
Analyzing the Potential of Transport Triggered
Architecture for Lattice-based Cryptography

Algorithms
Latif Akçay1 and Berna Örs2

1 Bayburt University, Turkey, lakcay@bayburt.edu.tr
2 Istanbul Technical University, Turkey, orssi@itu.edu.tr

Abstract. Lattice-based structures offer considerable possibilities for post-quantum
cryptography. Recently, many algorithms have been built on hard lattice problems.
The three of the remaining four in the final round of the post-quantum cryptography
standardization process use lattice-based methods. Especially in embedded systems,
these algorithms should be operated effectively. In this study, the potential of
transport triggered architecture is examined in this sense. We try to compare open
source RISC-V processors with our transport triggered architecture processors under
fair conditions. Thus, we aim to provide a base architecture for developing application
specific processors for post-quantum cryptography, which is becoming an increasingly
urgent research area. The tests performed are implemented on the same FPGA
and evaluated as performance, resource utilization, average power and total energy
consumption. Regardless of the algorithm, our design exhibit better results than
RISC-V processors for all tests. It seems to be 2x - 3x faster, 2x - 2.5x smaller and
consumes 2.5x - 5x less energy than RISC-V competitors. We also share how the
results vary for many different configurations of our processor that can be easily
converted. The obtained findings show that the transport triggered architecture is
a promising option on developing application-specific processors for lattice-based
post-quantum cryptography applications.
Keywords: TTA, RISC-V, lattice-based cryptography, post-quantum cryptography,
processor architecture, application specific processor, Kyber, NewHope, Saber, NTRU.

1 Introduction
Quantum computer development studies have been accelerating in recent years. Many
large-scale companies are running very high-budget projects and announcing the superiority
of quantum computers they have developed one after another [1]. It is clear that this
competition has contributed positively to the acceleration of the technology development
process. All of these point to the active use of quantum computers in the near future.
However, this development poses a very serious threat to the cryptography methods widely
used today. Public-key cryptography (PKC) algorithms are based on difficult problems
that require quite a long time to solve for classical computers [2]. The factorization problem
of large numbers used in the RSA method and the discrete logarithm method used in the
ECC algorithm are the most important of these algorithms [3], [4]. However, it has been
shown that both problems can be solved much faster by using a large enough quantum
computer and Shor’s algorithm [5]. To put it more clearly, today’s most common PKC
systems lose their reliability in the face of quantum computers. Of course, studies have
been carried out for a while to develop solutions to this issue. Post-quantum cryptography
(PQC), which is a novel research field, refers to safe algorithms against attacks using

mailto:lakcay@bayburt.edu.tr
mailto:orssi@itu.edu.tr


2 Analyzing the Potential of TTA for Lattice-based Cryptography Algorithms

both classical computers and quantum computers [6]. Related to this, NIST started a
standardization process in 2016 [7]. The main goal is to develop PQC algorithms that
can be effectively used effectively in various fields and to create new standards. The first
round was started with 69 suitable and completed candidates. In the second round, it was
reduced to 26 and then reduced to 7 algorithms in June 2020 in the third round. Draft
standards will be announced between 2022 and 2024 according to the process calendar [8].

Lattice-based cryptography, as the name suggests, are structures based on hard mathe-
matical problems defined on lattices [9]. Well-known examples of these are the shortest
vector problem or the closest vector problem [10]. The importance of these is that they
may provide very appropriate solutions for PQC. Because five of the remaining seven
candidate PKC and digital signature algorithms in the last round are based on lattice-based
problems [11]. Therefore, it is quite possible that these methods will form the basis of
security systems in the quantum age. In addition, the use of these algorithms is a critical
requirement not only for the future but also today. Because encrypted information that is
somehow recorded today can be decrypted using a quantum computer in the following
years. Therefore, PQC is an urgent need to be met.

Another issue that is as important as the security of an algorithm is the effective
implementation. This is especially critical in embedded systems that require low power
consumption or limited resource usage. PKC is used in most embedded system applications
where resource constraints and power consumption are needed to be very low [12]. For
example, smart cards, RFID systems, wireless sensor networks are among these applications
are among these. In this case, effective processor design stands out as the most important
parameter. Developing application specific processors (ASIP) for such areas is an effective
solution. Open source and license-free processor architectures are very favorable for ASIP
designs in many aspects. In order to develop and use PQC applications in real embedded
systems, it is very necessary to research on appropriate processor architectures.

RISC-V is the most popular open source license-free instruction set architecture (ISA)
which has a lot of support like compiler, simulator, debugger, etc [13]. Transport-triggered
architecture (TTA) is also a well suited method for developing application-specific processors
[14]. It is a flexible approach that is very similar to the Very Long Instruction Word
(VLIW) architecture [15] but includes some more advantageous features. We consider TTA
as an ideal architecture for PQC algorithms, thanks to its feature that enables instruction
level parallelism [16].

In this study, TTA processors are compared with the popular RISC-V designs for
lattice-based post-quantum cryptography algorithms. We present our sample 64-bit TTA
processor and use two different RISC-V cores as competitors. After compiling and running
the reference C codes for all processors, we analyze the results from many angles. Also, we
rethink the same analyzes for many different configurations of our design.

This work is organized as follows: The second section gives the literature review while
the third one explains PQC over lattice-based methods. The fourth section introduces the
features and development environment of TTA. In the fifth chapter, we share the design
details of the RISC-V and TTA processors used in the study. Experimental tests and
comparisons constitute the sixth section. Finally, we conclude the paper and explain our
inferences with future plans in the seventh section.

2 Literature Review
There are many studies on the implementation of PQC algorithms from different perspec-
tives. Since the subject is critical and urgent, it can be easily predicted that these studies
will increase gradually. There is a comprehensive survey that summarizes the software
and hardware PQC implementations found in the literature [17]. Pure software libraries
offered as open source code provide a very useful environment for researchers and students



Latif Akçay and Berna Örs 3

[18]. An optimization study for Number Theoretic Transform (NTT) library [19], using
Intel AVX2, was done by Gregor Seiler for [20]. In addition to the projects developed
for general purpose processors, there are also studies especially for resource constrained
systems [21]. Case studies customized to run on the ARM Cortex-M4 platform can be
found in [22], [23] and [24]. Some other interesting software works for limited devices can
be seen from [25], [26], [27] and [28].

Hardware-related works can be examined under several different headings: Instruction
set extension for PQC, custom hardware designs and hardware-software co-design approach.
There are two remarkable studies under the title of instruction set extension for PQC.
Fritzman et al. has made extensive customization on Pulpino, a simple RISC-V core, to
speed up lattice-based cryptography operations [29]. From a similar point of view, Erdem
Alkim et al. achieved very successful results with NTT accelerators built on VexRiscv [30].

To the best of our knowledge, there are not many dedicated hardware studies in the
literature. However, a NewHope implementation by Tobias Oder etal can be found in [31].
Similarly, a hardware implementation of Saber is presented in [32]. A compact hardware
implementation of Kyber on FPGA is shared in [33]. Another hardware study for NTRU
is done in [34].

Hardware-software co-design studies are firstly done for NTRU [35], [36]. Both include
a software task running on ARM Cortex-A53 processor with hardware accelerator. A
similar study using the Saber algorithm can be found in [37]. [38], [39] and [40] cover
the implementation of various PQC algorithms on RISC-V processors with hardware
accelerators.

To the best of our knowledge, our previous study is the only one in the literature
on PQC using TTA processors [41]. In that work, an example NTRU based public-key
cryptosystem is tested on several 32-bit RISC-V and TTA processors and then the results
are compared with various parameters. Thus, the efficiency of the two architectures is
evaluated for NTRU algorithm.

Our Contribution. This paper provides two contribution. First, we share the test
results of performance, power consumption, chip area and total energy comparisons for
lattice-based PQC algorithms on two different processor architectures. The second one is
that we suggest a base platform which has many advantages on developing application
specific processor for lattice-based PQC in embedded systems. We support our ideas with
detailed comparative test results.

