
Generic Constructions of Revocable Hierarchical
Identity-based Encryption

Keita Emura1, Atsushi Takayasu1, and Yohei Watanabe2,3

1 National Institute of Information and Communications Technology (NICT), Japan
{k-emura, takayasu}@nict.go.jp

2 The University of Electro-Communications, Japan
watanabe@uec.ac.jp

3 National Institute of Advanced Industrial Science and Technology, Japan

Abstract. Revocable hierarchical identity-based encryption (RHIBE) is
an extension of hierarchical identity-based encryption (HIBE) support-
ing the key revocation mechanism. In this paper, we propose a generic
construction of RHIBE from HIBE with the complete subtree method.
Then, we obtain the first RHIBE schemes under the quadratic residuos-
ity assumption, CDH assumption without pairing, factoring Blum inte-
gers, LPN assumption, and code-based assumption, and the first almost
tightly secure RHIBE schemes under the k-linear assumption. Further-
more, by using pairing-based (dual) identity-based broadcast encryption,
we obtain the variants of the scheme with shorter ciphertexts or shorter
key updates.

1 Introduction

(Hierarchical) dentity-based encryption ((H)IBE) is an extension of the tradi-
tional public key encryption. (H)IBE can use any string as each user’s public
key and HIBE has delegatable secret keys. HIBE schemes have been constructed
based on pairing-based assumptions (e.g., [10,12,20,23,24,25,41,42]) and learning
with errors (LWE) assumption [1,2,5,7]. Moreover, since IBE implies HIBE [14],
IBE schemes under the quadratic residuosity (QR) assumption [13], CDH as-
sumption without pairing and factoring Blum integers [15], LPN assumption [6],
and code-based assumption [19] imply HIBE schemes based on the same assump-
tions. Among them, only pairing-based HIBE schemes [10,12,20,23,24,25,41,42]
satisfy adaptive security in the standard model. Furthermore, [23,24,25] achieve
almost tight security under the k-linear assumption.

Due to the absence of the public key infrastructure, the key revocation func-
tionality is indispensable property to use (H)IBE in practice. In particular, the
functionality enables the system to revoke malicious users dynamically and ef-
ficiently. Starting with the seminal work of Boldyreva et al. [4], several (non-
hierarchical) revocable IBE (RIBE) schemes have been proposed under various
assumptions such as pairing-based assumptions (e.g., [4,16,28,30,35,39]), LWE
assumption [11,38,22], CDH assumption without pairing and factoring Blum in-
tegers [21], and code-based assumption [8]. All the constructions utilize Naor

2 Keita Emura, Atsushi Takayasu, and Yohei Watanabe

et al.’s subset cover frameworks [33] such as the complete subtree method (CS)
and subset difference method (SD). Specifically, all the schemes use the CS ex-
cept that pairing-based scheme [28] used the SD. Ma and Lin [31] proposed a
generic construction of RIBE from IBE with the CS. Ma and Lin’s RIBE schemes
have shorter secret keys and larger ciphertexts than the other direct construc-
tions. By following Ma and Lin’s framework, Ma and Lin [32] and Lee [26]
proposed a generic construction of RIBE from variants of IBE with the SD. Un-
fortunately, they could construct the variants of IBE based only on pairing-based
assumptions. Revocable HIBE (RHIBE) was introduced by Seo and Emura [36].
As opposed to RIBE, there are only a few constructions of RHIBE schemes based
only on pairing-based assumptions [17,18,29,34,37] and LWE assumption [22,40]
since there are no generic constructions of RHIBE4 such as [31,32,26]. All the
constructions except [29] used the CS. Since only [29] used the SD, the scheme
has shorter key updates than the other RHIBE schemes; however, [29] satisfies
only selective revocation list security that is weaker than selective security under
a q-type assumption.

Our Contributions. In this paper, we propose a generic construction of RHIBE
from HIBE with the CS by extending Ma and Lin’s generic construction of
RIBE [31]. As a result, we obtain a result that HIBE with the CS implies
RHIBE. Therefore, we obtain the first RHIBE scheme under various assumptions
such as the QR assumption [13], CDH assumption without pairing and factor-
ing Blum integers [15], LPN assumption [6], and code-based assumption [19]
by combining with Döttling and Garg’s technique [14]. The resulting RHIBE
scheme of our generic framework is a hierarchical extension of Ma and Lin’s
generic RIBE scheme with the CS [31]. Thus, we obtain the first adaptively se-
cure RHIBE scheme with short secret keys. Furthermore, since the reductions of
our framework are almost tight, we obtain the first almost tightly secure RHIBE
schemes with adaptive security under the k-linear assumption. Furthermore, we
use pairing-based hierarchical identity-based (dual) identity-based broadcast en-
cryption and propose adaptively secure RHIBE schemes with shorter cipehrtexts
or shorter key updates.

Independent and Concurrent Work. Recently, Lee and Kim [27] proposed
a generic construction of RHIBE. Their first result is a generic construction of
RHIBE from HIBE with the CS. Therefore, their construction is almost the same
as ours. Nevertheless, our scheme is slightly more efficient than Lee and Kim’s
scheme since we use one HIBE scheme for constructing RHIBE whereas Lee and
Kim used two HIBE schemes. Lee and Kim also proposed a shorter ciphertext
variant, while they did not propose a shorter key update variant. As opposed
to our shorter ciphertext variant from pairing-based hierarchical identity-based
identity-based broadcast encryption, Lee and Kim used HIBE with compact ci-
phertexts. Lee and Kim also proposed a generic construction of RHIBE with the
SD; however, the construction requires not familiar hierarchical identity-based

4 Emura et al.’s construction [18] is a semi-generic construction from HIBE with a few
additional properties that several pairing-based HIBE schemes satisfy. The reduction
loss depends on the number of secret key queries made by an adversary.

Generic Constructions of Revocable Hierarchical Identity-based Encryption 3

single revocation encryption. Indeed, they showed only one instantiation of a
hierarchical identity-based single revocation encryption scheme with selective
security from the DBDH assumption.

2 Preliminaries

Notations. Let λ denote the security parameter. For non-negative integers a, b
with a ≤ b, we define [a, b] := {a, a + 1, . . . , b} and [a] := [1, a]. For a finite set
S, let x ←R S denote sampling x from S uniformly at random. For a κ1-bit
binary string η1 ∈ {0, 1}κ1 and a κ2-bit binary string η2 ∈ {0, 1}κ2 , let η1∥η2 ∈
{0, 1}κ1+κ2 denote a concatenation of η1 and η2. Similarly, let {0, 1}κ1∥{0, 1}κ2 =
{0, 1}κ1+κ2 . Furthermore, let {0, 1}κ∥{0} and {0, 1}κ∥{1} denote sets of (κ+1)-
bit binary strings whose last bit is 0 and 1, respectively.

Hierarchical Identity and Time Period. Let I := {0, 1}κI denote an element
identity space and T := {0, 1}κT denote a time period space. In this case, let
I≤L denote an identity space of RHIBE with hierarchical depth L. Let an ℓ-
dimensional vector ID = (id1, . . . , idℓ) ∈ Iℓ denote an identity at level ℓ. Let
|ID| := ℓ denote a hierarchical level of ID. For notational convenience, we regard
kgc as a “root” user, and let I0 := {kgc} unless otherwise stated. We define
several notations for prefix of an identity ID = (id1, · · · , id|ID|). Let pa(ID) :=
(id1, · · · , id|ID|−1) denote a direct ancestor of ID. In general, let ID[ℓ] := (id1,
. . . , idℓ) denote an ℓ-dimensional prefix of ID for a non-negative integer ℓ ≤ |ID|.
By definition, ID[0] = kgc for any ID ∈ I≤L unless otherwise stated. As the case
of binary strings, let prefix(ID) := {ID[1], ID[2], . . . , ID|ID|−1 = pa(ID)} a set of all

prefixes of ID and let prefix+(ID) := prefix(ID) ∪ {ID}.

2.1 HIBE

Let HIBE(L) denote the HIBE with the maximum depth L.

Syntax. HIBE(L) consists of the following four algorithms (HIBE.Setup,
HIBE.Enc,HIBE.KeyGen,HIBE.Dec):

HIBE.Setup(1λ, L)→ (HIBE.pp,HIBE.msk): The setup algorithm takes the se-
curity parameter 1λ and the maximum hierarchical depth L as input, and
outputs a public parameter HIBE.pp and master secret key HIBE.msk.

HIBE.Enc(HIBE.pp, ID,M)→ HIBE.ctID: The encryption algorithm takes a
HIBE.pp, ID ∈ I≤L, and plaintext M ∈M as input, and outputs a ciphertext
HIBE.ctID.

HIBE.KeyGen(HIBE.pp,HIBE.skID′ , ID)→ HIBE.sky: The secret key generation
algorithm takes a HIBE.pp, ID’s secret key HIBE.skID′ , and ID ∈ I≤L as in-
put, and outputs a secret key HIBE.skID. The algorithm can take HIBE.msk
as input in place of HIBE.skID′ .

HIBE.Dec(HIBE.pp,HIBE.skID,HIBE.ctID)→ M or ⊥: The decryption algorithm
takes HIBE.pp, HIBE.skID, and HIBE.ctID as input, and outputs M or ⊥.

