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Abstract

Liu and Pass (FOCS’20) recently demonstrated an equivalence between the existence of one-
way functions (OWFs) and mild average-case hardness of the time-bounded Kolmogorov com-
plexity problem. In this work, we establish a similar equivalence but to a different form of time-
bounded Kolmogorov Complexity—namely, Levin’s notion of Kolmogorov Complexity—whose
hardness is closely related to the problem of whether EXP 6= BPP. In more detail, let Kt(x) denote
the Levin-Kolmogorov Complexity of the string x; that is, Kt(x) = minΠ∈{0,1}∗,t∈N{|Π|+ dlog te :
U(Π, 1t) = x}, where U is a universal Turing machine, and U(Π, 1t) denotes the output of the
program Π after t steps, and let MKtP denote the language of pairs (x, k) having the property
that Kt(x) ≤ k. We demonstrate that:

• MKtP /∈ HeurnegBPP (i.e., MKtP is infinitely-often two-sided error mildly average-case hard)
iff infinititely-often OWFs exist.

• MKtP /∈ AvgnegBPP (i.e., MKtP is infinitely-often errorless mildly average-case hard) iff
EXP 6= BPP.

Thus, the only “gap” towards getting (infinitely-often) OWFs from the assumption that EXP 6=
BPP is the seemingly “minor” technical gap between two-sided error and errorless average-case
hardness of the MKtP problem. As a corollary of this result, we additionally demonstrate that
any reduction from errorless to two-sided error average-case hardness for MKtP implies (uncon-
ditionally) that NP 6= P.

We finally consider other alternative notions of Kolmogorov complexity—including space-
bounded Kolmogorov complexity and conditional Kolmogorov complexity—and show how average-
case hardness of problems related to them characterize log-space computable OWFs, or OWFs in
NC0.
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and a JP Morgan Faculty Award. This material is based upon work supported by DARPA under Agreement No.
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1 Introduction

A one-way function [DH76] (OWF) is a function f that can be efficiently computed (in polynomial
time), yet no probabilistic polynomial-time (PPT) algorithm can invert f with inverse polynomial
probability for infinitely many input lengths n. Whether one-way functions exist is unequivocally
the most important open problem in Cryptography (and arguably the most important open prob-
lem in the theory of computation, see e.g., [Lev03]): OWFs are both necessary [IL89] and sufficient
for many of the most central cryptographic primitives and protocols (e.g., pseudorandom gener-
ators [BM88, HILL99], pseudorandom functions [GGM84], private-key encryption [GM84], digital
signatures [Rom90], commitment schemes [Nao91], identification protocols [FS90], coin-flipping pro-
tocols [Blu82], and more). These primitives and protocols are often referred to as private-key prim-
itives, or “Minicrypt” primitives [Imp95] as they exclude the notable task of public-key encryption
[DH76, RSA83]. Additionally, as observed by Impagliazzo [Gur89, Imp95], the existence of a OWF
is equivalent to the existence of polynomial-time method for sampling hard solved instances for an
NP language (i.e., hard instances together with their witnesses).

While many candidate constructions of OWFs are known—most notably based on factoring
[RSA83], the discrete logarithm problem [DH76], or the hardness of lattice problems [Ajt96]—the
question of whether OWFs can be based on some “standard” complexity-theoretic assumption is
mostly wide open. Indeed, a central open problem, originating in the seminal work of Diffie and
Hellman [DH76] is whether the existence of OWFs can be based on the assumptions that NP 6= P or
NP 6= BPP. Arguably, this is the most important open problem in the foundations of Cryptography.
So far, however, most results in the literature have been negative. Notably, starting with the work by
Brassard [Bra83] in 1983, a long sequence of works have shown various types of black-box separations
between restricted types of OWF (e.g., one-way permutations) and NP-hardness (see e.g., [Bra83,
BT03, AGGM06, GWXY10, Liv10, HMX10, BB15]). We emphasize, however, that these results only
show limited separations: they either consider restricted types of one-way functions, or restricted
classes of black-box reductions.1

In this work, our goal is to address an even more basic (and ambitious) problem: can we base
Cryptography on the “super-weak” assumption that EXP 6= BPP:

Can the existence of OWFs be based on the assumption that EXP 6= BPP?

While we (obviously) are not able to provide a full positive answer to this problem (which as we
shall see later on, would imply that NP 6= P), we are able to show that the task of basing OWFs on
the assumption that EXP 6= BPP boils down to (more precisely, is equivalent to) a seemingly minor
technical problem regarding different notions of average-case w.r.t. Levin’s notion of Kolmogorov
Complexity [Lev73]. Towards explaining our main result, let us first review some recent connections
between Cryptography and Kolmogorov Complexity.

1.1 Connections Between OWFs and Kolmogorov Complexity

What makes the string 12121212121212121 less random than 60484850668340357492? The notion
of Kolmogorov complexity (K-complexity), introduced by Solomonoff [Sol64], Kolmogorov [Kol68]
and Chaitin [Cha69], provides an elegant method for measuring the amount of “randomness” in
individual strings: The K-complexity of a string is the length of the shortest program (to be run on
some fixed universal Turing machine U) that outputs the string x. From a computational point of

1We highlight that a recent result by Pass and Venkitasubramaniam [PV20] takes a step towards a positive results,
showing that to prove the existence of OWFs from average-case hardness of NP, it suffices to prove that average-case
hardness of TFNP (rather than NP) implies the existence of OWFs.
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view, however, this notion is unappealing as there is no efficiency requirement on the program. The
notion of t(·)-time-bounded Kolmogorov Complexity (Kt-complexity) overcomes this issue: Kt(x) is
defined as the length of the shortest program that outputs the string x within time t(|x|). As surveyed
by Trakhtenbrot [Tra84], the problem of efficiently determining the Kt-complexity for t(n) = poly(n)
predates the theory of NP-completeness and was studied in the Soviet Union since the 60s as a
candidate for a problem that requires “brute-force search”. The modern complexity-theoretic study
of this problem goes back to Sipser [Sip83], Ko [Ko86] and Hartmanis [Har83].

A very recent result by Liu and Pass [LP20] shows that “mild” average-case hardness2 of the time-
bounded Kolmogorov complexity problem (when the time-bound is some polynomial) is equivalent
to the existence of OWFs. While the time-bounded Kolmogorov complexity problem is in NP (when
the time-bound is a polynomial), it is not known whether this problem is average-case complete for
NP, thus their result falls short of basing OWFs on the assumption that NP is average-case hard (i.e.,
that there exists some problem in NP that is average-case hard w.r.t. some sampleable distribution
over instances).

In this work, we will extend their work to consider other variants of the notion of “resource-
bounded” Kolmogorov complexity [Kol68]. The central advantage of doing so will be that we will
be able to base OWFs on the average-case hardness of some problem that is average-case complete
for EXP! The only reason that this result falls short of basing OWF on EXP 6= BPP is that the
notion of average-case hardness in the EXP-completeness result is slightly different from the notion
of average-case hardness for the “OWF-completeness” result. However, “morally”, this result can be
interpreted as an indication that the existence of OWFs is equivalent to EXP 6= BPP.

1.2 Characterizing Average-case Hardness of Levin-Kolmogorov Complexity

While the definition of time-bounded Kolmogorov complexity, Kt, is simple and clean, as noted by
Leonid Levin [Lev73] in 1973, an annoying aspect of this notion is that it needs to be parametrized
by the time-bound t. To overcome this issue, Levin proposed an elegant “non-parametrized” version
of Kolmogorov complexity that directly incorporates the running time as a cost. To capture the idea
that polynomial-time computations are “cheap”, Levin’s definition only charges logarithmically for
running time. More precisely, let the Levin-Kolmogorov Complexity of the string, Kt(x), be defined
as follows:

Kt(x) = min
Π∈{0,1}∗,t∈N

{|Π|+ dlog te : U(Π, 1t) = x},

where U is a universal Turing machine, and we let U(Π, 1t) denote the output of the program Π after
t steps. Note that, just like the standard notion of Kolmogorov complexity, Kt(x) is bounded by
|x|+O(1)—we can simply consider a program that has the string x hard-coded and directly halts.

Let MKtP denote the decisional Levin-Kolmogorov complexity problem; namely, the language of
pairs (x, k) where k ∈ {0, 1}dlog |x|e having the property that Kt(x) ≤ k. MKtP is no longer seems to
be in NP, as there may be strings x that can be described by a short program Π (with description size
e.g., n/10) but a “largish” running time (e.g., 2n/10); the resulting string x thus would have small
Kt-complexity (n/5), yet verifying that the witness program program Π indeed outputs x would
require executing it which would take exponential time. In fact, Allender et al [ABK+06] show that
MKtP actually is EXP-complete w.r.t. P/poly reductions; in other words, MKtP ∈ P/poly if and only
if EXP ⊆ P/poly.

We will be studying (mild) average-case hardness of the MKtP problem, and consider two standard
(see e.g. [BT08]) notions of average-case tractability for a language L with respect to the uniform

2By “mild” average-case hardness, we here mean that no PPT algorithm is able to solve the problem with probability
1− 1

p(n)
on inputs of length n, for all polynomials p(·)
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distribution over instances:

• 2-sided error average-case heuristics: We say that L ∈ HeurnegBPP if for every polynomial
p(·), there exists some PPT heuristic H that decides L (w.r.t. uniform n-bit strings) with
probability 1− 1

p(n) .

• errorless average-case heuristics: We say that L ∈ AvgnegBPP if for every polynomial p(·),
there exists some PPT heuristic H such that (a) for every instance x, with probability 0.9,
H(x) either outputs L(x) or ⊥, and (b), H(x) outputs ⊥ with probability at most 1

p(n) given
uniform n-bits strings x.

In other words, the difference between an errorless and a 2-sided error heuristic H is that an errorless
heuristic needs to (with probability 0.9 over its own randomness but not the instance x) output
either ⊥ (for “I don’t know”) or the correct answer L(x), whereas a 2-sided error heuristic may
simply make mistakes without “knowing it”.

To better understand the class AvgnegBPP, it may be useful to compare it to the class AvgnegP
(languages solvable by deterministic errorless heuristics): L ∈ AvgnegP if for every polynomial p(·),
there exists some deterministic polynomial-time heuristic H such that (a) for every input x, H(x)
outputs either L(x) or ⊥, and (b) the probability over uniform n-bit inputs x that H outputs ⊥ is
bounded by 1

p(n) . In other words, the only way an errorless heuristic may make a “mistake” is by

saying ⊥ (“I don’t know”); if it ever outputs a non-⊥ response, this response needs to be correct.
(Compare this to a 2-sided error heuristic that only makes mistakes with a small probability, but we
do not know when they happen). AvgnegBPP is simply the natural “BPP-analog” of AvgnegP where
the heuristic is allowed to be randomized.

