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Abstract. Deep learning-based side-channel attacks are capable of break-
ing targets protected with countermeasures. What is more, the constant
progress in the last few years is making the attacks ever more power-
ful where we require fewer traces to break a target. Unfortunately, to
protect against such attacks, we still rely solely on methods developed
to protect against generic attacks. The works that consider the protec-
tion perspective are few and usually based on the adversarial examples
concepts, which are not always easy to translate to real-world hardware
implementation.
In this work, we ask whether we can develop combinations of counter-
measures that protect against side-channel attacks. We consider several
well-known hiding countermeasures and use the reinforcement learning
paradigm to design specific sets of countermeasures that show resilience
against deep learning-based attacks. Our results show it is possible to
enhance the target resilience significantly, up to a point where deep
learning-based attacks cannot obtain the secret information. At the same
time, we consider the cost of implementing such countermeasures to bal-
ance security and implementation costs.

Keywords: Reinforcement learning, Side-channel analysis, Countermeasures,
Deep learning, Hiding

1 Introduction

Deep learning is a very powerful option for profiling side-channel analysis (SCA).
In profiling SCA, we assume an adversary with access to a clone device under
attack. Using that clone device, the attacker builds a model that is used to attack
the target. This scenario maps perfectly to supervised machine learning, where
first, a model is trained (profiling phase) and then tested on previously unseen
examples (attack phase). While other than deep learning techniques also work
well in profiling SCA (e.g., random forest or support vector machines), deep
learning (deep neural networks) is commonly considered as the most powerful
direction. This is because deep neural networks 1) do not require pre-processing,
which means we can use raw traces, and 2) can break protected implementations,
which seems to be much more difficult with simpler machine learning techniques
or template attack. As such, the last few years brought several research works
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that report excellent attack performance and breaking of targets in a (commonly)
few hundred traces. What is more, attack improvements are regularly appearing
as many new results from the machine learning domain can be straightforwardly
applied to improve the side-channel attacks, see, e.g., [17,22,16,14]. Simultane-
ously, there are only sporadic improvements from the defense perspective, and
almost no research aimed to protect against deep learning-based SCA.

We consider this an important research direction. Indeed, if deep learning
attacks are the most powerful ones, then an intuitive direction should be to
design countermeasures against such attacks. Unfortunately, this is also a much
more difficult research perspective. We can find several reasons for it:

– As other domains do not consider countermeasures in the same shape as in
SCA, it is not straightforward to use the knowledge from other domains.

– While adversarial machine learning is an active research direction and intu-
itively, adversarial examples are a good defense against deep learning-based
SCA, it is far from trivial to envision how such defenses would be imple-
mented in cryptographic hardware. Additionally, adversarial examples com-
monly work in the amplitude domain but not in the time domain.

– It can be easier to attack than to defend 1. Confirming that an attack is
successful is straightforward as it requires assessing how many traces are
needed to break the implementation. Confirming that a countermeasure
works would, in an ideal case, require testing against all possible attacks
(which is not possible).

There are only a few works considering countermeasures against machine
learning-based SCA to the best of our knowledge. Inci et al. used adversar-
ial learning as a defensive tool to obfuscate and mask side-channel information
(concerning micro-architectural attacks) [8]. Picek et al. considered adversarial
examples as a defense against power and EM side-channel attacks [15]. While
they reported the defense works, they leave it open how would such a counter-
measure be implemented. Finally, Gu et al. used an adversarial-based counter-
measure that inserts noise instructions into code [6]. Interestingly, the authors
report their approach also works against classical side-channel attacks.

In this paper, while we aim to reach the same goal as those works, we con-
sider a radically different direction. We do not generate adversarial examples
(although one could call our countermeasure to be adversarial), but we optimize
the combinations of well-known SCA hiding countermeasures. More precisely,
we use the reinforcement learning paradigm to find a combination of hiding
countermeasures that makes deep learning-based SCA difficult to succeed. We
emphasize that we simulate the countermeasures to assess their influence on a
dataset 2. Our combinations of countermeasures work in both amplitude and
time domain and could be implemented in real-world targets. We conduct ex-
periments considering three datasets and two leakage models, where our results

1 In the context of masking and hiding countermeasures.
2 This is why we concentrate on hiding countermeasures as it is easier to simulate

hiding than masking. Still, as we attack datasets protected with masking, we consider
both countermeasure categories covered.
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indicate the random delay interrupt countermeasure as the key ingredient of
strong resilience against deep learning-based SCA. Our main contributions are:
1. We propose a novel reinforcement learning approach to construct combina-

tions of hiding countermeasures making deep learning-based SCA difficult
to succeed.

2. We motivate and develop custom reward functions for countermeasure se-
lection to increase the SCA resilience.

3. We conduct extensive experimental analysis considering four countermea-
sures, three datasets, and two leakage models.

4. We report on a number of countermeasures that perform the best and worst
for the selected profiling model and datasets.

We plan to release our source code upon the acceptance of the paper (source
code is available through program chairs if required).

2 Preliminaries

2.1 Notation

– Calligraphic letters (X ) denote sets and the corresponding upper-case letters
(X) random variables and random vectors X over X . The corresponding
lower-case letters x and x denote realizations of X and X, respectively.

– A dataset T is a collection of traces (measurements). Each trace ti is asso-
ciated with an input value (plaintext or ciphertext) di and a key candidate
ki. Here, k ∈ K and k∗ represents the correct key. As common in profiling
SCA, we divide the dataset into three parts: a profiling set of N traces, a
validation set of V traces, and an attack set of Q traces.

– We denote the vector of learnable parameters in our profiling models as θ
and the set of hyperparameters defining the profiling model f as H.

