
More Efficient Adaptively Secure Revocable Hierarchical

Identity-based Encryption with Compact Ciphertexts:

Achieving Shorter Keys and Tighter Reductions

Atsushi Takayasu∗

April 23, 2021

Abstract

Revocable hierarchical identity-based encryption (RHIBE) is a variant of the standard hier-
archical identity-based encryption (HIBE) satisfying the key revocation functionality. Recently,
the first adaptively secure RHIBE scheme with compact ciphertexts was proposed by Emura
et al. by sacrificing the efficiency of the schemes for achieving adaptive security so that the
secret keys are much larger than Seo and Emura’s selectively secure scheme with compact ci-
phertexts. In this paper, we propose a more efficient adaptively secure RHIBE scheme with
compact ciphertexts. Our scheme has much shorter secret keys and key updates than Emura
et al.’s scheme. Moreover, our scheme has much shorter key updates than Seo and Emura’s
selectively secure scheme. Emura et al. proved the adaptive security of their scheme by re-
ducing the security of the underlying HIBE schemes to that of their proposed RHIBE scheme,
where the adaptive security of the HIBE scheme is inherently proven through the dual system
encryption methodology. In contrast, we prove the adaptive security of the proposed RHIBE
scheme directly through the dual system encryption methodology. Furthermore, our security
proof achieves a tighter reduction than that of Emura et al.

∗National Institute of Information and Communications Technology (NICT), Japan. takayasu@nict.go.jp

1

Contents

1 Introduction 3
1.1 Background . 3
1.2 Our Contribution . 3
1.3 Technical Overview . 4
1.4 Related Work . 5
1.5 Roadmap . 6

2 Preliminaries 6
2.1 Bilinear Groups . 6
2.2 RHIBE . 7

3 Proposed RHIBE Scheme 10
3.1 CS Method . 10
3.2 Construction . 10
3.3 Correctness . 15

4 Main Theorem 17
4.1 Auxiliary Distributions . 18
4.2 Proof of Main Theorem . 19

5 Adaptive Security against the Type-II Adversary 20
5.1 Proof of Lemma 2 . 25

6 Adaptive Security against the Type-I Adversary 40
6.1 Proof of Lemma 1 . 46

7 Comparison 57
7.1 Comparison among RHIBE Schemes with Compact Ciphertexts 58
7.2 Comparison among RHIBE Schemes with Adaptive Security 58

8 Conclusion 60

2

1 Introduction

1.1 Background

Identity-based encryption (IBE) [Sha84] is an extension of the traditional public key encryption.
We can use an arbitrary string ID as the public key of IBE. The key generation center (KGC) of
IBE takes the master public key MPK and ID as input and computes a secret key skID. Hierarchical
IBE (HIBE) is an extension of IBE. In HIBE, a vector of arbitrary strings ID = (id1, . . . , idℓ) can
be used as the public key of HIBE. In an HIBE system, not only the KGC, but also the user ID′

with a secret key skID′ can create a secret key skID iff ID′ is a prefix of ID. So far, several efficient
and adaptively secure HIBE schemes have been proposed over prime-order pairing groups (e.g.,
[BKP14, CGW15, CG17, CW14, GCTC16, LP19, LP20a, LP20b, Lew12, OT15, RS14, Wat09])
through Waters’ dual system encryption methodology [Wat09].

Despite the convenience of using an HIBE system, such systems do not have a naive way to
revoke malicious users dynamically and efficiently. Boldyreva et al. [BGK08] resolved this problem
by introducing revocable IBE (RIBE), a variant of IBE with a scalable revocation functionality.
They proposed the first RIBE scheme by utilizing a subset cover framework [NNL01] such as the
complete subtree (CS) method. Then, Seo and Emura [SE13b] refined the security model of RIBE
by introducing a new security notion called decryption key exposure resistance (DKER). Later, Seo
and Emura [SE13a] introduced revocable HIBE (RHIBE). Seo and Emura [SE15] and Katsumata
et al. [KMT19] refined the security model by introducing the DKER and an insider security as the
security requirements of RHIBE.

Although there are several adaptively secure RIBE schemes over prime-order pairing groups
under the standard assumptions [LV09, ML19, SE13b, TW21], the first hierarchical analog was
recently proposed by Emura et al. [ETW20]. Emura et al.’s scheme achieves compact ciphertexts
or compact master public keys. Specifically, Emura et al. introduced several algebraic properties
of pairing-based HIBE schemes and proposed a semi-generic construction of RHIBE from pairing-
based HIBE, e.g., [CG17, CW14, GCTC16]. Thus, they used those HIBE schemes whose adaptive
security was proved through the dual system encryption methodology as a building block and con-
structed adaptively secure RHBIE schemes. To achieve adaptive security, Emura et al. sacrificed
the efficiency; their proposed RHIBE schemes have much larger secret keys than the existing selec-
tively secure RHIBE schemes. Therefore, constructing more efficient RHIBE schemes with adaptive
security is an interesting research topic. Recently, other adaptively secure RHIBE schemes have
been proposed by Lee and Kim [LK21] and Emura et al. [ETW21] although both schemes cannot
achieve compact ciphertexts.

1.2 Our Contribution

In this paper, we propose a more efficient adaptively secure RHIBE scheme with compact cipher-
texts. Our RHIBE scheme is a modification of Chen and Gong’s HIBE scheme with compact
ciphertexts [CG17] that satisfies adaptive security under the standard k-linear assumption. We
followed the design principle of Lee and Park’s selectively secure RHIBE scheme [LP18] and con-
structed the proposed RHIBE scheme. Our proposed RHIBE scheme has much shorter secret keys
and key updates than those of Emura et al.’s RHIBE scheme [ETW20], which was constructed from
the same Chen and Gong’s HIBE scheme. Moreover, our proposed RHIBE scheme has much shorter
key update than Seo and Emura’s selectively secure scheme with compact ciphertexts [SE15].

3

1.3 Technical Overview

We provide a brief overview of our proof technique. Similar to the schemes of Emura et al. and Lee
and Park, the master secret key k of our scheme is split into ID’s secret key skID and the parent user
pa(ID)’s key update kupa(ID),T at time period T as two-out-of-two secret sharing. More concretely,
skID contains several sub-secret keys skID,θ, and kupa(ID),T contains several sub-key updates kupa(ID),T,θ
that are associated with nodes θ in a binary tree BTpa(ID) managed by pa(ID). Specifically, skID,θ
and kupa(ID),T are HIBE secret keys with kpa(ID),θ and k − kpa(ID),θ as the master secret key-parts,
respectively, where kpa(ID),θ is the uniformly random element to mask the master secret key k.
Given the key update kupa(ID),T, a user ID can decrypt ciphertext ctID,T in the same time period T

iff there are skID,θ and kupa(ID),T that share the same node θ. In other words, skID,θ and kupa(ID),T
associated with the same node θ can delete the random mask kpa(ID),θ and exploit the true master
secret key k.

Overview of Emura et al.’s Proof. Emura et al. [ETW20] proved the adaptive security by
simply extending the technique of the selectively secure RHIBE scheme. First, they introduced the
adaptive node division technique that divides all nodes θ in the security proof into exclusive two
groups. Let (ID⋆, T⋆) denote the tuple of the challenge identity and challenge time period. Emura
et al.’s adaptive node division technique ensures that all skID,θ whose nodes are members of the first
group satisfy ID /∈ prefix+(ID⋆), whereas all kupa(ID),T,θ whose nodes are members of the second group
satisfy pa(ID) /∈ prefix+(ID⋆) ∨ T ̸= T⋆. Then, Emura et al. switched the positions of the master
secret key k so that skID,θ and kupa(ID),T,θ associated with the node θ in the first group are HIBE
secret keys with k− kpa(ID),θ and kpa(ID),θ, respectively, as the master secret key-parts. Therefore,
the reduction algorithm itself can create all skID,θ and kupa(ID),T,θ associated with the node θ in
the second and first groups, respectively, since the master secret key k is not required. Moreover,
the reduction algorithm could interact with the HIBE challenger and receive skID,θ and kupa(ID),T,θ
associated with the node θ in the first and second groups based on the conditions ID /∈ prefix+(ID⋆)
and pa(ID) /∈ prefix+(ID⋆) ∨ T ̸= T⋆, respectively.

