sends the master
public-key pp = (ek, ek′) to A.

2. To answer secret-key query of A corresponding to a function f , the ad-
versary B computes a circuit as Cf,fkr∗ ,u∗ (as defined in hybrid 3 of The-
orem 3) and sends the secret-key skf as the constrained key fk′Cf,fkr∗ ,u∗

←
CWPRF.ConKey(fk′, Cf,fkr∗ ,u∗).

3. A can also query for decryption of a ciphertext-function pair (ct = (r, c, v), f)
at any point of the experiment. First, B computes a constrained key fk′Cf,fkr∗ ,u∗

← CWPRF.ConKey(fk′, Cf,fkr∗ ,u∗) and then, it returns 1 if v = CWPRF.ConF
(fk′Cf,fkr∗ ,u∗

, (r, c)), 0 otherwise.

4. At a certain stage, A submits challenge messages m0,m1 ∈ {0, 1}`. Now, B
chooses b ← {0, 1} and proceeds by masking the challenge message as c∗ =
mb⊕u∗ by the pseudorandom value u∗. Then, it computes a pseudorandom
value v∗ = CWPRF.F(fk′, (r∗, c∗)) and returns the challenge ciphertext as
ct∗ = (r∗, c∗, v∗).

5. Finally, A outputs a guess bit which B returns as its own guess.

Note that B is an admissible adversary for the Sel-IND security experiment if r∗

does not have any witness under the relation R. Since PRG is a length doubling
pseudorandom generator with input length λ and r∗ is choosen uniformly at
random from {0, 1}2λ, the probability that there exists s ∈ {0, 1}λ satisfying
PRG(s) = r∗ is at most 2−λ which is negligible in λ. Therefore, with overwhelm-
ing probability, B is a legitimate adversary for the Sel-IND security game of
PWPRF. If the challenge bit β chosen by the PWPRF-challenger is 0, then the
pseudorandom value u∗ is computed as u∗ = PWPRF.F(fk, r∗) and when β = 1
then u∗ is chosen uniformly at random from the co-domain Y of PWPRF.F(fk,
·). Thus, B simulates hybrid 3 if β = 0 and it simulates hybrid 4 if β = 1. Hence,
for infinitely many λ, it holds that

AdvSel-INDB,PWPRF(λ) = |Pr[H3]− Pr[H4]| ≥ 1
p(λ)

which contradicts the fact that PWPRF is Sel-IND secure. Therefore, we must
have |Pr[H2]− Pr[H3]| = negl(λ).
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D Application of CWPRF in Tag based ABE

D.1 Attribute Based Encryption

Definition 20 [Attribute Based Encryption with Tag] An attribute based en-
cryption (ABE) with tag is defined for a class of functions {Fλ}λ∈N, a class of
attributes {=λ}λ∈N, a tag space Tλ and a message space M. It consists of four
PPT algorithms Setup, KeyGen, Enc, Dec that work as follows:
• Setup(1λ) → (msk, pp): The Setup algorithm takes as input a security para-

menter λ and outputs a master secret-key msk and a public parameter pp.
• KeyGen(msk, f, τ) → skf : The key generation algorithm takes as input the

master secret-key msk, a circuit f ∈ Fλ and a tag τ ∈ Tλ and outputs a
secret-key skf .

• Enc(pp, a,m, τ ′) → ct: The encryption algorithm takes as input the public
parameter pp, an attribute a ∈ =λ, a message m ∈ M and a tag τ ′ ∈ Tλ,
and outputs a ciphertext ct. We assume that a and τ ′ is trivially included
in the ciphertext.

• Dec(skf , ct) → y: The decryption algorithm takes as input a secret-key skf
and a ciphertext ct and outputs a value y.

An ABE with tag must satisfy the following requirements.

Definition 21 (Correctness) For all λ ∈ N, (msk, pp)← Setup(1λ), a ∈ =λ, τ ∈
Tλ,m ∈M, f ∈ Fλ and skf ← KeyGen(msk, f, τ), we have

Pr[Dec(skf ,Enc(pp, a,m, τ)) = m s.t. f(m) = 1] = 1− negl(λ)

Definition 22 [Adaptive Indistinguishability CCA security] For a security pa-
rameter λ ∈ N, a function class {Fλ}λ∈N, an attribute class {=λ}λ∈N, a mes-
sage space M, a tag space Tλ and a bit b ∈ {0, 1}, we define the experiment
Adp-INDCCAABE

A (1λ, b) between a challenger and a PPT adversary A in the fol-
lowing manner:
Setup: The challenger runs (msk, pp) ← Setup(1λ) and sends pp to A. It also
prepares two empty sets Qf and Qτ .