2.2 Deep Learning and Profiling Side-channel Analysis

We consider the supervised learning task where the goal is to learn a function
f that maps an input to the output (f : X → Y )) based on examples of input-
output pairs. There is a natural mapping between supervised learning and pro-
filing SCA. Supervised learning has two phases: training and test. The training
phase corresponds to the SCA profiling phase, and the testing phase corresponds
to the SCA attack phase. The profiling SCA runs under the following setup:

– The goal of the profiling phase is to learn θ′ that minimizes the empirical
risk represented by a loss function L on a profiling set of size N . (T =

{(xi, yi)}Ni=1):

θ′ = argmin
θ

1

N

N∑
i

L(fθ(xi), yi). (1)

– The goal of the attack phase is to make predictions about the classes

y(x1, k
∗), . . . , y(xQ, k

∗),



4

where k∗ represents the secret (unknown) key on the device under the attack.
Probabilistic deep learning algorithms output a matrix that denotes the prob-

ability that a certain measurement should be classified into a specific class. Thus,
the result is a matrix P with dimensions equal to Q × c. The probability S(k)
for any key byte candidate k is the maximum log-likelihood distinguisher:

S(k) =

Q∑
i=1

log(pi,v). (2)

The value pi,v represents the probability that a specific class v is predicted. The
class v is obtained from the key and input through a cryptographic function and
a leakage model l.

From the matrix P , it is straightforward to obtain the accuracy of the model
f . Still, in SCA, an adversary is not interested in predicting the classes in the
attack phase but obtaining the secret key k∗. Thus, to estimate the difficulty of
breaking the target, it is common to use metrics like guessing entropy (GE) [18].
There, given Q traces in the attack phase, an attack outputs a key guessing
vector g = [g1, g2, . . . , g|K|] in decreasing order of probability (g1 is the most
likely key candidate and g|K| the least likely key candidate). Guessing entropy
represents the average position of k∗ in g.

2.3 Convolutional Neural Networks

Convolutional neural networks (CNNs) are commonly used neural networks in
many domains, including SCA. They commonly consist of three types of lay-
ers: convolutional layers, pooling layers, and dense layers, also known as fully
connected layers. The convolution layer computes neurons’ output connected to
local regions in the input, each computing a dot product between their weights
and a small region they are connected to in the input volume. Pooling decrease
the number of extracted features by performing a down-sampling operation along
the spatial dimensions. It is common to consider convolution and pooling lay-
ers to form a convolution block. The dense layers compute either the hidden
activations or the class scores. In this work, we consider CNN-based SCA only,
as previous results indicate that CNNs are the most powerful option for deep
learning-based SCA.

2.4 Side-channel Countermeasures

As already discussed, there are many side-channel attacks on cryptographic im-
plementations. To make the attacks more difficult to succeed, it is common to
protect the implementation with countermeasures. Countermeasures aim to de-
stroy the statistical link between intermediate values and traces (e.g., power
consumption or EM emanation). There are two main categories of countermea-
sures for SCA: masking and hiding.

In masking, a random mask is generated to conceal every intermediate value.
More precisely, random masks are used to remove the correlation between the
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measurements and the secret data. In general, there are two types of masking:
Boolean masking and arithmetic masking.

On the other hand, the goal of hiding is to make measurements looking ran-
dom or constant. Hiding decreases the signal-to-noise ratio (SNR) only. Hiding
can happen in the amplitude (e.g., adding noise) and time (e.g., desynchroniza-
tion, random delay interrupts, jitter) dimensions. Our work considers hiding
countermeasures only as masking is difficult to simulate, and there are not many
options for reinforcement learning to tune if considering masking.

2.5 Datasets and Leakage Models

ASCAD Datasets. The first two datasets are versions of the ASCAD database [1].
Both datasets contain the measurements from an 8-bit AVR microcontroller
running a masked AES-128 implementation. For both versions, we attack the
first masked key byte (key byte three). The datasets are available at https:

//github.com/ANSSI-FR/ASCAD.
The first dataset version has a fixed key (thus, the key is the same in profiling

and attack set). This dataset consists of 50 000 traces for profiling and 10 000
for the attack. From 50 000 traces in the profiling set, we use 45 000 traces
for profiling and 5 000 for validation. Each trace has 700 features (preselected
window).

The second version has random keys, with 200 000 traces for profiling and
100 000 for the attack. We use 5 000 traces from the attack set for validation
(note that the attack set has a fixed but a different key from the profiling set).
Each trace has 1 400 features (preselected window).

CHES CTF Dataset. This dataset consists of masked AES-128 encryption
running on a 32-bit STM microcontroller, and we attack the first key byte.
This dataset is available at https://chesctf.riscure.com/2018/news. We use
45 000 traces for the training set (the training set has a fixed key). The attack
set has 5 000 traces and uses a different key from the training set. We use 2 500
traces from the attack set for validation. CHES CTF trace sets contain the power
consumption of the full AES-128 encryption, with a total number of 650 000
features per trace. The raw traces were pre-processed in the following way. First,
a window resampling is performed, and later we concatenated the trace intervals
representing the processing of the masks (beginning of the trace) with the first
samples (processing of S-boxes) located after an interval without any particular
activity (flat power consumption profile). Each trace has 2 200 features.

Leakage Models.
– The Hamming weight (HW) leakage model - the attacker assumes the leakage

proportional to the sensitive variable’s Hamming weight. As we consider the
AES cipher with 8-bit S-boxes, this leakage model results in nine classes for
a single key byte (values from 0 to 8).

https://github.com/ANSSI-FR/ASCAD
https://github.com/ANSSI-FR/ASCAD
https://chesctf.riscure.com/2018/news
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– The Identity (ID) leakage model - the attacker considers the leakage in the
form of an intermediate value of the cipher. As we consider the AES cipher
with 8-bit S-boxes, this leakage model results in 256 classes for a single key
byte (values from 0 to 255).

2.6 Reinforcement Learning

Reinforcement learning (RL) aims to teach an agent how to perform a task by
letting the agent experiment and experience the environment. There are two
main categories of reinforcement learning algorithms: policy-based algorithms
and value-based algorithms. Policy-based algorithms directly try to find this
optimal policy. Value-based algorithms, however, try to approximate or find
the value function that assigns state-action pairs a reward value. Note that
most reinforcement learning algorithms are centered around estimating value
functions, but this is not a strict requirement for reinforcement learning. For
example, methods such as genetic algorithms or simulated annealing can all be
used for reinforcement learning without ever estimating value functions [19]. In
this research, we only focus on Q-Learning, belonging to the value estimation
category.