2-sided error average-case hardness of MKtP and OWFs. Our first main result shows that
the characterization of [LP20] can be extended to work also w.r.t. MKtP. More precisely,

Theorem 1.1. MKtP /∈ HeurnegBPP iff infinitely-often OWFs exist.

We highlight that whereas [LP20] characterized “standard” OWF, the above theorem only char-
acterizes infinitely-often OWFs—i.e., functions that are hard to invert for infinitely many inputs
lengths (as opposed to all input lengths). The reason for this is that [LP20] considered an “almost-
everywhere” notion of average-case hardness of Kt, whereas the statement MKtP /∈ HeurnegBPP only
considers an infinitely-often notion of average-case hardness. (As we demonstrate in Appendix A, we
can also obtain a characterization of standard “almost-everywhere” OWFs by assuming that MKtP is
“almost-everywhere” mildly average-case hard, but for simplicity, in the main body of the paper, we
focus our attention on the more standard complexity-theoretic setting of infinitely-often hardness).

On a high-level, the proof of Theorem 1.1 follows the same structure as the characterization of
[LP20]. The key obstacle to deal with is that since MKtP is not known to be in NP, there may not
exists some polynomial time-bound that bounds the running-time of a program Π that “witnesses”
the Kt-complexity of a string x; this is a serious issue as the OWF construction in [LP20] requires
knowing such a running-time bound (and indeed, the running-time of the OWF depends on it). To
overcome this issue, we rely on a new insight about Levin-Kolmogorov Complexity.

We say that the program Π is a Kt-witness for the string x if Π generates x within t steps while
minimizing |Π|+log t among all other programs (i.e., Π is a witness for the Kt-complexity of x). The
crucial observation (see Fact 3.1) is that for every 0 < ε < 1, except for an ε fraction of n-bit strings
x, x has a Kt-witness Π that runs in time O(1

ε ). That is, “most” strings have a Kt-witness that has
a “short” running time. To see this, recall that as mentionned above, for every string x, Kt(x) ≤
|x|+O(1); thus, every string x ∈ {0, 1}n with a Kt-witnesses Π with running time exceeding O(1

ε ),
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must satisfy that |Π|+logO(1
ε ) ≤ Kt(x) ≤ n+O(1), so |Π| ≤ n+O(1)− log(O(1)

ε ) = n+O(1)+log ε.
Since the length of Π is bounded by n + O(1) + log ε, it follows that we can have at most O(ε)2n

strings x where the Kt-witness for x has a “long” running time.
We can next use this observation to consider a more computationally tractable version of Kt-

complexity where we cut off the machine’s running time after 1
ε steps (where ε is selected as an

appropriate polynomial), and next follow a similar paradigm as in [LP20].

Errorless average-case hardness of MKtP and EXP 6= BPP. We next show how to extend the
result of Allender et al [ABK+06] to show that MKtP is not just EXP-complete in the worst-case,
but also EXP-average-case complete; furthermore, we are able to show completeness w.r.t. BPP (as
opposed to P/poly) reductions. We highlight, however, that completeness is shown in a “non-black-
box” way (whereas [ABK+06] present a P/poly truthtable reduction). By non-black-box we here
mean that we are not able to show how to use any algorithm that solves MKtP (on average) as an
oracle (i.e., as a black-box) to decide EXP (in probabilistic polynomial time); rather, we directly
show that if MKtP ∈ AvgnegBPP, then EXP ⊆ BPP.3

Theorem 1.2. MKtP /∈ AvgnegBPP iff EXP 6= BPP.

Theorem 1.2 follows a similar structure as the EXP-completeness results of [ABK+06]. Roughly
speaking, Allender et al observe that by the result of Nisan and Wigderson [NW94], the assumption
that EXP 6⊆ P/poly implies the existence of a (subexponential-time computable) pseudorandom
generator that fools polynomial-size circuits. But using a Kt-oracle, it is easy to break the PRG
(as outputs of the PRG have small Kt-complexity since its running time is “small”). We first
observe that the same approach can be extended to show that MKtP is (errorless) average-case hard
w.r.t. polynomial-size circuits (under the assumption that EXP 6⊆ P/poly). We next show that if we
instead rely on a PRG construction of Impagliazzo and Wigderson [IW98], it suffices to rely on the
assumption that EXP 6= BPP to show average-case hardness of MKtP w.r.t. PPT algorithms.

Interpreting the combination of Thm 1.1 and Thm 1.2. By combining Theorem 1.1 and
Theorem 1.2, we get that the only “gap” towards getting (infinitely-often) one-way functions from
the assumption that EXP 6= BPP is the seemingly “minor” technical gap between two-sided error
and errorless average-case hardness of the MKtP problem (i.e., proving MKtP /∈ AvgnegBPP =⇒
MKtP /∈ HeurnegBPP). Furthermore, note that this “gap” fully characterizes the possibility of basing
(infinitely-often) OWFs on the assumption that EXP 6= BPP: Any proof that EXP 6= BPP implies
infinitely-often OWFs also shows the implication MKtP /∈ AvgnegBPP =⇒ MKtP /∈ HeurnegBPP.

As a corollary of Theorem 1.1 and Theorem 1.2, we next demonstrate that the implication
MKtP /∈ AvgnegBPP =⇒ MKtP /∈ HeurnegBPP implies that NP 6= P (in fact, even average-case
hardness of NP).

Theorem 1.3. If MKtP /∈ AvgnegBPP =⇒ MKtP /∈ HeurnegBPP, then NP 6= P.

This results can be interpreted in two ways. The pessimistic way is that closing this gap betwen
2-sided error, and errorless, heuristics will be very hard. The optimistic way, however, is to view it
as a new and algorithmic approach towards proving that NP 6= P: To demonstrate that NP 6= P, it
suffices to demonstrate that MKtP can be solved by an errorless heuristic, given access to a two-sided
error heuristic for the same problem.

3This non-black box aspect of our results stems from its use of [IW98].
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1.3 Space-bounded Notions of Kolmogorov Complexity

We additionally consider other alternative notions of resource-bounded Kolmogorov complexity. In
more detail, we consider a space-bounded notion of Kolmogorov complexity Ks and a space-bounded
notion of conditional Kolmogorov complexity, and show that these notions, respectively, characterize
log-space computable one-way functions, or one-way functions in NC0.

Characterizing OWFs in Log-space. The s-space bounded Kolmogorov complexity, Ks(x), of
a string x ∈ {0, 1}∗ is defined as

Ks(x) = min
Π∈{0,1}∗

{|Π| : ∀i ∈ [|x|], U(Π(i), 12s(|x|)) = xi and Π(i) uses at most s(|x|) space}

(Since we will be limiting the amount of space, we consider a notion of Kolmogorov complexity
where the program Π needs to output just bit xi of the string x, given the index i as input.) Given
some function s(·), define MKSP[s] analogously to MKtP. We will be interested in the regime where
s(n) = O(log n). Using a proof that closely follows [LP20] (and observing that the components
needed in this proof can be computed in log space), we obtain the following characterization of
log-space computable OWFs.

Theorem 1.4. Infinitely-often OWFs in log-space exist iff MKSP[O(log n)] /∈ HeurnegBPP.

(We can also get a characterization of “standard” (i.e., almost-everywhere) OWFs in log-space if
we assume that MKSP[s] is almost-everywhere average-case hard; see Appendix A for more details.)

Characterizing OWF in NC0. Note that by the results of Applebaum, Ishai and Kushilevitz
[AIK06], the existence of a log-space computable OWF implies a OWF that is uniform NC0 com-
putable; thus MKSP[O(log n)] /∈ HeurnegBPP implies also OWFs in uniform NC0, but the converse is
not clear. The problem is that even if we have a OWF in uniform NC0, we may require polynomial
time to compute the NC0 representation of the function, and it is not clear whether computing this
representation can be done in log space. We show how to overcome this issue and also get a charac-
terization of OWFs in NC0 by considering a generalization of space-bounded Kolmogorov complexity
which considers a conditional notion of Kolmogorov complexity.

The conditional Kolmogorov complexity [ZL70, Lev73, Tra84, LM91] of a string x given the string
str is the length of the shortest program Π that given the “auxiliary input” str outputs x. We here
consider a variant of MKSP[s], which considers conditional Kolmogorov complexity instead of the
(unconditional) version, and where the “auxiliary input” str is generated by some deterministic
polynomial-time machine F . More precisely, given some Turing machine F , define the F -conditional
s(·)-space bounded Kolmogorov complexity, cKF,s(x), as follows:

cKF,s(x) = min
Π∈{0,1}∗

{|Π| : ∀i ∈ [|x|], U(Π(i, str), 12s(|x|)) = xi and Π(i, str) uses at most s(|x|) space}

where str = F (1|x|). We next define a decisional version, McKSP[F, s], analogously to MKSP[s], and
get the following theorem by appropriately generalizing the proof of Theorem 1.4 and leveraging the
result of [AIK06]:

Theorem 1.5. Infinitely-often OWFs in uniform NC0 exist iff there exists some polynomial-time
Turing machine F such that McKSP[F,O(log n)] /∈ HeurnegBPP.

(We can also get a characterization of “standard” (i.e., almost-everywhere) OWFs in uniform
NC0 if we assume that McKSP is almost-everywhere average-case hard; see Appendix A for more
details.)
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2 Preliminaries

We assume familiarity with basic concepts and computational classes such as Turing machines,
polynomial-time algorithms, probabilistic polynomial-time (PPT) algorithms, NP, EXP, BPP, log-
space (or alternatively L), and P/poly. In this work, following [AIK06], we mostly consider polynomial-
time uniform versions of NC0 and L/poly: we let uniform NC0 be the class of functions4 that admit
polynomial-time uniform NC0 circuits, and uniform L/poly be the class of functions computed by
log-space Turing machines with a polynomial-time computable advice. A function µ is said to be
negligible if for every polynomial p(·) there exists some n0 such that for all n > n0, µ(n) ≤ 1

p(n) .

A probability ensemble is a sequence of random variables A = {An}n∈N. We let Un denote the the
uniform distribution over {0, 1}n. Given a string x, we let [x]j denote the first j bits of x.

2.1 One-way Functions

We recall the definition of one-way functions [DH76]. Roughly speaking, a function f is one-way if it
is polynomial-time computable, but hard to invert for PPT attackers. The standard cryptographic
definition of a one-way function (see e.g., [Gol01]) requires that for every PPT attacker A, there exists
some negligible function µ(·) such that A only succeeds in inverting the function with probability
µ(n) for all input lengths n. (That is, hardness holds “almost-everywhere”.) We will also consider a
weaker notion of an infinitely-often one-way function [OW93], which only requires that the success
probability is bounded by µ(n) for infinitely many inputs lengths n. (That is, hardness only holds
“infinitely-often”.)