Here, the one problem to avoid is that the adversary can receive not only the decryption-
purpose secret keys skID,θ, but also the delegation-purpose secret key delkpa(ID),θ. In short, setting
delkpa(ID),θ = kpa(ID),θ as the delegation-purpose secret keys is sufficient for achieving correctness;
however, it means that the adversary can receive kpa(ID),θ. In this case, we cannot switch the
positions of the master secret key k since the reduction algorithm cannot answer delkpa(ID),θ =
k − kpa(ID),θ in the first group. Therefore, Emura et al. set the delegation-purpose secret keys
delkpa(ID),θ as the HIBE secret keys with kpa(ID),θ as the master secret key-part. As a result, even
when the delegation-purpose secret key delkpa(ID),θ becomes the HIBE secret key with k− kpa(ID),θ

after switching the master secret key, the reduction algorithm can interact with the HIBE challenger
and receive the corresponding HIBE secret keys delkpa(ID),θ owing to the condition that pa(ID) /∈
prefix+(ID⋆). In contrast, the modification to answer delkpa(ID),T results in a larger secret key.

Overview of Our Proof. Although Emura et al. proved the adaptive security by reducing
the security of the underlying HIBE scheme to the security of their proposed RHBIE scheme,
we prove the adaptive security of our proposed RHIBE scheme directly by Waters’ dual system
encryption methodology [Wat09] and its variants [CGW15, CG17, CW14]. To prove the security
of HIBE through the dual system encryption methodology, we use semi-functional distributions
for the challenge ciphertexts and secret keys in addition to the normal distributions in the real
scheme. In brief, the semi-functional secret keys are HIBE secret keys for the same identity with
k+ αa⊥ as the master secret key-part, where a⊥ is a specific vector, and α is a uniformly random
element in Zp. The normal secret keys can decrypt both normal and semi-functional ciphertexts.
Although the semi-functional secret keys can decrypt normal ciphertexts, they cannot decrypt

4

semifuncitonal ciphertexts. In the proof, we first change the challenge ciphertexts from normal
to semi-functional. Then, we change each secret key queried by the adversary from normal to
semi-functional one by one. Once all the secret keys skID are changed to the semi-functional type,
αa⊥ masks the distribution of the master secret key k; then, the plaintext of the semi-functional
challenge ciphertext is information theoretically hidden.

Unlike in Emura et al.’s proof, we do not switch the positions of the master secret key k so
that we set the delegation-purpose secret keys delkpa(ID),θ = kpa(ID),θ as the compact form. In turn,
we change the position of the semi-functional randomness; this process is called a semi-functional
randomness switching that was implicitly introduced by Takayasu and Watanabe [TW21]. When
pa(ID) /∈ prefix+(ID⋆), we change all kupa(ID),T,θ to be semi-functional through the standard dual
system argument. To prove kupa(ID),T,θ such that pa(ID) ∈ prefix+(ID⋆), we employ the semi-
functional randomness switching. Here, we provide an overview of the simplest form of the semi-
functional randomness switching. If the adversary does not receive both the parent user pa(ID)’s
secret key skpa(ID) and ID’s secret key skID such that ID ∈ prefix+(ID⋆), the reduction algorithm
changes all secret keys skID from normal to be semi-functional through the standard dual system
argument. Specifically, skID becomes the HIBE secret keys with kpa(ID),θ + αID,θa

⊥ as the maser
secret key-parts, where αID,θ is the uniformly random element in Zp. Once all the secret keys skID are
changed to be semi-functional, skID and kupa(ID),T,θ are the HIBE secret keys with kpa(ID),θ+αID,θa

⊥

and k − kpa(ID),θ, respectively, as the master secret key-parts. Note that the adversary does not

receive delkpa(ID),θ = kpa(ID),θ. Observe that kpa(ID),θ +αa⊥ is the uniformly random element; thus,

if we set delkpa(ID),θ = kpa(ID),θ + αa⊥, delkpa(ID),θ is properly distributed. Furthermore, skID and

kupa(ID),T,θ become HIBE secret keys with delkpa(ID),θ + (αID,θ − α)a⊥ and k + αa⊥ − delkpa(ID),θ,
respectively, as the master secret key-parts. Here, αID,θ − α is a properly distributed uniformly
random element in Zp. Thus, we successfully switch the positions of the semi-functional random
αa⊥ from skpa(ID),θ to kupa(ID),T,θ by using delkpa(ID),θ as the bridge. By using semi-functional
randomness switching, we can change all required keys to be semi-functional and successfully prove
the adaptive security of the proposed RHIBE scheme.

1.4 Related Work

Boneh and Franklin [BF01] pointed out the necessity of the revocation functionality for IBE.
Boldyreva et al. [BGK08] introduced the concept of RIBE for achieving the scalable revocation
and proposed the first RIBE scheme with selective security. The first adaptively secure RIBE
scheme was proposed by Libert and Vergnaud [LV09]. Seo and Emura [SE13b] introduced a new
security notion for RIBE called DKER and proposed the first RIBE scheme with DKER. All these
schemes are constructed over pairing groups. Subsequently, several adaptively secure RIBE schemes
with DKER were proposed over pairing groups [ISW17, Lee19, LLP17, WLXZ14, WES17], improv-
ing the efficiency and/or security. Then, RIBE schemes from the LWE assumption [CLL+12], the
CDH assumption without pairing and the factoring assumption of Blum integers [HLCL18], and the
code-based assumption [CCKS18] were proposed though they did not satisfy DKER. To break the
varier of DKER without pairing, Takayasu and Watanabe [TW17] proposed a lattice-based RIBE
scheme with bounded DKER. Their scheme, unlike other known RIBE schemes with DKER, satis-
fies the anonymity. Takayasu and Watanabe [TW21] also constructed a pairing-based anonymous
RIBE scheme with bounded DKER. Katsumata et al. [KMT19] proposed the generic construction
of RIBE with DKER by combining RIBE without DKER and 2-level HIBE. The result implies that
RIBE without DKER implies RIBE with DKER based on [DG17]. Ma and Lin [ML19] proposed
the generic construction of RIBE with DKER from 2-level HIBE.

RHIBE was first introduced by Seo and Emura [SE13a]. Unfortunately, it does not have a

5

convincing security definition since the adversary cannot receive the delegation-purpose secret keys
delkpa(ID),θ of corrupted parent users pa(ID). Seo and Emura [SE15] refined the security definition
to resolve the above issue by introducing a new security notion called insider security; encryption
schemes are regarded as RHIBE only when they satisfy insider security. Furthermore, they also
defined DKER for RHIBE. In the security model, several RHIBE schemes were proposed over
pairing-groups [ESY16, LP18, RLPL15, SE15]. Katsumata et al. [KMT19] further refined the
security model and introduced a stronger notion of DKER. Katsumata et al. proposed a lattice-
based RHIBE scheme, and Wang et al. [WZH+19] proposed a more efficient variant. None of these
RHIBE schemes in the standard model satisfy adaptive security. Furthermore, most pairing-based
RHIBE schemes [LP18, RLPL15, SE15] are based on nonstandard q-type assumptions. Emura et
al. [ETW20] proposed the first adaptively secure RHIBE schemes in the standard model. They
introduced several algebraic properties of known pairing-based HIBE schemes and proposed the
generic construction of RHIBE from pairing-based HIBE. Thus, the instantiations capture the
adaptively secures RHIBE schemes under the standard k-linear assumption. Recently, Lee and
Kim [LK21] and Emura et al. [ETW21] proposed a generic construction of RHIBE from HIBE.
These schemes inherently suffer from large ciphertexts.