4 Keita Emura, Atsushi Takayasu, and Yohei Watanabe

Init:

(HIBE.pp,HIBE.msk)← Setup(1λ, L)
RevList = ∅
return HIBE.pp

Secret Key Reveal Query on ID:
if ∃ID⋆ ∈ IDList, ID ∈ prefix+(ID⋆)

return ⊥
else

HIBE.skID ←
HIBE.KeyGen(HIBE.pp,HIBE.msk, ID)

RevList← RevList ∪ {ID}
return HIBE.skID

Challenge Query on (IDList,M⋆
0,M

⋆
1):

if ∃ID ∈ RevList, ID ∈ prefix+(ID⋆)
return ⊥

else
coin←R {0, 1}
for ID⋆ ∈ IDList

HIBE.ct⋆ID⋆ ←
HIBE.Enc(HIBE.pp, x⋆,M⋆

coin)
return (HIBE.ct⋆ID⋆)ID⋆∈IDList

Fig. 1: Security game of HIBE(L)

Correctness. Roughly speaking, we define correctness for HIBE.KeyGen and
HIBE.Dec. The correctness for HIBE.KeyGen requires that for all λ ∈ N, L ∈ N,
(HIBE.pp,HIBE.msk) ← HIBE.Setup(1λ, L), ID, ID′ ∈ I≤L such that ID′ ∈
prefix(ID), it holds that two distributions HIBE.KeyGen(HIBE.pp,HIBE.msk, ID)
and HIBE.KeyGen(HIBE.pp,HIBE.skID′ , ID) are statistically close. The cor-
rectness for HIBE.Dec requires that for all λ ∈ N, L ∈ N,
(HIBE.pp,HIBE.msk) ← HIBE.Setup(1λ, L), M ∈ M, and ID ∈ I≤L, it holds
that M = M′ with overwhelming probability after executing HIBE.ctID ←
HIBE.Enc(HIBE.pp, ID,M), HIBE.skID ← HIBE.KeyGen(HIBE.pp,HIBE.msk, ID),
and M′ ← HIBE.Dec(HIBE.pp,HIBE.skID,HIBE.ctID).

Security. We define adaptive security of an HIBE scheme Π as the security
game between the challenger C and adversary A. A is allowed to make secret key
queries polynomially many times and challenge query only once. As opposed to
the standard security definition, Amakes a challenge query on multiple identities
with the same plaintexts. For this purpose, let IDList ⊂ I≤L denote a set
of identities. In Figure 1, we describe a behavior of C upon A’s queries. We
note that C runs Init upon A’s query on ID⋆ in a selective security game. At
the end of the game, A outputs ĉoin. In this game, A’s advantage is defined

by Adv
HIBE(L)
Π,A (λ) := |Pr[ĉoin = coin] − 1/2|. We say that Π satisfies adaptive

security if Adv
HIBE(L)
Π,A (λ) is negligible for all PPT adversaries A. We note that

any HIBE scheme with the standard security definition such as |IDList| = 1
achieves our security definition with |IDList| reduction loss.

2.2 RHIBE

We review the most strict Katsumata et al.’s definition [22].

Syntax. Let RHIBE(L) denote RHIBE with the depth L. An RHIBE(L) scheme
Π consists of the six algorithms (Setup,Enc,GenSK,KeyUp,GenDK,Dec) and a
revoke algorithm. All parent users pa(ID) ∈ I≤L−1 (including kgc ∈ I0) keep a

Generic Constructions of Revocable Hierarchical Identity-based Encryption 5

revocation list RLpa(ID),T at time period T. When pa(ID) revokes their child user
ID, they update RLpa(ID),T ← RLpa(ID),T ∪ {ID}.
Setup(1λ, L)→ (pp, skkgc) : The setup algorithm takes the security parameter

1λ and the depth L as input, and outputs a public parameter pp and kgc’s
secret key skkgc. pp implicitly contains the description of I, T , and plaintext
spaceM that are determined only by λ.

Enc(pp, ID, T,M)→ ctID,T : The encryption algorithm takes a pp, identity ID ∈
I≤L, time period T ∈ T , and plaintext M ∈ M as input, and outputs a
ciphertext ctID,T.

GenSK(pp, skpa(ID), ID)→ skID : The secret key generation algorithm takes a pp,
pa(ID)’s secret key skpa(ID), and ID as input, and outputs a secret key skID.

KeyUp(pp, skID, kupa(ID),T,RLID,T, T)→ kuID,T : The key update generation algo-
rithm takes a pp, ID’s secret key skID, pa(ID)’s key update kupa(ID),T and
revocation list RLpa(ID),T at a time period T ∈ T , and T as input, and outputs
an ID’s key update kuID,T at T. In the special case, we define kupa(kgc),T := ⊥
for all T ∈ T .

GenDK(pp, skID, kupa(ID),T)→ dkID,T or ⊥ : The decryption key generation algo-
rithm takes a pp, ID’s secret key skID, and pa(ID)’s key update kupa(ID),T as
input, and outputs a decryption key dkID,T if ID /∈ RLpa(ID),T and ⊥ otherwise.

Dec(pp, dkID,T, ctID,T)→ M : The decryption algorithm takes pp, dkID,T, and ctID,T
as input, and outputs M or ⊥.

Correctness. For all λ ∈ N, L ∈ N, (pp, skkgc) ← Setup(1λ, L), M ∈ M,
ID ∈ I≤L, T ∈ T , and RLpa(ID[ℓ]),T such that ID[ℓ] /∈ RLpa(ID[ℓ]),T for ℓ ∈
[|ID|], it holds that M = M′ with overwhelming probability after executing
ctID,T ← Enc(pp, ID, T,M), skID[ℓ] ← GenSK(pp, skpa(ID[ℓ]), ID[ℓ]) and kupa(ID[ℓ]),T ←
KeyUp(pp, skpa(ID[ℓ]), kupa(pa(ID[ℓ])),T,RLpa(ID[ℓ]),T, T) for ℓ = 1, 2, . . . , |ID|, dkID,T ←
GenDK(pp, skID, kupa(ID),T), and M′ ← Dec(pp, dkID,T, ctID,T).

Security. We define adaptive security of an RHIBE(L) scheme Π as the security
game between the challenger C and adversaryA. The game has the global counter
Tcu initialized with 1 to denote the “current time period”. A is allowed to make
five types of queries. A can make secret key generation queries, secret key reveal
queries, and decryption key reveal queries polynomially many times, revoke &
key update queries |T | − 1 times, and challenge query only once. In Figure 2,
we describe a behavior of C which is controlled by Tcu upon A’s queries. We
note that C runs Init upon A’s query on (ID⋆, T⋆) in a selective security game.

At the end of the game, A outputs ĉoin. In this game, A’s advantage is defined

by Adv
RHIBE(L)
Π,A (λ) := |Pr[ĉoin = coin] − 1/2|. We say that Π satisfies adaptive

security if Adv
RHIBE(L)
Π,A (λ) is negligible for all PPT adversaries A.

2.3 Complete Subtree Method

We review Naor et al.’s subset cover framework [33] called the complete subtree
method (CS).

6 Keita Emura, Atsushi Takayasu, and Yohei Watanabe

Init:

(pp, skkgc)← Setup(1λ, L)
Tcu = 1, SKList = {(kgc, skkgc)}, RevList = ∅
kukgc,1 ← KeyUp(MPK, skkgc,⊥,RLkgc,1 = ∅, Tcu = 1)
return pp, kukgc,1

Secret Key Generation Query on ID:
if (ID, skID) ∈ SKList ∨ (pa(ID), skpa(ID)) /∈ SKList

return ⊥
else

skID ← GenSK(pp, skpa(ID), ID)
SKList← SKList ∪ {(ID, skID)}
for T ∈ [Tcu]

kuID,T ← KeyUp(pp, skID, kupa(ID),T,RLID,T = ∅, T)
return (kuID,T)T∈[Tcu]

Secret Key Reveal Query on ID:
if Tcu ≥ T⋆ ∧ ID ∈ prefix(ID⋆) ∧ ID /∈ RLpa(ID),T⋆

return ⊥
else
RevList← RevList ∪ {ID}
return skID ∈ SKList

Revoke & Key Update Query on RLTcu :
if RLTcu−1 ⊈ RLTcu ∨ (∃ID ∈ SKList, pa(ID) ∈ RLTcu ∧ ID /∈ RLTcu)∨

(∃ID ∈ prefix+(ID⋆), Tcu = T⋆ − 1 ∧ ID ∈ RevList \ RLTcu)
return ⊥

else
Tcu ← Tcu + 1

for ID ∈ (SKList ∩ I≤L−1) \ RLTcu−1 in the breadth-first order on |ID|
RLID,Tcu ← RLTcu−1 ∩ IID
kuID,Tcu ← KeyUp(pp, skID, kupa(ID),Tcu ,RLID,Tcu , Tcu)
return (kuID,Tcu)ID∈(SKList∩I≤L−1)\RLTcu−1

Decryption Key Reveal Query on (ID, T):
if T > Tcu ∨ ID ∈ RLpa(ID),T ∨ (ID, T) = (ID⋆, T⋆)

return ⊥
else

dkID,T ← GenDK(pp, skID, kupa(ID),T, (ID, T))
RevList← RevList ∪ {(ID, T)}
return dkID,T

Challenge Query on (ID⋆, T⋆,M⋆
0,M

⋆
1):

if (∃ID ∈ prefix+(ID⋆), ID ∈ RevList \ RLpa(ID),T⋆) ∨ (ID⋆, T⋆) ∈ RevList

return ⊥
else

coin←R {0, 1}
ct⋆ ← Enc(pp, ID⋆, T⋆,M⋆

coin)
return ct⋆

Fig. 2: Security game of RHIBE(L)

Generic Constructions of Revocable Hierarchical Identity-based Encryption 7

Binary Tree. Let BT denote a binary tree with 2D leaves. Each leaf node η has
a label as an integer in [0, 2D−1] as illustrated in Figure 3, e.g., the leftmost and
rightmost leaf nodes have labels 0 and 2D−1, respectively. Since BT has 2D+1−1
nodes, we assume that each node θ (including the leaf nodes) is expressed as a
(D + 1)-bit binary string and let N := {0, 1}D+1 denote a node space. For all
nodes θ ∈ N , let 0 and 1 denote a path from θ to its left and right child node,
respectively. In this section, we simply use a bit string which denotes a path
from the root to specify each node θ as illustrated in Figure 3. As a special case,
let ε denote a root node. For every node θ, pa(θ) denote a direct ancestor. Let
Path(η) denote all nodes θ in a path from the root to the leaf η. Please keep in
mind that all the descriptions are public information.