Definition 2.1. Let f : {0, 1}∗ → {0, 1}∗ be a polynomial-time computable function. f is said to be
a one-way function (OWF) if for every PPT algorithm A, there exists a negligible function µ such
that for all n ∈ N,

Pr[x← {0, 1}n; y = f(x) : A(1n, y) ∈ f−1(f(x))] ≤ µ(n)

f is said to be an infinitely-often one-way function (ioOWF) if the above condition holds for infinitely
many n ∈ N (as opposed to all).

We may also consider a weaker notion of a weak one-way function [Yao82], where we only require
all PPT attackers to fail with probability noticeably bounded away from 1:

Definition 2.2. Let f : {0, 1}∗ → {0, 1}∗ be a polynomial-time computable function. f is said to be
a α-weak one-way function (α-weak OWF) if for every PPT algorithm A, for all sufficiently large
n ∈ N ,

Pr[x← {0, 1}n; y = f(x) : A(1n, y) ∈ f−1(f(x))] < 1− α(n)

We say that f is simply a weak one-way function (weak OWF) if there exists some polynomial q > 0
such that f is a 1

q(·) -weak OWF. f is said to be an weak infinitely-often one-way function (weak

ioOWF) if the above condition holds for infinitely many n ∈ N (as opposed to all).

Yao’s hardness amplification theorem [Yao82] shows that any weak (io) OWF can be turned into
a “strong” (io) OWF.

Theorem 2.3 ([Yao82]). Assume there exists a weak one-way function (resp. infinitely-often one-
way function). Then there exists a one-way functions (resp. infinitely-often one-way function).

We observe that Yao’s construction remains in log-space (resp uniform L/poly) if the weak one-
way function it takes is in log-space (resp uniform L/poly) [AIK06, Gol01].

4We abuse the notation and say that a function f is in a class C if each bit on the output of f is computable in C.
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2.2 Levin’s Notion of Kolmogorov Complexity

Let U be some fixed Universal Turing machine that can emulate any Turing machine M with poly-
nomial overhead. Given a description Π ∈ {0, 1}∗ which encodes a pair (M,w) where M is a
(single-tape) Turing machine and w ∈ {0, 1}∗ is an input, let U(Π, 1t) denote the output of M(w)
when emulated on U for t steps. Note that (by assumption that U only has polynomial overhead)
U(Π, 1t) can be computed in time poly(|Π|, t). We turn to defining Levin’s notion of Kolmogorov
complexity [Lev73]:

Kt(x) = min
Π∈{0,1}∗,t∈N

{|Π|+ dlog te : U(Π, 1t) = x}.

Its decisional variant, the Minimum Kt Complexity Problem MKtP, is defined as follows:

• Input: A string x ∈ {0, 1}n and a size parameter k ∈ {0, 1}dlogne.

• Decide: Does (x, k) satisfy Kt(x) ≤ k?

As is well known, we can always produce a string by hardwiring the string in (the tape of) a machine
that does nothing and just halts, which yields the following central fact about (Levin)-Kolmogorov
complexity.

Fact 2.1 ([Sip96]). There exists a constant c such that for every x ∈ {0, 1}∗ it holds that Kt(x) ≤
|x|+ c.

2.3 Average-case Complexity

We will consider average-case complexity of languages L with respect to the uniform distribution of
instances. Let HeurnegBPP denote the class of languages that can be decided by PPT heuristics that
only make mistakes on a inverse polynomial fraction of instances. More formally:

Definition 2.4 (HeurnegBPP). For a decision problem L ⊂ {0, 1}∗, we say that L ∈ HeurnegBPP
if for all polynomial p(·), there exists a probabilistic polynomial-time heuristic H, such that for all
sufficiently large n,

Pr[x← {0, 1}n : H(x) = L(x)] ≥ 1− 1

p(n)
.

We will refer to languages in HeurnegBPP as languages that admit 2-sided error heuristics. We will
also consider a more restrictive type of errorless heuristics H: for every instance x, with probability
0.9 (over the randomness of only H), H(x) either outputs L(x) or ⊥ (for ‘I don’t know’). More
formally,

Definition 2.5 (AvgnegBPP). For a decision problem L ⊂ {0, 1}∗, we say that L ∈ AvgnegBPP
if for all polynomial p(·), there exists a probabilistic polynomial-time heuristic H, such that for all
sufficiently large n, for every x ∈ {0, 1}n,5

Pr[H(x) ∈ {L(x),⊥}] ≥ 0.9,

and

Pr[x← {0, 1}n : H(x) = ⊥] ≤ 1

p(n)
.

5We remark that the constant 0.9 can be made arbitrarily small—any constants bounded away from 2
3

works as we
can amplify it using a standard Chernoff-type argument.
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We will refer to languages in AvgnegBPP as languages that admit errorless heuristics. As explained
in the introduction, to better understand the class AvgnegBPP, it may be useful to compare it to
the class AvgnegP (languages solvable by deterministic errorless heuristics): L ∈ AvgnegP if for every
polynomial p(·), there exists some deterministic polynomial-time heuristic H such that (a) for every
input x, H(x) outputs either L(x) or ⊥, and (b) the probability over uniform n-bit inputs x that
H outputs ⊥ is bounded by 1

p(n) . In other words, the only way an errorless heuristic may make a

“mistake” is by saying ⊥ (“I don’t know”), whereas for a 2-sided error heuristic we do not know when
mistakes happen. AvgnegBPP is simply the natural “BPP-analog” of AvgnegP where the heuristic is
allowed to be randomized.

2.4 Computational Indistinguishability

We recall the definition of (computational) indistinguishability [GM84] along with its infinitely-often
variant.

Definition 2.6. Two ensembles {An}n∈N and {Bn}n∈N are said to be ε(·)-indistinguishable, if for
every PPT machine D (the “distinguisher”) whose running time is polynomial in the length of its
first input, there exists some n0 ∈ N so that for every n ≥ n0:

|Pr[D(1n, An) = 1]− Pr[D(1n, Bn) = 1]| < ε(n)

We say that {An}n∈N and {Bn}n∈N are infintely-often ε(·)-indistinguishable (io-ε-indistinguishable)
if the above condition holds for infinitely many n ∈ N (as opposed to all sufficiently large ones).

2.5 Pseudorandom Generators

We recall the standard definition of pseuodrandom generators (PRGs) and its infinitely-often variant.

Definition 2.7. Let g : {0, 1}n → {0, 1}m(n) be a polynomial-time computable function. g is said
to be a ε(·)-pseudorandom generator (ε-PRG) if for any PPT algorithm A (whose running time is
polynomial in the length of its first input), for all sufficiently large n,

|Pr[x← {0, 1}n : A(1n, g(x)) = 1]− Pr[y ← {0, 1}m(n) : A(1n, y) = 1]| < ε(n).

g is said to be an infinitely-often ε(·)-pseudorandom generator (io-ε-PRG) if the above condition
holds for infinitely many n ∈ N (as opposed to all).

Although the standard cryptographic definition of a PRG g requires that g runs in polynomial
time, when used for the other purposes (e.g., for derandomizing BPP), we allow the PRG g to have
an exponential running time [TV02]. We refer to such PRGs (resp ioPRGs) as inefficient PRGs
(resp inefficient ioPRGs).

2.6 Conditionally Entropy-preserving PRGs

Liu and Pass [LP20] introduced variant of a PRG referred to as an entropy-preserving pseudorandom
generator (EP-PRG). Roughly speaking, an EP-PRG is a pseudorandom generator that expands n-
bits to n+O(log n) bits, having the property that the output of the PRG is not only pseudorandom,
but also preserves the entropy of the input (i.e., the seed): The Shannon-entropy of the output is
n−O(log n). [LP20] did not manage to construct an EP-PRG from OWFs, but rather constructed a
relaxed form of an EP-PRG, called a conditionally-secure entropy-preserving PRG (condEP-PRG),
which relaxes both the pseudorandomness, and entropy-preserving properties of the PRG, to hold
only conditioned on some event E. We will here consider also an infinitely-often variant:
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Definition 2.8. An efficiently computable function G : {0, 1}n → {0, 1}n+γ logn is a µ(·)-conditionally
secure entropy-preserving pseudorandom generator (µ-condEP-PRG) if there exist a sequence of
events = {En}n∈N and a constant α (referred to as the entropy-loss constant) such that the following
conditions hold:

• (pseudorandomness): {G(Un | En)}n∈N and {Un+γ logn}n∈N are µ(n)-indistinguishable;

• (entropy-preserving): For all sufficiently large n ∈ N, H(G(Un | En)) ≥ n− α log n.

G is referred to as an µ(·)-conditionally secure entropy-preserving infinitely-often pseudorandom gen-
erator (µ-condEP-ioPRG) if it satisfies the above definition except that we replace µ(n)-indistinguishability
with io-µ(n)-indistinguishability.

We say that G has rate-1 efficiency if its running time on inputs of length n is bounded by
n+O(nε) for some constant ε < 1. We recall that the existence of rate-1 efficient condEP-PRGs can
be based on the existence of OWFs, and that the same theorem holds in the infinitely-often setting.

Theorem 2.9 ([LP20]). Assume that OWFs (resp. ioOWFs) exist. Then, for every γ > 1, there
exists a rate-1 efficient µ-condEP-PRG (resp. µ-condEP-ioPRG) Gγ : {0, 1}n → {0, 1}n+γ logn,
where µ = 1

n2 .

3 2-Sided Error Average-case Hardness of MKtP and OWFs

In this section, we prove our main characterization of OWFs through 2-sided error average-case
hardness of MKtP.

Theorem 3.1. MKtP /∈ HeurnegBPP iff infinitely-often OWFs exist.

We remark that, in Appendix A, we also characterize “standard” (as opposed to infinitely-often)
OWFs through (almost-everywhere) mild average-case hardness of MKtP.

Theorem 3.1 follows directly from Theorem 3.2 (which is proven in Section 3.1) and Theorem 3.3
(which is proven in Section 3.2).