Queries: After setup, A can query to the following oracles at any point of the
experiment.
– secret-key queries. On input a function f ∈ Fλ and a tag τ ∈ Tλ, the

challenger returns a secret-key skf ← KeyGen(msk, f, τ) and updates the
set Qf ← Qf ∪ {f}.

– decryption queries. On input a ciphertext-function-tag tuple (ct, f, τ), the
challenger computes skf ← KeyGen(msk, f, τ) and returns Dec(skf , ct). It
also updates Qτ ← Qτ ∪ {τ}.

Challenge: At some point, A submits a challenge attribute a∗ ∈ =λ, a challenge
tag τ∗ ∈ Tλ and a pair of challenge messages (m0,m1) ∈M×M. The challenger
returns ct∗ ← Enc(pp, a∗,mb, τ

∗) to A.

Guess: Eventually, A outputs a guess b′ ∈ {0, 1}. The challenger returns 1 if
b = b′ and f(a∗) = 0 holds for all f ∈ Qf and τ∗ 6∈ Qτ .
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An ABE with tag is said to be adaptive indistinguishability CCA secure if the
following advantage is a negligible function of λ:

AdvAdp-INDCCA
A,ABE (λ) = |Pr[Adp-INDCCAABE

A (1λ, b) = 1]− 1
2 |

Definition 23 [Selective Indistinguishability CCA security] We define a secu-
rity experiment Sel-INDCCAABE

A (1λ, b) for selective security of ABE with tag
similarly to the experiment Adp-INDCCAABE

A (1λ, b) except that the adversary
A submits the challenge attribute a∗ ∈ =λ and the challenge tag τ∗ ∈ Tλ before
setup phase. We define the advantage AdvSel-INDCCA

A,ABE (λ) accordingly and say that
the ABE is selectively secure if the quantity is a negligible function of λ.

D.2 Construction of CCA secure ABE from CWPRF

In this section, we describe our construction of a CCA secure ABE with tag for
all circuits from CWPRF. We require Sel-IND security of CWPRF to establish the
security of the ABE. Our construction is inspired by the CCA secure ABE of Pal
et al. [27] where they used a plain WPRF, a non-interactive proof system and a
commitment scheme. However, we note that our ABE is solely based on CWPRF
and achieves optimal size ciphertext similar to [27]. In particular, a ciphertext
for message m is of size |m| + 2λ where λ is the security parameter and |m|
denotes the size of m.

Construction. We build an ABE = (Setup, KeyGen, Enc, Dec) for a function
class {Fλ}λ∈N, an attribute space {0, 1}λ, a tag space {0, 1}t and a message
space {0, 1}`. We consider a length doubling PRG with domain {0, 1}λ for some
λ ∈ N and a CWPRF = (Gen, ConKey, F, ConF, Eval) for the NP language
L = {(a, r, τ) ∈ {0, 1}λ × {0, 1}2λ × {0, 1}t : ∃ s s.t. PRG(a ⊕ s) = r} with
relation R. We assume that the CWPRF is associated with a class of boolean
functions taking inputs from {0, 1}3λ+t.

ABE.Setup(1λ): The setup generates (fk, ek)← CWPRF.Gen(1λ, R) and returns
the master secret-key as msk = fk and the public parameter as pp = ek.

ABE.KeyGen(msk, f, τ): On input a function f ∈ Fλ and a tag τ ∈ {0, 1}t, the
key generation algorithm builds a circuit Cf,τ such that

Cf,τ (a, r, τ ′) =

{
1 if τ = τ ′ ∧ f(a) = 1

0 otherwise

Next, it computes the constrained key fkCf,τ ← CWPRF.ConKey(fk, Cf,τ )
and returns the secret-key skf = fkCf,τ .

ABE.Enc(pp, a,m, τ ′): The encryption algorithm selects the randomness s ←
{0, 1}λ and encodes the attribute a ∈ {0, 1}λ by computing r = PRG(a⊕s) ∈
{0, 1}2λ. Next, it masks the message m ∈ {0, 1}` with respect to the tag τ ′

as c = m ⊕ CWPRF.Eval(ek, (a, r, τ ′), s). Finally, it returns the ciphertext
ct = (a, r, c) along with the tag τ ′.
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ABE.Dec(skf , ct): The decryption proceeds by parsing the secret-key skf = fkCf,τ
corresponding to the tag τ and the ciphertext ct = (a, r, c) associated with
a tag τ ′ and returns the message as c⊕ CWPRF.ConF(fkCf,τ , (a, r, τ

′)).