CS. Let H : I → N be a collision resistant hash function. CS consists of three
deterministic algorithms (Assign,Cover,Match):

Assign(ID)→ PS(ID): The assign algorithm takes a hierarchical identity ID =
(id1, . . . , id|ID|) as input, and outputs a private set PS(ID) := Path(H(ID)).5

Cover(RLpa(ID),T)→ CoS(RLpa(ID),T): The cover algorithm takes a set of hier-
archical identities RLpa(ID),T ⊆ Ipa(ID) as input, and outputs a cover-
ing set CoS(RLpa(ID),T) := {θ | θ /∈

⋃
ID∈RLpa(ID),T

Path(H(ID)) ∧ pa(θ) ∈⋃
ID∈RLpa(ID),T

Path(H(ID))}.

Match(PS(ID),CoS(RLpa(ID),T))→ θ̃ or ⊥: The match algorithm takes an ID’s
private set PS(ID) and covering set CoS(RLpa(ID),T) as input, and outputs

θ̃ ∈ PS(ID) ∩ CoS(RLpa(ID),T) if such a node exists and ⊥ otherwise.

By definition, PS(ID) consists of D + 1 nodes and let PS(ID) = {θ0, θ1,
. . . , θD}. Let Rpa(ID),T denote the number of nodes in CoS(RLpa(ID),T) and let
CoS(RLpa(ID),T) = {θ̄1, . . . , θ̄Rpa(ID),T

}. The CS satisfies the following three proper-
ties:

Correctness: The Match algorithm does not output ⊥ if ID /∈ RLpa(ID),T holds.

Security : The Match algorithm outputs ⊥ if ID ∈ RLpa(ID),T holds.

Scalability : It holds that Rpa(ID),T = O(|RLpa(ID),T| log(2D/|RLpa(ID),T|)).
Example. We use Figures 3 and 4 to illustrate the examples of the CS. As
illustrated in Figure 3, if H(ID) = 6, PS(ID) = {ε, 1, 11, 110}. As illustrated in
Figure 4, if H(ID) = 2 and H(ID) = 3 for ID ∈ RLpa(ID),T, CoS(RLpa(ID),T) =
{00, 1}. Here, we use Figure 4 to show that CS satisfies the correctness and
security. See [33] for more information. If H(ID) = 6 for ID /∈ RL, PS(ID) and
CoS(RLpa(ID),T) share the common node 1. We note that CoS(RLpa(ID),T) = {ε}
if RLpa(ID),T = ∅. If H(ID) = 2 and H(ID) = 3 for ID ∈ RLpa(ID),T, PS(ID) =
{ε, 0, 01, 010} and PS(ID) = {ε, 0, 01, 011} do not share a common node with
CoS(RLpa(ID),T).

5 Even when ID ̸= ID′, it holds that PS(ID) = PS(ID′) if H(id|ID|) = H(id′|ID′|)
holds. Furthermore, since H(·) is a collision resistant hash function, we assume that
PS(ID) = PS(ID′) holds only when id|ID| = id′|ID′| holds.

8 Keita Emura, Atsushi Takayasu, and Yohei Watanabe

Fig. 3: Example of PS(ID) output by Assign if H(ID) = 6

Revoked Revoked

Fig. 4: Example of CoS(RLpa(ID),T) output by Cover if H(ID) = 2 and H(ID) = 3
for ID ∈ RLpa(ID),T

3 Basic Scheme: Generic Construction from HIBE

In this section, we propose our generic construction.

Parameters and Construction. Let the element identity space and time pe-
riod space of RHIBE be I = {0, 1}κI∥{0} and T = {0, 1}κT ∥{1} so that I∩T = ∅
and I∩{0, 1}⌈log(L+1)⌉∥N∥T = ∅. Let the element identity space HIBE.I of HIBE
be {0, 1}κHIBE , where 1 + max{κI , ⌈log(L+ 1)⌉+ (D + 1) + κT } ≤ κHIBE so that
I ∪ T ∪ {0, 1}⌈log(L+1)⌉∥N∥T ⊆ HIBE.I. We use HIBE(L + 1) for constructing
RHIBE(L) as described in Figure 5.

Overview. The spirit of our generic construction is similar to lattice-based
RHIBE schemes [22,40]. The RHIBE ciphertext ctID,T consists of level-ℓ ci-
phertexts ctID,T,ℓ that are encryptions of Mℓ for ℓ ∈ [|ID|] ∪ {L + 1}, where
M =

⊕
ℓ∈[ID]∪{L+1} Mℓ. In other words, the decryption succeeds only when

non-revoked user ID can decrypt all level-ℓ ciphertexts and recover Mℓ for
ℓ ∈ [|ID|] ∪ {L+ 1}. The level-ℓ ciphertexts ctID,T,ℓ for ℓ ∈ [|ID|] consist of D+ 1
HIBE ciphertexts HIBE.ct(ID[ℓ−1],ℓ∥θℓ,d∥T) for θℓ,d ∈ PS(ID[ℓ]) whereas the level-
(L+ 1) ciphertext ctID,T,L+1 is a single HIBE ciphertext HIBE.ct(ID,T). To satisfy
the correctness of Dec, dkID,T for non-revoked ID consists of level-ℓ decryption
keys dkID,T,ℓ for ℓ ∈ [|ID|] ∪ {L+ 1} so that dkID,T,ℓ can decrypt one of the HIBE
ciphertexts in ctID,T,ℓ for ℓ ∈ [|ID|] and dkID,T,L+1 can decrypt the HIBE cipher-
text ctID,T,L+1. For this purpose, the level-ℓ decryption keys dkID,T,ℓ for ℓ ∈ [|ID|]

Generic Constructions of Revocable Hierarchical Identity-based Encryption 9

Setup(1λ, L):
(HIBE.pp,HIBE.msk)← HIBE.Setup(1λ, L+ 1)
return pp = HIBE.pp, skkgc = HIBE.msk

Enc(pp, ID, T,M) :

(M1, . . . ,M|ID|)←R M|ID|, ML+1 = M
⊕

ℓ∈[|ID|] Mℓ

for ℓ ∈ [|ID|]
PS(ID[ℓ]) = (θℓ,0, θℓ,1, . . . , θℓ,D)← Assign(ID[ℓ])
for d ∈ [0, D]

HIBE.ct(ID[ℓ−1],ℓ∥θℓ,d∥T) ← HIBE.Enc(HIBE.pp, (ID[ℓ−1], ℓ∥θℓ,d∥T),Mℓ)

ctID,T,ℓ := (HIBE.ct(ID[ℓ−1],ℓ∥θℓ,d∥T))d∈[0,D]

ctID,T,L+1 := HIBE.ct(ID,T) ← HIBE.Enc(HIBE.pp, (ID, T),ML+1)
return ctID,T := (ctID,T,ℓ)ℓ∈[|ID|]∪{L+1}

GenSK(pp, skpa(ID), ID):
HIBE.skID ← HIBE.KeyGen(HIBE.pp,HIBE.skpa(ID), ID)
return skID := HIBE.skID

KeyUp(pp, T, skID,RLID,T, kupa(ID),T):
(dkID,T,ℓ)ℓ∈[|ID|]∪{L+1} ← GenDK(pp, skID, kupa(ID),T)
CoS(RLID,T) = (θ̄|ID|+1,1, θ̄|ID|+1,2, . . . , θ̄|ID|+1,RID,T)← Cover(RLID,T)

for d̄ ∈ [RID,T]
HIBE.sk(ID,(|ID|+1)∥θ̄|ID|+1,d̄∥T)

←
HIBE.KeyGen(HIBE.pp,HIBE.skID, (ID, (|ID|+ 1)∥θ̄|ID|+1,d̄∥T))

return kuID,T := ((θ̃ℓ, dkID,T,ℓ)ℓ∈[|ID|], (θ̄|ID|+1,d̄,HIBE.sk(ID,(|ID|+1)∥θ̄|ID|+1,d̄∥T)
)d̄∈[RID,T])

GenDK(pp, skID, kupa(ID),T):
if ⊥ ← Match(PS(ID[|ID|]),CoS(RLpa(ID),T))

return ⊥
else

θ̃|ID| ← Match(PS(ID[|ID|]),CoS(RLpa(ID),T))
dkID,T,|ID| := HIBE.sk(pa(ID),|ID|∥θ̃|ID|∥T)
dkID,T,L+1 := HIBE.sk(ID,T) ← HIBE.KeyGen(HIBE.pp,HIBE.skID, (ID, T))

return dkID,T := ((θ̃ℓ, dkID,T,ℓ)ℓ∈[|ID|], dkID,T,L+1)

Dec(pp, dkID,T, ctID,T):
for ℓ ∈ [|ID|]

Mℓ ← HIBE.Dec(HIBE.pp, dkID,T,ℓ,HIBE.ct(ID[ℓ−1],ℓ∥θ̃ℓ∥T)
)

ML+1 ← HIBE.Dec(HIBE.pp, dkID,T,L+1, ctID,T,L+1)
return M =

⊕
ℓ∈[ID]∪{L+1} Mℓ

Fig. 5: RHIBE(L) scheme from HIBE(L+ 1)

are HIBE secret keys HIBE.sk(ID[ℓ−1],ℓ∥θ̃ℓ∥T) for some θ̃ℓ ∈ PS(ID[ℓ]) whereas the

level-(L+ 1) decryption key dkID,T,L+1 is an HIBE secret key HIBE.sk(ID,T).