3.1 OWFs from Two-sided Error Avg-case Hardness of MKtP

In this section, we show that if weak ioOWFs do not exists, then we can compute theKt-complexity of
random strings with high probability (and thus MKtP is in HeurnegBPP). On a high-level, we will be
using the same proof approach as in [LP20]. One immediate obstacle to relying on the proof in [LP20]
is that it relies on the fact that the program Π (which we refer to as the “witness”) that certifies the
time-bounded Kolmogorov complexity Kt of a string x, has some a-priori polynomial running time,
namely t(·); this polynomial bound gets translated into the running time of the constructed OWF.
Unfortunately, this fact no longer holds when it comes to Kt-complexity: We say that the program
Π is a Kt-witness for the string x if Π generates x within t steps while minimizing |Π|+ log t among
all other programs (i.e., Π is a witness for the Kt-complexity of x). Note that given a Kt-witness
of a string x, there is no a-priori polynomial time-bound on the running time of Π, since only the
logarithm of the running time gets included in the complexity measure. For instance, it could be
that the Kt-witness is a program Π of length n/10 that requires running time 2n/10, for a total
Kt-complexity of n/5. Nevertheless, the crucial observation we make is that for most strings x, the
running-time of the Kt-witness actually is small: For every 0 < ε < 1, except for an ε fraction of
n-bit strings x, x has a Kt-witness Π that runs in time O(1

ε ).
More formally:

9



Fact 3.1. For all n ∈ N, 0 < ε < 1, there exists 1 − ε fraction of strings x ∈ {0, 1}n such that
there exist a Turing machine Πx and a running time parameter tx satisfying U(Πx, 1

tx) = x, |Πx|+
dlog txe = Kt(x), and tx ≤ 2c/ε (where c is as in Fact 2.1).

Proof: Consider some n ∈ N, 0 < ε < 1, and some set S ⊂ {0, 1}n such that |S| > ε2n. For any
string x ∈ {0, 1}n, let (Πx, tx) be a pair of strings such that U(Πx, 1

tx) = x and |Πx| + dlog txe =
Kt(x); that is, (Πx, tx) is the optimal compression for x. Note that for any x ∈ {0, 1}n, such (Πx, tx)
always exists due to Fact 2.1.6 Let c be the constant from Fact 2.1.

We assume for contradiction that for any x ∈ S, tx > 2c/ε. Note that by Fact 2.1, it holds that
Kt(x) ≤ |x|+ c. Thus, |Πx| = Kt(x)− dlog txe ≤ n+ c− dlog 2c/εe ≤ n− log 1/ε. Consider the set
Z = {Πx : x ∈ S} of all (descriptions of) Turing machines Πx. Since |Πx| ≤ n − log 1/ε, it follows
that |Z| ≤ 2n−log 1/ε = ε2n. However, for each machine Π in Z, it could produce only a single string
in S. So |Z| ≥ |S| > ε2n, which is a contradiction.

We now show how to adapt the proof in [LP20] by relying on the above fact.

Theorem 3.2. If MKtP /∈ HeurnegBPP, then there exists a weak ioOWF (and thus also an ioOWF).

Proof: We start with the assumption that MKtP /∈ HeurnegBPP; that is, there exists a polynomial
p(·) such that for all PPT heuristics H′ and infinitely many n,

Pr[x← {0, 1}n, k ← {0, 1}dlogne : H′(x, k) = MKtP(x, k)] < 1− 1

p(n)
.

Let c be the constant from Fact 2.1. Consider the function f : {0, 1}n+c+dlog(n+c)e → {0, 1}∗, which
given an input `||Π′ where |`| = dlog(n+ c)e and |Π′| = n+ c, outputs `+ dlog te||U(Π, 1t) where Π
is the `-bit prefix of Π′, t is the (smallest) integer ≤ 2c+2p(n) such that Π (when interpreted as a
Turing machine) halts in step t. (If Π does not halt in 2c+2p(n) steps, f picks t = 2c+2p(n).) That
is,

f(`||Π′) = `+ dlog te||U(Π, 1t).

Observe that f is only defined over some input lengths, but by an easy padding trick, it can be
transformed into a function f ′ defined over all input lengths, such that if f is (weakly) one-way (over
the restricted input lengths), then f ′ will be (weakly) one-way (over all input lengths): f ′(x′) simply
truncates its input x′ (as little as possible) so that the (truncated) input x now becomes of length
m = n+ c+ dlog(n+ c)e for some n and outputs f(x).

We now show that f is a 1
q(·) -weak ioOWF where q(n) = 22c+4np(n)2, which concludes the proof

of the theorem. Assume for contradiction that f is not a 1
q(·) -weak ioOWF; that is, there exists some

PPT attacker A that inverts f with probability at least 1− 1
q(n) ≤ 1− 1

q(m) for all sufficiently large

input lengths m = n+c+dlog(n+c)e. We first claim that we can use A to construct a PPT heuristic
H∗ such that

Pr[x← {0, 1}n : H∗(x) = Kt(x)] ≥ 1− 1

p(n)
.

If this is true, consider the heuristic H which given a string x ∈ {0, 1}n and a size parameter
k ∈ {0, 1}dlogne, outputs 1 if H∗(x) ≤ k, and outputs 0 otherwise. Note that if H∗ succeeds on some
string x, H will also succeed. Thus,

Pr[x← {0, 1}n, k ← {0, 1}dlogne : H(x, k) = MKtP(x, k)] ≥ 1− 1

p(n)
,

6We note that the choice of (Πx, tx) for some x is not unique. Our argument holds if any such (Πx, tx) is chosen.
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which is a contradiction.
It remains to construct the heuristic H∗ that computes Kt(x) with high probability over random

inputs x ∈ {0, 1}n, using A. By an averaging argument, except for a fraction 1
2p(n) of random tapes

r for A, the deterministic machine Ar (i.e., machine A with randomness fixed to r) fails to invert f

with probability at most 2p(n)
q(n) . Consider some such “good” randomness r for which Ar succeeds to

invert f with probability 1− 2p(n)
q(n) .

On input x ∈ {0, 1}n, our heuristic H∗r runs Ar(i||x) for all i ∈ [n + c] where i is represented
as a dlog(n + c)e-bit string, and outputs the smallest i where the inversion on (i||x) succeeds. Let
ε = 1

4p(n) , and S be the set of strings x ∈ {0, 1}n for which H∗r(x) fails to compute Kt(x) and x

satisfies the requirements in Fact 3.1. Note that the probability that a random x ∈ {0, 1}n does not
satisfy the requirements in Fact 3.1 is at most ε. Thus, H∗r fails with probability at most (by a union
bound)

failr ≤ ε+
|S|
2n
.

Consider any string x ∈ S and let w = Kt(x) be its Kt-complexity. Note that x satisfies the
requirements in Fact 3.1; that is, there exist a Turing machine Πx and a running time parameter
tx such that U(Πx, 1

tx) = x, |Πx| + dlog txe = Kt(x), and tx ≤ 2c/ε = 2c+2p(n). By Fact 2.1, we
have that |Πx| ≤ w ≤ n + c. Thus, for all strings (`||Π′) ∈ {0, 1}n+c+dlog(n+c)e such that ` = |Πx|,
[Π′]|`| = Πx, it holds that f(`||Π′) = (w||x). Since H∗r(x) fails to compute Kt(x), Ar must fail to
invert (w||x). But, since |Πx| ≤ n+ c, the output (w||x) is sampled with probability at least

1

n+ c
· 1

2|Πx|
≥ 1

n+ c

1

2n+c
≥ 1

n22c+1
· 1

2n

in the one-way function experiment, so Ar must fail with probability at least

|S| · 1

n22c+1
· 1

2n
=

1

n22c+1
· |S|

2n
≥ failr − ε

n22c+1

which by assumption (that Ar is a good inverter) is at most that 2p(n)
q(n) . We thus conclude that

failr ≤
22c+2np(n)

q(n)
+ ε

Finally, by a union bound, we have that H∗ (using a uniform random tape r) fails in computing Kt
with probability at most

1

2p(n)
+

22c+2np(n)

q(n)
+ ε =

1

2p(n)
+

22c+2np(n)

22c+4np(n)2
+

1

4p(n)
=

1

p(n)
.

Thus, H∗ computes Kt with probability 1 − 1
p(n) for all sufficiently large n ∈ N, which is a contra-

diction.

3.2 Two-sided Error Avg-case Hardness of MKtP from ioOWFs

In this section, we will prove the following theorem:

Theorem 3.3. If ioOWFs exist, then MKtP 6∈ HeurnegBPP.
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Proof: The theorem follows immediately from Theorem 2.9 and Theorem 3.4 that will be stated
and proved below.

Recall that Theorem 2.9 shows that ioOWFs imply the existence of rate-1 efficient condEP-
ioPRGs. Theorem 3.4 below will show that the existence of rate-1 efficient condEP-ioPRGs implies
that MKtP 6∈ HeurnegBPP. We remark that the proof of this theorem closely follows the proof in
[LP20] and relying with only relatively minor modifications to observe that the properties used of
the time-bounded Kolmogorov complexity function actually also hold for Kt—namely that random
strings have “high” Kt-complexity, whereas outputs of a PRG have “low” Kt-complexity.7

Theorem 3.4. Assume that for some γ ≥ 4, there exists a rate-1 efficient µ-condEP-ioPRG G :
{0, 1}n → {0, 1}n+γ logn where µ(n) = 1/n2. Then, MKtP /∈ HeurnegBPP.

Proof: Let G : {0, 1}n → {0, 1}m(n) where m(n) = n + γ log n be a rate-1 efficient 1
n2 -condEP-

ioPRG with entropy loss constant α. Let p(n) = 2n2(α+γ+2). We assume for contradiction that
MKtP ∈ HeurnegBPP; that is, there exists some PPT H that decides MKtP with probability at least
1 − 1

p(m′) where m′(m) = m + dlogme (on input length m′) for all sufficiently large n, m(n), and

m′(m). Recall that G is associated with a sequence of events {En}n∈N.
We show that H can be used to break the condEP-ioPRG G. Towards this, recall that a random

string has high Kt-complexity with high probability: for m = m(n), we have,

Pr
x∈{0,1}m

[Kt(x) > m− γ

2
log n] ≥ 2m − 2m−

γ
2

logn

2m
= 1− 1

nγ/2
, (1)

since the total number of Turing machines with length smaller than m − γ
2 log n is only 2m−

γ
2

logn.
However, any string output by G, must have “low” Kt complexity: For every sufficiently large
n,m = m(n), we have that,

Pr
z∈{0,1}n

[Kt(G(z)) > m− γ

2
log n] = 0, (2)

since G(z) can be represented by combining a seed z of length n with the code of G (of constant
length), and the running time of G(z) is bounded by 1.1n for all sufficiently large n (since G is rate-1
efficient), so Kt(G(z)) = n+O(1) + dlog(1.1n)e = (m−γ log n) +O(1) + dlog(1.1n)e ≤ m−γ/2 log n
for sufficiently large n (since recall that γ ≥ 4).

Based on these observations, we now construct a PPT distinguisher A breaking G. On input
1n, x, where x ∈ {0, 1}m(n), A(1n, x) lets k = m − γ

2 log n and outputs 1 if H(x, k) outputs 1 and 0
otherwise. Consider some sufficiently large n, m(n), and m′(n). The following two claims conclude
that A distinguishes Um(n) and G(Un | En) with probability at least 1

n2 .

Claim 1. A(1n,Um) outputs 0 with probability at least 1− 2
nγ/2

.

