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Abstract. This paper investigates how to reduce discrete logarithm
problem over prime fields to the QUBO problem to obtain as few logical
qubits as possible. We show different methods of reduction of discrete
logarithm problem over prime fields to the QUBO problem. In the best
case, if n is the bitlength of a characteristic of the prime field Fp, there
are required approximately 2n2 logical qubits for such reduction. We
present practical attacks on discrete logarithm problem over the 4-bit
prime field F11, over 5-bit prime field F23 and over 6-bit prime field F59.
We solved these problems using D-Wave Advantage QPU. It is worth
noting that, according to our knowledge, until now, no one has made a
practical attack on discrete logarithm over the prime field using quantum
methods.
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1 Introduction

Shor’s quantum algorithm for factorization and discrete logarithm computa-
tion [9] is one of the essential researches in modern cryptology. Since then,
there have been many efforts to build a general-purpose quantum computer that
solves real-world cryptographic problems. Unfortunately, till now, such powerful
general-purpose quantum computers do not exist. On the other hand, quantum
annealing is an approach that takes more and more popularity. The most pow-
erful computer using quantum annealing technology is the D-Wave Advantage
computer. One of the most exciting applications of quantum annealing to cryp-
tography is transforming the factorization algorithm into the QUBO problem
and then solving this problem using the D-Wave computer [6].

Moreover, the newest D-Wave computers have much more physical qubits
than general-purpose quantum computers. It is believed that this approach also
may be helpful, primarily until large general-purpose quantum computers will
exist. It seems that, in some cases, D-Wave computers may be used to solve
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cryptographic problems, which cannot be solved nowadays by general-purpose
quantum computers.

This paper shows how to transform discrete logarithm problem (DLP) over
prime fields to the QUBO problem. We consider different approaches to such
transformation, aiming to obtain the smallest possible number of logical qubits.
The best method allows one to convert discrete logarithm problem to the QUBO
problem using approximately 2n2 logical qubits.

Our contribution is:

– presenting different methods of reduction of discrete logarithm problem to
the QUBO problem, where the best method requires approximately 2n2

logical qubits for such reduction;
– presenting practical attacks on discrete logarithm problem over the 4-bit

prime field F11, over 5-bit prime field F23 and over 6-bit prime field F59

using D-Wave Advantage QPU.

It is worth noting that, according to our knowledge, until now, no one has made
a practical attack on discrete logarithm over the prime field using quantum
methods.

2 Quantum annealing and cryptography

Shor’s quantum algorithm for factorization and discrete logarithm began the race
to construct a quantum computer to solve real-world cryptographic problems.
Nowadays, the two approaches of quantum computing for cryptography are the
most popular.

The first approach is quantum annealing, used in D-Wave computers. The
second approach is general-purpose quantum computing. The important thing is
that the first approach has limited applications, where mainly QUBO and Ising
problems may be solved using such quantum computers.

QUBO (Quadratic Unconstrained Boolean Optimization) [2] is a significant
problem with many real-world applications. One can express the QUBO model
by the following optimization problem:

min
x∈{0,1}n

xTQx, (1)

where Q is an N × N upper-diagonal matrix of real weights, x is a vector of
binary variables. Moreover, diagonal terms Qi,i are linear coefficients, and the
nonzero off-diagonal terms are quadratic coefficients Qi,j .

QUBO problem may also be viewed as a problem of minimizing the function

f(x) =
∑
i

Qi,ixi +
∑
i<j

Qi,jxixj . (2)

What is essential from the cryptological point of view, many problems may be
translated to the QUBO problem. The most exciting example of such transforma-
tion is integer factorization. It is worth noting that the quantum factorization
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record had belonged to the D-Wave computer for some time. Using transfor-
mation of integer factorization to the QUBO problem, Dridi and Alghassi [3]
factorized integer 200, 099, which result was later beaten by Jiang et al. [6], and
by Wang et al. [11], who factorized 20-bit integer 1, 028, 171. It is worth not-
ing that quantum annealing was also used to find relations in the index calculus
method for elliptic curves where using D-Wave Leap and hybrid sampler, elliptic
curve discrete logarithm problem over the 8-bit prime field has been solved [12].