3 Lattice-based Post-Quantum Cryptography
By the simplest mathematical definition, a lattice is the combination of integer linearly
independent base vectors. Lattice-based cryptography is the general term given to struc-
tures defined using difficult problems defined on adequately sized lattices. As stated in
Section 1, there is no known solution method of these problems that can be accelerated
by classical or quantum computers. The Shortest Vector Problem (SVP) is the first of
these problems to be raised [9]. In short, it is the problem of finding the shortest non-zero
vector in a given lattice and it’s base vectors.

Most lattice-based cryptography algorithms use the Learning with Errors (LWE)
problem or variants thereof. The LWE, which is a generalized version of the parity learning
problem, was introduced by Oded Regev in 2005 [42]. The LWE problem is defined as
finding a function over a finite field ring from given samples where some of the samples
contain errors. There are two variants of the problem: Ring Learning with Erros (R-LWE)
and Module Learning with Errors (M-LWE). In the R-LWE version, polynomials with
degrees less than a known n are used. On the other hand, M-LWE is the same as R-LWE,
but with the difference, it replaces the elements in the same ring with modulo elements.
Thanks to using modulo numbers, it gets easier to arrange security level and efficiency.



4 Analyzing the Potential of TTA for Lattice-based Cryptography Algorithms

In addition to all, the Learning with Rounding (LWR) problem is known as a modified
version of the random property of LWE. The LWR problem uses vectors generated with a
deterministic change instead of a random error vector. Similarly, the problem is called as
Module Learning with Rounding (M-LWR) when the elements are chosen from modulo.

Lattice-based cryptography algorithms in the NIST PQC standardization process are
based on different lattice problems. We briefly describe these algorithms in the following
subsections.

3.1 Nth Degree Truncated Polynomial Ring Units (NTRU)
NTRU is a ring-based public key cryptosystem based on SVP [43]. There were three
different NTRU-based key encapsulation mechanism (KEM) suggested to the NIST PQC
standardization process which are: NTRUEncrypt, NTRU-HRSS-KEM, and NTRU Prime.
Currently, the latest submission is merger of NTRUEncrypt and NTRU-HRSS-KEM and
named just as NTRU [43]. The authors claim that the KEM is indistinguishable under
chosen ciphertext attack (IND-CCA2). The submission package contains two narrowly
defined families of parameter sets which are called NTRU-HPS and NTRU-HRSS [43].
An NTRU system is parameterized by coprime positive integers (n, p, q), sets of integer
polynomials (Lf , Lg, Lr, Lm), and an injection Lift : Lm → Z[x]. However, there
are some minor differences between these two sets of parameters, such as the selection
of the value of q and the properties of the polynomial sets. The recommended sets for
NTRU-HPSS are ntruhps2048509 (n = 509 and q = 2048), ntruhps2048677 (n = 677 and
q = 2048) and ntruhps4096821 (n = 821 and q = 4096). These sets provide different
NIST security levels as 1, 3 and 5 respectively. For NTRU-HRSS, the only recommended
parameter set is ntruhrss701 (n = 701) and it claims the NIST security level 3.

NTRU operates in a truncated polynomial ring R = Z[X]/(Xn − 1) where all polyno-
mials have integer coefficients and degree at most n− 1. The general working way of the
algorithm can be summarized as follows: To generate a key, one must produce two ternary
polynomials f and g in the ring R. Additionally, the polynomial f must have inverses for
modulo p and modulo q (f.fp ≡ 1 (mod p), f.fq ≡ 1 (mod q)). Then, the public key h is
generated as in 1.

h ≡ p.fq.g (mod q) (1)

One can send a message m by using the public key h and the encryption formula in 2.

e ≡ r.h+m (mod q) (2)

where the r is a random blinding polynomial in the ring R. To decrypt the ciphered
message e, 3, 4 and 5 must be applied by the receiver.

a ≡ f.e (mod q) (3)

b ≡ a (mod p) (4)

c ≡ fp.b (mod p) ≡ fp.f.m (mod p) ≡ m (mod p) (5)

3.2 Crystals-Kyber
Kyber is an IND-CCA2 secure KEM based on M-LWE problem in lattices [44]. It uses
a public key encryption (PKE), which is claimed to be indistinguishable under chosen
plaintext attack (IND-CPA), called Kyber.CPAPKE, together with Fujisaki–Okamoto
(FO) transform [45] to obtain an IND-CCA2 secure KEM, which is called Kyber.CCAKEM
[44]. It creates Cryptographic Suite for Algebraic Lattices (CRYSTALS) together with
the Dilithium scheme developed for the quantum-resistant digital signature method. Both
methods are in the third round finalists of the NIST PQC standardization process.



Latif Akçay and Berna Örs 5

Kyber.CPAPKE uses few fixed and variable integer parameters n = 256, q = 3329,
m = 2, k = {2, 3, 4}, du = 10, dv = {3, 4, 5} to set the lattice dimensions and thus the
security level. Accordingly, three different Kyber.CCAKEM parameter sets specifying the
NIST security level are set with the parameter k as: Kyber512 (k = 2, NIST level 1),
Kyber768 (k = 3, NIST level 3) and Kyber1024 (k = 4, NIST level 5).

To put it simply, the key generation process is started by generating a random matrix
A ∈ Rqkxk and vectors s, e by using centered binomial distribution method Bη [46]. Then,
the vector t is computed as in 6. So, the public key pk and the secret key sk is encoded
from t and s.

t = As+ e (6)

To encrypt a message m ∈ Rq, matrix A ∈ Rqkxk, vectors e1, r ∈ Rqk and e2 ∈ Rq are
sampled using the same distribution method Bη. Then, vector u ∈ Rqn and vector v ∈ Rq
are computed as in 7 and 8. Vector u and vector v form the ciphertext c.

u = ATr + e1 (7)

v = tT r + e2 +m (8)

For decryption, the vectors u and v are obtained from the ciphertext c. Then, the original
message m is simply computed as in 9.

m = v − sTu. (9)

3.3 Saber
Saber is an IND-CCA secure KEM which uses the M-LWR problem in lattices [47].
Actually, the name Saber refers to a family of cryptographic primitives. Saber is one of
the finalists of the NIST PQC standardization process. The submission package contains
Saber.PKE which is an IND-CPA secure encryption scheme. By using FO transform
method, Saber.PKE is transformed into Saber.KEM which is an IND-CCA secure key
encapsulation mechanism [47].

Saber.KEM has three parameter sets which are called LightSaber, Saber and FireSaber.
This ranking also points to NIST security levels 1, 3 and 5 respectively. There are few
integer parameters used in Saber methods. The fixed parameters n = 256 and q = 213

determines the polynomial ring Zq[X]/(Xn + 1), which are same for all parameter sets.
Parameter l shows the module dimension while p (210, another fixed element for all
parameter sets ) and T are used for rounding. Coefficients of secret vectors are sampled
using binomial distribution with the parameter µ. The LightSaber uses the variable
parameters as l = 2, T = 23, µ = 10. For Saber, the same parameters are used as l = 3,
T = 24, µ = 8 while the FireSaber uses them as l = 4, T = 26 and µ = 6.

Key generation steps start with randomly sampled matrix A ∈ Rqlxl by using a pseudo
random function with a seed value seedA. Then, a secret vector s is generated with the
parameter µ by using the binomial distribution. Vector b is computed as in 10. Here, the h
is a constant vector defined in the algorithm which is used to replace rounding operations
by a simple bit shift. So, public key pk is obtained as pk = (b, seedA) and the secret key
sk is sk = s.

b ≡ (AT.s+ h) (mod q) (10)

To encrypt a message m, one first need to obtain matrix A by using the seedA in the
public key. Then by using the secret vector s′ and matrix A, the vector b′ is computed
as in 11. The other part of the ciphertext v′ is obtained using 12. So, the ciphertext c is
constructed together with encoding of cm ≡ (v′ +m) (mod p)) and b′.

b′ ≡ (A.s′ + h) (mod q) (11)



6 Analyzing the Potential of TTA for Lattice-based Cryptography Algorithms

v′ ≡ (bT.s′) (mod p) (12)

The decryption process is rather simpler than the encryption. Vector v is computed with
13 and the original message m is converted from 14.

v ≡ b′Ts (mod p) (13)

m ≡ v (mod p) (14)

3.4 NewHope
NewHope is a KEM whose security relies on the hardness of the R-LWE problem in
lattices [48]. It was a NIST PQC candidate until the third round. Although rated as a
high performing candidate in the third round evaluation, it was eliminated due to some
disadvantages compared to the M-LWE based Kyber [11]. Despite this is the case, we
do not exclude NewHope as the main subject of this study is to investigate architectures
proper for lattice cryptography.