Proof: Note that A(1n, x) will output 0 if x is a string with Kt-complexity larger than m−γ/2 log n

7There are also some other minor differences due to the fact that the proof in [LP20] considered the hardness of
computing (or approximating) Kt, whereas we here consider a decisional problem with a random threshold k, but
the proof in [LP20] extends in a relatively straightforward way to deal also with decisional problems with a random
threshold k.
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and H succeeds on input (x, k). Thus,

Pr[A(1n, x) = 0]

≥ Pr[Kt(x) > m− γ/2 log n ∧H succeeds on (x, k)]

≥ 1− Pr[Kt(x) ≤ m− γ/2 log n]− Pr[H fails on (x, k)]

≥ 1− 1

nγ/2
− 1

p(m′)

≥ 1− 2

nγ/2
.

where the probability is over a random x← Um, k ← dlogme and the randomness of A and H.

Claim 2. A(1n, G(Un | En)) outputs 0 with probability at most 1− 1
n + 2

n2

Proof: Recall that by assumption, H(x, k) fails to decide whether (x, k) ∈ MKtP for a random
x ∈ {0, 1}m, k ∈ {0, 1}dlogme with probability at most 1

p(m′) (where m′ = m + dlogme). By an

averaging argument, for at least a 1− 1
n2 fraction of random tapes r for H, the deterministic machine

Hr fails to decide MKtP with probability at most n2

p(m′) . Fix some “good” randomness r such that

Hr decides MKtP with probability at least 1 − n2

p(m′) . We next analyze the success probability of

Ar. Assume for contradiction that Ar outputs 1 with probability at least 1 − 1
n + 1

nα+γ
on input

G(Un | En). Recall that (1) the entropy of G(Un | En) is at least n − α log n and (2) the quantity
− log Pr[G(Un | En) = y] is upper bounded by n for all y ∈ G(Un | En). By an averaging argument,
with probability at least 1

n , a random y ∈ G(Un | En) will satisfy

− log Pr[G(Un | En) = y] ≥ (n− α log n)− 1.

We refer to an output y satisfying the above condition as being “good” and other y’s as being “bad”.
Let S = {y ∈ G(Un | En) : Ar(1n, y) = 0 ∧ y is good}, and let S′ = {y ∈ G(Un | En) : Ar(1n, y) =
0 ∧ y is bad}. Since

Pr[Ar(1n, G(Un | En)) = 0] = Pr[G(Un | En) ∈ S] + Pr[G(Un | En) ∈ S′],

and Pr[G(Un | En) ∈ S′] is at most the probability that G(Un | En) is “bad” (which as argued above
is at most 1− 1

n), we have that

Pr[G(Un | En) ∈ S] ≥
(

1− 1

n
+

1

nα+γ

)
−
(

1− 1

n

)
=

1

nα+γ
.

Furthermore, since for every y ∈ S, Pr[G(Un | En) = y] ≤ 2−n+α logn+1, we also have,

Pr[G(Un | En) ∈ S] ≤ |S|2−n+α logn+1

So,

|S| ≥ 2n−α logn−1

nα+γ
= 2n−(2α+γ) logn−1

However, for any y ∈ G(Un | En), if Ar(1n, y) outputs 0, then by Equation 2, Kt(y) ≤ m−γ/2 log n =
k, so Hr fails to decide MKtP on input (y, k).

Thus, the probability that Hr fails (to decide MKtP) on a random input (y, k) ∈ {0, 1}m′ is at
least

|S|/2m′ =
2n−(2α+γ) logn−1

2n+γ logn+dlogme ≥
2−(2α+2γ) logn−1

2dlogme ≥ 2−2(α+γ+1) logn−1 =
1

2n2(α+γ+1)
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which contradicts the fact that Hr fails to decide MKtP with probability at most n2

p(m′) <
1

2n2(α+γ+1)

(since n < m′).
We conclude that for every good randomness r, Ar outputs 0 with probability at most 1− 1

n+ 1
nα+γ

.
Finally, by union bound (and since a random tape is bad with probability ≤ 1

n2 ), we have that the
probability that A(G(Un | En)) outputs 1 is at most

1

n2
+

(
1− 1

n
+

1

nα+γ

)
≤ 1− 1

n
+

2

n2
,

since γ ≥ 2.

We conclude, recalling that γ ≥ 4, that A distinguishes Um and G(Un | En) with probability of at
least (

1− 2

nγ/2

)
−
(

1− 1

n
+

2

n2

)
≥

(
1− 2

n2

)
−
(

1− 1

n
+

2

n2

)
=

1

n
− 4

n2
≥ 1

n2

for all sufficiently large n ∈ N.

4 Errorless Avg-case Hardness of MKtP and EXP 6= BPP

In this section, we will prove the following theorem:

Theorem 4.1. EXP 6= BPP if and only if MKtP /∈ AvgnegBPP.

Roughly speaking, the above theorem is proved in two steps:

• We first observe that, assuming EXP 6= BPP, there exists an (inefficient, infinitely-often) pseu-
dorandom generator [IW98] that maps a nε-bit seed to a n-bit string in time O(2n

γ
) (for some

0 < ε, γ < 1).

• We will next show that an errorless heuristic for MKtP can be used to break such PRGs (since
the Kt-complexity of the output of the PRG is at most nε + nγ + O(1) ≤ n − 1), which is a
contradiction and concludes the proof.

Recall that Impagliazzo and Wigderson [IW98] showed that BPP can be derandomized (on average)
in subexponential time by assuming EXP 6= BPP. The central technical contribution in their work
can be stated as proving the existence of an inefficient PRG assuming EXP 6= BPP :

Theorem 4.2 (implicit in [IW98], explicitly stated in e.g., [TV02, Theorem 3.9]). Assume that
EXP 6= BPP. Then, for all ε > 0, there exists an inefficient io- 1

10 -PRG G : {0, 1}nε → {0, 1}n that

runs in time 2O(nε).

We note that the proof in [IW98], is non black-box. In particular, it does not show how to solve
EXP in probabilistic polynomial-time having black-box access to an attacker that breaks the PRG.

It remains to show that if there exists an (inefficient) ioPRG G : {0, 1}nε → {0, 1}n with running
time O(2n

γ
) (for some 0 < ε, γ < 1), then MKtP /∈ AvgnegBPP. We recall that a string’s Kt-

complexity is the minimal sum of (1) the description length of a Turing machine that prints the string
and (2) the logarithm of its running time. Note that the output of G could be printed by a machine
with the code of G (of constant length) and the seed (of length nε) hardwired in it within O(2n

γ
)

time. Thus, strings output by G have Kt-complexity less than or equal to O(1)+nε+nγ ≤ n−1. On
the other hand, random strings have high Kt-complexity (e.g., > n− 1) with high probability (e.g.,
≥ 1

2). It follows that an errorless heuristic for MKtP can be used to break G. Let us highlight why
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it is important that we have an errorless heuristic (as opposed to a 2-sided error heuristic): while
a 2-sided error heuristic would still work well on random strings, we do not have any guarantees
on its success probability given pseudorandom strings (as they are sparse); an errorless heuristics,
however, will either correctly decide those strings, or output ⊥ (in which case, we can also guess that
the string is pseudorandom).

We proceed to a formal statement of the theorem, and its proof.

Theorem 4.3. Assume that there exist constants 0 < ε, γ < 1 and an inefficient io- 1
10 -PRG G :

{0, 1}nε → {0, 1}n with running time O(2n
γ
). Then, MKtP /∈ AvgnegBPP.

Proof: We assume for contradiction that MKtP ∈ AvgnegBPP, which in turn implies that there
exists an errorless PPT heuristic H such that for all sufficiently large n, every x ∈ {0, 1}n and
k ∈ {0, 1}dlogne,

Pr[H(x, k) ∈ {MKtP(x, k),⊥}] ≥ 0.9, (3)

and

Pr[x← {0, 1}n, k ← {0, 1}dlogne : H(x, k) = ⊥] ≤ 1

2n2
.

Fix some sufficiently large n, and let k = n− 1. It follows by an averaging argument that

Pr[x← {0, 1}n : H(x, n− 1) = ⊥] ≤ 1

2n2
· 2dlogne ≤ 1

n
. (4)

We next show that we can use H to break the PRG G. On input x ∈ {0, 1}n, our distinguisher
A(1n

ε
, x) outputs 1 if H(x, n−1) = 1 or H(x, n−1) = ⊥. A outputs 0 if and only if H(x, n−1) = 0.

The following two claims conclude that A distinguishes Un and G(Unε) with probability at least 0.2.

Claim 3. A(1n
ε
,Un) will output 0 with probability at least 0.4− 1

n .

Proof: Note that the probability that a random string x ∈ {0, 1}n is of Kt-complexity at most

n − 1 is at most 2n−1

2n = 1
2 (since the total number of machines with description length ≤ n − 1 is

2n−1). And the probability that H(x, n − 1) outputs ⊥ is at most 1
n (over random x ∈ {0, 1}n) by

Equation 4. In addition, the probability that H(x, n− 1) fails to output either MKtP(x, n− 1) or ⊥
is at most 0.1 by Equation 3. Thus, by a union bound,

Pr[A(1n
ε
,Un) = 0]

≥1− Pr[Kt(Un) ≤ n− 1]− Pr[H(Un, n− 1) = ⊥]− Pr[H(Un, n− 1) fails]

≥1− 1

2
− 1

n
− 0.1

=0.4− 1

n
.

Claim 4. A(1n
ε
, G(Unε)) will output 0 with probability at most 0.1.

Proof: We first show that for all z ∈ {0, 1}nε , Kt(G(z)) ≤ nε + nγ + O(1) ≤ n − 1 = s. Note
that the string G(z) could be produced by a machine with the code of G (of length O(1)) and the
seed z (of length nε) in time O(2n

γ
) (which adds logO(2n

γ
) = nγ + O(1) to its Kt-complexity). In

addition, recall that H is a probabilistic errorless heuristics. Thus, H(G(z), n−1) will output 0 with
probability at most 0.1 (by Equation 3), and the claim follows.

This conclude the proof of Theorem 4.3.

We are now ready to conclude the proof of Theorem 4.1.
Proof: [of Theorem 4.1] We show each direction separately:
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• To show that EXP 6= BPP =⇒ MKtP 6∈ AvgnegBPP, assume that EXP 6= BPP and let ε = 1
3 ,

and γ = 1
2 . By Theorem 4.2, there exists an io- 1

10 -PRG G : {0, 1}nε → {0, 1}n with running

time 2O(nε) ≤ O(2n
γ
). We conclude by Theorem 4.3 that MKtP 6∈ AvgnegBPP.