1.5 Roadmap

In Section 2, we review the pairing groups and the definition of RHIBE. In Section 3, we propose
our RHIBE scheme. In Section 4, we provide the main security theorem and its high level proof. In
Sections 5 and 6, we prove the core lemmata for proving the main security theorem. In Section 7,
we compare our proposed RHIBE scheme with the other known RHIBE schemes.

2 Preliminaries

For two non-negative integers a and b such that a ≤ b, let [a, b] := {a, a+1, . . . , b} and [a] := [1, a].
Let a lowercase bold letter a and an uppercase bold letter A denote a column vector and matrix,
respectively. Throughout the paper, let λ denote the security parameter. For a finite set S, let
x←R S denote sampling x from S uniformly at random. For two probability distributions P and Q
with a support S, let 1

2

∑
x∈S |P (x)−Q(x)| denote the statistical distance. For two security games

GameA and GameB, let GameA ≈c GameB denote that GameA and GameB are computationally
indistinguishable from an adversary’s view and let GameA ≡ GameB denote that GameA and GameB
are identically distributed from an adversary’s view. We use the same notation ≈c and ≡ for two
probability distributions.

2.1 Bilinear Groups

Let G denote a prime-order pairing groups generator. Given the security parameter 1λ as input, G
outputs (p,G1,G2,GT , g1, g2, e), where p is a Θ(λ)-bit prime number, G1,G2,GT are cyclic groups
of order p, g1 and g2 are the generators of G1 and G2, respectively, and e : G1 × G2 → GT is an
efficiently computable non-degenerate bilinear map. Let [a]1 := ga1 ∈ G1 denote a group element,
where a ∈ Zp. Similarly, let [a]1 and [A]1 denote a vector and matrix of group elements. We use
the same notations for the other groups G2 and GT . For two matrices A ∈ Zℓ×m

p and B ∈ Zℓ×n
p ,

let e([A]1, [B]2) = [A⊤B]T .

Next, we review the matrix decisional Diffie-Hellman (MDDH) assumption [EHK+17].

6

Definition 1 (Matrix Distribution). For a positive integer k, a matrix distribution Dk outputs a

rank k matrix A ∈ Z(k+1)×k
p and non-zero vector a⊥ ∈ Zk+1

p satisfying A⊤a⊥ = 0.

Without loss of generality, we assume that the top k × k sub-matrix of A output by Dk is full-
rank. Briefly speaking, for A← Dk the MDDH assumption states that ([A]1, [As]1) ≈c ([A]1, [u]1)
for uniformly random vectors s←R Zk

p and u←R Zk+1
p .

Definition 2 (MDDH Assumption in G1). Let (p,G1,G2,GT , g1, g2, e)← G(1λ) denote a descrip-
tion of a pairing group. The MDDH assumption in G1 states that the advantage function

AdvMDDH-G1
A (λ) :=

∣∣∣Pr[A(G(1λ), [A]1, [As]1) = 1
]
− Pr

[
A(G(1λ), [A]1, [u]1) = 1

]∣∣∣
is negligible in λ for all PPT adversary A, where A← Dk, s←R Zk

p,u←R Zk+1
p .

We also define the MDDH assumption in G2 in the same way. The k-linear assumption is a
particular case of the MDDH assumption when the top k× k sub-matrix of A is a diagonal matrix
with ai ←R Z∗

p in i-th diagonal and the bottom row vector of A is (1, 1, . . . , 1). In this case, we

can set a⊥ = (a−1
1 , . . . , a−1

k ,−1)⊤. The symmetric external Diffie-Hellman (SXDH) assumption is a
particular case of the k-linear assumption for k = 1.

2.2 RHIBE

In this section, we review the definition for RHIBE by following [KMT19].

Hierarchical Identities. Let I denote an identity space and let id ∈ I denote an element identity.
Let ID = (id1, . . . , idℓ) denote an identity that is a vector of element identities and let |ID| := ℓ
denote the length of the identity. For ID = (id1, . . . , id|ID|), let pa(ID) := (id1, . . . , id|ID|−1 =
id|pa(ID)|) denote a parent of ID and let ID[ℓ] := (id1, . . . , idℓ) denote a length ℓ prefix of ID for
ℓ ≤ |ID|. Let prefix+(ID) :=

{
ID[1], ID[2], . . . , ID[|ID|] = ID

}
denote a set of identities that are prefix

of ID and ID itself.

Syntax. An RHIBE scheme Π consists of six algorithms (Setup,Enc,GenSK,KeyUp,GenDK,Dec)
defined as follows.

• Setup(1λ, L)→ (MPK, skkgc): The setup algorithm takes security parameter 1λ and the max-
imum depth of the hierarchy L ∈ N as input, and outputs a master public key MPK and the
KGC’s secret key skkgc.

• Enc(MPK, ID, T,M) → ctID,T: The encryption algorithm takes MPK, an identity ID ∈ I |ID|,
time period T ∈ T , and a plaintext M ∈M as input, and outputs a ciphertext ctID,T.

• GenSK(MPK, skpa(ID), ID)→ (skID, sk
′
pa(ID)): The secret key generation algorithm takes MPK,

a parent’s secret key skpa(ID), and an identity ID ∈ Ipa(ID) as input, and outputs skID for ID
and the “updated” sk′pa(ID).

• KeyUp(MPK, T, skID,RLID,T, kupa(ID),T)→ (kuID,T, sk
′
ID): The key update information generation

algorithm takes MPK, T ∈ T , skID for ID ∈ I |ID|, revocation list RLID,T ⊆ IID, and a parent’s
key update kupa(ID),T as input, and outputs kuID,T and the “updated” sk′ID. As a special case,
we define kupa(kgc),T := ⊥ for all T ∈ T .
• GenDK(MPK, skID, kupa(ID),T)→ dkID,T or ⊥: The decryption key generation algorithm, which

takes MPK, skID for ID ∈ I |ID|, and kupa(ID),T as input, and outputs a decryption key dkID,T for
T ∈ T or the special symbol ⊥, indicating that ID or some of its ancestors have been revoked.

7

• Dec(MPK, dkID,T, ctID,T) → M: The decryption algorithm takes MPK, dkID,T, and ctID,T as
input, and outputs the decryption result M.

Correctness. We require ciphertext ctID,T to be decrypted properly by a correctly-generated
decryption key dkID,T for the same ID and T when ID is not revoked at T. In other words, for
all λ ∈ N, L ∈ N, (PP, skkgc) ← Setup(1λ, L), ℓ ∈ [L], ID ∈ (I)ℓ, T ∈ T , M ∈ M, RLkgc,T ⊆ I,
RLID[1],T ⊆ IID[1] , . . . ,RLID[ℓ−1],T ⊆ IID[ℓ−1]

, if ID′ ̸∈ RLpa(ID′),T holds for all ID′ ∈ prefix+(ID). Then,
we require M′ = M to hold after executing the following procedures.

(1) (kukgc,T, skkgc)← KeyUp(PP, T, skkgc,RLkgc,T,⊥).
(2) For all ID′ ∈ prefix+(ID) (in short-to-long order), execute the following (2.1) and (2.2):

(2.1) (skID′ , sk
′
pa(ID′))← GenSK(PP, skpa(ID′), ID

′).