Correctness. To demonstrate the correctness of our ABE, we take a secret-key
skf ← ABE.KeyGen(msk, f, τ) corresponding to a function f and a ciphertext
ct← ABE.Enc(pp, a,m, τ) encrypting a message m with respect to an attribute
a and tag τ using a randomness s such that f(a) = 1. Noting that skf = fkCf,τ ,
the correctness of CWPRF guarantees that

CWPRF.F(fk, (a, r, τ)) = CWPRF.ConF(fkCf,τ , (a, r, τ)) as Cf,τ (a, r, τ) = 1

= CWPRF.Eval(ek, (a, r, τ), s) as R((a, r, τ), s) = 1

= c⊕m as ct is well-formed

This ensures that c⊕ CWPRF.ConF(fkCf,τ , (a, r, τ)) = m and hence the decryp-
tion is able to recover the message m using the secret-key skf as required.

Theorem 4 The attribute-based encryption scheme ABE with tag described above
is Adp-INDCCA secure as per Def. 22 (resp. Sel-INDCCA secure as par Def. 23)
assuming the PRG is a secure as per Def. 1 and the CWPRF is Adp-IND secure
as per Def. 10 (resp. Sel-IND secure as per Def. 11).

Proof. We prove the adaptive security of the ABE as the selective counterpart
will follow similarly. The proof proceeds in a sequence of hybrid experiments
where the first experiment is identical to the Adp-INDCCA experiment of ABE
as described in Def. 22 and the second experiment uses the master secret-key to
encrypt the challenge message. In the third hybrid, the challenger encrypts the
message using a random statement which does not have any valid witness under
the relation R. Finally, we argue that the advantage of the adversary in guessing
the challenge bit is negligible in the third hybrid using the pseudorandomness
of CWPRF. Let us denote Hi by the event where the challenger outputs 1 in the
i-th hybrid experiment.

Hybd0: For any PPT adversary A, we describe hybrid 0 which is the standard
Adp-INDCCA(1λ, b) experiment as described in Def. 22

Setup: The challenger generates a pair of keys (fk, ek) ← CWPRF.Gen(1λ, R)
and sends pp = ek to A. It creates two empty sets Qf and Qτ .
Queries: Now, A can query to the following oracles at any point of the experi-
ment.

– secret-key queries. On input a function f ∈ Fλ and a tag τ , the challenger
defines a circuit Cf,τ (as in the construction of ABE) and returns the secret-
key skf as the constrained key fkCf,τ ← CWPRF.ConKey(fk, Cf,τ ). It updates
the set Qf ← Qf ∪ {f}.

– decryption queries. On input a ciphertext-function-tag tuple (ct, f, τ), the
challenger parses ct = (a, r, c). It computes fkCf,τ ← CWPRF.ConKey(fk, Cf,τ )
and returns c ⊕ CWPRF.ConF(fkCf,τ , (a, r, τ)). It updates the set Qτ ←
Qτ ∪ {τ}.
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Challenge: The adversary A submits a challenge attribute a∗ ∈ {0, 1}λ, a
challenge tag τ∗ ∈ {0, 1}t and a pair of challenge messages (m0,m1) ∈ {0, 1}` ×
{0, 1}`. The challenger proceeds as follows:

1. Pick s∗ ← {0, 1}λ and set r∗ = PRG(a∗ ⊕ s∗).
2. Mask the challenge message as c∗ = mb ⊕ CWPRF.Eval(ek, (a∗, r∗, τ∗), s∗).
3. Return the challenge ciphertext ct∗ = (a∗, r∗, c∗) to A.

Guess: A outputs a guess b′ ∈ {0, 1}. The challenger returns 1 if b = b′ and
f(a∗) = 0 holds for all f ∈ Qf and τ∗ 6∈ Qτ .

Hybd1: It is exactly the same as hybrid 0 except that the challenger makes use of
the master secret-key msk = fk instead of ek to evaluate the challenge ciphertext
ct∗ as shown below:

Challenge: The adversary A submits a challenge attribute a∗ ∈ {0, 1}λ, a
challenge tag τ∗ ∈ 0, 1t and a pair of challenge messages (m0,m1) ∈ {0, 1}` ×
{0, 1}`. The challenger proceeds as follows:

1. Pick s∗ ← {0, 1}λ and set r∗ = PRG(a∗ ⊕ s∗).
2. Mask the challenge message as c∗ = mb ⊕ CWPRF.F(fk, (a∗, r∗, τ∗)).
3. Return the challenge ciphertext ct∗ = (a∗, r∗, c∗) to A.