NewHope package contains two different KEM called NewHope-CPA-KEM and NewHope-
CCA-KEM [48]. Similarly, as in Kyber and Saber, NewHope-CCA-KEM is built with FO
transform from NewHope-CPA-KEM to provide CCA security model. NewHope offers
two NIST security level 1 and 5 with two different parameter sets. This is done by just
changing the degree of polynomial paremeter n. Modulos parameter q = 12289 and noise
distribution parameter µ = 8 don’t change while the parameter n = 512 for NEWHOPE512
and n = 1024 for NEWHOPE1024. Noise generation methodology is also the centered
binomial distribution for NewHope.

For key generation, a uniformly random polynomial a ∈ Rq is produced using a random
seed value seedA. Then, secret vector s and error vector e are sampled by using parameter
µ. After that, the vector b is computed using 15 and packed with seedA as the public key
while the secret key is keeped as s.

b = As+ e (15)

To encrypt a message m, another secret vector s′ and errors e′, e′′ are sampled. Then,
the vector v is computed as in 16 and the vector u is computed as in 17. Finally, the
ciphertext is obtained as the concatenation of v and u.

v = b.s′ + e′′ +m (16)

u = a.s′ + e′ (17)

Decryption step is the easiest one of the system. Using its secret key s, one can decrypt
the original message m using 18. Both encoding and decoding stages use special functions
to convert message space to the ring space or vice versa.

m = v − us (18)

4 TTA based Co-design Environment (TCE)
TTA is a highly customizable processor design methodology where the existed instructions
determines the datapath [14]. Although it is a VLIW-like architecture, there is major
difference on register file design approach. The both architecture contains functional units
(FUs) in which the desired instructions are existed. In VLIW, multiple port register files
are always connected to the FUs while TTA offers separate register files connected to the
network via transport buses just as the other FUs. Besides, result of an operation can be
transfered to another functional unit instead of a register file. For this reason, register file



Latif Akçay and Berna Örs 7

Figure 1: General Structure of a TTA Processor.

access rate is generally low in TTA processors. The foremost feature of the architecture
is the multiple transport buses. This capability strongly supports the instruction level
parallelism. General structure of a TTA processor is shown Fig. 1.

TCE is an open source and free design environment led by the Customized Parallel
Computing (CPC) group at the Tampere University, Finland [49]. It includes several tools
that provide compilation, simulation, modeling, profiling and even HDL code generation
for TTA processors. The toolset also contains many pre-designed hardware databases
(HDB), architecture definition files (ADF) and test codes for the tools.

TCE compiler (tcecc) is an LLVM-based retargetable platform that takes application
code and ADF file as inputs and generates parallel binary output. ADF is text-based
format that can be written by hand or created by the processor designer (ProDe) which is
the processor modeling and RTL generator tool of the TCE. Cycle-accurate simulation
and profiling can be done by using TTA simulator (ttasim). These three main tools, and
of course the others not detailed here, provide a highly effective development environment
for designers.

At the time of this study, TCE supported data types with a maximum width of 32-bit.
An experimental 64-bit support was available in the Github repository 1. However ProDe
was still not 64-bit compatible. Also, there was not any FU or load-store unit (LSU)
with 64-bit implementation. We use reference C codes written for the lattice-based PQC
algorithms in this study 2. These implementations require 64-bit support. Thus, we needed
a fully 64-bit compatible TCE toolset. We solved the issues about ProDe with the help of
the TCE developers. Then, we designed several 64-bit arithmetic logic units (ALU) and
LSUs. In this way, we became able to design and customize 64-bit TTA processors for all
PQC algorithms. All the developments we have achieved are shared with the TCE team.

5 64-bit RISC-V and TTA processors

In this section, we share the technical details of the RISC-V processors used in study.
Also, we explain our 64-bit TTA processor design to compare RISC-V rivals. In our
previous study[41], we compared 32-bit platforms and obtained results that can give an
idea. Therefore, in this study, we develop 64-bit TTA processors that can run reference C
implementations of the algorithms in the NIST PQC process.

1https://github.com/cpc/tce
2https://github.com/PQClean/PQClean



8 Analyzing the Potential of TTA for Lattice-based Cryptography Algorithms

5.1 Rocket Core
Rocket Core is single-issue, in-order, scalar processor core member of the Rocket Chip
Generator family developed in University of California at Berkeley [50]. The Rocket Chip
Generator is a system written in Chisel hardware construction language [51] and designed
to generate cores, caches or interconnects for System-on-Chip construction. Rocket Core
implements RV64G (RV64IMAFD) variant of RISC-V ISA [13] and contains a memory
management unit (MMU) to support running operating systems. It has a 5-stage classical
RISC pipeline and an optional IEEE compliant floating point unit (FPU) which is also
enabled in this work. A simple core model of a RISC design can be seen in in Fig. 2. More
detailed technical information about the core can be found in [50].

Figure 2: A Simple Model of Classical 5-Stage RISC Pipeline.

In order to achieve consistent results in comparisons of power consumption, resource
utilization or total energy consumption, we omit units such as MMU and caches from the
Rocket Core design.

5.2 CVA6
CVA6 is a single-issue, in-order,scalar processor core formerly named Ariane, developed
by PULP Team, ETH Zurich [52]. It implements RV64GC (RV64IMAFD + compressed
instruction set ’C’) of RISC-V ISA and has a 6-stage pipeline. CVA6 is called as an
application class processor and supports three privilege level to run Unix-like operating
systems. It has an optional IEEE compliant FPU just like the Rocket Core. Ariane Core
is also used in OpenPiton project [53]. More detailed technical information about the core
can be found in [52].

In order to achieve consistent results in comparisons of power for lattice-based PQC,
resource utilization or total energy consumption, we omit units such as MMU and caches
from the CVA6 design.

5.3 Our 64-bit TTA Design: TTA64
Before going into the details of the designed processor, we want to emphasize that it is not
a processor customized for lattice-based PQC. We want to present an example of 64-bit
TTA concept that can be used for general purposes just like the RISC-V processors. But
of course, we prefer instructions that are executed more frequently when creating FUs.
Nevertheless, we are careful to stay in a level that covers a much smaller amount of chip
area compared to RISC-V processors.

We simply call our processor TTA64. It has six 64-bit transport buses, one LSU, three
FUs, two register files (RFs), a boolen RF and a global control unit (GCU). The structural
model of TTA64 which is developed using ProDe is given in Fig. 3.



Latif Akçay and Berna Örs 9

Figure 3: TTA64 Structural Model in TCE-ProDe.

LSU design in our processor supports 8-bit, 16-bit, 32-bit and 64-bit load and store
operations. There are eleven instructions (st8, st16, st32, st64, ld8, ld16, ld32, ld64,
ldu8, ldu16, ldu32) in the design. Three of them are used for loading data from memory
and zero-extending. We prefer little-endian, but it’s not a must in the TCE environment.

We use two RFs which are both 64-bit wide 32 registers. The reason behind the double
RF usage is to show the capability of employing separate register units and to increase the
performance. The TCE provides a parametric RF design. So, we didn’t have to make a
new design for 64-bit support. Also, we use a simple boolen RF which just contains two
1-bit registers which are generally used as flags for jump and call operations by GCU.