(2.2) (kuID′,T, sk
′
ID′)← KeyUp(PP, T, skID′ ,RLID′,T, kupa(ID′),T).

1

(3) dkID,T ← GenDK(PP, skID, kupa(ID),T).
2

(4) ct← Enc(PP, ID, T,M).
(5) M′ ← Dec(PP, dkID,T, ct).

Security Definition. Let Π be an RHIBE scheme. Adaptive security of RHIBE is defined by
a security game between adversary A and challenger C. The game is parameterized by security
parameter λ and polynomial L = L(λ) representing the maximum hierarchical depth. Let a global
counter Tcu denote the current time period initialized as 1. Tcu controlls C’s responses to A’s queries
and the game terminates when Tcu = |T |. Intuitively, A can receive all secret keys skID, key updates
kuID,T, and decryption keys dkID,T if they are insufficient to derive dkID⋆,T⋆ for target tuple (ID⋆, T⋆).
The game proceeds as follows.

C runs (MPK, skkgc) ← Setup(1λ, L) and prepares SKList, which initially contains (kgc, skkgc),
and into which pairs of (ID, skID) generated during the game are stored. When a new skID is
generated or existing ones are updated by executing GenSK or KeyUp, C stores (ID, skID) or updates
them in SKList. Hereafter, we omit the descriptions of this addition/update for simplicity. Then,
C executes (kukgc,1, sk

′
kgc) ← KeyUp(MPK, Tcu = 1, skkgc,RLkgc,1 = ∅,⊥) to generate a key update

for the initial time period Tcu = 1 and gives (MPK, kukgc,1) to A.
Then, A may adaptively make the following five types of a query to C.

Secret Key Generation Query: Upon a query ID ∈ I |ID| from A, C checks if it holds that

– (ID, ∗) /∈ SKList and (pa(ID), skpa(ID)) ∈ SKList for some skpa(ID).

This condition ensures that C has not still created skID and C has already created skpa(ID).
If the condition does not hold, C returns ⊥ to A. Otherwise, C executes (skID, sk

′
pa(ID)) ←

GenSK(MPK, skpa(ID), ID). If |ID| = 1, or 2 ≤ |ID| ≤ L − 1 and pa(ID) /∈ RLpa(pa(ID)),Tcu ,
then C executes (kuID,T, sk

′
ID) ← KeyUp(PP, T, skID,RLID,T := ∅, kupa(ID),T) for T ∈ [Tcu] and

returns (kuID,T)T∈[Tcu] to A. If 2 ≤ |ID| ≤ L and pa(ID) ∈ RLpa(pa(ID)),Tcu , then C executes
RLpa(ID),Tcu ← RLpa(ID),Tcu ∪ {ID} and returns nothing to A.
Note that all ID in the following queries (except the challenge query) must be “activated”, in
the sense that skID has already been generated via this query; thus, (ID, skID) ∈ SKList.

Secret Key Reveal Query: Until the challenge query, upon a query ID ∈ I |ID| from A, C finds
skID from SKList and returns it to A. After the challenge query, C checks if it holds that

– If Tcu ≥ T⋆ and ID ∈ prefix+(ID⋆), then ID′ ∈ RLpa(ID′),T⋆ for some ID′ ∈ prefix+(ID).

This condition ensures that if ID is the ancestor of the challenge ID⋆, ID or an ancestor of
ID must be revoked by the challenge T⋆. If the condition does not hold, C returns ⊥ to A;

1If |ID′| = L, this step is skipped.
2Here, skID is the latest secret key, i.e., the result of Step (2).

8

otherwise, C finds skID from SKList and returns it to A.
Revoke & Key Update Query: Until the challenge query, upon a query RLTcu+1 ⊆ I≤L (denot-

ing the set of identities to be revoked in the next time period Tcu+1) from A, C checks if the
following conditions are satisfied simultaneously.

– RLID,Tcu ⊆ RL for all ID ∈ I≤L−1 that appear in SKList.

– For all identities ID such that (ID, ∗) ∈ SKList and ID′ ∈ prefix+(ID), if ID′ ∈ RL, then
ID ∈ RL.

The first condition ensures that once ID has been revoked, the same ID must be continuously
revoked. The second condition ensures that ID must be revoked if one of its ancestor ID′ ∈
prefix+(ID) is revoked. After the challenge query, C also checks

– ID ∈ RL if ID ∈ prefix+(ID⋆), Tcu = T⋆ − 1, and skID′ for some ID′ ∈ prefix+(ID) has been
revealed previously by the secret key reveal query.

The condition ensures that once A receives skID for some ID ∈ prefix+(ID⋆), the same ID

must be revoked at T⋆. If these conditions do not hold, then C returns ⊥ to A. Otherwise, C
increments the current time period by Tcu ← Tcu+1 and executes the following operations (1)
and (2) for all “activated” and non-revoked identities ID, i.e., ID ∈ I≤L−1 ∪ {kgc}, (ID, ∗) ∈
SKList and ID /∈ RL, in breadth-first order in the identity hierarchy.

(1) Set RLID,Tcu ← RL ∩ IID, where we define Ikgc := I.
(2) Run (kuID,Tcu , sk

′
ID) ← KeyUp(MPK, Tcu, skID,RLID,Tcu , kupa(ID),Tcu), where kupa(kgc),Tcu :=

⊥.
Finally, C returns all of the generated {kuID,Tcu}(ID,∗)∈SKList\RL to A.

Decryption Key Reveal Query: Until the challenge query, upon a query (ID, T) ∈ I |ID| × T
from A, C checks

– If T ≤ Tcu holds.

After the challenge query, C also checks

– If (ID, T) ̸= (ID⋆, T⋆) holds.

If these conditions are not satisfied, then C returns ⊥ to A. Otherwise, C finds skID from
SKList, runs dkID,T ← GenDK(MPK, skID, kupa(ID),T), and returns dkID,T to A.

Challenge Query: Note that A is permitted to make this query exactly once. Upon a query
(ID⋆, T⋆,M⋆

0,M
⋆
1) such that |M⋆

0| = |M⋆
1| from A, C determines if the following conditions are

satisfied simultaneously.

– If T⋆ ≤ Tcu, A has not submitted (ID⋆, T⋆) as a decryption key reveal query.

– If T⋆ ≤ Tcu and skID for ID ∈ prefix+(ID⋆) has been revealed to A, then ID ∈ RLpa(ID),T⋆−1.

If these conditions are not satisfied, then C returns ⊥ to A. Oth-
erwise, C selects a bit b ∈ {0, 1} uniformly at random, runs ct⋆ ←
Enc(MPK, ID⋆, T⋆,M⋆

b), and returns the challenge ciphertext ct⋆ to A.
At some point, A outputs b′ ∈ {0, 1} as its guess for b and terminates.

This completes the description of the game. In this game, A’s adaptive security advantage is
defined by AdvRHIBEΠ,L,A(λ) := 2 · |Pr[b′ = b]− 1/2|.

Definition 3. We say that an RHIBE scheme Π of depth L satisfies adaptive security if the
advantage AdvRHIBEΠ,L,A(λ) is negligible for all PPT adversaries A.

9

3 Proposed RHIBE Scheme

In this section, we propose an adaptively secure RHIBE scheme. First, we present the CS method
in Section 3.1. Then, we present the proposed RHIBE scheme in Section 3.2. Finally, we prove the
correctness of the scheme in Section 3.3.