On the other hand, general-purpose quantum computers have limited re-
sources. The most powerful Intel, Google, and IBM quantum computers have
49, 72, and 127 qubits, respectively [5], [4], [10]. It means that the resources of
general quantum computers are nowadays too small to solve real-world crypto-
graphic problems.

The D-Wave computers using quantum annealing are developing rapidly and
have many more qubits than a few years before. The most potent quantum
annealing computer, D-Wave Advantage [1], has 5, 760 working qubits. This
quantum annealer allows solving general problems with up to 1, 000, 000 variables
and dense problems with 20, 000 variables. A detailed description of how the D-
Wave computer works may be found in [2].

2.1 Quantum annealing and factorization problem

As presented in the introduction, quantum annealing may solve the factorization
problem. We will shortly describe how to transform the factorization problem
into the QUBO problem. For simplicity, we use the description of the direct
method presented in [6].

Let N = pq, where p and q are prime numbers. Let l1, l2 be the bitlengths of
p and q respectively. Because p and q are prime numbers, they can be written
as p = (xl1−1, xl1−2, . . . , x1, 1)2 and q = (xl1+l2−2, xl1+l2−3, . . . , xl1 , 1)2, where
l1 ≥ l2 and xi ∈ {0, 1} for i = 1 to l1 + l2 − 2. Let us define cost function as

f (x1, x2, x3, . . . , xl1+l2−2)
2

= (N − pq)
2
. Multiplication of the binary represen-

tations for p and q yields a sum of binary products.
Now we will show how the resulting 3-local terms may be reduced to 2-

local terms. Let us note that each penalty monomial of the form xixjxl will be
transformed, according to [6], in the following way

xixjxl → ukxl + 2(xixj − 2uk(xi + xj) + 3uk). (3)

It means that

xixjxl = ukxl = ukxl + 2(xixj − 2uk(xi + xj) + 3uk), (4)

if xixj = uk and

xixjxl < xluk + 2(xixj − 2uk(xi + xj) + 3uk), (5)

if xixj 6= uk.
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It results in that the term xixjxl may be transformed to quadratic form by
replacing xixj with uk plus a constraint, given by penalty term:

min(xixjxl) = min (xluk + 2(xixj − 2uk(xi + xj) + 3uk)) . (6)

It is worth noting that for integer factorization it is required
(
l1−1
2

)
+
(
l2−1
2

)
auxiliary variables to form a quadratic cost function. If l = l1 = l2

n
2 , the number

of auxiliary variables is equal to (l − 1)(l − 2) and L = l(l − 1) variables in

total, which is approximately equal to n2

4 where n is the bitlength of N . What
is more, one can set p = (1, xl1−2, . . . , x1, 1)2 and q = (1, xl1+l2−4, . . . , xl1 , 1)2
when lengths of p and q are known.

After transforming the factorization problem into the QUBO problem, it can
be solved using, for example, quantum annealing on a D-Wave computer.

3 Methods of transformation of discrete logarithm
problem to the QUBO problem

This section will present different approaches to transforming the discrete loga-
rithm problem to the QUBO problem.

We begin by defining discrete logarithm problem

gy = h, (7)

in the prime field Fp, where g, h ∈ F∗p and y ∈ {1, . . . , Ord(g)}. This problem is
equivalent to

gy ≡ h(mod p), (8)

for integers g, h ∈ {1, . . . , p− 1}, y ∈ {1, . . . , Ord(g)}.
Let m be the bitlength of Ord(g). We begin by making the following trans-

formation. Let us note that y may be written using m bits and if y = 2m−1um +
· · ·+ 2u2 + u1, where u1, . . . , um are binary variables, then

gy = g2
m−1um+···+2u2+u1 = g2

m−1um . . . g2u2gu1 , (9)

It is worth noting that writing y = 2m−1um + · · · + 2u2 + u1 allows to obtain
y > Ord(g), but because we operate in a cyclic group, one can always get the
result from {1, . . . , Ord(g)} computing y mod Ord(g).