We set the RHIBE secret key skID as an HIBE secret key HIBE.skID; thus, ID
can create the level-(L+1) decryption key dkID,T,L+1. Since ID’s level-ℓ ciphertext
ctID,T,ℓ for ℓ ∈ [|ID|−1] depends only on (ID[ℓ], T), we can set dkpa(ID),T,ℓ = dkID,T,ℓ
for ℓ ∈ [|ID| − 1]. The parent user pa(ID)’s key update kupa(ID),T consists of ID’s
level-ℓ decryption keys dkID,T,ℓ for ℓ ∈ [|ID| − 1] and Rpa(ID),T HIBE secret keys

10 Keita Emura, Atsushi Takayasu, and Yohei Watanabe

HIBE.sk(pa(ID),|ID|∥θ̄|ID|,d̄∥T) for θ̄|ID|,d̄ ∈ CoS(RLpa(ID),T) so that the HIBE secret

keys are level-|ID| decryption keys for all non-revoked users ID. Indeed, if ID
is not revoked, the correctness of the CS ensures that there is a node θ̃|ID| ∈
PS(ID[|ID|]) ∩ CoS(RLpa(ID),T); thus, we set ID’s level-|ID| decryption key dkID,T,ℓ
as an HIBE secret key HIBE.sk(pa(ID),|ID|∥θ̃|ID|∥T) ∈ kupa(ID),T.

Correctness. Since pa(ID) ∈ prefix(ID) and ID ∈ prefix((ID, (|ID| +
1)∥θ̄|ID|+1,d̄∥T)), the correctness of HIBE ensures that the GenSK and KeyUp
algorithms correctly output skID and kuID,T. If ID /∈ RLpa(ID),T, the correctness of
the CS ensures that the GenDK algorithm does not output ⊥. Moreover, since
ID ∈ prefix((ID, T)), the correctness of HIBE ensures that the GenDK algorithm
correctly outputs dkID,T if ID /∈ RLpa(ID),T. Since dkID,T,ℓ = HIBE.sk(ID[ℓ−1],ℓ∥θ̃ℓ∥T)
for ℓ ∈ [|ID|], dkID,T,L+1 = HIBE.sk(ID,T), and ctID,T,L+1 = HIBE.ct(ID,T), the
correctness of HIBE ensures that the Dec algorithm correctly computes Mℓ for
ℓ ∈ [|ID|] ∪ {L+ 1}. Thus, the Dec algorithm correctly outputs M.

Theorem 1. If the underlying HIBE scheme satisfy adaptive (resp. selective)
security, then the RHIBE scheme in Figure 5 satisfies adaptive (resp. selective)
security.

To prove Theorem 1, we divide an RHIBE adversary A’s attack strategy into
the following two types:

Type-I : A is called Type-I iff A makes a secret key reveal query on some ID ∈
prefix(ID⋆).

Type-II : A is called Type-II iff A does not make secret key reveal queries on
any ID ∈ prefix(ID⋆).
Let ℓ⋆ ∈ [|ID⋆|] denote an integer such that A of the Type-I strategy makes

a secret key reveal query on ID⋆[ℓ⋆], while A does not make secret key reveal

queries on any ID ∈ prefix(ID⋆[ℓ⋆]). In this case, A of the Type-I strategy that
has skID⋆

[ℓ⋆]
= HIBE.skID⋆

[ℓ⋆]
can create all level-ℓ decryption keys dkID⋆,T⋆,ℓ for

ℓ ∈ [ℓ⋆ + 1, |ID⋆|] ∪ {L + 1}. Although the security definition of RHIBE ensures
that ID⋆[ℓ⋆] is revoked by the challenge time period T⋆, pa(ID⋆[ℓ⋆]) = ID⋆[ℓ⋆−1]

may not be revoked. Then, kupa(ID⋆
[ℓ⋆]

),T⋆ contains ID⋆’s level-ℓ decryption keys

dkID⋆,T⋆,ℓ for ℓ ∈ [ℓ⋆−1]. Therefore,A can decrypt all level-ℓ challenge ciphertexts
ctID⋆,T⋆,ℓ for ℓ ∈ ([|ID⋆|]∪{L+1}) \ {ℓ⋆}. Nevertheless, we can prove Theorem 1
against A of the Type-I strategy since it does not have a way for decrypting the
level-ℓ⋆ challenge ciphertext ctID⋆,T⋆,ℓ⋆ without breaking the security of HIBE.

Since A of the Type-II strategy does not make secret key reveal queries on
any ID ∈ prefix(ID⋆), ID⋆ may not be revoked by the challenge time period T⋆.
Then, kupa(ID⋆),T⋆ contains ID⋆’s level-ℓ decryption keys dkID⋆,T⋆,ℓ for ℓ ∈ [|ID⋆|].
Therefore, A can decrypt all level-ℓ challenge ciphertexts ctID⋆,T⋆,ℓ for ℓ ∈ [|ID⋆|].
Nevertheless, we can prove Theorem 1 against A of the Type-II strategy since
it does not have a way for decrypting the level-(L + 1) challenge ciphertext
ctID⋆,T⋆,L+1 without breaking the security of HIBE.

Proof of Theorem 1. At first, we show a proof against A of the Type-I strategy.
For this purpose, we show that there is a reduction algorithm B for breaking the

Generic Constructions of Revocable Hierarchical Identity-based Encryption 11

security of HIBE if there exists any PPT adversary A of RHIBE. B answers all A’s
key queries by making secret key queries on the corresponding hierarchical identi-
ties to the HIBE challenger C. Let ℓ⋆ ∈ [|ID⋆|] denote an integer introduced above.
To answer A’s key queries, B makes HIBE secret key queries on hierarchical iden-
tities HIBE.ID ∈ HIBE.I≤L+1 such that HIBE.ID /∈ prefix+(ID⋆[ℓ⋆−1], ℓ

⋆∥θℓ⋆,d∥T⋆)
for all θℓ⋆,d ∈ PS(ID⋆[ℓ⋆]). Upon A’s challenge query on (ID⋆, T⋆,M⋆

0,M
⋆
1), B

guesses the value ℓ⋆ ←R [|ID⋆|] with the success probability at least 1/L. Then,
B samples (Mℓ)ℓ∈([|ID⋆|]∪{L+1})\{ℓ⋆} ←R M|ID⋆|, makes multiple HIBE challenge
queries on(

(ID⋆[ℓ⋆−1], ℓ
⋆∥θℓ⋆,d∥T⋆)θℓ⋆,d∈PS(id⋆

ℓ⋆
),
M⋆

0

⊕
ℓ∈([|ID⋆|]∪{L+1})\{ℓ⋆} Mℓ,

M⋆
1

⊕
ℓ∈([|ID⋆|]∪{L+1})\{ℓ⋆} Mℓ

)
to C, receives (HIBE.ct⋆θℓ⋆,d

)θℓ⋆,d∈PS(id⋆
ℓ⋆

), and sets ct⋆ID⋆,T⋆,ℓ⋆ =

(HIBE.ct⋆θℓ⋆,d
)θℓ⋆,d∈PS(id⋆

ℓ⋆
). B computes HIBE.ct⋆ℓ for ℓ ∈ [|ID⋆|] \ {ℓ⋆} and

HIBE.ct⋆ by itself as the encryptions of Mℓ and ML+1, respectively. Then,
B returns the RHIBE challenge ciphertext ct⋆ = (ct⋆ID⋆,T⋆,ℓ)ℓ∈[|ID⋆|]∪{L+1}
to A. Let Mℓ⋆ = M⋆

coin

⊕
ℓ∈([|ID⋆|]∪{L+1})\{ℓ⋆} Mℓ, where the level-

ℓ⋆ challenge ciphertext ct⋆ID⋆,T⋆,ℓ⋆ is the encryption of Mℓ⋆ . Given

(Mℓ)ℓ∈[|ID⋆|], they are distributed in M|ID⋆| uniformly at random. More-
over, it holds that M⋆

coin

⊕
ℓ∈[|ID⋆|] Mℓ = M⋆

coin ⊕ Mℓ⋆
⊕

ℓ∈[|ID⋆|]\{ℓ⋆} Mℓ =

M⋆
coin⊕M⋆

coin

⊕
ℓ∈([|ID⋆|∪{L+1}])\{ℓ⋆} Mℓ

⊕
ℓ∈[|ID⋆|]\{ℓ⋆} Mℓ = ML+1; therefore, the

RHIBE challenge ciphertext ct⋆ is properly distributed.
Hereafter, we check that B made HIBE secret key queries on HIBE.ID only

when HIBE.ID /∈ prefix+(ID⋆[ℓ⋆−1], ℓ
⋆∥θℓ⋆,d∥T⋆) for all θℓ⋆,d ∈ PS(id⋆ℓ⋆) if the guess

of ℓ⋆ is correct by using the conditions I∩T = ∅ and I∩{0, 1}⌈log(L+1)⌉∥N∥T =
∅.
Secret Key Generation Query. Upon A’s queries on ID, B has to answer
(kuID,T)T∈[Tcu] such that RLID,T = ∅. For this purpose, B made HIBE secret key
queries on (ID, |ID|+1∥ε∥T) for T ∈ [Tcu], where ε denotes the root node. Observe
that (ID, |ID| + 1∥ε∥T) ∈ prefix+(ID⋆[ℓ⋆−1], ℓ

⋆∥θℓ⋆,d∥T⋆) holds only when ID =

ID⋆[ℓ⋆−1] ∧ ε = θℓ⋆,d ∧ T = T⋆. Here, we use the fact that id ̸= ℓ∥θ∥T holds

for all id ∈ I, ℓ ∈ [L], θ ∈ N , and T ∈ T since I ∩ [L]∥N∥T = ∅ holds.
Since A made secret key reveal query on ID⋆[ℓ⋆], A revoked ID⋆[ℓ⋆] before T⋆.
Moreover, A made secret key generation query on ID⋆[ℓ⋆−1] before T⋆. Thus, it

holds that ID = ID⋆[ℓ⋆−1] ⇒ ε ̸= θℓ⋆,d ∧ T ̸= T⋆. Therefore, (ID, |ID| + 1∥ε∥T) /∈
prefix+(ID⋆[ℓ⋆−1], ℓ

⋆∥θℓ⋆,d∥T⋆) holds for all T ∈ [Tcu].

Secret Key Reveal Query. Upon A’s queries on ID, B has to answer skID.
For this purpose, B made HIBE secret key queries on ID. Observe that ID ∈
prefix+(ID⋆[ℓ⋆−1], ℓ

⋆∥θℓ⋆,d∥T⋆) holds only when ID ∈ prefix+(ID⋆[ℓ⋆−1]). Due to the

definition of ℓ⋆, it holds that ID /∈ prefix+(ID⋆[ℓ⋆−1]).