• To show that MKtP 6∈ AvgnegBPP =⇒ EXP 6= BPP, assume that MKtP 6∈ AvgnegBPP;
this trivially implies that MKtP 6∈ BPP. We observe that MKtP ∈ EXP as by Fact 2.1,
Kt(x) ≤ |x| + O(1) and thus the running-time for a Kt-witness, Π, for x is bounded by
2|x|+O(1). Thus, EXP 6⊆ BPP, which in particular means that EXP 6= BPP.

5 On the implication MKtP 6∈ AvgnegBPP =⇒ MKtP 6∈ HeurnegBPP

Recall that in Theorem 4.1, we showed that if one assumes an (extremely) weak lowerbound (namely,
EXP 6= BPP), then the problem MKtP is hard on average for errorless heuristics. Furthermore, in
Theorem 3.2, we showed that if the problem MKtP is hard-on-average for 2-sided error heuristics that
only make a small number of mistakes, then (infinitely-often) one-way functions exist. Combining the
two theorems together, we have that the implication MKtP 6∈ AvgnegBPP =⇒ MKtP 6∈ HeurnegBPP
fully characterizes when we can base the existence of (infinitely-often) one-way functions on EXP 6=
BPP. Formally,

Theorem 5.1. MKtP 6∈ AvgnegBPP ⇒ MKtP 6∈ HeurnegBPP holds iff EXP 6= BPP ⇒ the existence
of ioOWFs.

Proof: The proof immediately follows from Theorem 4.1 and Theorem 3.2.

Perhaps surprisingly, we observe that the implication itself (without any assumptions) implies
that NP 6= P. The pessimistic way to interpret this is that closing the gap between 2-sided error,
and errorless, heuristics will be very hard (as it requires proving that NP 6= P). The optimistic
way to interpret it, however, is as a new and algorithmic approach towards proving that NP 6= P:
To demonstrate that NP 6= P, it suffices to demonstrate that MKtP can be solved by an errorless
heuristic, given access to a two-sided error heuristic for the same problem. (As we shall point out
shortly, this approach also does not “overshoot” the NP vs P problem by too much: any proof of the
existence of infinitely often one-way functions, needs to show this implication.)

Theorem 5.2. If it holds that MKtP 6∈ AvgnegBPP⇒ MKtP 6∈ HeurnegBPP, then NP 6= P.

Proof: Assume for contradiction that MKtP 6∈ AvgnegBPP ⇒ MKtP 6∈ HeurnegBPP holds, yet

NP = P. Recall that BPP ⊆ NPNP [Sip83, Lau83], so it follows that P = BPP, and thus by the
time-hierarchy Theorem [HS65], EXP 6= BPP. Then, by Theorem 4.1, MKtP 6∈ AvgnegBPP. It follows
from our assumption that MKtP 6∈ AvgnegBPP ⇒ MKtP 6∈ HeurnegBPP and from Theorem 5.1 that
ioOWFs exist, which contradicts the assumption that NP = P.

We remark that the above theorem could be strengthened to show even that NP is average-case
hard (w.r.t. deterministic errorless heuristics), since Buhrman, Fortnow, and Pavan [BFP03] have
showed that unless this is the case, P = BPP, which suffices to complete the rest of the proof.

Finally, we remark that the implication MKtP 6∈ AvgnegBPP ⇒ MKtP 6∈ HeurnegBPP must be
true if infinitely-often one-way functions exist since by Theorem 3.3, the existence of ioOWFs implies
MKtP 6∈ HeurnegBPP, which in turn implies that the implication trivially holds.
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6 Characterizing Cryptography in Log-space

In this section, we show how to characterize the existence of OWFs that are computable in log-space
through a notion of resource-bounded Kolmogorov complexity. In more detail, we will consider an
appropriate notion of space-bounded Kolmogorov complexity.

6.1 Space-bounded Kolmogorov Complexity

We consider a space-bounded variant of Kolmogorov complexity [Kol68]. We here let U be a fixed
universal Turing machine that emulates any Turing machine with polynomial overhead in time and
constant multiplicative overhead in space. The s-space bounded Kolmogorov complexity, Ks(x), of
a string x ∈ {0, 1}∗ is defined as

Ks(x) = min
Π∈{0,1}∗

{|Π| : ∀i ∈ [|x|], U(Π(i), 12s(|x|)) = xi and Π(i) uses at most s(|x|) space}

where Π(i) denotes M(w, i) and Π = (M,w). Its decisional variant, the minimum Ks-complexity
problem MKSP[s], for some function s, is defined as follows:

• Input: A string x ∈ {0, 1}n and a size parameter k ∈ {0, 1}dlogne.

• Decide: Does (x, k) satisfy Ks(x) ≤ k?

Whenever the space-bound is logarithmic or more, Ks(x) ≤ |x|+O(1).

Fact 6.1. There exists a constant c such that for every s(n) ≥ log n and every x ∈ {0, 1}∗, Ks(x) ≤
|x|+ c.

Proof: Consider a machine Πx = (M,x) where M is a Turing machine (of constant size) such that
M(y, i) outputs yi for any string y and any index i. It follows that for all i ∈ [|x|], Πx(i) = M(x, i)
will output xi using at most log n space. Note that Πx can be encoded in |x| + c bits, and the fact
follows.

6.2 The Characterization

We are now ready to state the main theorem of this section:

Theorem 6.1. The following are equivalent:

(a) The existence of infinitely-often one-way functions computable in log-space.

(b) The existence of a constant δ ≥ 1 such that MKSP[δ log(n)] 6∈ HeurnegBPP.

(c) For all δ ≥ 1, MKSP[δ log(n)] 6∈ HeurnegBPP.

Proof:

(b) =⇒ (a) follows from Theorem 6.2, which will be proven in Section 6.3;

(a) =⇒ (c) follows from Theorem 6.3 and Theorem 6.4, which will be proven in Section 6.4;

(c) =⇒ (b) trivially follows.

We remark that, in Appendix A, we also characterize “standard” (as opposed to infinitely-
often) OWFs computable in log-space through (almost-everywhere) mild average-case hardness of
MKSP[O(log n)].
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6.3 Log-space Computable ioOWFs from Avg-case Hardness of MKSP[O(log n))]

We here show how to get a log-space computable OWF assuming MKSP[O(log n))] /∈ HeurnegBPP.
The proof very closely follows [LP20], while making minor adjustments to account for log-space
computability.

Theorem 6.2. If there exists a constant δ ≥ 1 such that MKSP[δ log n] /∈ HeurnegBPP, then there
exists a weak ioOWF (and thus also a ioOWF) that is computable in log-space.

Proof: Assume that there exists some constant δ ≥ 1 such that MKSP[δ log n] /∈ HeurnegBPP; that
is, there exists a polynomial p(·) such that for all PPT heuristics H′ and infinitely many n,

Pr[x← {0, 1}n, k ← {0, 1}dlogne : H′(x, k) = MKSP[s](x, k)] < 1− 1

p(n)
,

where s(n) = δ log n. Let c be the constant from Fact 6.1. Consider the function f : {0, 1}n+c+dlog(n+c)e →
{0, 1}dlogne+n, which given an input `||Π′ where |`| = dlog(n + c)e and |Π′| = n + c, outputs
`||U(Π(1), 1t)|| . . . ||U(Π(n), 1t) where Π is the `-bit prefix of Π′ and t = 2s(n). Furthemore, f will
just abort if in the execution of Π(i), the program consumes more than s(n) bits of memory. That
is,

f(`||Π′) = `||U(Π(1), 1t)||U(Π(2), 1t)|| . . . ||U(Π(n), 1t).

Note that f is computable in log-space (since the universal Turing machine U is assumed to have
constant multiplicative overhead in terms of space). Observe that f is only defined over some input
lengths, but by the same padding trick as in the proof of Theorem 3.2, it can be transformed into a
function f ′ defined over all input lengths that preserves weak onewayness of f .

We now show that f is a 1
q(·) -weak ioOWF function where q(n) = 22c+3np(n)2, which concludes

the proof of the theorem. This claim essentially follows from the proof [LP20]; we provide a formal
proof here for the reader’s convenience.

Assume for contradiction that f is not a 1
q(·) -weak ioOWF; that is, there exists some PPT attacker

A that inverts f with probability at least 1 − 1
q(n) ≤ 1 − 1

q(m) for all sufficiently large m = n + c +

dlog(n+ c)e. We first claim that we can use A to construct a PPT heuristic H∗ such that

Pr[x← {0, 1}n : H∗(x) = Ks(x)] ≥ 1− 1

p(n)
.

If this is true, consider the heuristic H which given a string x ∈ {0, 1}n and a size parameter
k ∈ {0, 1}dlogne, outputs 1 if H∗(x) ≤ k, and outputs 0 otherwise. Note that if H∗ succeeds on some
string x, H will also succeed. Thus,

Pr[x← {0, 1}n, k ← {0, 1}dlogne : H(x, k) = MKSP[s](x, k)] ≥ 1− 1

p(n)
,

which is a contradiction.
It remains to construct the heuristic H∗ that computes Ks(x) with high probability over random

inputs x ∈ {0, 1}n, using A. By an averaging argument, except for a fraction 1
2p(n) of random tapes

r for A, the deterministic machine Ar (i.e., machine A with randomness fixed to r) fails to invert f

with probability at most 2p(n)
q(n) . Consider some such “good” randomness r for which Ar succeeds to

invert f with probability 1− 2p(n)
q(n) .

On input x ∈ {0, 1}n, our heuristic H∗r runs Ar(i||x) for all i ∈ [n + c] where i is represented as
a dlog(n + c)e-bit string, and outputs the smallest i where the inversion on (i||x) succeeds; that is,
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the inverter Ar(i||x) outputs a program Π that prints each bit of x within s(n) space. Let S be the
set of strings x ∈ {0, 1}n for which H∗r(x) fails to compute Ks(x). Thus, H∗r fails with probability at
most

failr ≤
|S|
2n
.

Consider any string x ∈ S and let w = Ks(x) be its Ks-complexity. It follows that there exists a
Turing machine Πx such that |Πx| = w and Πx(i) outputs xi in space s(n) (for all i ∈ [n]). Since
H∗r(x) fails to compute Ks(x), Ar must fail to invert (w||x). But, since |Πx| ≤ w ≤ n+ c, the output
(w||x) is sampled with probability at least

1

n+ c
· 1

2w
≥ 1

n+ c

1

2n+c
≥ 1

n22c+1
· 1

2n

in the one-way function experiment, so Ar must fail with probability at least

|S| · 1

n22c+1
· 1

2n
=

1

n22c+1
· |S|

2n
≥ failr
n22c+1

which by assumption (that Ar is a good inverter) is at most that 2p(n)
q(n) . We thus conclude that

failr ≤
22c+2np(n)

q(n)

Finally, by a union bound, we have that H∗ (using a uniform random tape r) fails in computing Ks

with probability at most

1

2p(n)
+

22c+2np(n)

q(n)
=

1

2p(n)
+

22c+2np(n)

22c+3np(n)2
=

1

p(n)
.