TTA64 contains three FUs which are ALU64, ALU64-1 and MULMAC64. ALU64 unit
contains following instructions;

• add64: Add 64-bit signed values

• and64: Logical AND operation

• eq64: Set if two 64-bit values are equal

• gt64: Set if the first value greater than the second

• gtu64: Set if the first value greater than the second (unsigned numbers)

• ior64: Logical Inclusive OR operation

• ltu64: Set if the first value less than the second (unsigned numbers)

• ne64: Set if two value are not equal

• shl64: Left logical shift

• shl1add64: Array indexing for 64-bit values

• shr64: Right logical shift

• shru64: Logical shift right (most significant bits zeroed).

• sub64: Subtraction for 64-bit signed values

• sxh64: Sign extend from 32 bits of the input 1 to 64 bits into output 2.

• sxw64: Sign extend from 16 bits of the input 1 to 64 bits into output 2.

• xor64: Logical Exclusive OR operation



10 Analyzing the Potential of TTA for Lattice-based Cryptography Algorithms

Table 1: Comparison of RISC-V and TTA64 Processors According to Physical Character-
istics

Processor IWL Frequency (MHz) Resources (LUT, FF, DSP) Power (mW)
ROCKET 64 62.5 16854, 5748, 24 192
CVA6 64 40 19602, 8761, 27 219
TTA64 290 42 7865, 5875, 20 136

ALU64-1 is a subset of ALU64 and includes the most repeated instructions. Although
these are not exactly the same for all PQC algorithm, we prefer common ones. Thus, we
increase the performance considerably by integrating another separate FU. We determine
these instructions using the profiling feature of the ttasim. ALU64-1 contains add64, and64,
shl64, shru64, sxh64, xor64. PQC algorithms need many multiplication operations. For
fast calculation of these operations, we use MULMAC64 FU. A separate FU design is
more useful for these calculations. Because number of needed inputs and operational delay
are different from other ALU instructions. MULMAC64 contains following instructions;

• mul64: Multiplication of the inputs with lower result bits in the output.

• mac64: Multiply and accumulate (signed long).

Much more customization is possible for designing an ASIP for lattice-based PQC.
However, the only concept we want to introduce here is just a 64-bit TTA processor which
has a very flexible architecture. We believe this will be a more effective solution than
RISC alternatives. We support this claim with the tests we present in the next section.

6 Experiments
We choose Xilinx Artix-7 series FPGA (XC7A100T-1CSG324C) as the hardware test
platform [54]. First, we arrange all compared processor cores to a similar configuration as
indicated in Section V. But of course, instruction word length (IWL) of the processors
are inherently different from each other. We obtain maximum clock frequency, resource
utilization and estimated average power consumption values by using post-synthesis analysis
of the Xilinx Vivado tool. The comparison results in terms of these parameters and IWL
of each processor can be seen in Table 1. Maximum clock frequency of the Rocket Core
is clearly higher than the other cores. But, when considering the occupied chip area and
average power consumption, TTA64 appears to be quite small and lower power than the
RISC-V rivals.

For performance analysis, we compile exactly the same reference PQC C codes using
the same optimization flags (-O3) on all three platforms. Then, we run these executables
on the processors to find out both the accuracy of the results and the total number of
clock cycles (NoC) to complete the processes. As seen in Table 2, the NoC of TTA64 is
quite best while the RISC-V processors present relatively close values as expected.

From the perspective of algorithms, Kyber parameter sets stands out as the fastest
solutions for all NIST security levels they claim. There is an interesting competition
between the NewHope and Saber algorithms, which varies according to the processors.
While NewHope-512 and NewHope-1024 run faster than LigthSaber and FireSaber on
RISC-V processors respectively, the situation is opposite for TTA64. This can be taken as
an indication that the C implementation of Saber algorithms are more prone to instruction
level parallelism. On the other hand, all NTRU options take the longest time to execute
with very high values.

Since one of the main concerns of this study is the performance analysis of the TTA64
processor, we share a more detailed NoC result. We present how many clock cycles the



Latif Akçay and Berna Örs 11

Table 2: Performance Comparison of RISC-V and TTA64 Processors

PQC ALGORITHM ROCKET CVA6 TTA64
KYBER-512-CCA2 3608812 4277745 1301288
KYBER-768-CCA2 5491484 6382248 1963856
KYBER-1024-CCA2 7690692 8829582 2860485
NEWHOPE-512-CCA2 4098804 4166808 2559512
NEWHOPE-1024-CCA2 7707288 7865157 5459508
LIGHTSABER-CCA2 5620808 5804118 1669368
SABER-CCA2 10123716 10071750 3214911
FIRESABER-CCA2 15841608 15557466 5228696
NTRUHRSS701-CCA2 168227892 186277767 75512621
NTRUHPS2048509-CCA2 91814912 105486627 42592928
NTRUHPS2048677-CCA2 161745040 185478378 68401723

Table 3: Detailed Performance Analysis of TTA64 Processor

PQC ALGORITHM Key. Gen. Encaps. Decaps.
KYBER-512-CCA2 270236 482543 548509
KYBER-768-CCA2 427773 725929 810154
KYBER-1024-CCA2 641559 1055373 1163513
NEWHOPE-512-CCA2 565342 892045 1101125
NEWHOPE-1024-CCA2 1195627 1909724 2354157
LIGHTSABER-CCA2 409944 565803 693621
SABER-CCA2 847059 1085971 1281881
FIRESABER-CCA2 1440897 1760122 2027677
NTRUHRSS701-CCA2 71337818 1395228 2779575
NTRUHPS2048509-CCA2 39165957 1559901 1867070
NTRUHPS2048677-CCA2 63501100 2179514 2721109

processor takes for key generation, encapsulation and decapsulation steps for all tested
algorithms in Table 3. The key generation is the longest process for all NTRU parameter
sets as expected. But, it is generally the shortest operation for other algorithms. The
common feature of all options is that the decapsulation takes more time to execute than
the encapsulation.

The other fundamental parameters for processor design are average power and total
energy consumption. We give comparative values for the three processors in Table 4. While
calculating the total energy consumption value, we apply the well-known Eq. 19 where
E,P, t,NoC, fmax stands for total energy consumption, average power, total execution
time, total number of clock cycles and maximum clock frequency respectively. When the
table is examined, it becomes clear that the TTA64 processor is extremely advantageous
in terms of energy consumption. Although there are slight differences according to the
algorithms, TTA64 is very promising as it consumes approximately 2.5x less energy than
Rocket Core and almost 5x less than CVA6.

E(t) = P × t = P ×NoC× 1
fmax

(19)

6.1 Analysis for Six Different TTA64 Configurations
We set up another test scenario for several configurations of TTA64 processor to analyze
the effect of FUs and transport buses on performance and the other results. First, we
reduce the number of transport buses of TTA64 from 6 to 4 and name the new processor as



12 Analyzing the Potential of TTA for Lattice-based Cryptography Algorithms

Table 4: Comparison of Total Energy Consumption (mJ) for RISC-V and TTA64 Cores

PQC ALGORITHM ROCKET CVA6 TTA64
KYBER-512-CCA2 11.09 23.42 4.21
KYBER-768-CCA2 16.87 34.94 6.36
KYBER-1024-CCA2 23.63 48.34 9.26
NEWHOPE-512-CCA2 12.59 22.81 8.28
NEWHOPE-1024-CCA2 23.68 43.06 17.67
LIGHTSABER-CCA2 17.27 31.78 5.40
SABER-CCA2 31.10 55.14 10.41
FIRESABER-CCA2 48.67 85.18 16.92
NTRUHRSS701-CCA2 516.80 1019.87 244.42
NTRUHPS2048509-CCA2 282.06 577.54 137.86
NTRUHPS2048677-CCA2 496.88 1015.49 221.40

Table 5: Configurations of Six Different 64-bit TTA Processors

Processor IWL Bus Functional Units Register Files
TTA64-P1 204 4 LSU64, ALU64, ALU64-1, MULMAC64 2xGP, 1 BOOL
TTA64-P2 204 4 LSU64, ALU64, MULMAC64 2xGP, 1 BOOL
TTA64-P3 204 4 LSU64, ALU64, ALU64-1 2xGP, 1 BOOL
TTA64-P4 118 2 LSU64, ALU64, ALU64-1, MULMAC64 2xGP, 1 BOOL
TTA64-P5 204 4 LSU64, ALU64, 2xMULMAC64 1xGP, 1 BOOL
TTA64-P6 204 4 LSU64, ALU64, ALU64-1, 2xMULMAC64 1xGP, 1 BOOL

TTA64-P1. Then, we prepare TTA64-P2, TTA64-P3, TTA64-P4, TTA64-P5 and TTA64-
P6 processors by just making similar changes. Structural details of these configurations
can be read from the Table 5. In addition, we share the ProDe models of TTA64-P1 and
TTA64-P2 in Fig. 4, TTA64-P3 and TTA64-P4 in Fig. 5, and TTA64-P5 and TTA64-P6
in Fig. 6.