Revoke & Key Update Query. Upon A’s queries on RLTcu , B increments the
time period Tcu ← Tcu + 1 and has to answer (kuID,Tcu)ID∈(SKList∩I≤L−1)\RLTcu−1

such that RLID,Tcu = RLTcu−1 ∩ IID. For this purpose, B made HIBE secret key

12 Keita Emura, Atsushi Takayasu, and Yohei Watanabe

queries on (ID, (|ID| + 1)∥θ̄|ID|+1,d̄, Tcu) for all ID ∈ (SKList ∩ I≤L−1) \ RLTcu−1

and θ̄|ID|+1,d̄ ∈ CoS(RLID,Tcu). Observe that (ID, (|ID| + 1)∥θ̄|ID|+1,d̄, Tcu) ∈
prefix+(ID⋆[ℓ⋆−1], ℓ

⋆∥θℓ⋆,d∥T⋆) only when ID = ID⋆[ℓ⋆−1]∧ θ̄|ID|+1,d̄ = θℓ⋆,d∧T = T⋆.
Since A made secret key reveal query on ID⋆[ℓ⋆], A revoked ID⋆[ℓ⋆] before T

⋆. Thus,

the security of CS ensures that ID = ID⋆[ℓ⋆−1] ∧ T = T⋆ ⇒ θ̄|ID|+1,d̄ ̸= θℓ⋆,d holds.

Decryption Key Reveal Query. Upon A’s queries on (ID, T), B has
to answer dkID,T. For this purpose, B made HIBE secret key queries on

((ID[ℓ−1], ℓ∥θ̃ℓ∥T))ℓ∈[|ID|] for some θ̃ℓ ∈ PS(ID[ℓ]) ∩ CoS(RLpa(ID[ℓ]),T) and (ID, T).

At first, observe that (ID, T) ∈ prefix+(ID⋆[ℓ⋆−1], ℓ
⋆∥θℓ⋆,d∥T⋆) never holds for all

ℓ ∈ [|ID|] even when (ID, T) = (ID⋆, T⋆). Next, observe that (ID[ℓ−1], ℓ∥θ̃ℓ∥T) ∈
prefix+(ID⋆[ℓ⋆−1], ℓ

⋆∥θℓ⋆,d∥T⋆) holds only when ID[ℓ−1] = ID⋆[ℓ⋆−1]∧ θ̃ℓ = θℓ⋆,d∧T =
T⋆. As we observed so far, A revoked ID⋆[ℓ⋆] before T

⋆. Therefore, the security of

CS ensures that ID[ℓ⋆−1] = ID⋆[ℓ⋆−1] ∧ T = T⋆ ⇒ θ̃ℓ ̸= θℓ⋆,d.

Summarizing the analysis so far, B made HIBE secret key queries on HIBE.ID
only when HIBE.ID /∈ prefix+(ID⋆[ℓ⋆−1], ℓ

⋆∥θℓ⋆,d∥T⋆) for all θℓ⋆,d ∈ PS(id⋆ℓ⋆) if
the guess of ℓ⋆ is correct. Thus, we complete the proof against A of the Type-
I strategy.

Next, we show a proof against A of the Type-II strategy in the same way as
a proof against A of the Type-I strategy. The only exception of the reduction
algorithm B’s behavior is the way for creating the challenge ciphertext ct⋆. Upon
A’s challenge query on (ID⋆, T⋆,M⋆

0,M
⋆
1), B samples (Mℓ)ℓ∈[|ID⋆|] ←R M|ID⋆|,

makes an HIBE challenge query on(ID⋆, T⋆),M⋆
0

⊕
ℓ∈[|ID⋆|]

Mℓ,M
⋆
1

⊕
ℓ∈[|ID⋆|]

Mℓ

to C, receives HIBE.ct⋆(ID⋆,T⋆), and sets ct⋆ID⋆,T⋆,L+1 = HIBE.ct⋆(ID⋆,T⋆). B computes

ct⋆ID⋆,T⋆,ℓ for ℓ ∈ [|ID⋆|] by itself as the encryptions of Mℓ, respectively. Then,
B returns the RHIBE challenge ciphertext ct⋆ = (ct⋆ID⋆,T⋆,ℓ)ℓ∈[|ID⋆|]∪{L+1} to A.
Since ct⋆ID⋆,T⋆,L+1 is the encryption ofM⋆

coin

⊕
ℓ∈[|ID⋆|] Mℓ, the challenge ciphertext

ct⋆ is properly distributed.
Hereafter, we check that B made HIBE secret key queries on HIBE.ID only

when HIBE.ID /∈ prefix+((ID⋆, T⋆)) by using the conditions I ∩ T = ∅ and I ∩
{0, 1}⌈log(L+1)⌉∥N∥T = ∅.
Secret Key Generation Query. Upon A’s queries on ID, B made HIBE secret
key queries on (ID, (|ID| + 1)∥ε∥T) for T ∈ [Tcu] as we explained in the proof
against A of the Type-I strategy. Since it holds that I∩{0, 1}⌈log(L+1)⌉∥N∥T = ∅
and T ∩{0, 1}⌈log(L+1)⌉∥N∥T = ∅, (ID, (|ID|+1)∥ε∥T) /∈ prefix+((ID⋆, T⋆)) holds
for all T ∈ [Tcu] even when ID = ID⋆ and T⋆ ∈ [Tcu].

Secret Key Reveal Query. Upon A’s queries on ID, B made HIBE secret key
queries on ID as we explained in the proof against A of the Type-I strategy.
Observe that ID ∈ prefix+((ID⋆, T⋆)) holds only when ID ∈ prefix+(ID⋆) since

Generic Constructions of Revocable Hierarchical Identity-based Encryption 13

I ∩ T = ∅ holds. Due to the definition of the Type-II strategy, it holds that
ID /∈ prefix+(ID⋆). Therefore, ID /∈ prefix+((ID⋆, T⋆)) holds.

Revoke & Key Update Query. Upon A’s queries on RLTcu , B made HIBE
secret key queries on (ID, (|ID|+1)∥θ̄|ID|+1,d̄, Tcu) for all ID ∈ (SKList∩I≤L−1)\
RLTcu−1 and θ̄|ID|+1,d̄ ∈ CoS(RLID,Tcu) as we explained in the proof against A
of the Type-I strategy. Since it holds that I ∩ {0, 1}⌈log(L+1)⌉∥N∥T = ∅ and
T ∩ {0, 1}⌈log(L+1)⌉∥N∥T = ∅, (ID, (|ID| + 1)∥θ̄|ID|+1,d̄, Tcu) /∈ prefix+((ID⋆, T⋆))

holds for all ID ∈ (SKList ∩ I≤L−1) \ RLTcu−1 and θ̄|ID|+1,d̄ ∈ CoS(RLID,Tcu) even

when ID⋆ ∈ (SKList ∩ I≤L−1) \ RLTcu−1 and T⋆ = Tcu.

Decryption Key Reveal Query. Upon A’s queries on (ID, T), B made
HIBE secret key queries on ((ID[ℓ−1], ℓ∥θ̃ℓ∥T))ℓ∈[|ID|] for some θ̃ℓ ∈ PS(ID[ℓ]) ∩
CoS(RLpa(ID[ℓ]),T) and (ID, T) as we explained in the proof against A of the

Type-I strategy. Since it holds that I ∩ {0, 1}⌈log(L+1)⌉∥N∥T = ∅ and T ∩
{0, 1}⌈log(L+1)⌉∥N∥T = ∅, (ID[ℓ−1], ℓ∥θ̃ℓ∥T) /∈ prefix+((ID⋆, T⋆)) holds for all

ℓ ∈ [|ID|] even when ID = ID⋆ and T = T⋆. Moreover, (ID, T) ∈ prefix+((ID⋆, T⋆))
holds only when (ID, T) = (ID⋆, T⋆) since it holds that I ∩ T = ∅. Due to the
security definition of RHIBE, A never made the query on (ID⋆, T⋆). Therefore,
(ID, T) /∈ prefix+((ID⋆, T⋆)) holds.

Summarizing the analysis so far, B made HIBE secret key queries on HIBE.ID
only when HIBE.ID /∈ prefix+((ID⋆, T⋆)). Thus, we complete the proof against A
of the Type-II strategy. ⊓⊔

4 Achieving Shorter Ciphertexts/Key Updates

Ma and Lin’s basic RIBE [31] is a generic construction from IBE and level-2 HIBE.
They suggested that by replacing IBE with identity-based broadcast encryption
(IBBE), there is a generic construction of RIBE with shorter ciphertexts. By
following the idea, we show that by replacing HIBE of our basic RHIBE scheme
in Section 3 with hierarchical identity-based IBBE (HIBBE), there is a generic
construction of RHIBE with shorter ciphertexts. Furthermore, we obtain a dual
construction of the variant. Specifically, we show that by replacing HIBE with
hierarchical identity-based dual IBBE (HDIBBE), there is a generic construction
of RHIBE with shorter key updates.

4.1 Hierarchical Identity-based (Dual) IBBE

An IBBE ciphertext IBBE.ctPU depends on a set of privileged users PU ∈ 2I

whereas an IBBE secret key IBBE.skid depends on an element identity id ∈ I.
The secret key IBBE.skid can decrypt IBBE.ctPU iff id ∈ PU. Let IBBE(M) denote
IBBE with the maximum number M of privileged users in PU. By definition,
IBBE(1) = IBE. The dual IBBE (DIBBE) is the same as IBBE except that the
roles of PU and id are swapped such as DIBBE.ctid and DIBBE.skPU.