Compared with supervised and unsupervised machine learning, which are
commonly adopted by the SCA community, reinforcement learning has funda-
mental differences. Supervised machine learning learns from a set of examples
(input-output pairs) labeled with the correct answers. A benefit of reinforce-
ment learning over supervised machine learning is that the reward signal can
be constructed without prior knowledge of the correct course of action, which
is especially useful if such a dataset does not exist or is infeasible to obtain. In
terms of unsupervised machine learning, the algorithm attempts to find some
(hidden) structure within a dataset, while reinforcement learning aims to teach
an agent how to perform a task through rewards and experiments [19].

Q-Learning Q-Learning was introduced in 1989 by Chris Watkins [20] with
an aim not only to learn from the outcome of a set of state-action transitions
but from each of them individually. Q-learning is a value-based algorithm that
tries to estimate q∗(s, a), the reward of taking action a in the state s under
the optimal policy, by iteratively updating its stored q-value estimations using
Eq. (3). The simplest form of Q-learning stores these q-value estimations as a
simple lookup table and initializes them with some chosen value or method.
This form of Q-learning is also called Tabular Q-learning. A depiction of the
Q-learning algorithm is presented in Figure 1.

Eq. (3) is used to incorporate the obtained reward into the saved reward
for the current state Rt. St and At are the state and action at time t, and
Q(St, At) is the current expected reward for taking action At in state St. α
and γ are the q-learning rate and discount factor, which are hyperparameters
of the Q-learning algorithm. The q-learning rate determines how quickly new
information is learned, while the discount factor determines how much value to
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𝑅𝑅𝑡𝑡

Fig. 1: The Q-learning concept. Here, an agent chooses an action At, based on
the current state St, which affects the environment. This action is then given a
reward Rt+1 and leads to state St+1. After the reward for the current state is
registered, the cycle starts again.

assign to short-term versus long-term rewards. Rt+1 is the currently observed
reward for having taken action At in state St. maxaQ(St+1, a) is the maximum
of the expected reward of all the actions a that can be taken in state St+1.

Q(St, At)← Q(St, At) + α
[
Rt+1 + γmax

a
Q(St+1, a)−Q(St, At)

]
. (3)

3 Related Works

We divide related works into two directions: improving deep learning-based SCA
and improving the defenses against such attacks. In the first direction, from
2016 and the first paper using convolutional neural networks [10], there are
continuous improvements in the attack performance. Commonly, such works
investigate (note this is only a small selection of the papers):

– the importance of hyperparameters and designing top-performing
neural networks. Benadjila et al. made an empirical evaluation of different
CNN hyperparameters for the ASCAD dataset [1]. Perin and Picek explored
the various optimizer choices for deep learning-based SCA [13]. Zaid et al.
proposed a methodology to select hyperparameters related to the size of
layers in CNNs [25]. To the best of our knowledge, this is the first method-
ology to build CNNs for SCA. Wouters et al. [21] improved upon the work
from Zaid et al. [25] and showed it is possible to reach similar attack per-
formance with significantly smaller neural network architectures. Wu et al.
used Bayesian optimization to find optimal hyperparameters for multilayer
perceptron and convolutional neural network architectures [22]. Rijsdijk et
al. used reinforcement learning to design CNNs that exhibit strong attack
performance, and additionally that have a small number of trainable param-
eters [17]. Our reinforcement learning setup is inspired by the one presented
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here, especially the reward function part 3 In efforts to improve the attack
performance, some authors also proposed custom elements for neural net-
works for SCA. For instance, Zaid et al. [24], and Zhang et al. [26] introduced
new loss functions that improve the attack performance.

– well-known techniques from the machine learning domain to im-
prove the performance of deep learning-based attacks. Cagli et al.
showed how CNNs could defeat jitter countermeasure, and they used data
augmentation to improve the attack process [2]. Kim et al. constructed VGG-
like architecture that performs well over several datasets, and they use reg-
ularization in the form of noise addition to the input [9]. Perin et al. showed
how ensembles could improve the attack performance even when single mod-
els are only moderately successful [12]. Wu et al. used the denoising autoen-
coder to remove the countermeasures from measurements to improve the
attack performance [23]. Perin et al. considered the pruning technique and
the lottery ticket hypothesis to make small neural networks that reach top
attack performance [14].

– explainability and interpretability of results. Hettwer et al. investi-
gated how to select points of interest for deep learning by using three deep
neural network attribution methods [7]. Masure et al. used gradient visual-
ization to discover where the sensitive information leaks [11].
On the other hand, the domain of countermeasures’ design against machine

learning-based SCA is much less explored 4. Indeed, to the best of our knowledge,
there are only three works considering this perspective as briefly discussed in
Section 1. Interestingly, all those works investigated adversarial examples [8,15,6]
and do not consider more “standard” SCA countermeasures. Additionally, it is
not clear how all countermeasures proposed there would be implemented in real-
world settings.

4 The Reinforcement Learning-based Countermeasure
Selection Framework

This section provides details on our experimental setup, reward functions, and
the deep learning models we consider.

4.1 General Setup

We propose a Tabular Q-Learning algorithm based on MetaQNN that can se-
lect countermeasures, including their parameters, to simulate their effectiveness
on an existing dataset against an arbitrary neural network. To evaluate the ef-
fectiveness of the countermeasures, we use guessing entropy. There are several
aspects to consider if using MetaQNN:

3 The authors mention they conducted a large number of experiments to find a reward
function that works well for different datasets and leakage models, so we decided to
use the same reward function.

4 Many works consider the development of SCA countermeasures, but not specifically
against deep learning approaches.
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1. We need to develop an appropriate reward function that considers particu-
larities of the SCA domain. Thus, considering only machine learning metrics
would not suffice.