3.1 CS Method

Before presenting the CS method, we summarize the notation of binary trees. Let BTpa(ID) denote
a binary tree with N leaves managed by a parent user pa(ID). We use θ to denote a node in a
binary tree. Especially, we use η to denote a leaf node in a binary tree. For a leaf node η, let
Path(BTpa(ID), η) denote a path in a binary tree BTpa(ID) from the root node to the leaf node η.

In this paper, we describe the CS method as follows.

CS.SetUp(1λ, pa(ID))→ BTpa(ID): The setup algorithm takes the security parameter 1λ and a parent

identity pa(ID) ∈ I≤L−1 as input, and outputs the description of a binary tree BTpa(ID) for
pa(ID).

CS.Assign(BTpa(ID),ALpa(ID), ID)→ (ηID,AL′pa(ID)): The assign algorithm takes binary tree BTpa(ID),

a set of leaf nodes ALpa(ID), and an identity ID ∈ I |ID|, and assigns ID to a leaf node ηID ∈
Lpa(ID) \ ALpa(ID) and updates AL′pa(ID) ← ALpa(ID) ∪ {ηID}. Finally, it outputs ηID and

AL′pa(ID).
CS.Cover(BTpa(ID),RLpa(ID),T)→ KUN pa(ID),T: The cover algorithm takes a binary tree BTpa(ID) and

a set of leaf nodes RLpa(ID),T, and outputs a set of nodes KUN pa(ID),T.

CS.Match(KUN pa(ID),T, ηID)→ θ or ⊥: The matching algorithm takes a set of nodes KUN pa(ID),T

output by CS.Cover and a leaf node ηID as input, and outputs θ ∈ KUN pa(ID),T ∩
Path(BTpa(ID), ηID) if such a node exists; otherwise, it outputs an invalid symbol ⊥.

The CS method satisfies the following properties:

Correctness: For any leaf node ηID ∈ ALpa(ID) \ RLpa(ID),T, it holds that Path(BTpa(ID), ηID) ∩
KUN pa(ID),T ̸= ∅.

Security: For any leaf node ηID ∈ RLpa(ID),T, it holds that Path(BTpa(ID), ηID) ∩ KUN pa(ID),T = ∅.
Scalability: It holds that |KUN pa(ID),T| = O(|RLpa(ID),T| log

(
N/|RLpa(ID),T|

)
).

Remark 1. In this paper, we did not define how CS.Assign algorithm samples the leaf node ηID
from Lpa(ID) \ALpa(ID). In most R(H)IBE schemes such as adaptively secure Emura et al.’s RHIBE
schemes [ETW20], ηID should be sampled from Lpa(ID) \ ALpa(ID) uniformly at random so that
their security proof works. In contrast, our security proof does not require any conditions for the
distribution of ηID. For example, we can set ηID as the leftmost leaf node in Lpa(ID) \ ALpa(ID).

3.2 Construction

Here, we provide an overview of our proposed RHIBE scheme. In our RHIBE scheme, each parent
user pa(ID) manages a binary tree BTpa(ID) ← CS.SetUp(1λ, pa(ID)) and assigns their children users
ID to distinct leaf nodes ηID ← CS.Assign(BTpa(ID),ALpa(ID), ID). The secret key skID of the user
skID contains the sub-secret keys skID,θ associated with all nodes θ ∈ Path(BTpa(ID), ηID). The parent
user pa(ID) sets a set of leaf nodes RLpa(ID),T so that ηID ∈ RLpa(ID),T hold iff children users ID are
revoked at the time period T. The key update kupa(ID),T of a parent user pa(ID) contains sub-key
updates kupa(ID),T,θ associated with all nodes θ ∈ KUN pa(ID),T. We designed the proposed RHIBE
scheme so that children users ID can produce their decryption keys dkID,T iff their sub-secret keys

10

and their parent user pa(ID)’s sub-key updates share the same node. Thus, the correctness of the CS
method ensures that non-revoked users ID can produce their decryption keys dkID,T properly, while
the security of the CS method ensures that revoked users cannot produce them. Furthermore, the
scalability of the CS method ensures that the size of the key update kupa(ID),T grows logarithmically

with the maximum number of children users N . For simplicity, we set N = λΩ(1) so that the parent
user pa(ID) can register arbitrary polynomial numbers of children users in the RHIBE scheme.

We further provide an overview of how our RHIBE scheme achieves the revocation functionality
by following the Lee and Park’s RHIBE scheme [LP18]. In our RHIBE scheme, the KGC has the
master secret key MSK ∈ Zk+1

p as a part of skkgc. When the parent user pa(ID) creates a sub-secret
key skID,θ or a sub-key update kupa(ID),T,θ associated with a node θ ∈ BTpa(ID), the pa(ID) samples a

delegation key delkpa(ID),θ ←R Zk+1
p associated with the node θ. The sub-secret key skID,θ is an ID’s

HIBE secret key according to Chen and Gong’s scheme achieved by setting delkpa(ID),θ as a master
secret key. The key update kupa(ID),T consists of sub-key updates kupa(ID),T,θ associated with all

nodes θ ∈ KUN pa(ID),T and a helper key update kuID,T that is independent of any nodes θ ∈ BTpa(ID).
To create a key update kupa(ID),T, the parent user pa(ID) samples an ephemeral delegation key

delkpa(ID),T ←R Zk+1
p and creates the sub-key update kupa(ID),T,θ as a T’s IBE secret key of Chen

and Gong’s scheme by setting −delkpa(ID),T − delkpa(ID),θ as a master secret key whereas the helper

key update kuID,T as a multiplication of pa(ID)’s HIBE secret key and T’s IBE secret key of Chen
and Gong’s scheme by setting MSK+ delkpa(ID),T as a master secret key. That is, non-revoked users
have the HIBE/IBE secret keys of Chen and Gong’s scheme with the master secret keys delkpa(ID),θ,

−delkpa(ID),T − delkpa(ID),θ, and MSK + delkpa(ID),T for the same node θ. Thus, by multiplying all
the elements, the non-revoked users can produce decryption keys dkID,T with the master secret key
MSK. In contrast, non-revoked users cannot cancel the delegation keys delkpa(ID),θ from their own
sub-secret keys and the parent user pa(ID)’s key update. Thus, non-revoked users cannot produce
their decryption keys.

Then, we propose the following RHIBE scheme.

Setup(1λ)→ (MPK, skkgc) : Run (p,G1,G2,GT , g1, g2, e)← G(1λ) and sample A← Dk, uniformly

random matrices ((Vℓ)ℓ∈[0,L+2],Z) ←R (Z(k+1)×k
p)L+3 × Zk×k

p , and a random vector k ←R

Zk+1
p . Then, output

MPK :=
(
[A]1, ([V

⊤
ℓ A]1)ℓ∈[0,L+2], [Z]2, ([VℓZ]2)ℓ∈[0,L+2], [A

⊤k]T

)
and skkgc := (MSK := k, BTkgc), where MPK ∈ G(k+1)×k

1 ×(Gk×k
1)L+3×Gk×k

2 ×(G(k+1)×k
2)L+3×

Gk
T .

Enc(MPK, ID, T,M)→ ctID,T : Sample s ←R Zk
p, (v0, v1, . . . , v|ID|, vL+1) ←R Z|ID|+2

p , then output

ctID,T := (C0, C1, C
′
1, C2, tag, tag

′) ∈ Gk+1
1 × (Gk

1)
2 ×GT × Z2

p;

tag := v0 + v1id1 + · · ·+ v|ID|id|ID|, tag′ := v0 + vL+1T, C0 := [As]1,

C1 := [
(
V0 + id1V1 + · · ·+ id|ID|V|ID| + tagVL+2

)⊤
As]1,

C ′
1 := [

(
V0 + TVL+1 + tag′VL+2

)⊤
As]1, C2 := M · [s⊤A⊤k]T .