Maximum clock frequency, resource utilization and average power consumption values
for the six revised TTA64 processors are shared in Table 6. As seen, TTA64-P3 has
the highest clock frequency with a big difference. This is because the multiplication
instructions that prolong the critical path are not available in this processor. However,
the same configuration also has the highest average power consumption value while the
TTA64-P4 has the lowest. Another feature of TTA64-P3 that differs from other processors
is that it does not contain any DSP. Although this seems to be an advantage in terms
of chip area, the best option in terms of LUT and FF numbers seems to be TTA64-P5.
However, this configuration includes two MULMAC64 FUs, just like the TTA64-P6. This
situation causes the highest number of DSP usage for these two processors among others.

The total NoC for the six different TTA64 configurations can be seen in Table 7.
Although the best value in terms of maximum clock frequency belongs to the TTA64-P3

Table 6: Physical Characteristics of Six Different 64-bit TTA Processors

Processor Frequency (MHz) Resources (LUT, FF, DSP) Power (mW)
TTA64-P1 44 6614, 5583, 20 126
TTA64-P2 44 5814, 5370, 20 124
TTA64-P3 106 6209, 5306, 0 154
TTA64-P4 44 5493, 5392, 20 118
TTA64-P5 42 5012, 3553, 26 124
TTA64-P6 42 5828, 3760, 26 126



Latif Akçay and Berna Örs 13

Figure 4: Structural Models of TTA64-P1 and TTA64-P2 Processors in TCE-Prode.

Figure 5: Structural Models of TTA64-P3 and TTA64-P4 Processors in TCE-Prode.

processor, it also exhibits the worst values in terms of the total NoC due to the lack of
multiplication operations. However, it is possible to understand from the comparison of
TTA64-P1 and TTA64-P6 that the only factor seriously affects the total NoC is not the
MULMAC64 FU. As can be seen from the Table 7, the reduction of the RF count worsened
the performance despite the increase in the number of MULMAC64. The effect of the
number of transport buses on the total NoC can be understood by looking at the values
obtained for TTA64-P3.

As expected, average power and total energy consumption values also vary according
to the transport bus count and the number of FUs. We apply the same calculations we
made for TTA64 and RISC-V processors to the rearranged configurations in the same
way. The total energy consumption of these processors can be seen in Table8. The
importance of supporting multiplication operations is again evident here. The TTA64-
P3 configuration gives the worst results compared to the other processors in terms of
total energy consumption. To compare the obtained results all together, we present two
different graphs in Fig. 7 and in Fig. 8 which indicate the total NoC and the total energy



14 Analyzing the Potential of TTA for Lattice-based Cryptography Algorithms

Figure 6: Structural Models of TTA64-P5 and TTA64-P6 Processors in TCE-Prode.

Table 7: Performance Comparison of Six Different 64-bit TTA Processors
PQC ALGORITHM TTA64-P1 TTA64-P2 TTA64-P3 TTA64-P4 TTA64-P5 TTA64-P6
KYBER-512-CCA2 1463997 1664302 31009699 2136069 1849517 1632415
KYBER-768-CCA2 2218207 2545406 49240559 3286053 2833725 2491214
KYBER-1024-CCA2 3248591 3746299 71005737 4836655 4173794 3654467
NEWHOPE-512-CCA2 2788655 3079498 17350183 3835099 3289969 2993448
NEWHOPE-1024-CCA2 5946513 6504485 37114132 8087257 6915593 6347239
LIGHTSABER-CCA2 2022774 2301096 72343341 3511828 2763006 2481705
SABER-CCA2 3896183 4405555 141601810 6775925 5305394 4761406
FIRESABER-CCA2 6334068 7129859 240265111 11020159 8596350 7794224
NTRUHRSS701-CCA2 83848926 95119293 1509128555 140287666 102293859 91343361
NTRUHPS2048509-CCA2 49210670 55522831 785486018 80762661 57062851 50054799
NTRUHPS2048677-CCA2 79926364 89484623 1396471508 134772177 92938616 82068742

consumption values for both TTA and RISC-V cores respectively. As can be deduced from
both graphs, the TTA64-P1 configuration appears to be the most logical option among
others for performance and total energy. But, it should be noted that there are better
candidates in terms of chip area and average power consumption. On the other hand, all
configurations except TTA64-P3 still offer better results than the RISC-V processors.

6.2 Analysis for Different Transport Bus Counts
Finally, we only examine the effect of number of transport buses. To do this, we first take
the TTA64 processor as a reference and call it TTA64-R6. We create new configurations as
TTA64-R5, TTA64-R4, TTA64-R3, TTA64-R2 and TTA64-R1 by decreasing the number
of transport buses one by one from 6 to 1. Then, we repeat performance, average power
consumption, resource utilization and total energy consumption analysis. We give the
change of processor characteristics in Table 9 for each cores. The total NoC according to
the new configurations is given in Table 10. The total energy consumption for all tested

Table 8: Comparison of Total Energy Consumption (mJ) for Six Different TTA64 Cores
PQC ALGORITHM TTA64-P1 TTA64-P2 TTA64-P3 TTA64-P4 TTA64-P5 TTA64-P6
KYBER-512-CCA2 4.19 4.69 44.99 5.73 5.46 4.90
KYBER-768-CCA2 6.35 7.17 71.43 8.81 8.36 7.47
KYBER-1024-CCA2 9.30 10.55 103.01 12.97 12.32 10.96
NEWHOPE-512-CCA2 7.98 8.68 25.17 10.28 9.71 8.98
NEWHOPE-1024-CCA2 17.02 18.32 53.84 21.68 20.41 19.03
LIGHTSABER-CCA2 5.79 6.48 104.95 9.42 8.15 7.44
SABER-CCA2 11.15 12.41 205.42 18.17 15.66 14.28
FIRESABER-CCA2 18.13 20.09 348.55 29.54 25.37 23.37
NTRUHRSS701-CCA2 240.04 267.98 2189.26 376.11 301.89 273.92
NTRUHPS2048509-CCA2 140.88 156.42 1139.49 216.52 168.40 150.10
NTRUHPS2048677-CCA2 228.81 252.10 2025.83 361.32 274.28 246.11



Latif Akçay and Berna Örs 15

Figure 7: NoC Comparison of RISC-V and Different Configuration TTA Processors.

Figure 8: Comparison of Total Energy Consumption for RISC-V and Different Configura-
tion TTA Processors.

algorithms can be found in Table 11.
To visualize the obtained results comparatively, we share two graphs in Fig. 9 and

in Fig. 10 which demonstrate the total NoC and the total energy consumption values
for both RISC-V cores and TTA processors which have different transport bus counts.
We can say that the total NoC increases up to 3x according to the number of transport
buses. But, TTA64-R1 which has only one transport bus, is still faster than CVA6. When
the number of transport buses are two or more, TTA processors outperform the RISC-V
competitors simply. However, as the number of the buses increases, the rate of the rise in
performance decreases. This can be seen from the TTA64-R5 and TTA64-R6 which offer
almost identical NoC results. A similar picture emerges in the total energy consumption.
The TTA64-R1 can still be competitive to the RISC-V cores. TTA64-R2 and the others
prove the efficiency of the TTA method clearly. But of course, there is a limit to the
advantage of increasing the transport bus count in terms of total energy consumption. That
is reached in the TTA64-R5 configuration as it consumes less energy than the TTA64-R6
for all tests.