2. MetaQNN uses a fixed α (learning rate) for Q-Learning while using a learn-
ing rate schedule where α decreases either linearly or polynomially are the
normal practice [5].

3. One of the shortcomings of MetaQNN is that it requires significant compu-
tational power and time to explore the search space properly. As we consider
several different countermeasures where each has its hyperparameters, this
results in a very large search space.
Selecting the right countermeasures and their parameters is modeled as a

Markov Decision Process (MDP). Specifically, each state has a transition towards
an accepting state with the currently selected countermeasures. Each counter-
measure can only be applied once per Q-Learning iteration, so the resulting
set of chosen countermeasures can be empty (no countermeasure being added)
or contain up to four different countermeasures in any order.5 One may con-
sider that with the larger number of countermeasures being added to the traces,
the more difficult the secret information to be retrieved by the side-channel
attacks. Although this statement is true, the implementation of the countermea-
sure is not without any cost. Indeed, some software-based countermeasures add
overhead in the execution efficiency (i.e., dummy executions), while others add
overhead in total power consumption (i.e., dedicated noise engine). To select
optimal countermeasure combinations with a limited burden on the device, a
cost function that can approximate the implementation costs would be useful to
balance the strength of the countermeasure implementation and the security of
the device, which is also a perfect candidate as a reward function to guide the
Q-learning process.6 Following this, we design a cost function associated with
each of the countermeasures, where the value also depends on the chosen coun-
termeasure’s configuration. The total cost of the countermeasure set, ctotal, is
defined in Eq. (4).

ctotal =

|C|∑
i=1

ci. (4)

Here, C represents the set of applied countermeasures, and ci is the cost of the
individual countermeasure defined differently for each countermeasure. Based on
the values chosen by Wu et al. [23] for the ASCAD fixed key dataset, we set the
total cost budget cmax to five. Indeed, cmax set the upper limit of the applied
countermeasure so that the selected countermeasure is in a reasonable range.
Only countermeasure configurations within the remaining budget are selectable

5 The countermeasures set is an ordered set based on the order that the RL agent
selected them. Since the countermeasures are applied in this order, sets with the
same countermeasures but a different ordering are treated as disjoint.

6 While we try to base the costs on real-world implications of adding each of the
countermeasures in a chosen configuration, translating the total cost back to a real-
world metric is nontrivial.
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by the Q-Learning agent. In case the countermeasures are successful in defeat-
ing the attack (GE does not reach 0 within the configured number of attack
traces), any leftover budget is used as a component of the reward function. By
evaluating the reward function, we can find the best-performing countermeasure
combinations, together with their settings, to protect the device from the SCA
with the lowest budget.

In terms of types of countermeasures we evaluated, four types of countermea-
sures, desynchronization, uniform noise, clock jitter, and random delay interrupt
(RDI), are analyzed and applied to the original dataset. The countermeasures
are all applied a-posteriori to the chosen dataset in our experiments. Note that
the implementations of the countermeasure are based on the countermeasure
designs from Wu et al. [23].7 The detailed implementation and design of each
countermeasure’s cost function are discussed in the following sections. As a ref-
erence, the pseudocodes for each implemented countermeasure are available in
Section C.

Desynchronization Well-synchronized traces can significantly improve the
correlation of the intermediate data and trace values, thus enhancing the effi-
ciency of retrieving the secret information. Naturally, adding desynchronization
to the traces is applied as a countermeasure to defeat the side-channel attack.
Different from the clock jitter or RDIs that introduces the misalignment locally,
desynchronization adds misalignment globally. For instance, we can break the
alignment of two continuous encryptions by adding random executions between
them. Aligned with the real-world implementations, we considered desynchro-
nization as a countermeasure and add it as a-posteriori to the traces. For each
trace in the dataset, we draw a number uniformly between 0 and the chosen
maximum desynchronization and shift the trace by that number of features.
In terms of the cost for desynchronization, Wu et al. showed that a maximum
desynchronization of 50 already greatly improves the attack’s difficulty. Even the
CNN used there needs ten times the number of traces to retrieve the secret key.
This leads us to set the desynchronization level (desync level) ranges from 5 to
50 in a step of 5. The cost calculation for desynchronization is defined in Eq. (5).
Note that the maximum cdesync is five, which matches the cmax we defined as
the total cost of countermeasures (which is why cdesync needs to be divided by
ten).

cdesync =
desync level

10
. (5)

Uniform noise Several sources, such as the transistor, data buses, the trans-
mission line to the record devices such as oscilloscopes, or even the work environ-
ment, introduce noise to the amplitude domain. Adding uniform noise amounts

7 Some of these countermeasures generate traces of varying length. To make them all
of the same length, the traces shorter than the original are padded with zeroes, while
any longer traces are truncated back to the original length.
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to adding a uniformly distributed random value to each feature. To make sure
the addition of the noise causes a similar effect on different datasets, we set the
maximum noise level based on the dataset variation defined by Eq. 6.

max noise level =

√
V ar(T )

2
. (6)

Here, T denotes the measured leakage traces. Then, max noise level is mul-
tiplied with a noise factor parameter, ranging from 0.1 to 1.0 with steps of 0.1,
to control the actual noise level introduced to the traces. Since the noise factor
is the only adjustable parameter, we define the cost of the uniform noise in
Eq. (7) to make sure that the the maximum cnoise equals to cmax.

cnoise = noise factor × 5. (7)

Clock Jitter One way of implementing clock jitters is by introducing the insta-
bility in the clock [3]. While desynchronization introduces randomness globally
in the time domain, the introduction of clock jitters increases each sampling
point’s randomness, thus increasing the alignment difficulties. When applying
the clock jitter countermeasure to the ASCAD dataset, Wu et al. chose eight as
the jitter level, but none of the attacks managed to retrieve the key in 10 000
traces. However, we could observe that CNN and template attack do reduce
the average key rank to below 50 at that point. Therefore, we decide to tune
the jitter level (jitter level) with a maximum of eight. The corresponding cost
function is defined in Eq. 8. In the following experiments, we set the jitter level
ranging from 2 to 8 in a step of 2. Again, maximum cjitter value matches the
cmax value we defined before.

cjitter = jitter level × 1.6. (8)

Random Delay Interrupts (RDIs) Similar to clock jitter, RDIs introduce
local desynchronization in the traces. We implement RDIs based on the floating
mean method [4]. More specifically, we add RDI for each feature in each trace
with a configurable probability. Moreover, if an RDI occurs for a trace feature,
we select the delay length based on the A and B parameters, where A is the
maximum length of the delay and B is a number 6 A. Since RDIs in practice are
implemented using instructions such as nop, we do not simply flatten the simu-
lated power consumption but introduce peaks with a configurable amplitude.