Let us also note that

g2
i−1ui =

{
1, ui = 0,

g2
i−1

, ui = 1,
(10)

which is equivalent to

g2
i−1ui = 1 + ui

(
g2

i−1

− 1
)
. (11)

Now we use the observation above to define different transformation ap-
proaches of discrete logarithm problem over prime fields to the QUBO problem.
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3.1 Transformation of discrete logarithm problem to the QUBO
problem - brutal approach

Let us note that using Equations (9) and (11), one obtains the following equation

gy =
(

1 + um

(
g2

m−1 − 1
))
· · · · ·

(
1 + u2

(
g2 − 1

))
(1 + u1 (g − 1))

=
(

1 + um

(
(g2

m−1 − 1)mod p
))

. . .
(
1 + u2

(
(g2 − 1)mod p

))
· (1 + u1 ((g − 1)mod p)) .

(12)

We can see that gy can be represented as the polynomial of degree m of m
Boolean variables. We will show how to linearize this polynomial. Let us note
that linearization may be performed in the following way.

If m = 1, then 1 + u1(g − 1) and it is indeed linear polynomial.
If m = 2, then f = (1 + u1(g − 1))

(
1 + u2(g2 − 1)

)
= 1+u1(g−1)+u2(g2−

1) + u1u2(g− 1)
(
g2 − 1

)
. The variable u1u2 may be substituted by an auxiliary

variable v1 = u1u2. The penalty will be added later. So one can see that f =
1 + u1(g − 1) + u2(g2 − 1) + v1(g − 1)

(
g2 − 1

)
and is in linear form.

We can keep on such a procedure, and finally, one obtains the linear polyno-
mial of 2m − 1 variables.

Having polynomial f in linear form, now we should transform modular equa-
tion f ≡ h(mod p) to the equation over integers

(f − h) mod p− kp = 0, (13)

where k ∈ Z and for every polynomial f , operation f mod p is equivalent to the
reduction of all of the coefficients of polynomial f modulo p.

If one wants to solve Equation (13) searching for minimal energy of opti-
mization problem, it is necessary to square Equation (13), obtaining in result
polynomial F and Equation (14).

F = ((f − h) mod p− kp)
2

= 0. (14)

Let us note that k is bounded by the maximal number of monomials appearing in

the polynomial (f−h) mod p, which is equal to 2m. Finally, kmax ≤ b 2
m(p−1)

p c <
2m and bitlength of k is equal to m at most. Moreover, to obtain proper energy,
we have to add penalties to the function F , according to Equation (3), obtaining
FPen = F + Pen, where Pen are penalties obtained during linearization. Poly-
nomial FPen has minimal energy equal to 0 (our QUBO problem is constructed
so that minimal energy is equal to 0 because in our QUBO problem appears
constant energy offset).

The DLP transformation to the QUBO problem using a brutal approach
requires, in general, 2m + m− 1 variables for m-bit order of an element g. The
number of variables in such a case does not depend on the bit length of p. Let
us note that this exponential growth makes that the presented method may be
applied only for small prime fields Fp.
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3.2 Transformation of discrete logarithm problem to the QUBO
problem using approximately 2n2 logical qubits - efficient
approach.

In this section, we will transform the discrete logarithm problem to the QUBO
problem using a regular binary tree of maximal height for decomposition. It is
possible to obtain an equivalent QUBO problem using approximately 2n2 logical
qubits in such a case, where n is the bitlength of a characteristic of the prime
field Fp. Let us define for every i = 1,m equality xi = g2

i−1ui . The scheme
of such a regular binary tree of maximal height for general m (the bitlength
of Ord(g)) used for decomposition of discrete logarithm problem to the QUBO
problem is presented in Figure 1.

x1 x2

x3v1 =
x1 · x2

x4v2 =
v1 · x3

xm
.......................................

vm−2·
xm = h

Fig. 1: The scheme of decomposition of discrete logarithm problem using the
efficient approach.
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It is worth noting that other decomposition methods are possible, as a method
using a binary balanced tree. Unfortunately, in such a case the expected number

of logical variables of equivalent QUBO problem is equal to approximately n3

2 .
We, therefore, do not describe here this method.

At first, let us note that using the problem decomposition scheme presented
in the Figure 1, in every step we can create a new variable vi = vi−1xi+1, which
is equivalent to vi ≡ vi−1xi+1(mod p). It is also easy to show that the total
number of new variables vi will be equal to m− 2, because x1, . . . , xm are leaves
of the binary tree with m − 1 inner nodes, where each inner node is equivalent
to some auxiliary variable. However, the root is not equivalent to any auxiliary
variable, but it is equivalent to vm−2xm ≡ h(mod p), so the number of auxiliary
variables vi is equal to m− 2.