It is possible to create and analyze many configurations with different FUs or different
transport bus counts even more. However, we think that is much sufficient to give an idea
for this study. Our main goal here is to demonstrate that TTA processors can be built
very flexibly according to the design requirements for various PQC applications.

7 Conclusion
The rapidly growing quantum computer development projects mean to be a very serious
threat to classical public key cryptography. Thus, PQC is a very important research area



16 Analyzing the Potential of TTA for Lattice-based Cryptography Algorithms

Table 9: Change of Physical Characteristics of TTA Processors According to Transport
Bus Counts

Processor Frequency (MHz) Resources (LUT, FF, DSP) Power (mW)
TTA64-R1 44 4609, 5292, 20 116
TTA64-R2 44 5524, 5393, 20 119
TTA64-R3 44 6076, 5493, 20 123
TTA64-R4 44 6556, 5579, 20 126
TTA64-R5 44 6958, 5679, 20 130
TTA64-R6 42 7865, 5875, 20 136

Table 10: Performance Comparison of TTA Processors According to Transport Bus Counts
PQC ALGORITHM TTA64-R1 TTA64-R2 TTA64-R3 TTA64-R4 TTA64-R5 TTA64-R6
KYBER-512-CCA2 3725676 2133413 1638493 1463997 1333680 1301288
KYBER-768-CCA2 5771031 3282389 2502356 2218207 2018243 1963856
KYBER-1024-CCA2 8533787 4831661 3672079 3248591 2939161 2860485
NEWHOPE-512-CCA2 6665724 3835067 3019955 2788665 2617075 2559512
NEWHOPE-1024-CCA2 13981951 8086525 6412038 5946513 5609265 5459508
LIGHTSABER-CCA2 6597332 3511671 2513285 2022774 1787194 1669368
SABER-CCA2 12708510 6776020 4849242 3896183 3444993 3214911
FIRESABER-CCA2 20653585 11020278 7893063 6334068 5607110 5228696
NTRUHRSS701-CCA2 248018569 140289534 100455386 83848926 75093436 75512621
NTRUHPS2048509-CCA2 147184538 80758493 57616802 49210670 44432587 42592928
NTRUHPS2048677-CCA2 243752795 134771801 95272929 79926364 72265352 68401723

Table 11: Total Energy Consumption (mJ) According to Transport Bus Counts
PQC ALGORITHM TTA64-R1 TTA64-R2 TTA64-R3 TTA64-R4 TTA64-R5 TTA64-R6
KYBER-512-CCA2 9.82 5.77 4.58 4.19 3.94 4.21
KYBER-768-CCA2 15.21 8.87 6.99 6.35 5.96 6.36
KYBER-1024-CCA2 22.49 13.06 10.26 9.30 8.68 9.26
NEWHOPE-512-CCA2 17.57 10.37 8.44 7.98 7.73 8.28
NEWHOPE-1024-CCA2 36.85 21.86 17.92 17.02 16.57 17.67
LIGHTSABER-CCA2 17.39 9.49 7.02 5.79 5.28 5.40
SABER-CCA2 33.49 18.32 13.55 11.15 10.18 10.41
FIRESABER-CCA2 54.43 29.80 22.06 18.13 16.56 16.92
NTRUHRSS701-CCA2 653.66 379.30 280.73 240.04 221.80 244.42
NTRUHPS2048509-CCA2 387.91 218.35 161.01 140.88 131.24 137.86
NTRUHPS2048677-CCA2 642.42 364.38 266.25 228.80 213.44 221.40

Figure 9: NoC Comparison of RISC-V and TTA64 Processors with Different Bus Counts.



Latif Akçay and Berna Örs 17

Figure 10: Comparison of Total Energy Consumption for RISC-V and TTA64 Processors
with Different Bus Counts.

both today and in the future. In this study, we consider proper processor architectures for
PQC in embedded systems. Processor architecture is very critical especially for resource
limited devices. Our study analyzes the advantages of TTA as an alternative to classical
RISC architecture which is preferred in such systems for PQC.

First, we make the TTA development environment suitable for 64-bit processor design.
To do this, we design 64-bit ALU64, LSU64, and MULMAC64 FUs. In addition, we adapt
the open source codes of TCE that produce the control unit, so that the fetch and decode
units are compatible with the architecture. Finally, we develop TTA64 which is a 64-bit
TTA processor designed by integrating FUs with transport buses and RFs. As a competitor
to this processor, we identify the Rocket Core and the CVA6 which both have the industry
standard 64-bit RISC-V architecture.

Among the PQC methods, the most promising structures are the lattice-based cryp-
tography algorithms. As a matter of fact, three of the four candidate algorithms that
remained in the last round of the NIST standardization process are built on hard-lattice
problems. In our study, we compare TTA and RISC-V architecture processors in terms
of performance, resource utilization, average power and total energy consumption for the
reference C implementations of these algorithms. Tests are performed on the same FPGA
part by using similar core configurations to provide consistency. We share the obtained
results using comparative tables and graphics.

When TTA64 and the compared RISC-V processors are considered, we observe that
there is a difference between 2x - 2.5x in terms of resource utilization. By the way, it
is possible to say that Rocket Core is a more sparing design than CVA6 in this sense.
In addition to the resource utilization data, we see that the Rocket Core has maximum
clock frequency value of these three. But the total NoC results are quite impressive.
Although 64-bit RISC-V processors offer close values as expected, TTA64 is about 2.5x -
3x faster. When considered together with the maximum clock frequency, the difference
in performance is between 2x and 3x. So, it is very promising to deliver at least twice
the performance in at least twice the smaller chip area. However, it should be especially
noted that while RISC-V competitors have an IEEE compliant FPU, TTA64 does not.
Of course, all these seriously affect the average power and the total energy consumption
results. When Table 3 is examined, it is easily understood that the TTA processor is more
efficient with a very clear difference. As emphasized earlier, TTA64 is not a sufficiently
customized design for lattice-based algorithms. In other words, many improvements can
be made to obtain much more striking results.

In the second phase of our study, we analyze 64-bit TTA processors with six different
configurations, without significantly increasing the chip area or even reducing it even more.



18 Analyzing the Potential of TTA for Lattice-based Cryptography Algorithms

These are not completely different processors but slightly modified versions of the numbers
of some units of the first processor. By doing this, we want to show the flexibility of TTA
and analyze how much the performance, resource utilization and other parameters change.
When we look at the results through configurations, we can easily understand the positive
effect of the number of transport buses on performance. Of course, this increases the chip
area and total energy consumption a little. Also, a smaller second ALU generated by the
most frequently repeated instructions is considered a smart method to further improve the
results. However, adding more and more FUs may not notably change the performance,
but also negatively affects other factors. Using one more discrete RF is another logical
option as it moderately improves the performance.

In the last part of the study, we evaluate the effect of changing only the number of
transport buses on the results by keeping FUs same. Thus, we propose a method on how
to obtain the most convenient TTA64 configuration according to design requirements.
It is very beneficial to increase the number of transport buses up to a certain number,
depending on the algorithm and used FUs. It is revealed that the ideal transport bus
count for the conditions in this study is 5. More inferences are possible from the results,
but we leave more to the readers.

One of the most challenging aspects of application-specific processor design is to provide
compiler support. In this respect, TTA again makes things easier thanks to the open
source development environment, TCE. Since the compiler automatically adapts to the
designed processor, it is possible to compile and run application code instantly. This offers
designers a lot of rapid development and debugging opportunities.