HIBBE(L,M) is a conjunction of HIBE(L) and IBBE(M), where an HIBBE
ciphertext HIBBE.ctID,PU depends on a hierarchical identity ID ∈ HIBE.I≤L and

14 Keita Emura, Atsushi Takayasu, and Yohei Watanabe

set of privileged users PU ∈ 2IBBE.I such that |PU| ≤M whereas an HIBBE secret
key HIBBE.skID,id depends on a hierarchical identity ID ∈ HIBE.I≤L and element
identity id ∈ IBBE.I. The secret key HIBBE.skID′,id can decrypt HIBBE.ctID,PU
if ID′ ∈ prefix+(ID) ∧ id ∈ PU. There is a special case, where HIBBE.ctID,PU and
HIBBE.skID,id may not depend on any hierarchical identity ID. In this case, we use
the notations HIBBE.ctkgc,PU and HIBBE.skkgc,id. There is another special case,
where HIBBE.ctID,PU and HIBBE.skID,id may not depend on any set of privileged
users PU and element identity id, respectively. In this case, we use the notation
HIBBE.skID,∗ that can be used for creating HIBBE.skID′,id for any id ∈ IBBE.I if
ID ∈ prefix(ID′). HDIBBE(L,M) that is a conjunction of HIBE(L) and DIBBE(M)
is defined in the same way.

We can obtain adaptively secure pairing-based HIBBE(L,M) schemes with
compact ciphertexts and HDIBBE(L,M) schemes with compact secret keys under
the k-linear assumption through the predicate encoding framework [3,9,10,43]. It
is well known that (M+1)-dimensional (pairing-based) inner product encryption
(IPE(M +1)) is sufficient for constructing IBBE(M) and DIBBE(M). The predi-
cate encoding schemes of HIBE(L) and IPE(M+1) with compact ciphertexts and
compact secret keys are summarized in [9]. Based on the conjunction of predicate
encoding schemes in [3], we obtain predicate encoding schemes of HIBBE(L,M)
with compact ciphertexts and HDIBBE(L,M) with compact secret keys. Finally,
we obtain adaptively secure pairing-based schemes under the k-linear assumption
through the generic compilers for predicate encoding schemes [9,10].

4.2 Variants with Shorter Ciphertexts

We replace HIBE(L+1) by HIBBE(L+1,M) with compact ciphertexts for con-
structing RHIBE(L) with shorter ciphertexts than the scheme in Section 3, where
the spirit is almost the same.6 The level-ℓ ciphertexts ctID,T,ℓ of the scheme in
Section 3 for ℓ ∈ [|ID|] consist of D + 1 HIBE ciphertexts HIBE.ct(ID[ℓ−1],ℓ∥θℓ,d∥T)
for d ∈ [0, D]. In other words, the information for each θℓ,d is used to cre-
ate a single HIBE ciphertext. In turn, we use the information for each M -
tuple (θℓ,(m−1)M , θℓ,(m−1)M+1, . . . , θℓ,mM−1) to create a single HIBBE ciphertext.
Thus, we replace the D+1 HIBE ciphertexts of the level-ℓ RHIBE ciphertext by
⌈(D + 1)/M⌉ HIBBE ciphertexts HIBBE.ctID[ℓ−1],PUℓ,T,m

, where

PUℓ,T,m = (ℓ∥θℓ,(m−1)M∥T, ℓ∥θℓ,(m−1)M+1∥T, . . . , ℓ∥θℓ,mM−1∥T)

for m ∈ [⌈(D + 1)/M⌉ − 1] and

PUℓ,T,⌈(D+1)/M⌉ = (ℓ∥θℓ,(⌈(D+1)/M⌉−1)M∥T, . . . , ℓ∥θℓ,D∥T).

The level-ℓ decryption keys dkID,T,ℓ for ℓ ∈ [|ID|] are HIBBE.skID[ℓ−1],ℓ∥θ̃ℓ∥T such

that θ̃ℓ ∈ PS(ID[ℓ])∩CoS(RLpa(ID[ℓ]),T). The level-(L+1) ciphertext ctID,T,L+1 and

6 Ma and Lin [31] only suggested that by replacing IBE with IBBE(D + 1), there is a
generic construction of RIBE with shorter ciphertexts. Since we introduce a flexible
parameterM ∈ [D+1], we achieve an efficiency trade-off between the sizes of pp, skID,
and kuID,T and the size of ctID,T.

Generic Constructions of Revocable Hierarchical Identity-based Encryption 15

Setup(1λ, L):
(HIBBE.pp,HIBBE.msk)← HIBBE.Setup(1λ, L+ 1,M)
return pp = HIBBE.pp, skkgc = HIBBE.msk

Enc(pp, ID, T,M) :

(M1, . . . ,M|ID|)←R M|ID|, ML+1 = M
⊕

ℓ∈[|ID|] Mℓ

for ℓ ∈ [|ID|]
PS(ID[ℓ]) = (θℓ,0, θℓ,1, . . . , θℓ,D)← Assign(idℓ)
for m ∈ [⌈(D + 1)/M⌉ − 1]

PUℓ,T,m = (ℓ∥θℓ,(m−1)M∥T, ℓ∥θℓ,(m−1)M+1∥T, . . . , ℓ∥θℓ,mM−1∥T)
HIBBE.ctID[ℓ−1],PUℓ,T,m ← HIBBE.Enc(HIBBE.pp, (ID[ℓ−1],PUℓ,T,m),Mℓ)

PUℓ,T,⌈(D+1)/M⌉ = (ℓ∥θℓ,(⌈(D+1)/M⌉−1)M∥T, . . . , ℓ∥θℓ,D∥T)
HIBBE.ctID[ℓ−1],PUℓ,T,⌈(D+1)/M⌉ ←

HIBBE.Enc(HIBBE.pp, (ID[ℓ−1],PUℓ,T,⌈(D+1)/M⌉),Mℓ)
ctID,T,ℓ := (HIBBE.ctID[ℓ−1],PUℓ,T,m)m∈[⌈(D+1)/M⌉]

ctID,T,L+1 := HIBBE.ct(ID,T),∗ ← HIBBE.Enc(HIBBE.pp, ((ID, T), ∗),ML+1)
return ctID,T := (ctID,T,ℓ)ℓ∈[|ID|]∪{L+1}

GenSK(pp, skpa(ID), ID):
HIBBE.skID,∗ ← HIBBE.KeyGen(HIBBE.pp,HIBBE.skpa(ID),∗, (ID, ∗))
return skID := HIBBE.skID,∗

KeyUp(pp, T, skID,RLID,T, kupa(ID),T):
(dkID,T,ℓ)ℓ∈[|ID|]∪{L+1} ← GenDK(pp, skID, kupa(ID),T)
CoS(RLID,T) = (θ̄|ID|+1,1, θ̄|ID|+1,2, . . . , θ̄|ID|+1,RID,T)← Cover(RLID,T)

for d̄ ∈ [RID,T]
HIBBE.skID,(|ID|+1)∥θ̄|ID|+1,d̄∥T

←
HIBBE.KeyGen(HIBBE.pp,HIBBE.skID,∗, (ID, (|ID|+ 1)∥θ̄|ID|+1,d̄∥T))

return kuID,T := ((θ̃ℓ, dkID,T,ℓ)ℓ∈[|ID|], (θ̄|ID|+1,d̄,HIBBE.skID,(|ID|+1)∥θ̄|ID|+1,d̄∥T
)d̄∈[RID,T])

GenDK(pp, skID, kupa(ID),T):
if ⊥ ← Match(PS(ID[|ID|]),CoS(RLpa(ID),T))

return ⊥
else

PUℓ,T,m̃ℓ ∋ θ̃|ID| ← Match(PS(ID[|ID|]),CoS(RLpa(ID),T))
dkID,T,|ID| := HIBBE.skpa(ID),|ID|∥θ̃|ID|∥T
dkID,T,L+1 := HIBBE.sk(ID,T),∗ ←

HIBBE.KeyGen(HIBBE.pp,HIBBE.skID,∗, ((ID, T), ∗))
return dkID,T := ((PUℓ,T,m̃ℓ , dkID,T,ℓ)ℓ∈[|ID|], dkID,T,L+1)

Dec(pp, dkID,T, ctID,T):
for ℓ ∈ [|ID|]

Mℓ ← HIBBE.Dec(HIBBE.pp, dkID,T,ℓ,HIBBE.ctID[ℓ−1],PUℓ,T,m̃ℓ
)

ML+1 ← HIBBE.Dec(HIBBE.pp, dkID,T,L+1, ctID,T,L+1)
return M =

⊕
ℓ∈[ID]∪{L+1} Mℓ

Fig. 6: RHIBE(L) scheme from HIBBE(L+ 1,M)

level-(L+ 1) decryption key dkID,T,L+1 are HIBBE.ct(ID,T),∗ and HIBBE.sk(ID,T),∗,
respectively. By definition of HIBBE, all the level-ℓ decryption keys dkID,T,ℓ can
be used to decrypt the level-ℓ ciphertext ctID,T,ℓ for ℓ ∈ [|ID|]∪{L+1}. A secret

16 Keita Emura, Atsushi Takayasu, and Yohei Watanabe

key skID is an HIBBE secret key HIBBE.skID,∗; thus, skID can be used for creating
level-(L + 1) decryption key HIBBE.sk(ID,T),∗ and the elements of kuID,T, i.e.,
HIBBE.skID,(|ID|+1)∥θ̄|ID|+1,d̄∥T for θ̄|ID|+1,d̄ ∈ CoS(RLID,T). Therefore, the RHIBE(L)

scheme from HIBBE(L + 1,M) is correct. We can prove security of the scheme
in the same way as the proof of Theorem 1. We describe the scheme as Figure 6.