GenSK(MPK, skpa(ID), ID)→ skID: Run (ηID, BT
′
pa(ID))← CS.Assign(BTpa(ID), ID). Parse

skkgc = (k, BTkgc, (θ, delkkgc,θ)θ∈AN kgc
)

11

or

skpa(ID) =
(
(θ, skpa(ID),θ)θ∈Path(BTpa(pa(ID)),ηpa(ID)), BTpa(ID), (θ, delkpa(ID),θ)θ∈AN pa(ID)

)
if pa(ID) ̸= kgc.

Delegation Key Generation: If there is a node θ ∈ Path(BTpa(ID), ηID) \ AN pa(ID), sample

a delegation key delkpa(ID),θ := kpa(ID),θ ←R Zk+1
p and update BTpa(ID) by AN ′

pa(ID) ←
AN pa(ID) ∪ {θ} until Path(BTpa(ID), ηID) ⊆ AN pa(ID).

Sub-secret Key Generation: For each θ ∈ Path(BTpa(ID), ηID), retrieve a delegation key

delkpa(ID),θ = kpa(ID),θ, sample rID,θ ←R Zk
p, and compute a sub-secret key skID,θ :=

(SKID,θ,0,SKID,θ,1,SKID,θ,2, (S̃KID,θ,ℓ)ℓ∈[|ID|+1,L]) ∈ Gk
2 × (Gk+1

2)L−|ID|+2:

SKID,θ,0 := [ZrID,θ]2,

SKID,θ,1 := [kpa(ID),θ]2 · [
(
V0 + id1V1 + · · ·+ id|ID|V|ID|

)
ZrID,θ]2,

SKID,θ,2 := [VL+2ZrID,θ]2, S̃KID,θ,ℓ := [VℓZrID,θ]2.

Finally, run BTID ← CS.SetUp(1λ, ID), and output ID’s secret key

skID := ((θ, skID,θ)θ∈Path(BTpa(ID),ηID), BTID),

and an updated secret key sk′pa(ID)

sk′kgc = (k, BT′kgc, (θ, delkkgc,θ)θ∈AN ′
kgc
)

if pa(ID) = kgc, or

sk′pa(ID) =

(
(θ, skpa(ID),θ)θ∈Path(BTpa(pa(ID)),ηpa(ID)), BT

′
pa(ID),

(θ, delkpa(ID),θ)θ∈AN ′
pa(ID)

)

otherwise.

KeyUp(MPK, skID, T,RLID,T, kupa(ID),T)→ (kuID,T, sk
′
ID): Run KUN ID,T ← CS.Cover(BTID,RLID,T).

Parse

skkgc = (k, BTkgc, (θ, delkkgc,θ)θ∈AN kgc
)

or

skID =
(
(θ, skID,θ)θ∈Path(BTpa(ID),ηID), BTID, (θ, delkID,θ)θ∈AN ID

)
if ID ̸= kgc.

Delegation Key Generation: If there is a node θ ∈ KUN ID,T \AN ID, sample a delegation
key delkID,θ := kID,θ ←R Zk+1

p and update BTID by AN ′
ID ← AN ID∪{θ} until KUN ID,T ⊆

AN ID.

Ephemeral Delegation Key Generation: If ID = kgc, skip this step. Otherwise, sample
an ephemeral delegation key delkID,T := kID,T ←R Zk+1

p .

Sub-key Update Generation: For each θ ∈ KUN ID,T, retrieve a delegation key delkID,θ =
kID,θ and ephemeral delegation key delkID,T = kID,T, and proceed as follows:

12

Case of ID = kgc: Retrieve a master secret key MSK = k, sample tkgc,T,θ ←R Zk
p and

compute a sub-key update kukgc,T,θ := (KUkgc,T,θ,0,KUkgc,T,θ,1,KUkgc,T,θ,2) ∈ Gk
2 ×

(Gk+1
2)2:

KUkgc,T,θ,0 := [Ztkgc,T,θ]2,

KUkgc,T,θ,1 := [k− kkgc,θ]2 · [(V0 + TVL+1)Ztkgc,T,θ]2,

KUkgc,T,θ,2 := [VL+2Ztkgc,T,θ]2.

Case of ID ̸= kgc: Sample tID,T,θ ←R Zk
p and compute a sub-key update kuID,T,θ :=

(KUID,T,θ,0,KUID,T,θ,1,KUID,T,θ,2) ∈ Gk
2 × (Gk+1

2)2:

KUID,T,θ,0 := [ZtID,T,θ]2,

KUID,T,θ,1 := [kID,θ + kID,T]
−1
2 · [(V0 + TVL+1)ZtID,T,θ]2,

KUID,T,θ,2 := [VL+2ZtID,T,θ]2.

Helper Key Update Generation: If ID = kgc, skip this step. Otherwise, run
GenDK(MPK, skID, kupa(ID),T) algorithm to compute a helper decryption key dkID,T =

(DKID,T,0,DK
′
ID,T,0,DKID,T,1,DKID,T,2,DK

′
ID,T,2, (D̃KID,T,ℓ)ℓ∈[|ID|+1,L]) as in (2) or (3).

Retrieve an ephemeral delegation key delkID,T = kID,T, sample t̃ID,T, t̃
′
ID,T ←R Zk

p and

compute a helper key update kuID,T := (KUID,T,0,KU
′
ID,T,0,KUID,T,1,KUID,T,2,KU

′
ID,T,2,

(K̃UID,T,ℓ)ℓ∈[|ID|+1,L]) ∈ Gk
2 × (Gk+1

2)L−|ID|+4:

KUID,T,0 := DKID,T,0 · [Zt̃ID,T]2 = [ZtID,T]2,

KU
′
ID,T,0 := DK

′
ID,T,0 · [Zt̃

′
ID,T]2 = [Zt

′
ID,T]2,

KUID,T,1 := [kID,T]2 · DKID,T,1 · [
(
V0 + id1V1 + · · ·+ id|ID|V|ID|

)
Zt̃ID,T]2

· [(V0 + TVL+1)Zt̃
′
ID,T]2

= [k+ kID,T]2 · [
(
V0 + id1V1 + · · ·+ id|ID|V|ID|

)
ZtID,T]2

· [(V0 + TVL+1)Zt
′
ID,T]2, (1)

KUID,T,2 := DKID,T,2 · [VL+2Zt̃ID,T]2 = [VL+2ZtID,T]2,

KU
′
ID,T,2 := DKID,T,2 · [VL+2Zt̃

′
ID,T]2 = [VL+2Zt

′
ID,T]2,

K̃UID,T,ℓ := D̃KID,T,ℓ · [VℓZt̃ID,T]2 = [VℓZtID,T]2,

where tID,T = uID,T + t̃ID,T and t
′
ID,T = u′

ID,T + t̃
′
ID,T.

Finally, output a key update and updated secret key

kukgc,T = (θ, kukgc,T,θ)θ∈KUN kgc,T
, sk′kgc = (k, BT′kgc, (θ, delkkgc,θ)θ∈AN ′

kgc
)

if ID = kgc, or

kuID,T =
(
(θ, kuID,T,θ)θ∈KUN ID,T , kuID,T

)
,

sk′ID =
(
(θ, skID,θ)θ∈Path(BTpa(ID),ηID), BT

′
ID, (θ, delkID,θ)θ∈AN ′

ID

)
otherwise.

13

GenDK(MPK, skID, kupa(ID),T)→ dkID,T or ⊥: Parse

skID =
(
(θ, skID,θ)θ∈Path(BTpa(ID),ηID), BTID, (θ, delkID,θ)θ∈AN ID

)
and

kukgc,T = (θ, kukgc,T,θ)θ∈KUN kgc,T

if pa(ID) = kgc, or

kupa(ID),T =
(
(θ, kupa(ID),T,θ)θ∈KUN pa(ID),T

, kupa(ID),T

)
otherwise.