Since the RDI countermeasure has many adjustable parameters, it will, by
far, have the most MDP paths dedicated to it, meaning that during random
exploration, it is far more likely to select it as a countermeasure. To offset this, we
reduce the number of configurable parameters by fixing the amplitude for RDIs
based on the max noise level defined in Eq. 6 for each dataset. Furthermore,
we add 1 to the cost of any random delay interrupt countermeasure, as shown
in Eq. 9, defining the cost function for RDIs.
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crdi = 1 +
3× probability × (A+B)

2
, (9)

where A ranges from 1 to 10, B ranges from 0 to 9, and probability ranges from
0.1 to 1 in a step of 1. We emphasize that we made sure the selected B value is
never larger than A.

When looking at the parameters Wu et al. [23] used for random delay inter-
rupts applied on the ASCAD fixed key dataset, A = 5, B = 3 and probability =
0.5, none of the chosen attack methods show any signs of converging on the cor-
rect key guess, even after 10 000 traces. With our chosen crid, this configuration
cost equals seven, which we consider appropriate.

4.2 Reward Functions

To allow MetaQNN to be used for the countermeasure selection, we use a rela-
tively complex reward function. This reward function incorporates the guessing
entropy and is composed of four metrics: 1) t′: the percentage of traces required
to get the GE to 0 out of the fixed maximum attack size; 2) GE′10: the GE value
using 10% of the attack traces; 3) GE′50: the GE value using 50% of the attack
traces and 4) c′: the percentage of countermeasures budget left over out of the
fixed maximum budget parameter. The formal definitions of the first three met-
rics are expressed in Eqs. (10), (11), (12), and (13). We note this is the same
reward function as used in [17].

t′ =
tmax −min(tmax, QtGE

)

tmax
. (10)

GE′10 =
128−min(GE10, 128)

128
. (11)

GE′50 =
128−min(GE50, 128)

128
. (12)

c′ =
cmax − ctotal

cmax
. (13)

The first three metrics of the reward function are derived from the GE metric,
aiming to reward neural network architectures based on their attack performance
using the configured number of attack traces. Since we reward countermeasure
sets that manage to reduce the SCA performance, we incorporate the inverse of
these metrics into our reward functions, as these metrics are appropriate in a
similar setting [17]. Combining these three metrics allows us to assess the coun-
termeasure set performance, even if the neural network model does not retrieve
the secret key within the maximum number of attack traces. We incorporate
these metrics inversely into our reward function by subtracting their value from
their maximum value. Combined, these maximum values from which we sub-
tract sum (multiplied by their weight in the reward function) to 2.5, as shown
in Eq. (14).
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In terms of the fourth metric c′, recall C is the set of countermeasures cho-
sen by the agent, and ctotal equals five. We only apply this reward when the
key retrieval is unsuccessful in tmax traces, as we do not want to reward small
countermeasure sets for their size if they do not adequately decrease the SCA
performance. Combining these four metrics, we define the reward function as in
Eq. (14), which then gives us a total reward between 0 and 1. To better reward
the countermeasure set performance, making the SCA neural networks require
more traces for a successful break, a smaller weight is set on GE′50.

R =
1

3
×

{
2.5− t′ −GE′10 − 0.5×GE′50, if tGE=0 < tmax

2.5−GE′10 − 0.5×GE′50 + 0.5× c′, otherwise
(14)

Note that we multiply the entire set of metrics by 1
3 to normalize our reward

function between 0 and 1. Furthermore, as already mentioned, we subtract the
three SCA performance metrics from their combined maximum value of 2.5 to
reward the countermeasure set performance. Finally, we only add the c′ compo-
nent of the reward function when the SCA cannot retrieve the secret key within
the configured maximum number of traces tmax to avoid rewarding low-cost
countermeasure sets that do not significantly decrease the SCA performance.
While this reward function does look complicated, it is derived based on the
results from [17] and our experimental tuning lasting several weeks. Still, we do
not claim the presented reward function is optimal, but we claim it gives good
results. Further improvements, especially from the perspective of the budget or
the cost of a specific countermeasure, are always possible.

5 Experimental Results

To assess the performance of the selected set of countermeasures for each dataset
and leakage model, we perform experiments with different CNN models. Those
models are tuned for each dataset and leakage model combination but without
considering hiding countermeasures that we simulate. Specifically, we use rein-
forcement learning to select the model’s hyperparameter [17]. For every dataset
and leakage model combination, we execute the search algorithm and select the
top-performing models among over 2 500 iterations.

The details about the specific architectures can be found in Table 1. Note
that Rijsdijk et al. [17] implemented two reward functions: one that only con-
siders the attack performance, and the other that also considers the network
size (small reward function). Aligned with that paper, we consider both reward
functions, leading to two models being used for testing; the one denoted with
RS is the models optimized with the small reward function. For all models,
we use he uniform and selu as kernel initializer and activation function. We
show the top-performing countermeasures for each dataset and profiling models
in the paper; the worst-performing countermeasures are available in Section B
in Appendix B. For all experiments, we denote countermeasure with the CM
abbreviation.
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Test models Convolution Pooling Fully-connected layer

(filter number, size) (size, stride)

ASCADHW Conv(16,100) avg(25,25) 15+4+4

ASCADHW RS Conv(2,25) avg(4,4) 15+10+4

ASCADID Conv(128,25) avg(25,25) 20+15

ASCADID RS Conv(2+2+8, 75+3+2) avg(25+4+2, 25+4+2) 10+4+2

ASCAD RHW Conv(4, 50) avg(25, 25) 30+30+30

ASCAD RHW RS Conv(8, 3) avg(25, 25) 30+30+20

ASCAD RID Conv(128, 3) avg(75, 75) 30+2

ASCAD RID RS Conv(4, 1) avg(100, 75) 30+10+2

CHES CTFHW Conv(4, 100) avg(4, 4) 15+10+10

CHES CTFHW RS Conv(2, 2) avg(7, 7) 10

Table 1: CNN architectures used in the experiments [17].