4.3 Variants with Shorter Key Updates

We replace HIBE(L+1) by HDIBBE(L+1,M) with compact secret keys for con-
structing RHIBE(L) with shorter key updates than the scheme in Section 3, where
the spirit is almost the same. The key update kuID,T other than level-ℓ decryption
keys dkID,T,ℓ for ℓ ∈ [|ID|] of the scheme in Section 3 consists of RID,T HIBE secret
keys HIBE.sk(ID,|ID|+1∥θ̄|ID|+1,d̄∥T) for d ∈ [RID,T]. In other words, the information

for each θ|ID|+1,d̄ is used to create a single HIBE secret key. In turn, we use the in-
formation for each M tuple (θ|ID|+1,(m−1)M+1, θ|ID|+1,(m−1)M+1, . . . , θ|ID|+1,mM)
to create a single HDIBBE secret key. Thus, we replace the RID,T HIBE secret
keys by ⌈RID,T/M⌉ HDIBBE secret keys HDIBBE.skID,PU|ID|+1,T,m

, where

PU|ID|+1,T,m = (|ID|+ 1∥θ̄|ID|+1,(m−1)M+1∥T, . . . , |ID|+ 1∥θ̄|ID|+1,mM∥T)

for m ∈ [⌈RID,T/M⌉ − 1] and

PU|ID|+1,T,⌈RID,T/M⌉

= (|ID|+ 1∥θ|ID|+1,(⌈RID,T/M⌉−1)M+1∥T, . . . , |ID|+ 1∥θ|ID|+1,RID,T
∥T).

The level-ℓ ciphertexts ctID,T,ℓ for ℓ ∈ [|ID|] are HDIBBE.ctID[ℓ−1],ℓ∥θℓ,d∥T for
d ∈ [0, D]. The level-(L + 1) ciphertext ctID,T,L+1 and level-(L + 1) decryp-
tion key dkID,T,L+1 are HDIBBE.ct(ID,T),∗ and HDIBBE.sk(ID,T),∗, respectively.
By definition of HDIBBE, all the level-ℓ decryption keys dkID,T,ℓ can be used
to decrypt the level-ℓ ciphertext ctID,T,ℓ for ℓ ∈ [|ID|] ∪ {L + 1}. A secret
key skID is an HDIBBE secret key HDIBBE.skID,∗; thus, skID can be used
for level-(L + 1) decryption key HDIBBE.sk(ID,T),∗ and the elements of kuID,T,
i.e., HDIBBE.skID,(|ID|+1)∥PU|ID|+1,T,m∥T for θ̄|ID|+1,d̄ ∈ CoS(RLID,T). Therefore, the
RHIBE(L) scheme from HDIBBE(L+ 1,M) is correct. We can prove security of
the scheme in the same way as the proof of Theorem 1. We describe the scheme
as Figure 7.

5 Comparison

In this section, we compare our proposed schemes and previous RHIBE schemes.
Table 1 compares our proposed adaptively secure RHIBE schemes with the other
adaptively secure schemes proposed by Emura et al. [18] and Lee and Kim’s
scheme [27]. Specifically, we compare the space efficiency of ctID,T, skID, kuID,T,
and dkID,T in terms of the number of group elements. We use Chen and Gong’s
HIBE scheme [10] and Gong et al.’s HIBE scheme [20] to instantiate Emura et

Generic Constructions of Revocable Hierarchical Identity-based Encryption 17

Setup(1λ, L):
(HDIBBE.pp,HDIBBE.msk)← HDIBBE.Setup(1λ, L+ 1)
return pp = HDIBBE.pp, skkgc = HDIBBE.msk

Enc(pp, ID, T,M) :

(M1, . . . ,M|ID|)←R M|ID|, ML+1 = M
⊕

ℓ∈[|ID|] Mℓ

for ℓ ∈ [|ID|]
PS(ID[ℓ]) = (θℓ,0, θℓ,1, . . . , θℓ,D)← Assign(idℓ)
for d ∈ [0, D]

HDIBBE.ctID[ℓ−1],ℓ∥θℓ,d∥T ← HDIBBE.Enc(HDIBBE.pp, (ID[ℓ−1], ℓ∥θℓ,d∥T),Mℓ)

ctID,T,ℓ := (HDIBBE.ct(ID[ℓ−1],ℓ∥θℓ,d∥T))d∈[0,D]

ctID,T,L+1 := HDIBBE.ct(ID,T),∗ ← HDIBBE.Enc(HDIBBE.pp, ((ID, T), ∗),ML+1)
return ctID,T := (ctID,T,ℓ)ℓ∈[|ID|]∪{L+1}

GenSK(pp, skpa(ID), ID):
HDIBBE.skID,∗ ← HDIBBE.KeyGen(HDIBBE.pp,HDIBBE.skpa(ID),∗, (ID, ∗))
return skID := HDIBBE.skID,∗

KeyUp(pp, T, skID,RLID,T, kupa(ID),T):
(dkID,T,ℓ)ℓ∈[|ID|]∪{L+1} ← GenDK(pp, skID, kupa(ID),T)
CoS(RLID,T) = (θ̄|ID|+1,1, θ̄|ID|+1,2, . . . , θ̄|ID|+1,RID,T)← Cover(RLID,T)

for m ∈ [⌈RID,T/M⌉ − 1]
PU|ID|+1,T,m = (|ID|+ 1∥θ̄|ID|+1,(m−1)M+1∥T, . . . , |ID|+ 1∥θ̄|ID|+1,mM∥T)
HDIBBE.skID,PU|ID|+1,T,m

←
HDIBBE.KeyGen(HDIBBE.pp,HDIBBE.skID,∗, (ID,PU|ID|+1,T,m))

PU|ID|+1,T,⌈RID,T/M⌉ =
(|ID|+ 1∥θ|ID|+1,(⌈RID,T/M⌉−1)M+1∥T, . . . , |ID|+ 1∥θ|ID|+1,RID,T∥T)

HDIBBE.skID,PU|ID|+1,T,⌈RID,T/M⌉ ←
HDIBBE.KeyGen(HDIBBE.pp,HDIBBE.skID,∗, (ID,PU|ID|+1,T,⌈RID,T/M⌉))

return kuID,T :=

(
(θ̃ℓ, dkID,T,ℓ)ℓ∈[|ID|],

(PU|ID|+1,T,m,HDIBBE.skID,PU|ID|+1,T,m
)m∈[⌈RID,T/M⌉]

)
GenDK(pp, skID, kupa(ID),T):

if ⊥ ← Match(PS(ID[|ID|]),CoS(RLpa(ID),T))
return ⊥

else

PU|ID|,T,m̃|ID| ∋ θ̃|ID| ← Match(PS(ID[|ID|]),CoS(RLpa(ID),T))

dkID,T,|ID| := HDIBBE.skpa(ID),PU|ID|,T,m̃|ID|

dkID,T,L+1 := HDIBBE.sk(ID,T),∗ ←
HDIBBE.KeyGen(HDIBBE.pp,HDIBBE.skID,∗, ((ID, T), ∗))

return dkID,T := ((θ̃ℓ, dkID,T,ℓ)ℓ∈[|ID|], dkID,T,L+1)

Dec(pp, dkID,T, ctID,T):
for ℓ ∈ [|ID|]

Mℓ ← HDIBBE.Dec(HDIBBE.pp, dkID,T,ℓ,HDIBBE.ctID[ℓ−1],ℓ∥θ̃ℓ∥T
)

ML+1 ← HDIBBE.Dec(HDIBBE.pp, dkID,T,L+1, ctID,T,L+1)
return M =

⊕
ℓ∈[ID]∪{L+1} Mℓ

Fig. 7: RHIBE(L) scheme from HDIBBE(L+ 1,M)

18 Keita Emura, Atsushi Takayasu, and Yohei Watanabe

al.’s scheme, Lee and Kim’s scheme, and our proposed scheme in Section 3.
Therefore, all the schemes are based on the same SXDH assumption. Here, let
|ID| = ℓ and let RID,T denote the number of identities in the revocation list
RLID,T. As described in Section 2.3, |CoS| = O(RID,T log(2

D/RID,T)); however, we
simply write |CoS| ≈ O(RID,TD

′) and |CoS| ≈ O(RID,TD). We note that there
are no adaptively secure RHIBE schemes with the SD.

Table 1: Comparison of adaptively secure RHIBE(L) schemes

Scheme |pp| |ctID,T| |skID| |kuID,T| |dkID,T|

ETW20 [18]

+ [10,12]
O(L) O(1)

O(|DelKID|(L− ℓ))

+O(D(L− ℓ))

O(RID,TD)

×O(L− ℓ)
O(1)

ETW20 [18]

+ [20]
O(1) O(ℓ)

O(|DelKID|ℓ)
+O(Dℓ)

O(RID,TDℓ) O(ℓ)

LK21 [27]

+ [10,12]

(basic)

O(L) O(ℓD) O(L− ℓ) O(RID,TD + ℓ) O(ℓ)

LK21 [27]

+ [20]

(basic)

O(1) O(ℓ2D) O(ℓ) O(RID,TDℓ+ ℓ2) O(ℓ2)

LK21 [27]

+ [10,12]

(shorter ct)

O(L+D) O(ℓ) O(L+D − ℓ) O(RID,TD
2 + ℓ) O(ℓ)

Section 3

+ [10,12]

(basic)

O(L) O(ℓD) O(L− ℓ) O(RID,TD + ℓ) O(ℓ)

Section 3

+ [20]

(basic)

O(1) O(ℓ2D) O(ℓ) O(RID,TDℓ+ ℓ2) O(ℓ2)

Section 4.2

(shorter ct)
O(L+M) O

(
ℓ D
M

)
O(L+M − ℓ) O(RID,TMD + ℓ) O(ℓ)

Section 4.3

(shorter ku)
O(L+M) O(ℓMD) O(L+M − ℓ) O

(
RID,TD

M + ℓ
)

O(ℓ)

Generic Constructions of Revocable Hierarchical Identity-based Encryption 19

Comparison with ETW20. Let DelKID denote the number of delegation keys
in Emura et al.’s scheme. When instantiated by the same HIBE schemes
such as [10,12,20], Emura et al.’s scheme has larger skID and kuID,T, while
our scheme has larger ctID,T and dkID,T. Since |DelKID| grows when ID creates
their children’s secret keys and their revocation list RLID,T is updated, the size
is not static. Therefore, we believe that our proposed scheme is practically
more efficient than Emura et al.’s scheme.