Finally, we want to point our future plan. Both this study and our previous study [41]
prove us that the TTA is a very powerful method for developing application-specific PQC
processors in embedded systems. In the light of these results, we plan to design much
more efficient 64-bit TTA processors during upcoming studies. In addition, we will study
on techniques to automatically optimize TTA processors.

Acknowledgment
We would like to thank the TCE team for their support for this work and also for the
great development environment for TTA processor design.

References
[1] C. S. Calude and E. Calude, “The road to quantum computational supremacy,” in

Jonathan M. Borwein Commemorative Conference. Springer, 2017, pp. 349–367.

[2] A. Salomaa, PUBLIC-KEY CRYPTOGRAPHY, ser. EATCS Monographs
on Theoretical Computer Science / edited by Wilfried Brauer, Grzegorz
Rozenberg, Arto Salomaa. Springer-Verlag, 1990. [Online]. Available: https:
//books.google.com.tr/books?id=9i-poAEACAAJ

[3] R. L. Rivest, A. Shamir, and L. Adleman, “A method for obtaining digital signatures
and public-key cryptosystems,” Commun. ACM, vol. 21, no. 2, p. 120–126, Feb. 1978.
[Online]. Available: https://doi.org/10.1145/359340.359342

[4] V. Kapoor, V. S. Abraham, and R. Singh, “Elliptic curve cryptography,” Ubiquity,
vol. 2008, no. May, pp. 1–8, 2008.

[5] P. W. Shor, “Algorithms for quantum computation: discrete logarithms and factoring,”
in Proceedings 35th Annual Symposium on Foundations of Computer Science, 1994,
pp. 124–134.

https://books.google.com.tr/books?id=9i-poAEACAAJ
https://books.google.com.tr/books?id=9i-poAEACAAJ
https://doi.org/10.1145/359340.359342


Latif Akçay and Berna Örs 19

[6] D. J. Bernstein and T. Lange, “Post-quantum cryptography,” Nature, vol. 549, no.
7671, pp. 188–194, 2017.

[7] L. Chen, L. Chen, S. Jordan, Y.-K. Liu, D. Moody, R. Peralta, R. Perlner, and
D. Smith-Tone, Report on post-quantum cryptography. US Department of Commerce,
National Institute of Standards and Technology, 2016, vol. 12.

[8] W. Barker, W. Polk, and M. Souppaya, “Getting ready for post-quantum cryptography:
Explore challenges associated with adoption and use of post-quantum cryptographic
algorithms,” National Institute of Standards and Technology, Tech. Rep., 2020.

[9] D. Micciancio and O. Regev, Lattice-based Cryptography. Berlin, Heidelberg: Springer
Berlin Heidelberg, 2009, pp. 147–191.

[10] D. Micciancio and S. Goldwasser, Complexity of lattice problems: a cryptographic
perspective. Springer Science & Business Media, 2012, vol. 671.

[11] G. Alagic, J. Alperin-Sheriff, D. Apon, D. Cooper, Q. Dang, J. Kelsey, Y.-K. Liu,
C. Miller, D. Moody, R. Peralta et al., “Status report on the second round of the nist
post-quantum cryptography standardization process,” US Department of Commerce,
NIST, 2020.

[12] C. Manifavas, G. Hatzivasilis, K. Fysarakis, and K. Rantos, “Lightweight cryptography
for embedded systems – a comparative analysis,” in Data Privacy Management and
Autonomous Spontaneous Security, J. Garcia-Alfaro, G. Lioudakis, N. Cuppens-
Boulahia, S. Foley, and W. M. Fitzgerald, Eds. Berlin, Heidelberg: Springer Berlin
Heidelberg, 2014, pp. 333–349.

[13] A. Waterman, Y. Lee, D. A. Patterson, and K. Asanovi, “The risc-v instruction set
manual. volume 1: User-level isa, version 2.0,” California Univ Berkeley Dept of
Electrical Engineering and Computer Sciences, Tech. Rep., 2014.

[14] H. Corporaal, “Design of transport triggered architectures,” in Proceedings of 4th
Great Lakes Symposium on VLSI, 1994, pp. 130–135.

[15] J. A. Fisher, “Very long instruction word architectures and the eli-512,” SIGARCH
Comput. Archit. News, vol. 11, no. 3, p. 140–150, Jun. 1983. [Online]. Available:
https://doi.org/10.1145/1067651.801649

[16] H. Corporaal and J. Hoogerbrugge, Code Generation for Transport Triggered Archi-
tectures. Boston, MA: Springer US, 2002, pp. 240–259.

[17] H. Nejatollahi, N. Dutt, S. Ray, F. Regazzoni, I. Banerjee, and R. Cammarota, “Post-
quantum lattice-based cryptography implementations: A survey,” ACM Computing
Surveys (CSUR), vol. 51, no. 6, pp. 1–41, 2019.

[18] D. Stebila and M. Mosca, “Post-quantum key exchange for the internet and the open
quantum safe project,” in International Conference on Selected Areas in Cryptography.
Springer, 2016, pp. 14–37.

[19] P. Longa and M. Naehrig, “Speeding up the number theoretic transform for faster
ideal lattice-based cryptography,” in International Conference on Cryptology and
Network Security. Springer, 2016, pp. 124–139.

[20] G. Seiler, “Faster avx2 optimized ntt multiplication for ring-lwe lattice cryptography.”
IACR Cryptol. ePrint Arch., vol. 2018, p. 39, 2018.

https://doi.org/10.1145/1067651.801649


20 Analyzing the Potential of TTA for Lattice-based Cryptography Algorithms

[21] K. S. Roy and H. K. Kalita, “A survey on post-quantum cryptography for constrained
devices,” International Journal of Applied Engineering Research, vol. 14, no. 11, pp.
2608–2615, 2019.

[22] E. Alkim, Y. A. Bilgin, M. Cenk, and F. Gérard, “Cortex-m4 optimizations for {R,
M} lwe schemes,” IACR Transactions on Cryptographic Hardware and Embedded
Systems, pp. 336–357, 2020.

[23] L. Botros, M. J. Kannwischer, and P. Schwabe, “Memory-efficient high-speed im-
plementation of kyber on cortex-m4,” in International Conference on Cryptology in
Africa. Springer, 2019, pp. 209–228.

[24] M. J. Kannwischer, J. Rijneveld, P. Schwabe, and K. Stoffelen, “pqm4: Testing
and benchmarking nist pqc on arm cortex-m4,” Cryptology ePrint Archive, Report
2019/844, 2019, https://eprint.iacr.org/2019/844.

[25] E. Alkim, P. Jakubeit, and P. Schwabe, “Newhope on arm cortex-m,” in International
Conference on Security, Privacy, and Applied Cryptography Engineering. Springer,
2016, pp. 332–349.

[26] A. Boorghany, S. B. Sarmadi, and R. Jalili, “On constrained implementation of lattice-
based cryptographic primitives and schemes on smart cards,” ACM Transactions on
Embedded Computing Systems (TECS), vol. 14, no. 3, pp. 1–25, 2015.

[27] Z. Liu, T. Pöppelmann, T. Oder, H. Seo, S. S. Roy, T. Güneysu, J. Großschädl,
H. Kim, and I. Verbauwhede, “High-performance ideal lattice-based cryptography
on 8-bit avr microcontrollers,” ACM Transactions on Embedded Computing Systems
(TECS), vol. 16, no. 4, pp. 1–24, 2017.

[28] T. Pöppelmann, T. Oder, and T. Güneysu, “High-performance ideal lattice-based
cryptography on 8-bit atxmega microcontrollers,” in International Conference on
Cryptology and Information Security in Latin America. Springer, 2015, pp. 346–365.

[29] T. Fritzmann, G. Sigl, and J. Sepúlveda, “Risq-v: Tightly coupled risc-v accelerators
for post-quantum cryptography,” IACR Transactions on Cryptographic Hardware and
Embedded Systems, pp. 239–280, 2020.

[30] E. Alkim, H. Evkan, N. Lahr, R. Niederhagen, and R. Petri, “Isa extensions for
finite field arithmetic,” IACR Transactions on Cryptographic Hardware and Embedded
Systems, pp. 219–242, 2020.