Thus, H∗ computes Ks with probability 1− 1
p(n) for all sufficiently large n ∈ N.

6.4 Average-case Hardness of MKSP[O(log n)] from ioOWFs in Log-space

To show that MKSP[O(log n)] is average-case hard for PPT heuristics, we first build a condEP-ioPRG
G that is computable in log-space from a log-space computable ioOWF. Then, we will show that a
heuristic for MKSP[O(log n)] can be used to break G.

Recall that Liu and Pass [LP20] constructed a condEP-PRG G from a standard OWF. At a high
level, their construction follows the construction of a PRG from a regular OWF [GKL93], which
applies universal hash functions (parameterized according to the regularity of the OWF) to both
the input and the output of the OWF to extract the randomness in the input and the output, and
finally outputs several Goldreich-Levin hardcore bits (to make the PRG stretch its input). When the
regularity of the function is unknown, a random guess of the regularity is sampled (and the universal
hash functions are thus paramemterized by this guess). They prove that the construction is both
entropy-preserving and pseudorandom conditioned on the event that the guess matches the regularity
of the function (on the input string). We observe that this construction is computable in log-space
if the OWF is log-space computable since both the universal hash functions and Goldreich-Levin
hardcore bits can be implemented in log-space [AIK06]. In addition, by a padding argument, we can
transform any PRG that is computable in O(log n) space into a PRG computable in log(n) space.

Theorem 6.3 (essentially implicit in [LP20], relying on observations from [AIK06]). Assume the
existence of an ioOWF that is computable in log-space. Then, for every γ > 1, there exists a µ-
condEP-ioPRG Gγ : {0, 1}n → {0, 1}m(n)=n+γ logn that is computable in space log(m(n)), where
µ = 1

n2 .
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We next show that a heuristic for MKSP[O(log n)] can distinguish the output of a condEP-ioPRG
G from a random string. The proof follows the structure of the proof in [LP20] and Theorem 3.4
(relying on the observations that (a) random strings have high Ks-complexity, whereas (b) outputs
of the PRGs have small Ks-complexity, where s(n) = O(log n).

Theorem 6.4. Assume that for some γ ≥ 4, there exists a µ-condEP-ioPRG G : {0, 1}n →
{0, 1}m(n)=n+γ logn that is computable in space log(m(n)), where µ(n) = 1/n2. Then, for all δ ≥ 1,
MKSP[δ log n] /∈ HeurnegBPP.

Proof: Let G : {0, 1}n → {0, 1}m(n) where m(n) = n+γ log n be a 1
n2 -condEP-ioPRG, computable

in space log(m(n)), with entropy loss constant α. Let p(n) = 2n2(α+γ+2). Consider any δ ≥ 1 and
function s(n) = δ log(n). Assume for contradiction that MKSP[s] ∈ HeurnegBPP; that is, there exists
some PPT H that decides MKSP[s] with probability at least 1 − 1

p(m′) where m′(m) = m + dlogme
(on input length m′) for all sufficiently large n, m(n), and m′(m). Recall that G is associated with
a sequence of events {En}n∈N.

We next show that H can be used to break the condEP-ioPRG G. Towards this, recall that a
random string has high Ks-complexity with high probability: for m = m(n), we have,

Pr
x∈{0,1}m

[Ks(x) > m− γ

2
log n] ≥ 2m − 2m−

γ
2

logn

2m
= 1− 1

nγ/2
, (5)

since the total number of Turing machines with length smaller than m − γ
2 log n is only 2m−

γ
2

logn.
However, any string output by G, must have “low” Ks complexity: For every sufficiently large
n,m = m(n), we have that,

Pr
z∈{0,1}n

[Ks(G(z)) > m− γ

2
log n] = 0, (6)

since G(z) can be represented by combining a seed z of length n with the code of G (of constant
length), and the space of G(z) is bounded by log(m(n)) ≤ s(m) for all sufficiently large n.

Based on these observations, we now construct a PPT distinguisher A breaking G. On input
1n, x, where x ∈ {0, 1}m(n), A(1n, x) lets k = m − γ

2 log n and outputs 1 if H(x, k) outputs 1 and 0
otherwise. It follows from Claim 1 and Claim 2 (by replacing Kt-complexity with Ks-complexity,
MKtP with MKSP[s]) in the proof of Theorem 3.4 that A distinguishes Um(n) and G(Un | En) with

probability at least 1
n2 , which concludes the proof.

7 Characterizing Cryptography in NC0

In this section, we turn our attention to characterizing the existence of a OWFs in uniform NC0. We
start by recalling the seminal result by Applebaum et al [AIK06]:

Theorem 7.1 ([AIK06]). Assume that there exists an (infinitely-often) OWF that is computable in
uniform L/poly. Then, there exists an (infinitely-often) OWFs in uniform NC0.

Combining Theorem 7.1 with Theorem 6.1, we directly get that average-case hardness of MKSP[O(log n)]
implies the existence of (infinitely often) OWFs in uniform NC0 (since L is contained in uniform
L/poly). However, it is not clear how to prove the converse direction: A OWF computable in uni-
form NC0 may not necessarily be computable in log-space. To overcome this issue, we consider a
notion of conditional Kolmogorov complexity.
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7.1 Conditional Kolmogorov Complexity

We consider a variant of conditional (space-bounded) Kolmogorov complexity [ZL70, Lev73, Tra84,
LM91]. Let U be a fixed universal Turing machine (with polynomial overhead in time and constant
multiplicative overhead in space) and let F be a fixed polynomial-time deterministic Turing machine;
think of F as a machine that generates some “auxiliary input”. We define the F -conditional s-space
bounded Kolmogorov complexity, cKF,s(x), of a string x ∈ {0, 1}∗ as the length of the shortest
program Π that given the output of F (1|x|) as an auxiliary input, generates the string x using space
at most s(|x|). Formally,

cKF,s(x) = min
Π∈{0,1}∗

{|Π| : ∀i ∈ [|x|], U(Π(i, str), 12s(|x|)) = xi and Π(i, str) uses at most s(|x|) space}

where str = F (1|x|). Its decisional variant, the minimum cKF,s-complexity problem McKSP[F, s], for
some function s and some polynomial-time algorithm F , is defined as follows:

• Input: A string x ∈ {0, 1}n and a size parameter k ∈ {0, 1}dlogne.

• Decide: Does (x, k) satisfy cKF,s(x) ≤ k.

We make the following observation about conditional Kolmogorov complexity:

Fact 7.1. There exists a constant c such that for every s(n) ≥ log n, every polynomial-time machine
F , and every x ∈ {0, 1}∗, cKF,s(x) ≤ |x|+ c.

Proof: Consider a machine Πx = (M,x) where M is a Turing machine (of constant size) such that
M(y, i) outputs yi for any string y and any index i. It follows that for all i ∈ [|x|], Πx(i) = M(x, i)
will output xi using at most log n space. Note that Πx can be encoded in |x| + c bits, and Πx will
just ignore the auxiliary input str where str = F (1|x|).

7.2 The Characterization

We are now ready to state our charcterization of OWFs in NC0.

Theorem 7.2. The following are equivalent:

(a) The existence of ioOWFs computable in uniform NC0.

(b) The existence of ioOWFs computable in uniform L/poly.

(c) The existence of a polynomial-time F , and δ ≥ 1, such that McKSP[F, δ log n] 6∈ HeurnegBPP.

(d) The existence of a polynomial-time F such that for all δ ≥ 1, McKSP[F, δ log n] 6∈ HeurnegBPP.

Proof:

(a) =⇒ (b) trivially follows since uniform NC0 is contained in uniform L/poly;

(b) =⇒ (a) follows from Theorem 7.1;

(c) =⇒ (b) follows from Theorem 7.3, which will be proven in Section 7.3.

(b) =⇒ (d) follows from Theorem 7.4 and Theorem 7.5, which will be proven in Section 7.4.

(d) =⇒ (c) trivially follows.

We remark that, in Appendix A, we also characterize “standard” (as opposed to infinitely-often)
OWFs computable in NC0 through (almost-everywhere) mild average-case hardness of McKSP[F,O(log n)].
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7.3 ioOWFs in Uniform L/poly from Avg-case Hardness of McKSP[F, s]

We here show how to get a uniform L/poly computable OWF assuming McKSP[F,O(log n)] /∈
HeurnegBPP for some polynomial-time computable F . The proof very closely follows the proof of The-
orem 6.2 while making minor adjustment to account for the difference in the notion of Kolmogorov
complexity.

Theorem 7.3. If there exist a polynomial-time machine F and a constant δ ≥ 1 such that McKSP[F, δ log n] /∈
HeurnegBPP, then there exists a weak ioOWF (and thus also a ioOWF) that is computable in uniform
L/poly.

Proof: Assume there exists some polynomial-time F and constant δ ≥ 1 such that McKSP[F, δ log n] /∈
HeurnegBPP; that is, there exist a polynomial-time machine F , a constant δ ≥ 1, and a polynomial
p(·) such that for all PPT heuristics H′ and infinitely many n,

Pr[x← {0, 1}n, k ← {0, 1}dlogne : H′(x, k) = McKSP[F, s](x, k)] < 1− 1

p(n)
,

where s(n) = δ log n. Let c be the constant from Fact 7.1. Consider the function f : {0, 1}n+c+dlog(n+c)e →
{0, 1}dlogne+n, which given an input `||Π′ where |`| = dlog(n + c)e and |Π′| = n + c, outputs
`||U(Π(1, str), 1t)|| . . . ||U(Π(n, str), 1t) where Π is the `-bit prefix of Π′, t = 2s(n), and str = F (1n).
Furthermore, f will just abort if in the execution of Π(i, str) if it consumes more than s(n) bits of
memory. That is,

f(`||Π′) = `||U(Π(1, str), 1t)||U(Π(2, str), 1t)|| . . . ||U(Π(n, str), 1t).

Note that f is computable in uniform L/poly (since the universal Turing machine U , by assumption,
has constant multiplicative overhead in space, and the auxiliary input producing machine F will
output the auxiliary input string str in polynomial time). Observe that f is only defined over some
input lengths, but by the same padding trick as in the proof of Theorem 3.2, it can be transformed
into a function f ′ defined over all input lengths that preserves weak onewayness of f . Finally, we
note that it follows from the identical same proof as of Theorem 6.2 (by replacing Ks-complexity by
cKF,s-complexity, MKSP[s] by McKSP[F, s]) that f is a 1

q(·) -weak ioOWF where q(n) = 22c+3np(n)2,

which concludes the proof of the theorem.