Comparison with LK21. When instantiated by the same HIBE schemes such
as [10,12,20], Lee and Kim’s basic schemes and our basic schemes in Section 3
have the same asymptotic efficiency. Nevertheless, the concrete efficiency of
our schemes is better than Lee and Kim’s schemes since we use one HIBE
scheme while Lee and Kim used two HIBE schemes for constructing RHIBE
as we claimed at the end of Section 1.
We can set the parameter M ∈ [D] in our shorter ciphertext variant in
Section 4.2 whereas we can set the parameterM as an arbitrary non-negative
integer in our shorter key udpate variant in Section 4.3. When M = 1,
both variants achieve the same asymptotic efficiency as Lee and Kim’s basis
scheme and our basic scheme instantiated by [10,12]. When M = D, our
shorter ciphertext variant has the same asymptotic efficiency as Lee and
Kim’s shorter ciphertext variant; however, our shorter cipehrtext variant can
take flexible choice of the parameter M ∈ [D] as opposed to Lee and Kim’s
scheme. Needless to say, our shorter key update variant has the shortest
kuID,T than any other adaptively secure schemes. What is more, although we
do not summarize in Table 1, our shorter key update variant with a large
M achieves the shorter key updates than selectively secure RHIBE schemes
with the SD [27,29].

Acknowledgement. We would like to thank anonymous reviewers of Asiacrypt
2019 and PKC 2020.

References

1. Agrawal, S., Boneh, D., Boyen, X.: Efficient lattice (H)IBE in the standard model.
EUROCRYPT 2010, LNCS 6110, pp. 553–572. Springer (2010)

2. Agrawal, S., Boneh, D., Boyen, X.: Lattice basis delegation in fixed dimension
and shorter-ciphertext hierarchical IBE. CRYPTO 2010, LNCS 6223, pp. 98–115.
Springer (2010)

3. Ambrona, M., Barthe, G., Schmidt, B.: Generic transformations of predicate en-
codings: Constructions and applications. CRYPTO 2017, LNCS 10401, pp. 36–66.
Springer (2017)

4. Boldyreva, A., Goyal, V., Kumar, V.: Identity-based encryption with efficient re-
vocation. CCS 2008. pp. 417–426. ACM (2008)

5. Boneh, D., Gentry, C., Gorbunov, S., Halevi, S., Nikolaenko, V., Segev, G., Vaikun-
tanathan, V., Vinayagamurthy, D.: Fully key-homomorphic encryption, arithmetic
circuit ABE and compact garbled circuits. EUROCRYPT 2014, LNCS 8441, pp.
533–556. Springer (2014)

20 Keita Emura, Atsushi Takayasu, and Yohei Watanabe

6. Brakerski, Z., Lombardi, A., Segev, G., Vaikuntanathan, V.: Anonymous ibe, leak-
age resilience and circular security from new assumptions. EUROCRYPT 2018,
LNCS 10820, pp. 535–564. Springer (2018)

7. Cash, D., Hofheinz, D., Kiltz, E., Peikert, C.: Bonsai trees, or how to delegate a
lattice basis. J. Cryptology 25(4), 601–639 (2012)

8. Chang, D., Chauhan, A.K., Kumar, S., Sanadhya, S.K.: Revocable identity-based
encryption from codes with rank metric. CT-RSA 2018, LNCS 10808, pp. 435–451.
Springer (2018)

9. Chen, J., Gay, R., Wee, H.: Improved dual system ABE in prime-order groups
via predicate encodings. EUROCRYPT 2015, LNCS 9057, pp. 595–624. Springer
(2015)

10. Chen, J., Gong, J.: ABE with tag made easy - concise framework and new in-
stantiations in prime-order groups. ASIACRYPT 2017, LNCS 10625, pp. 35–65.
Springer (2017)

11. Chen, J., Lim, H.W., Ling, S., Wang, H., Nguyen, K.: Revocable identity-based
encryption from lattices. ACISP 2012, LNCS 7372, pp. 390–403. Springer (2012)

12. Chen, J., Wee, H.: Dual system groups and its applications - compact HIBE and
more. IACR Cryptology ePrint Archive 2014, 265 (2014)

13. Cocks, C.C.: An identity based encryption scheme based on quadratic residues.
Cryptography and Coding, LNCS 2260, pp. 360–363. Springer (2001)

14. Döttling, N., Garg, S.: From selective IBE to full IBE and selective HIBE. TCC
2017, LNCS 10677, pp. 372–408. Springer (2017)

15. Döttling, N., Garg, S.: Identity-based encryption from the Diffie-Hellman assump-
tion. CRYPTO 2017, LNCS 10401, pp. 537–569. Springer (2017)

16. Emura, K., Seo, J.H., Watanabe, Y.: Efficient revocable identity-based encryption
with short public parameters. Theor. Comput. Sci. 863, 127–155 (2021)

17. Emura, K., Seo, J.H., Youn, T.: Semi-generic transformation of revocable hierar-
chical identity-based encryption and its DBDH instantiation. IEICE Transactions
99-A(1), 83–91 (2016)

18. Emura, K., Takayasu, A., Watanabe, Y.: Adaptively secure revocable hierarchical
IBE from k-linear assumption. IACR Cryptol. ePrint Arch. 2020, 886 (2020)

19. Gaborit, P., Hauteville, A., Phan, D.H., Tillich, J.: Identity-based encryption from
codes with rank metric. CRYPTO 2017, LNCS 10403, pp. 194–224. Springer (2017)

20. Gong, J., Cao, Z., Tang, S., Chen, J.: Extended dual system group and shorter un-
bounded hierarchical identity based encryption. Des. Codes Cryptography 80(3),
525–559 (2016)

21. Hu, Z., Liu, S., Chen, K., Liu, J.K.: Revocable identity-based encryption and
server-aided revocable ibe from the computational Diffie-Hellman assumption.
Cryptography 2(4) (2018)

22. Katsumata, S., Matsuda, T., Takayasu, A.: Lattice-based revocable (hierarchical)
IBE with decryption key exposure resistance. PKC 2019, LNCS 11443, pp. 441–
471. Springer (2019)

23. Langrehr, R., Pan, J.: Tightly secure hierarchical identity-based encryption. PKC
2019, LNCS 11442, pp. 436–465. Springer (2019)

24. Langrehr, R., Pan, J.: Hierarchical identity-based encryption with tight multi-
challenge security. PKC 2020, LNCS 12110, pp. 153–183. Springer (2020)

25. Langrehr, R., Pan, J.: Unbounded HIBE with tight security. ASIACRYPT 2020,
LNCS 12492, pp. 129–159. Springer (2020)

26. Lee, K.: A generic construction for revocable identity-based encryption with subset
difference methods. IACR Cryptology ePrint Archive 2019, 798 (2019)

Generic Constructions of Revocable Hierarchical Identity-based Encryption 21

27. Lee, K., Kim, J.S.: A generic approach to build revocable hierarchical identity-
based encryption. IACR Cryptology ePrint Archive 2021, 502 (2021)

28. Lee, K., Lee, D.H., Park, J.H.: Efficient revocable identity-based encryption via
subset difference methods. Des. Codes Cryptography 85(1), 39–76 (2017)

29. Lee, K., Park, S.: Revocable hierarchical identity-based encryption with shorter
private keys and update keys. Des. Codes Cryptography 86(10), 2407–2440 (2018)

30. Libert, B., Vergnaud, D.: Adaptive-ID secure revocable identity-based encryption.
CT-RSA 2009, LNCS 5473, pp. 1–15. Springer (2009)

31. Ma, X., Lin, D.: Generic constructions of revocable identity-based encryption. In-
scrypt 2019, LNCS 12020, pp. 381–396. Springer (2019)

32. Ma, X., Lin, D.: Generic constructions of ribe via subset difference method. IACR
Cryptology ePrint Archive 2019, 1376 (2019)

33. Naor, D., Naor, M., Lotspiech, J.: Revocation and tracing schemes for stateless
receivers. CRYPTO 2001, LNCS 2139, pp. 41–62. Springer (2001)

34. Ryu, G., Lee, K., Park, S., Lee, D.H.: Unbounded hierarchical identity-based en-
cryption with efficient revocation. WISA 2015, LNCS 9503, pp. 122–133. Springer
(2015)

35. Seo, J.H., Emura, K.: Revocable identity-based encryption revisited: Security
model and construction. PKC 2013, LNCS 7778, pp. 216–234. Springer (2013)

36. Seo, J.H., Emura, K.: Revocable hierarchical identity-based encryption. Theor.
Comput. Sci. 542, 44–62 (2014)

37. Seo, J.H., Emura, K.: Revocable hierarchical identity-based encryption via history-
free approach. Theor. Comput. Sci. 615, 45–60 (2016)

38. Takayasu, A., Watanabe, Y.: Lattice-based revocable identity-based encryption
with bounded decryption key exposure resistance. ACISP 2017, LNCS 10342, pp.
184–204. Springer (2017)

39. Takayasu, A., Watanabe, Y.: Revocable identity-based encryption with bounded
decryption key exposure resistance: Lattice-based construction and more. Theor.
Comput. Sci. 849, 64–98 (2021)

40. Wang, S., Zhang, J., He, J., Wang, H., Li, C.: Simplified revocable hierarchical
identity-based encryption from lattices. CANS 2019, LNCS 11829, pp. 99–119.
Springer (2019)

41. Waters, B.: Efficient identity-based encryption without random oracles. EURO-
CRYPT 2005, LNCS 3494, pp. 114–127. Springer (2005)

42. Waters, B.: Dual system encryption: Realizing fully secure IBE and HIBE under
simple assumptions. CRYPTO 2009, LNCS 5677, pp. 619–636. Springer (2009)

43. Wee, H.: Dual system encryption via predicate encodings. TCC 2014, LNCS 8349,
pp. 616–637. Springer (2014)

	Generic Constructions of Revocable Hierarchical Identity-based Encryption