Helper Decryption Key Generation: Run CS.Match(KUN pa(ID),T, ηID) to find θ̃ ∈
KUN pa(ID),T ∩ Path(BTpa(ID), ηID) and proceed as follows:

Case of pa(ID) = kgc: Retrieve

skID,θ̃ = (SKID,θ̃,0, SKID,θ̃,1,SKID,θ̃,2, (S̃KID,θ̃,ℓ)ℓ∈[|ID|+1,L]),

kukgc,θ̃ = (KUpa(ID),T,θ̃,0,KUpa(ID),T,θ̃,1,KUpa(ID),T,θ̃,2),

sample ũID,T, ũ
′
ID,T ←R Zk

p, and compute a helper decryption key dkID,T = (DKID,T,0,

DK′
ID,T,0,DKID,T,1,DKID,T,2,DK

′
ID,T,2, (D̃KID,T,ℓ)ℓ∈[2,L]) ∈ Gk

2 × (Gk+1
2)L+3:

DKID,T,0 := SKID,θ̃,0 · [ZũID,T]2 = [ZuID,T]2,

DK′
ID,T,0 := KUkgc,T,θ̃,0 · [Zũ

′
ID,T]2 = [Zu′

ID,T]2,

DKID,T,1 := SKID,θ̃,1 · KUkgc,T,θ̃,1 · [(V0 + id1V1)ZũID,T]2

· [(V0 + TVL+1)Zũ
′
ID,T]2

= [k]2 · [(V0 + id1V1)ZuID,T]2

· [(V0 + TVL+1)Zu
′
ID,T]2,

DKID,T,2 := SKID,θ̃,2 · [VL+2ZũID,T]2 = [VL+2ZuID,T]2,

DK′
ID,T,2 := KUkgc,T,θ̃,2 · [VL+2Zũ

′
ID,T]2 = [VL+2Zu

′
ID,T]2,

D̃KID,T,ℓ := S̃KID,θ̃,ℓ · [VℓZũID,T]2 = [VℓZuID,T]2,

(2)

where uID,T = rID,θ̃ + ũID,T and u′
ID,T = tkgc,T,θ̃ + ũ′

ID,T.

Case of pa(ID) ̸= kgc: Retrieve

skID,θ̃ = (SKID,θ̃,0,SKID,θ̃,1,SKID,θ̃,2, (S̃KID,θ̃,ℓ)ℓ∈[|ID|+1,L]),

kupa(ID),θ̃ = (KUpa(ID),T,θ̃,0,KUpa(ID),T,θ̃,1,KUpa(ID),T,θ̃,2),

kupa(ID),T =

(
KUpa(ID),T,0,KU

′
pa(ID),T,0,KUpa(ID),T,1,KUpa(ID),T,2,

KU
′
pa(ID),T,2, (K̃Upa(ID),T,ℓ)ℓ∈[|pa(ID)|+1,L]

)
,

14

sample ũID,T, ũ
′
ID,T ←R Zk

p, and compute a helper decryption key dkID,T := (DKID,T,0,

DK′
ID,T,0,DKID,T,1,DKID,T,2,DK

′
ID,T,2, (D̃KID,T,ℓ)ℓ∈[|ID|+1,L]) ∈ Gk

2 × (Gk+1
2)L−|ID|+4:

DKID,T,0 := SKID,θ̃,0 · KUpa(ID),T,0 · [ZũID,T]2 = [ZuID,T]2,

DK′
ID,T,0 := KUpa(ID),T,θ̃,0 · KU

′
pa(ID),T,0 · [Zũ′

ID,T]2 = [Zu′
ID,T]2,

DKID,T,1 := SKID,θ̃,1 · KUpa(ID),T,θ̃,1 · KUpa(ID),T,1 · K̃U
id|ID|

pa(ID),T,|ID|

· [
(
V0 + id1V1 + · · ·+ id|ID|V|ID|

)
ZũID,T]2

· [(V0 + TVL+1)Zũ
′
ID,T]2

= [k]2 · [
(
V0 + id1V1 + · · ·+ id|ID|V|ID|

)
ZuID,T]2

· [(V0 + TVL+1)Zu
′
ID,T]2,

DKID,T,2 := SKID,θ̃,2 · KUpa(ID),T,2 · [VL+2ZũID,T]2

= [VL+2ZuID,T]2,

DK′
ID,T,2 := KUpa(ID),T,θ̃,2 · KU

′
pa(ID),T,2 · [VL+2Zũ

′
ID,T]2

= [VL+2Zu
′
ID,T]2,

D̃KID,T,ℓ := S̃KID,θ̃,ℓ · K̃Upa(ID),T,ℓ · [VℓZũID,T]2 = [VℓZuID,T]2,

(3)

where uID,T = rID,θ̃ + tpa(ID),T + ũID,T and u′
ID,T = tpa(ID),T,θ̃ + t

′
pa(ID),T + ũ′

ID,T.

Finally, output dkID,T := (DKID,T,0,DK
′
ID,T,0,DKID,T,1,DKID,T,2,DK

′
ID,T,2) ∈ (Gk

2)
2 × (Gk+1

2)3.

Dec(MPK, ctID,T, dkID,T)→ M: Parse ctID,T := (C0, C1, C
′
1, C2, tag, tag

′) and dkID,T = (DKID,T,0,
DK′

ID,T,0,DKID,T,1,DKID,T,2,DK
′
ID,T,2). Output

M = C2 ·
e(C1,DKID,T,0) · e(C ′

1,DK
′
ID,T,0)

e(C0,DKID,T,1 · DKtag
ID,T,2 · (DK

′
ID,T,2)

tag′)
.

3.3 Correctness

The correctness of the CS method ensures that CS.Match(KUN pa(ID),T, ηID) does not output ⊥,
and there is a node θ̃ ∈ KUN pa(ID),T ∩ Path(BTpa(ID), ηID) for the non-revoked user ID. Since all
skID,θ and kuID,T,θ are computed directly, it is clear that they follow the distributions as we specified
above. In contrast, we have to check that all kuID,T and dkID,T created by using skID,θ̃ and kukgc,T,θ̃
or kupa(ID),T,θ̃, kupa(ID),T follow the aforementioned distributions. Therefore, we first check that

the helper decryption key dkID,T = (DKID,T,0,DK
′
ID,T,0,DKID,T,1,DKID,T,2,DK

′
ID,T,2, (D̃KID,T,ℓ)ℓ∈[2,L])

follows the distribution as specified in (2) and (3). In the following part of this section, we
check the distribution of DKID,T,1; the validity of the other elements (DKID,T,0,DK

′
ID,T,0,DKID,T,2,

DK′
ID,T,2, (D̃KID,T,ℓ)ℓ∈[2,L]) can be checked similarly.

Case of pa(ID) = kgc: Since skID,θ̃ = (SKID,θ̃,0, SKID,θ̃,1, SKID,θ̃,2, (S̃KID,θ̃,ℓ)ℓ∈[|ID|+1,L]) and
kukgc,T,θ̃ = (KUkgc,T,θ̃,0,KUkgc,T,θ̃,1,KUkgc,T,θ̃,2) follow the aforementioned distributions,
we have

DKID,T,1 = SKID,θ̃,1 · KUkgc,T,θ̃,1 · [(V0 + id1V1)ZũID,T]2 · [(V0 + TVL+1)Zũ
′
ID,T]2

= [kkgc,θ̃]2 · [(V0 + id1V1)ZrID,θ̃]2 · [k− kkgc,θ̃]2 · [(V0 + TVL+1)Ztkgc,T,θ̃]2

15

· [(V0 + id1V1)ZũID,T]2 · [(V0 + TVL+1)Zũ
′
ID,T]2

= [k]2 · [(V0 + id1V1)Z
(
rID,θ̃ + ũID,T

)
]2 · [(V0 + TVL+1)Z

(
tkgc,T,θ̃ + ũ′

ID,T

)
]2

= [k]2 · [(V0 + id1V1)ZuID,T]2 · [(V0 + TVL+1)Zu
′
ID,T]2

as we specified in (2).