What is more, each of the equations for v1, v2, vm−2, . . . , vm−3, vm−2, vm−2xm

need to be transformed to the equation over integers.

f1 = (v1 − x1x2) mod p− k1p = 0,

f2 = (v2 − v1x3) mod p− k2p = 0,

. . .

fm−3 = (vm−3 − vm−4xm−2) mod p− km−3p = 0,

fm−2 = (vm−2 − vm−3xm−1) mod p− km−2p = 0,

fm−1 = (h− vm−2xm) mod p− km−1p = 0.

(15)

We will precisely count how many auxiliary variables are necessary. Let
us note that for variables v1, . . . , vm−2 it is necessary n bits to represent vi,
because vi ∈ {1, . . . , p − 1} and at most n + 1 bits to represent ki, because
(vi − vi−1xi+1) mod p, according to Equation (11) is equivalent to(

vi − vi−1 − vi−1ui+1

(
g2

i

+ 1
))

mod p. (16)

Let us note that vi is limited by its definition by p − 1. Using the binary rep-
resentation of −vi−1 and making reduction modulo p, one obtains polynomial
of binary variables and coefficients from interval {0, . . . , p − 1}. It means that
maximal value of polynomial (16) is equal to (2n + 1)(p − 1) and therefore,

kp ≤ (2n+ 1)(p− 1), which means that k ≤ (2n+1)(p−1)
p < 2n+ 1, so k ≤ 2n and

the bit length of k is equal to blog2 (2n)c+ 1 at most.
Additionally, for every i = 1,m− 2, during linearization of (vi−vi−1xi+1) mod p

it is necessary to linearize terms appearing in vi−1xi+1, which requires n vari-

ables, because, according to Equation (11), xi+1 = 1 + ui+1

(
g2

i − 1
)

has two

monomials but depends on only one variable.
Let us denote as flin1

, . . . , flinn−1
polynomials f1, . . . , fm−1 after lineariza-

tion. Then the final polynomial F in QUBO form is equal to

FPen = (flin1
)2 + · · ·+ (flinm−1

)2 + Pen, (17)

where Pen are penalties obtained during linearization and minimal energy of
FPen is equal to 0.
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So the total number of variables is equal:

– for x1, . . . , xm - it is required to have m binary variables,

– for v1, . . . , vm−2 - it is required to have (m− 2)n binary variables,

– for k1, . . . , km−1 - it is required to have (m − 1) (blog2 (2n)c+ 1) binary
variables,

– for auxiliary variables obtained during linearization of each polynomial
f1, . . . fm−1 it is required (m− 1)n variables,

Finally, obtained QUBO problem requires m+(m−2)n+(m−1) (blog2 (2n)c+ 1)+
(m − 1)n = 2mn + 2m − 3n + (m − 1)blog2 (2n)c − 1, which is approximately
equal to 2mn variables. If we also assume that m ≈ n (what is true if the given
generator is the generator of the multiplicative subgroup of field Fp), then the
total number of variables is equal to approximately 2n2.

It is crucial that one can obtain the QUBO problem in two little different
ways:

1. one can at first linearize each equation fi to obtain the linearized equation
fLini , then compute the sum FPen =

∑w
i=1 f

2
Lini

+Pen, where Pen denotes
penalties obtained during linearization; polynomial FPen is in such a case in
QUBO form;

2. one can at first compute the sum F =
∑w

i=1 f
2
i , and then make of quadrati-

zation of the polynomial F , obtaining FQuadr, finally obtaining polynomial
FPen = FQuadr +Pen in QUBO form, where Pen denotes penalties obtained
during quadratization.

In our methods of reducing discrete logarithm problem to the QUBO prob-
lem, the first method simply allows us to compute the maximal number of re-
quired variables in the resulting QUBO problem. The second method allows
one often to obtain a smaller number of variables than the first method. Even
though, in practical experiments, often the second method was used.

3.3 Mixed approach

In the mixed approach, the crucial observation is that, especially for small prime
fields, the brutal approach is more efficient than approaches using binary tree
decomposition. The key idea is to use both methods to obtain the problem using
fewer logical qubits.