7.4 Average-case Hardness of McKSP[F,O(log n)] from ioOWFs in Uniform L/poly

We show that for every polynomial-time F , McKSP[F,O(log n)] is average-case hard for PPT heuris-
tics. To do this, we first build a condEP-ioPRG G that is computable in uniform L/poly from ioOWFs
in uniform L/poly. Then, we will show that a heuristic for McKSP[F,O(log n)] can be used to break
this PRG G.

Recall that Liu and Pass [LP20] constructed a condEP-PRG G from a standard OWF. Their
proof also shows that one can construct a condEP-ioPRG in uniform L/poly from an ioOWF in
uniform L/poly. We refer the reader to a brief outline of their construction in Section 6.4.

Theorem 7.4 (essentially implicit in [LP20], relying on observations from [AIK06]). Assume that
ioOWFs that are computable in L/poly exist. Then, for every γ > 1, there exists a µ-condEP-ioPRG
Gγ : {0, 1}n → {0, 1}m(n)=n+γ logn that is computable in uniform L/poly with space strictly bounded
by log(m(n)), where µ = 1

n2 .

We additionally note that the proof of Theorem 6.4 directly extends also to consider F -conditional
space-bounded Kolmogorov complexity, when letting F be the polynomial-time algorithm that gen-
erates the advice string for computing the PRG G in log space.
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Theorem 7.5. Assume that for some γ ≥ 4, there exists a µ-condEP-ioPRG G : {0, 1}n →
{0, 1}m(n)=n+γ logn in uniform L/poly with space at most log(m(n)), where µ(n) = 1/n2. Then,
there exists a polynomial-time machine F such that for all δ ≥ 1, McKSP[F, δ log n] /∈ HeurnegBPP.

Proof: Let G : {0, 1}n → {0, 1}m(n) where m(n) = n+γ log n be a 1
n2 -condEP-ioPRG, computable

in L/poly with space at most log(m(n)), with entropy loss constant α. Let F be the polynomial-time
machine that computes the advice string needed to compute G in log space—such a polynomial-time
machine is guarnateed to exists since G is in uniform L/poly. Let p(n) = 2n2(α+γ+2). Consider
any constant δ ≥ 1 and the function s(n) = δ log(n). Assume for contradiction that McKSP[F, s] ∈
HeurnegBPP; that is, there exists some PPT H that decides McKSP[F, s] with probability at least
1 − 1

p(m′) where m′(m) = m + dlogme (on input length m′) for all sufficiently large n, m(n), and

m′(m). Recall that G is associated with a sequence of events {En}n∈N.
We next show that H can be used to break the condEP-ioPRG G. Towards this, note that a

random string has high cKF,s-complexity with high probability: for m = m(n), we have,

Pr
x∈{0,1}m

[cKF,s(x) > m− γ

2
log n] ≥ 2m − 2m−

γ
2

logn

2m
= 1− 1

nγ/2
, (7)

since the total number of Turing machines with length smaller than m − γ
2 log n is only 2m−

γ
2

logn.
However, any string output by G, must have “low” cKF,s complexity: For every sufficiently large
n,m = m(n), we have that,

Pr
z∈{0,1}n

[cKF,s(G(z)) > m− γ

2
log n] = 0, (8)

since G(z) can be represented by combining a seed z of length n with the code of G (of constant
length) and the advice string str = F (1n) output by F (which comes for free since cKF,s-complexity
is ‘conditioned on’ F ), and the space of G(z) is bounded by log(m(n)) ≤ s(m) for all sufficiently
large n.

Based on these observations, we now construct a PPT distinguisher A that breaks G. On input
1n, x, where x ∈ {0, 1}m(n), A(1n, x) lets k = m − γ

2 log n and outputs 1 if H(x, k) outputs 1 and 0
otherwise. It follows from Claim 1 and Claim 2 (by replacing Kt-complexity with cKF,s-complexity,
MKtP with McKSP[F, s]) in the proof of Theorem 3.4 that A distinguishes Um(n) and G(Un | En)

with probability at least 1
n2 , which concludes the proof.
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A Almost-everywhere Average-case Hardness and Standard OWFs

In this section, we remark that if we consider an almost-everywhere notion of mild average-case
hardness, then all the results regarding two-sided error average-case hardness directly apply to char-
acterize of “standard” (i.e., almost-everywhere, as opposed to infinitely-often, secure) OWFs. An
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minor issue is that the languages MKtP,MKSP[s],McKSP[F, s], the way we have defined them, are
actually not (even mildly) hand-on-average for all sufficiently large input lengths. The problem is
that those languages are defined on pairs of strings (x, k) where x ∈ {0, 1}n, k ∈ {0, 1}dlogne, and
thus they are only defined on input lengths of the form m(n) = n + dlog ne. So, on input lengths
m that are not of the form n+ dlog ne for any n, these languages have no true statements and thus
are easy to decide (with probability 1), by simply outputting NO. Furthermore, there are infinitely
many input lengths n that are not of the form n+ dlog ne.

Towards addressing this issue, we consider an almost-everywhere notion of average-case hardness
that only requires hardness to hold on input lengths for which the language is defined.

We say that a language L is defined over inputs lengths s(·) if L ⊆ ∪n∈N{0, 1}s(n). Note that the
languages we consider are defined on input lengths s(n) = n+ dlog ne. We now turn to defining the
almost-everywhere notion of average-case hardness.

Definition A.1. We say that a language L defined over inputs lengths s(·) is α(·) hard-on-average
(α-HoA) if for all PPT heuristic H, for all sufficiently large n ∈ N ,

Pr[x← {0, 1}s(n) : H(x) = L(x)] < 1− α(n)

In other words, there does not exist a PPT “heuristic” H that decides L with probability 1−α(n)
on infinitely many input lengths n ∈ N over which L is defined. We refer to a language L as being
mildly HoA if there exists a polynomial p(·) > 0 such that L is 1

p(·) -HoA.

We are now ready to state the “almost-everywhere” variants of the main theorems (w.r.t. two-
sided error average-case hardness) in this work. The proofs of these theorems follow using essentially
from the same proofs but with some truncation arguments to deal with some tedious issues arising
due to the fact that the heuristic may only succeed on infinitely many (as opposed to all) input
lengths.

Theorem A.2 (The almost-everywhere variant of Theorem 3.1). MKtP is mildly HoA iff OWFs
exist.

Theorem A.3 (The almost-everywhere variant of Theorem 6.1). The following are equivalent:

(a) The existence of one-way functions computable in log-space.

(b) The existence of a constant δ ≥ 1 such that MKSP[δ log(n)] is mildly HoA.

(c) For all δ ≥ 1, MKSP[δ log(n)] is mildly HoA.

Theorem A.4 (The almost-everywhere variant of Theorem 7.2). The following are equivalent:

(a) The existence of OWFs computable in uniform NC0.

(b) The existence of OWFs computable in uniform L/poly.

(c) The existence of a polynomial-time F , and δ ≥ 1, such that McKSP[F, δ log n] is mildly HoA.

(d) The existence of a polynomial-time F such that for all δ ≥ 1, McKSP[F, δ log n] is mildly HoA.

As mentionned, the proofs of these theorems follow using the same proof as for the corresponding
theorems in the infinitely-often setting, but with an additional truncation argument. We present the
proof for Theorem A.2; the two other theorems follow by exactly the same argument (combined with
the original proof in the infinitely-often setting).

Recall that Theorem 3.1 follows as a corollary of Theorem 3.2 and Theorem 3.3. We below
state (and prove) the almost-everywhere variant of Theorem 3.2 and Theorem 3.3 formally, and
Theorem A.2 follows as a corollary as well.
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Theorem A.5 (The almost-everywhere variant of Theorem 3.2). If MKtP is mildly HoA, then there
exists a weak OWF (and thus also a OWF).

Proof: Theorem A.5 follows directly from the proof for Theorem 3.2 with the notion of an
almost-everywhere heuristic/OWF-inverter replaced by an infinitely-often heuristic/OWF-inverter.
In particular, the proof of Theorem 3.2 shows that when some OWF inverter A succeeds on inputs of
the form m(n) = n+ c+ dlog(n+ c)e, then the constructed heuristic H succeeds on inputs of length
n; so if A succeeds on infinitely many input lengths of the form m(n) (which is what is required to
break the OWFs), then H will succeed on infinitely many input lengths n.

Theorem A.6 (The almost-everywhere variant of Theorem 3.3). If OWFs exist, then MKtP is
mildly HoA.

Note that Theorem 3.3 follows from Theorem 2.9 (the infinitely-often case) and Theorem 3.4.
We proceed to state (and prove) the almost-everywhere variant of Theorem 3.4 which together with
the (almost-everywhere form of) Theorem 2.9 concludes Theorem A.6.

Theorem A.7 (The almost-everywhere variant of Theorem 3.4). Assume that for some γ ≥ 4,
there exists a rate-1 efficient µ-condEP-PRG G : {0, 1}n → {0, 1}n+γ logn where µ(n) = 1/n2. Then,
MKtP is mildly HoA.

Proof: The proof proceeds in the same fashion as the proof for Theorem 3.4. Assume for contra-
diction that MKtP is not mildly HoA. That is, there exist a polynomial p(·) and a PPT heuristic H
that succeeds in deciding MKtP with probability 1 − 1

p(m′) for infinitely many input lengths of the

form m′ = m + dlogme. We will now show how to use H to break a condEP-PRF. The problem
is that H only works on infinitely many input lengths so we need to make sure that H works on
infinitely many of the output lengths of the PRG. We will use an appropriate truncation argument
(similar to one used in [LP20]), to ensure this. Let γ ≥ 4, and let G′ : {0, 1}n → {0, 1}m′′(n) where
m′′(n) = n + γ log n be a rate-1 efficient µ-condEP-PRG, where µ = 1/n2. For any constant c, let
Gc(x) be a function that computes G′(x) and truncates the last c bits. It directly follows that Gc is
also a rate-1 efficient µ-condEP-PRG (since G′ is so). Since m′′(n+ 1)−m′′(n) ≤ γ + 1, there must
exist some constant c ≤ γ + 1 such that H succeeds in deciding MKtP with probability 1− 1

p(m′) for

infinitely many input lengths of the form m′ = m(n) + dlogm(n)e) where m(n) = n + γ log n − c.
Let G(x) = Gc(x); note that G is trivially a rate-1 efficient µ-condEP-PRG (since Gc is so). Next,
consider the PPT distinguisher A constructed in the proof of Theorem 3.4; the proof of Theorem 3.4
shows that if for some n, H succeeds in deciding MKtP (with high probability) on some input of the
form m′ = m(n) + dlogm(n)e, then A will distinguish the output of G(Un | En) from Um(n). So, if
H succeeds on infinitely many inputs lengths of the form m(n) + dlogm(n)e, then A will succeed in
breaking the PRG G for infinitely many n, which is a contradiction.

Finally, note that Theorem A.6 follows from Theorem 2.9 and Theorem A.7, which concludes our
proof.
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