5.1 ASCAD Fixed Key Dataset

Figure 2 shows the scatter plot results for the HW and ID leakage models for
both the regular and RS CNN. The vertical red line indicates the highest Q-
learning reward for the countermeasure set, which could not prevent the CNN
from retrieving the key within the configured 2 000 attack traces. Notably, a
sharp line can be found on the right side of the Q-Learning reward plots, which
is solely due to the c′ component of the reward function. Although the selected
CNNs can retrieve the secret key when no countermeasures were applied (c′ =
0) for all experiments with both HW and ID leakage models, as soon as any
countermeasure is applied, the attack becomes unsuccessful with 2 000 attack
traces. Indeed, we observe that only very few of the countermeasures seem to be
inefficient in defeating the deep learning attacks from the result plots.

For the experiments shown in Figure 2a, the top countermeasures for AS-
CAD using different profiling models are listed in Table 2. Notably, the best
countermeasure set in terms of performance and cost for this CNN consists of
desynchronization with a level equal to ten. Interestingly, a desynchronization
of 10 combined with uniform noise with noise factor 0.6, presented in Figure 5,
Section B, appears as one of the worst-performing countermeasure sets with
GE10 = 82.19 and GE50 = 45.62. This further highlights that manual selection
of countermeasures might lead to unexpected results and that uniform noise can
help in increasing SCA attack resilience, especially in the presence of counter-
measures [9]. The rest of the top 20 countermeasure sets include or solely consist
of random delay interrupts. This observation is also applied to other profiling
models and ID leakage models. The amplitude for RDI is fixed for each dataset,
as explained in Section 4.1. In terms of the parameters of RDIs, B stays zero for
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all three profiling models, indicating that the length of RDIs is solely determined
by A. Indeed, B varies the mean of the number of added RDIs and enhances
the difficulties in learning from the data. However, a larger B value would also
increase the countermeasure cost, which is against the reward function’s princi-
ple. From Table 2, we can observe both low values of A and probability being
applied to the RDIs countermeasure, indicating the success of our framework in
finding countermeasure with high performance and low cost.

Model Reward Countermeasures c′

ASCADHW 0.967 Desync(desync level=10) 1.00

ASCADHW RS 0.962 RDI(A=1,B=0,probability=0.10,amplitude=12.88) 1.15

ASCADID 0.957 RDI(A=2,B=0,probability=0.10,amplitude=12.88) 1.30

ASCADID RS 0.962 RDI(A=1,B=0,probability=0.10,amplitude=12.88) 1.15

Table 2: Best performing countermeasures for the ASCAD with fixed key dataset.

Next, we compare the general performance of the countermeasure sets be-
tween CNNs designed for the HW and ID leakage model. We observe that the ID
model appears to be at least a little better at handling countermeasures. Specif-
ically, for the ID leakage model CNNs, the variance of the countermeasures’
Q-Learning reward is higher, indicating that the ID model CNNs can better
handle countermeasures, making the countermeasure selection more important.
This observation is confirmed by the c′ value listed in Table 2: to reach a similar
level of the reward value, the countermeasures are implemented with a greater
cost.

Considering the time required to run the reinforcement learning, we observe
we require around 200 hours on average, which is double the time required by
Rijsdijk et al. when finding neural networks that perform well [17].

5.2 ASCAD Random Keys Dataset

The scatter plot results for both the HW and ID model for both the regular and
RS CNN are listed in Figure 3. Aligned with the observation for the ASCAD
fixed key dataset, the vertical red line in the plots is far away from the dots
in the plot, indicating that the countermeasure’s addition effectively increases
side-channel attack difficulty. Furthermore, we again see the sharp line on the
right side of the Q-Learning reward, which is caused by the c′ component of the
reward function.

Compared with the ASCAD results for both leakage models (Figure 2), we
see a greater variation of the individual countermeasure implementations: even
with the same countermeasure cost, a different combination of countermeasures
and their corresponding setting may lead to unpredictable reward values. Fortu-
nately, with the RL-based countermeasure selection scheme, we see this tendency
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(a) CM ASCAD Fixed Key HW Model
(Time consumption: 192 hours)

(b) CM ASCAD Fixed Key ID Model
(Time consumption: 204 hours)

(c) CM ASCAD Fixed Key HW Model
(RS)

(Time consumption: 196 hours)

(d) CM ASCAD Fixed Key ID Model
(RS)

(Time consumption: 198 hours)

Fig. 2: An overview of the countermeasure cost, reward, and the ε value a coun-
termeasure combination set was first generated for the ASCAD with fixed key
dataset experiments. The red lines indicate the countermeasure set with the
highest reward for which the GE reached 0 within 2 000 traces.
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(a) CM ASCAD Random Keys HW
Model

(Time consumption: 280 hours)

(b) CM ASCAD Random Keys ID
Model

(Time consumption: 48 hours)

(c) CM ASCAD Random Keys HW
Model (RS)

(Time consumption: 296 hours)

(d) CM ASCAD Random Keys ID
Model (RS)

(Time consumption: 309 hours)

Fig. 3: An overview of the countermeasure cost, reward, and the ε value a coun-
termeasure combination set was first generated for the ASCAD with random
keys dataset experiments. The red lines indicates the countermeasure set with
the highest reward for which the GE reached 0 within 2 000 traces.
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and can better select the countermeasures’ implementation with a limited bud-
get. Finally, when comparing the HW and ID leakage models, we observe that the
later leakage model is more effective in defeating the countermeasure. In other
words, to protect the essential execution which leaks the ID information, more
effort may be required to implementing countermeasures. The top-performing
countermeasures for different profiling models are listed in Table 3. From the
results, RDIs again become the most effective one among all of the considered
countermeasures. The RDI amplitude is fixed at 16.95 for this dataset, as ex-
plained in Section 4.1. Interestingly, the countermeasures are implemented with
higher cost when compared with the one used for ASCAD with a fixed key. The
reason could be that training with random- ey traces enhances the generalization
of the profiling model. What is more, we also observe that we require significantly
longer time to run the reinforcement learning framework: on average, 300 hours,
which is more than 12 days of computations. Interestingly, we see an outlier with
the ASCAD random keys for the ID leakage model, where only 48 hours were
needed for the experiments.