In the first step we multiply k first terms x1, x2, . . . , xk, as same as in the
brutal approach, obtaining equation (v1−x1 ·x2 · · ·xk) mod p−k1p = 0. We use
the decomposition method of discrete logarithm problem using a regular binary
tree of maximal height in all following steps. The scheme of such decomposition
is presented in Figure 2.
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v1 = x1 · x2 · · ·xk xk+1

xk+2
v2 =
v1 · xk+1

xk+3
v3 =
v2 · xk+2

xm
.......................................

vm−k·
xm = h

Fig. 2: The scheme of decomposition of discrete logarithm problem using the
mixed approach.

If choosing the number of variables we like to multiply in the first step is
made carefully, the final QUBO problem may consist of a smaller number of
variables than any other presented approach.

4 Experiments

We experimented with different approaches and solvers: classical, hybrid, and
quantum. However, we aimed to solve discrete logarithm problem over prime
fields using quantum solver for D-Wave Advantage QPU. In every case, as char-
acteristic of n-bit prime field Fp we chose the biggest n-bit prime, for which
d = p−1

2 is prime. We also chose as generators elements of order equal to d. The
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most notable result of solving discrete logarithm problems over the prime field
using D-Wave Advantage QPU was solving discrete logarithm problem over the
4-bit prime field F11 using the efficient approach, 5-bit prime field F23 using the
mixed approach and over 6-bit prime field F59 using the brutal approach.

4.1 Solving discrete logarithm problem over F11 using efficient
approach

In the case of the prime field F11, the smallest QUBO problem can be obtained
using the brutal approach, but we wanted to show the application of the efficient
approach for solving discrete logarithm problem.

In this experiment, we solved the discrete logarithm problem over a field F11

which is the 4-bit prime field. The given generator was 4, and the order of 4 in
F11 is 5. We solved the following discrete logarithm problem:

4y ≡ 9(mod 11). (18)

Obtained QUBO problem consisted of 18 logical qubits. The problem has
been embedded in the D-Wave Advantage computer, in the Pegasus topology,
using 36 physical qubits.

Unfortunately, we could not quantumly solve discrete logarithm problems
over larger fields using an efficient approach.

4.2 Solving discrete logarithm problem over F23 using mixed
approach

However, in the case of the prime field F23, the smallest QUBO problem can
be obtained using the brutal approach, we wanted to show the application of a
mixed approach for solving discrete logarithm problem.

In this experiment, we solved the discrete logarithm problem over a field F23

which is the 5-bit prime field. The given generator was 2, and the order of 2 in
F23 is 11. We solved the following discrete logarithm problem (with m = 4 and
k = 3):

2y ≡ 13(mod 23). (19)

Obtained QUBO problem consisted of 32 logical qubits. The problem has
been embedded in the D-Wave Advantage computer, in the Pegasus topology,
using 75 physical qubits.

Unfortunately, we were not able to quantumly solve discrete logarithm prob-
lem over F59 using a mixed approach. In such a case, the obtained QUBO prob-
lem consisted of 41 logical qubits, but after embedding in the D-Wave Advantage
computer, the final problem required 130 physical qubits. We made in such a
case several experiments, but we did not obtain the proper minimal energy.
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4.3 Solving discrete logarithm problem over F59 using brutal
approach

In the last experiment, we solved the discrete logarithm problem over a field F59

which is the 6-bit prime field. The given generator was 4, and the order of 4 in
F59 is 29. We solved the following discrete logarithm problem:

4y ≡ 27(mod 59). (20)

Obtained QUBO problem consisted of 30 logical qubits. The problem has
been embedded in the D-Wave Advantage computer, in the Pegasus topology,
using 79 physical qubits.

4.4 Experiments summary

Unfortunately, we could not solve discrete logarithm problems over prime fields
of a more significant length than 6 using quantum solver and D-Wave Advantage
QPU.

We provide parameters of solution of discrete logarithm problem using D-
Wave Advantage QPU over F11 using the efficient approach, F23 using the mixed
approach, and F59 using the brutal approach.

Parameter Value

Name (chip ID) Advantage system4.1

Qubits 5,760

Topology Pegasus

Number of reads 10,000

Annealing time (µs) 20

Anneal schedule [[0,0],[20,1]]

H gain schedule [[0,0],[20,1]]

Programming thermalization (µs) 1000

Table 1: D-Wave Advantage solver parameters used in solving QUBO problems
equivalent to the discrete logarithm problems.