The ciphertext distributions in both the hybrids are identical since by the cor-
rectness of CWPRF.Eval we have CWPRF.Eval(ek, (a∗, r∗, τ∗), s∗) = CWPRF.F
(fk, (a∗, r∗, τ∗)). Therefore, Hybd0 and Hybd1 are identically distributed from
A’s view and we have Pr[H0] = Pr[H1].

Hybd2: This is same as hybrid 1 except that the challenger chooses r∗ uniformly
at random from {0, 1}2λ instead of computing it as r∗ = PRG(a∗ ⊕ s∗) for some
s∗ ∈ {0, 1}λ. The change is indicated below.

Challenge: The adversary A submits a challenge attribute a∗ ∈ {0, 1}λ, a chal-
lenge tag τ∗ ∈ 0, 1t and a pair of challenge messages (m0,m1) ∈ {0, 1}`×{0, 1}`.
The challenger proceeds as follows:

1. Set r∗ ← {0, 1}2λ.
2. Mask the challenge message as c∗ = mb ⊕ CWPRF.F(fk, (a∗, r∗, τ∗)).
3. Return the challenge ciphertext ct∗ = (a∗, r∗, c∗) to A.

By the security of PRG (Def. 1), we have |Pr[H1] − Pr[H2]| = AdvPRGB (λ) =
negl(λ).

Hybd3: This is exactly the same as Hybd2 except that we set c∗ = mb ⊕ u∗
where u∗ is chosen uniformly at random from the co-domain Y of CWPRF.F(fk, ·)
instead of computing it as c∗ = mb ⊕ CWPRF.F(fk, (a∗, r∗, τ∗)) for some r∗ ∈
{0, 1}2λ. We now show that hybrids 2 and 3 are indistinguishable for any PPT
adversary A due to the Adp-IND security of CWPRF.

First, we note that the statement (a∗, r∗, τ∗) 6∈ L with overwhelming proba-
bility of (1− 2−λ) as r∗ is picked uniformly at random from {0, 1}2λ. Secondly,
we only need to compute constrained keys fkCf,τ ← CWPRF.ConKey(fk, Cf,τ ) for
circuits Cf,τ such that either f(a∗) = 0 or τ 6= τ∗. Therefore, Cf,τ (a∗, r∗, τ∗) = 0
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for all f ∈ Qf (which are due to the secret-key queries of A) and for all τ ∈ Qτ
(which corresponds to the decryption queries of A).

Suppose B1 is a CWPRF adversary against the Adp-IND security. Then, B1 can
perfectly simulatesA as follows. Upon receiving the public evaluation key ek from
the CWPRF challenger, B1 uses its constrained key oracle to produce a secret-key
skf = fkCf,τ for a query (f, τ) from A. Similarly, for a decryption query (ct, f, τ),
B1 again employs it’s constrained key oracle to get a secret-key skf = fkCf,τ and
then use it to decrypt ct following the standard procedure. At some point, when
B1 receives a challenge tuple (a∗, τ∗, (m0,m1)) from A, the CWPRF-adversary B1
sends its challenge statement as (a∗, r∗, τ∗) for some r∗ ← {0, 1}2λ and receives a
pseudorandom value u∗ from the CWPRF-challenger. Now, B1 chooses a random
bit b and transfers the challenge ciphertext ct∗ = (a∗, r∗,mb ⊕ u∗) to A. Note
that, A can still continue querying for secret-keys and decryptions to which B1
proceeds as before.

It is easy to see that if u∗ = CWPRF.F(fk, (a∗, r∗, τ∗)) then B1 simulates
hybrid 2 and if u∗ ← Y then B1 simulates hybrid 3. Moreover, B1 is a legitimate
adversary since (a∗, r∗, τ∗) 6∈ L with high probability and B1 is able to execute
the experiment with constrained keys fkCf,τ satisfying Cf,τ (a∗, r∗, τ∗) = 0 for
all f ∈ Qf and τ ∈ Qτ . Therefore, if A can distinguish between hybrids 2 and 3
with a non-negligible advantage then B1 breaks the Adp-IND security of CWPRF.
Hence, we have |Pr[H2]− Pr[H3]| = AdvAdp-INDB1,CWPRF(λ) = negl(λ).

Finally, we note that in hybrid 3 the challenge bit b is statistically hidden
inside c∗ = mb ⊕ u∗ since u∗ is chosen as uniformly at random from Y. This
ensures that A’s advantage in guessing the bit b in hybrid 3 is at most 1

2 even
when it has access to the secret-key and decryption oracles. This completes the
proof of Adp-INDCCA security of our ABE.
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