Model Reward Countermeasures c′

ASCAD RHW 0.940 RDI(A=1,B=0,probability=0.20,amplitude=16.95) 1.30

ASCAD RHW RS 0.952 RDI(A=2,B=1,probability=0.10,amplitude=16.95) 1.45

ASCAD RID 0.942 RDI(A=5,B=0,probability=0.10,amplitude=16.95) 1.75

ASCAD RID RS 0.962 RDI(A=1,B=0,probability=0.10,amplitude=16.95) 1.15

Table 3: Best performing countermeasures for the ASCAD Random Keys
dataset.

5.3 CHES CTF Dataset

Finally, we test the CHES CTF dataset by adding different types of countermea-
sures. The results are presented in Figure 4. Note that CHES CTF leaks in HW
only, and following this, we only attack the dataset with the HW leakage model.
First, compared to the other two datasets, the highest Q-learning reward with
GE equals zero with 2 000 traces (red line) becomes significantly higher ( 0.4),
indicating a stronger CHES CTF vulnerability dataset towards deep learning
attacks. This observation can also be confirmed when looking at the dots’ dis-
tribution (representing different combinations of countermeasures) within the
plot: for both tested models, compared with the other two datasets, we see a
greater variation of the Q-learning reward with the same countermeasure costs.
Nevertheless, with our RL-based countermeasure selection framework, the best
countermeasure combination with the least cost can be found in the right corner
of the graph.
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Furthermore, we list the best countermeasure selected by the RL framework
in Table 4. Aligned with the previous two datasets, RDIs become the most
effective countermeasure for both profiling models. The RDI amplitude is fixed
at 0.50 for this dataset, as explained in Section 4.1. In terms of countermeasure
configurations, both parameters are kept in low values.

Interestingly, for all datasets and leakage models, we obtain RDI as the mem-
ber of the countermeasure set performing the best. This indicates that RDI is
very powerful, but it requires careful tuning of parameters. Indeed, Wu and Picek
reported that clock jitter represents the biggest obstacle in the deep learning-
based SCA [23], which indicates that the selection of RDI parameters was made
in a suboptimal way.

Model Reward Countermeasures c′

CHES HW 0.962 RDI(A=1,B=0,probability=0.10,amplitude=0.50) 1.15

CHES CTFHW RS 0.947 RDI(A=2,B=0,probability=0.20,amplitude=0.50) 1.60

Table 4: Best performing countermeasures for the CHES CTF dataset.

(a) CM CHES CTF HW Model
(Time consumption: 125 hours)

(b) CM CHES CTF HW Model (RS)
(Time consumption: 107 hours)

Fig. 4: An overview of the countermeasure cost, reward, and the ε value a coun-
termeasure combination set was first generated for the CHES CTF dataset ex-
periments. The red lines indicate the countermeasure set with the highest reward
for which the GE reached 0 within 2 000 traces.
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6 Conclusions and Future Work

This paper presents a novel approach to designing side-channel countermeasures
based on reinforcement learning. More precisely, we consider four well-known
types of countermeasures (one in the amplitude domain and three in the time
domain), and we aim to find the best combinations of countermeasures within a
specific budget. We conduct experiments on three datasets considering the HW
and ID leakage models and report a number of countermeasure combinations
providing significantly improved resilience against deep learning-based SCA. Our
experiments show that the best performing countermeasure combinations use the
random delay interrupt countermeasure, making it a natural choice for real-world
implementations.

The experiments performed currently take significantly longer than might be
necessary, as we generate a fixed number of unique countermeasure sets, while
the chance to generate a unique countermeasure set towards the end of the ex-
periments is significantly smaller (due to the lower ε). For example, we generated
over 70 000 countermeasure sets to generate 1 700 unique countermeasure sets
in the CHES CTF HW leakage model experiment. For future work, we plan to
explore how to detect this behavior. Additionally, we plan to consider multilayer
perceptron architectures and sets of countermeasures that work well for differ-
ent datasets and leakage models. Finally, this work considers “static” neural
network models and defenses that adapt. It would be interesting to consider a
bi-level system where both neural networks models that are used in attacks and
countermeasure sets are designed.
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(a) CM ASCAD Fixed Key HW Model (b) CM ASCAD Fixed Key ID Model

(c) CM ASCAD Fixed Key HW Model
(RS)

(d) CM ASCAD Fixed Key ID Model
(RS)

Fig. 5: An overview of the Q-Learning performance for the ASCAD with fixed
key dataset experiments. The blue line indicates the rolling average of the Q-
Learning reward for 50 iterations, where at each iteration, we generate and
evaluate a countermeasure set. The bars in the graph indicate the average Q-
Learning reward for all countermeasure sets generated during that ε.

In contrast, selecting countermeasure to defeat ASCAD RID is an easy task:
the reward value reaches above 0.8 at the very beginning, and it stops increas-
ing regardless of the number of iterations. Since each test consumes 300 hours
on average, we stopped the tests after around 3 000 iterations. For Figures 6c
and 6d, we observe similar performance as in the ASCAD with the fixed key
dataset: the RL algorithm is constantly learning. The highest reward value is
obtained when ε reaches the minimum.