Figure 3 shows how different QUBO problems were embedded on the D-Wave
Advantage computer.
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Parameter DLP over F11 DLP over F23 DLP over F59

Number of source variables 18 32 30

Number of target variables 36 75 81

Max chain length 4 5 4

Chain strength 8,258.58 20,000.00 2,025,065.28

QPU access time (µs) 959,248.6 1,324,651 913,450.6

QPU programming time (µs) 8,448.6 8,451 8,450.6

QPU sampling time (µs) 950,800 1,316,200 905,000

Total post processing time (µs) 11,209 17,384 17,023

Post processing overhead time (µs) 4,252 3,244 2,341

Table 2: Parameters used in solving QUBO problem equivalent to the problem
of finding discrete logarithm over F11 using the efficient approach, F23 using the
mixed approach and F59 using the brutal approach.

(a) (b)

(c) (d)

Fig. 3: Embedding of QUBO problems equivalent to discrete logarithm problems
over the prime field F11 using efficient approach (Figure 3a), prime field F23 using
mixed approach (Figure 3b), prime field F59 using brutal approach (Figure 3c),
and prime field F65267 using mixed approach (Figure 3d).
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We also checked the limitations of proposed methods using the D-Wave Ad-
vantage computer. We prepared a QUBO problem equivalent to a discrete log-
arithm problem over the 16-bit prime field F65267.

We used the mixed approach to try to solve the following discrete logarithm
problem:

4y ≡ 64643(mod 65267). (21)

The equivalent QUBO problem consisted of 444 variables. We embedded this
problem into the D-Wave Advantage QPU using 3, 724 physical qubits. This
embedding is presented in Figure 3d.

It is also worth noting that discrete logarithm problem over 17-bit prime,
consisting of 537 logical qubits, could not be embedded into D-Wave Advantage
QPU. According to our experiments, it looks that discrete logarithm problem
over 16-bit prime field probably could not be properly solved. The biggest prob-
lem in such a case is a large number of variables and long chains, where maximal
chain length is equal to 20. It is also interesting that discrete logarithm problem
over 17-bit prime, consisting of 537 logical qubits, could not be embedded into
D-Wave Advantage QPU.

The other observation is that using the brutal approach and classical CPU
solver, we solved the QUBO problem equivalent to a discrete logarithm problem
over a 10-bit prime in just 4.274 s. It is very interesting because this QUBO
problem consists of 521 variables.

It looks that in the case of solving the QUBO problem, very important is the
problem definition. The number of variables is also significant, but the number
of connections between variables is often more critical. What is more, the QUBO
problem obtained using a brutal approach and classical CPU solver may be easily
solved even for the 521 variables problem. Unfortunately, the brutal approach
is naturally limited by an exponential number of variables required to construct
an equivalent QUBO problem.

5 Further works and conclusion

In this paper, we presented methods of transformation of discrete logarithm
problem over prime fields to the QUBO problem. We showed different approaches
to such transformation. The best methods allow one to obtain equivalent QUBO
problem using approximately 2n2 variables (logical qubits). It is worth noting
that in the case of factorization, in general, known methods allow transforming

factorization problem to the QUBO problem using approximately n2

4 variables
if n is bit length of integer N that one wants to factorize.

The main result of the paper is a practical experiment, where discrete loga-
rithm problem over F59 has been solved using D-Wave Advantage QPU. Even
though it is a small problem, according to our knowledge, no one has reported a
solution of discrete logarithm problem over prime fields using quantum methods
until now.

Because the expected asymptotic time of solving the QUBO problem, even
knowing the number of variables, is now unknown, it is hard to estimate the time
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in which presented QUBO problems could be solved. There are some expecta-
tions that for n variables QUBO problem, the minimal energy using quantum

annealing should be found in O
(
e
√
n
)

[8], but more research in this area should

be done. What is more, the presented methods should not outperform Shor’s
polynomial-time algorithm for large prime fields.

More research should be done to solve more significant problems using our
methods. What is more, it seems that the presented methods may also be applied
using quantum superconducting computers. Such researches have been done in
the case of factorization problem [7], and it seems that transformation of discrete
logarithm problem to find the ground state of the Hamiltonian and to solve then
such problem using a superconducting quantum computer will also be possible.
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