[31] T. Oder and T. Güneysu, “Implementing the newhope-simple key exchange on low-cost
fpgas,” in International Conference on Cryptology and Information Security in Latin
America. Springer, 2017, pp. 128–142.

[32] S. S. Roy and A. Basso, “High-speed instruction-set coprocessor for lattice-based key
encapsulation mechanism: Saber in hardware,” IACR Transactions on Cryptographic
Hardware and Embedded Systems, pp. 443–466, 2020.

[33] Y. Xing and S. Li, “A compact hardware implementation of cca-secure key exchange
mechanism crystals-kyber on fpga,” IACR Transactions on Cryptographic Hardware
and Embedded Systems, pp. 328–356, 2021.

[34] K. Braun, T. Fritzmann, G. Maringer, T. Schamberger, and J. Sepúlveda, “Secure
and compact full ntru hardware implementation,” in 2018 IFIP/IEEE International
Conference on Very Large Scale Integration (VLSI-SoC). IEEE, 2018, pp. 89–94.

https://eprint.iacr.org/2019/844


Latif Akçay and Berna Örs 21

[35] T. Fritzmann, T. Schamberger, C. Frisch, K. Braun, G. Maringer, and J. Sepúlveda,
“Efficient hardware/software co-design for ntru,” in VLSI-SoC: Design and Engi-
neering of Electronics Systems Based on New Computing Paradigms, N. Bombieri,
G. Pravadelli, M. Fujita, T. Austin, and R. Reis, Eds. Cham: Springer International
Publishing, 2019, pp. 257–280.

[36] F. Farahmand, V. B. Dang, D. T. Nguyen, and K. Gaj, “Evaluating the potential for
hardware acceleration of four ntru-based key encapsulation mechanisms using soft-
ware/hardware codesign,” in Post-Quantum Cryptography, J. Ding and R. Steinwandt,
Eds. Cham: Springer International Publishing, 2019, pp. 23–43.

[37] J. Maria Bermudo Mera, F. Turan, A. Karmakar, S. Sinha Roy, and I. Verbauwhede,
“Compact domain-specific co-processor for accelerating module lattice-based kem,” in
2020 57th ACM/IEEE Design Automation Conference (DAC), 2020, pp. 1–6.

[38] W. Wang, B. Jungk, J. Wälde, S. Deng, N. Gupta, J. Szefer, and R. Niederhagen,
“Xmss and embedded systems - xmss hardware accelerators for risc-v,” Cryptology
ePrint Archive, Report 2018/1225, 2018, https://eprint.iacr.org/2018/1225.

[39] W. Wang, S. Tian, B. Jungk, N. Bindel, P. Longa, and J. Szefer, “Parameterized
hardware accelerators for lattice-based cryptography and their application to the
hw/sw co-design of qtesla,” IACR Transactions on Cryptographic Hardware and
Embedded Systems, pp. 269–306, 06 2020.

[40] T. Fritzmann, U. Sharif, D. Müller-Gritschneder, C. Reinbrecht, U. Schlichtmann,
and J. Sepulveda, “Towards reliable and secure post-quantum co-processors based on
risc-v,” in 2019 Design, Automation Test in Europe Conference Exhibition (DATE),
2019, pp. 1148–1153.

[41] L. AKÇAY and S. B. Ö. YALÇIN, “Comparison of risc-v and transport triggered archi-
tectures for a postquantum cryptography application,” Turkish Journal of Electrical
Engineering & Computer Sciences, vol. 29, no. 1, pp. 321–333, 2021.

[42] O. Regev, “On lattices, learning with errors, random linear codes, and cryptography,”
J. ACM, vol. 56, no. 6, Sep. 2009.

[43] C. Chen, O. Danba, J. Hoffstein, A. Hülsing, and etal, “Ntru algorithm
specification and supporting document,” March 2019. [Online]. Available:
https://ntru.org/f/ntru-20190330.pdf

[44] R. Avanzi, J. Bos, L. Ducas, E. Kiltz, and etal., “Crystals-kyber algorithm
specification and supporting document,” January 2021. [Online]. Available:
https://pq-crystals.org/kyber/data/kyber-specification-round3-20210131.pdf

[45] E. Fujisaki and T. Okamoto, “Secure integration of asymmetric and symmetric
encryption schemes,” Journal of Cryptology, vol. 26, no. 1, pp. 80–101, 2013.

[46] A. Viti, A. Terzi, and L. Bertolaccini, “A practical overview on probability distribu-
tions,” Journal of thoracic disease, vol. 7, no. 3, p. E7, 2015.

[47] A. Basso, J. M. Bermudo, J.-P. D’Anvers, and etal., “Saber: Mod-
lwr based kem (round 3 submission),” October 2020. [Online]. Available:
www.esat.kuleuven.be/cosic/pqcrypto/saber/files/saberspecround3.pdf

[48] E. Alkim, Roberto, Avanzi, J. Bos, L. Ducas, and etal., “Newhope
algorithm specification and supporting document,” July 2019. [Online]. Available:
https://newhopecrypto.org/data/NewHope-2019-07-10.pdf

https://eprint.iacr.org/2018/1225
https://ntru.org/f/ntru-20190330.pdf
https://pq-crystals.org/kyber/data/kyber-specification-round3-20210131.pdf
www.esat.kuleuven.be/cosic/pqcrypto/saber/files/saberspecround3.pdf
https://newhopecrypto.org/data/NewHope-2019-07-10.pdf


22 Analyzing the Potential of TTA for Lattice-based Cryptography Algorithms

[49] P. Jääskeläinen, T. Viitanen, J. Takala, and H. Berg, HW/SW Co-design Toolset for
Customization of Exposed Datapath Processors. Springer International Publishing,
2017, pp. 147–164. [Online]. Available: https://doi.org/10.1007/978-3-319-49679-5-8

[50] K. Asanovic, R. Avizienis, J. Bachrach, S. Beamer, D. Biancolin, C. Celio, H. Cook,
D. Dabbelt, J. Hauser, A. Izraelevitz et al., “The rocket chip generator,” EECS
Department, University of California, Berkeley, Tech. Rep. UCB/EECS-2016-17,
2016.

[51] J. Bachrach, H. Vo, B. Richards, Y. Lee, A. Waterman, R. Avižienis, J. Wawrzynek,
and K. Asanović, “Chisel: constructing hardware in a scala embedded language,” in
DAC Design Automation Conference 2012. IEEE, 2012, pp. 1212–1221.

[52] F. Zaruba and L. Benini, “The cost of application-class processing: Energy and perfor-
mance analysis of a linux-ready 1.7-ghz 64-bit risc-v core in 22-nm fdsoi technology,”
IEEE Transactions on Very Large Scale Integration (VLSI) Systems, vol. 27, no. 11,
pp. 2629–2640, Nov 2019.

[53] J. Balkind, K. Lim, F. Gao, J. Tu, D. Wentzlaff, M. Schaffner, F. Zaruba, and
L. Benini, “Openpiton+ ariane: The first open-source, smp linux-booting risc-v
system scaling from one to many cores,” in Workshop on Computer Architecture
Research with RISC-V (CARRV), 2019, pp. 1–6.

[54] B. Przybus, “Xilinx redefines power, performance, and design productivity with three
new 28 nm fpga families: Virtex-7, kintex-7, and artix-7 devices,” 2010.

https://doi.org/10.1007/978-3-319-49679-5-8

	Introduction
	Literature Review
	Lattice-based Post-Quantum Cryptography
	Nth Degree Truncated Polynomial Ring Units (NTRU)
	Crystals-Kyber
	Saber
	NewHope

	TTA based Co-design Environment (TCE)
	64-bit RISC-V and TTA processors
	Rocket Core
	CVA6
	Our 64-bit TTA Design: TTA64 

	Experiments
	Analysis for Six Different TTA64 Configurations
	Analysis for Different Transport Bus Counts

	Conclusion