Finally, we present the rolling average of the Q-learning reward and the
average Q-learning reward per ε for the CHES CTF dataset in Figure 7. Aligned
with the previous two datasets, we see a gradual increase till ε reaches 0.1. Then,
our algorithm constantly outputs well-performing countermeasures.
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(a) CM ASCAD Random Keys HW
Model

(b) CM ASCAD Random Keys ID Model

(c) CM ASCAD Random Keys HW
Model (RS)

(d) CM ASCAD Random Keys ID
Model (RS)

Fig. 6: An overview of the Q-Learning performance for the ASCAD with random
key dataset Experiments. The blue line indicates the rolling average of the Q-
Learning reward for 50 iterations, where at each iteration, we generate and
evaluate a countermeasure set. The bars in the graph indicate the average Q-
Learning reward for all countermeasure sets generated during that ε.

B Worst Performing Countermeasures

In this section, we show the worst performing sets of countermeasures for each
dataset and leakage model. Additionally, we show both reward function versions:
the regular one and with an added reward for small neural networks.

In Table 5, we give results for the ASCAD with the fixed key dataset, while
in Table 6, we give results for the ASCAD with random keys dataset. Finally, in
Table 7, we show the worst sets of countermeasures for the CHES CTF dataset
and the HW leakage model.

C Pseudocode for Side-channel Countermeasures

Next, we give pseudocode for simulating each of the considered countermeasures.
Algorithm 1 display the desynchronization countermeasure while Algorithm 2
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Model Reward Countermeasures c′

ASCADHW 0.640
Desync(desync level=10)
+UniformNoise(noise factor=0.60,noise scale=12.88)

4.00

ASCADHW RS 0.735
RDI(A=9,B=4,probability=0.10,amplitude=12.88)
+ClockJitter(jitters level=2)
+UniformNoise(noise factor=0.10,noise scale=12.88)

4.70

ASCADID 0.627
RDI(A=8,B=6,probability=0.10,amplitude=12.88)
+Desync(desync level=15)

4.60

ASCADID RS 0.715
RDI(A=2,B=0,probability=0.40,amplitude=12.88)
+UniformNoise(noise factor=0.20,noise scale=12.88)
+Desync(desync level=10)

4.20

Table 5: Worst performing countermeasures for the ASCAD with fixed key
dataset.

Model Reward Countermeasures c′

ASCAD RHW 0.689
UniformNoise(noise factor=0.70,noise scale=16.95)
+Desync(desync level=5)

4.00

ASCAD RHW RS 0.643 UniformNoise(noise factor=0.20,noise scale=16.95) 1.00

ASCAD RID 0.497 UniformNoise(noise factor=0.70,noise scale=16.95) 3.50

ASCAD RID RS 0.273 UniformNoise(noise factor=0.10,noise scale=16.95) 0.50

Table 6: Worst performing countermeasures for the ASCAD Random Keys
dataset.

Model Reward Countermeasures c′

CHES CTFHW 0.254 UniformNoise(noise factor=0.70,noise scale=0.50) 3.50

CHES CTFHW RS 0.315 RDI(A=2,B=0,probability=0.20,amplitude=0.50) 4.50

Table 7: Worst performing countermeasures for the CHES CTF dataset.
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(a) CM CHES CTF HW Model (b) CM CHES CTF HW Model (RS)

Fig. 7: An overview of the Q-Learning performance for the CHES CTF dataset
Experiments. The blue line indicates the rolling average of the Q-Learning re-
ward for 50 iterations, where at each iteration, we generate and evaluate a coun-
termeasure set. The bars in the graph indicate the average Q-Learning reward
for all countermeasure sets generated during that ε.

gives the code to simulate the uniform noise (we note that instead of uniform
noise, others could be easily taken, e.g., Gaussian noise).

Algorithm 1 Add Desynchronization.

1: function add desync(trace, desync level)
2: new trace← [] . container for new trace
3: level←randomNumber(0, desync level)
4: i← 0
5: while i + level < len(trace) do
6: new trace[i]← traces[i + level] . add desynchronization to the trace
7: i← i + 1

8: return new trace

Algorithm 3 provides the pseudocode to simulate the addition of clock jitters,
and finally, Algorithm 4 gives the pseudocode for the random delay interrupt
countermeasure.
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Algorithm 2 Add Uniform Noise.

1: function add uniform noise(trace, range)
2: new trace← [] . container for new trace
3: i← 0
4: while i < len(trace) do
5: level←randomNumber(−range, range)
6: new trace[i]← traces[i] + level . add noise to the trace
7: i← i + 1

8: return new trace

Algorithm 3 Add Clock Jitters.

1: function add clock jitters(trace, clock jitters level)
2: new trace← [] . container for new trace
3: i← 0
4: while i < len(trace) do
5: new trace[i]← new trace[i].append(trace[i])
6: r ←randomNumber(0, clock jitters level) . level of clock jitters
7: if r < 0 then
8: i← i + r . skip points
9: else

10: j ← 0
11: average amplitude← (trace[i] + trace[i + 1])/2
12: while j < r do
13: new trace← new trace.append(average amplitude) . add points
14: j ← j + 1

15: i← i + 1

16: return new trace

Algorithm 4 Add Random Delay Interrupts.

1: function add rdis(traces, a, b, rdi amplitude)
2: new trace← [] . container for new trace
3: i← 0
4: while i < len(trace) do
5: new trace[i]← new trace[i].append(trace[i])
6: rdi occurrence←randomNumber(0, threshold ∗ 2)
7: if rdi occurrence > threshold then
8: m←randomNumber(0, a− b)
9: rdi num←randomNumber(m,m + b) . number of RDIs to be added

10: j ← 0
11: while j < rdi num do . add RDIs to the trace
12: new trace[i]← new trace[i].append(trace[i])
13: new trace[i]← new trace[i].append(trace[i] + rdi amplitude)
14: new trace[i]← new trace[i].append(trace[i + 1])
15: j ← j + 1

16: i← i + 1

17: return new trace
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