Case of pa(ID) ̸= kgc: skID,θ̃ = (SKID,θ̃,0, SKID,θ̃,1, SKID,θ̃,2, (S̃KID,θ̃,ℓ)ℓ∈[|ID|+1,L]) and kupa(ID),T,θ̃ =

(KUpa(ID),T,θ̃,0,KUpa(ID),T,θ̃,1,KUpa(ID),T,θ̃,2) follow the distributions as we specified above. When

we assume that kupa(ID),T = (KUpa(ID),T,0,KU
′
pa(ID),T,0,KUpa(ID),T,1,KUpa(ID),T,2,KU

′
pa(ID),T,2,

(K̃Upa(ID),T,ℓ)ℓ∈[|ID|+1,L]) also follows the distribution as we specified in (1), we have

DKID,T,1 = SKID,θ̃,1 · KUpa(ID),T,θ̃,1 · KUpa(ID),T,1K̃U
ID|ID|

pa(ID),T,|ID|

· [
(
V0 + id1V1 + · · ·+ id|ID|V|ID|

)
ZũID,T]2 · [(V0 + TVL+1)Zũ

′
ID,T]2

= [kpa(ID),θ̃]2 · [
(
V0 + id1V1 + · · ·+ id|ID|V|ID|

)
ZrID,θ̃]2

· [kpa(ID),θ̃ + kpa(ID),T]
−1
2 · [(V0 + TVL+1)Ztpa(ID),T,θ̃]2

· [k+ kpa(ID),T]2 · [
(
V0 + id1V1 + · · ·+ id|pa(ID)|V|pa(ID)|

)
Ztpa(ID),T]2

· [(V0 + TVL+1)Zt
′
pa(ID),T]2 · [V|ID|Ztpa(ID),T]

id|ID|
2

· [
(
V0 + id1V1 + · · ·+ id|ID|V|ID|

)
ZũID,T]2 · [(V0 + TVL+1)Zũ

′
ID,T]2

= [k]2 · [
(
V0 + id1V1 + · · ·+ id|ID|V|ID|

)
Z
(
rID,θ̃ + tpa(ID),T + ũID,T

)
]2

· [(V0 + TVL+1)Z
(
tpa(ID),T,θ̃ + t

′
pa(ID),T + ũ′

ID,T

)
]2

= [k]2 · [
(
V0 + id1V1 + · · ·+ id|ID|V|ID|

)
ZuID,T]2 · [(V0 + TVL+1)Zu

′
ID,T]2

as we specified in (3).

Thus, dkID,T = (DKID,T,0,DK
′
ID,T,0,DKID,T,1,DKID,T,2,DK

′
ID,T,2) follows the distribution as we specified

above.
Next, we check that the helper key update kuID,T = (KUID,T,0,KU

′
ID,T,0,KUID,T,1,KUID,T,2,

KU
′
ID,T,2, (K̃UID,T,ℓ)ℓ∈[|ID|+1,L]) follows the distribution as specified in (1). In the following, we check

the distribution of KUID,T,1, whereas the validity of the other elements kuID,T = (KUID,T,0,KU
′
ID,T,0,

KUID,T,2,KU
′
ID,T,2, (K̃UID,T,ℓ)ℓ∈[|ID|+1,L]) can be checked in the same manner. When we assume that

dkID,T = (DKID,T,0,DK
′
ID,T,0,DKID,T,1,DKID,T,2,DK

′
ID,T,2, (D̃KID,T,ℓ)ℓ∈[2,L]) follows the distribution as

specified in (2) and (3), we have

KUID,T,1 = [kID,T]2 · DKID,T,1 · [
(
V0 + id1V1 + · · ·+ id|ID|V|ID|

)
Zt̃ID,T]2 · [(V0 + TVL+1)Zt̃

′
ID,T]2

= [kID,T]2

· [k]2 · [
(
V0 + id1V1 + · · ·+ id|ID|V|ID|

)
ZuID,T]2 · [(V0 + TVL+1)Zu

′
ID,T]2

· [
(
V0 + id1V1 + · · ·+ id|ID|V|ID|

)
Zt̃ID,T]2 · [(V0 + TVL+1)Zt̃

′
ID,T]2

= [k+ kID,T]2 · [
(
V0 + id1V1 + · · ·+ id|ID|V|ID|

)
Z
(
uID,T + t̃ID,T

)
]2

· [(V0 + TVL+1)Z
(
u′
ID,T + t̃

′
ID,T

)
]2

= [k+ kID,T]2 · [
(
V0 + id1V1 + · · ·+ id|ID|V|ID|

)
ZtID,T]2 · [(V0 + TVL+1)Zt

′
ID,T]2

16

as we specified in (1).
Finally, we check that the decryption succeeds. Since we have

e(C1,DKID,T,0)

= e([
(
V0 + id1V1 + · · ·+ id|ID|V|ID|

)⊤
As]1 · [V⊤

L+2As]
tag
1 , [ZuID,T]2)

= [(As)⊤
(
V0 + id1V1 + · · ·+ id|ID|V|ID|

)
ZuID,T]T · [(As)⊤VL+2ZuID,T]

tag
T ,

e(C ′
1,DK

′
ID,T,0)

= e([(V0 + TVL+1)
⊤As]1 · [V⊤

L+2As]
tag′

1 , [Zu′
ID,T]2)

= [(As)⊤(V0 + TVL+1)Zu
′
ID,T]T · [(As)⊤VL+2Zu

′
ID,T]

tag′

T ,

e(C0,DKID,T,1)

= e([As]1, [k]2 · [
(
V0 + id1V1 + · · ·+ id|ID|V|ID|

)
ZuID,T]2)

· e([As]1, [(V0 + TVL+1)Zu
′
ID,T]2)

= [(As)⊤k]T · [(As)⊤
(
V0 + id1V1 + · · ·+ id|ID|V|ID|

)
ZuID,T]T

· [(As)⊤(V0 + TVL+1)Zu
′
ID,T]T ,

e(C0,DK
tag
ID,T,2 · (DK

′
ID,T,2)

tag′)

= e([As]1, [VL+2ZuID,T]
tag
2 · [VL+2Zu

′
ID,T]

tag′

2)

= [(As)⊤VL+2ZuID,T]
tag
T · [(As)⊤VL+2Zu

′
ID,T]

tag′

T ,

it holds that

C2 ·
e(C1,DKID,T,0) · e(C ′

1,DK
′
ID,T,0)

e(C0,DKID,T,1 · DKtag
ID,T,2 · (DK

′
ID,T,2)

tag′)
= M.

4 Main Theorem

The proposed RHIBE scheme in Section 3.2 achieves the adaptive security according to the following
theorem.

Theorem 1. The proposed RHIBE scheme satisfies adaptive security if the MDDH assumption
holds in G1 and G2. Specifically, for any PPT adversary A making at most Qgen secret key gener-
ation queries, there exists a reduction algorithm B0 and BI,j, BII,j for j ∈ [6] such that

AdvRHIBEΠ,L,A(λ)

≤ AdvMDDH-G1
B0

(λ) +Qgen

Qgen

∑
i∈{0,4}

∑
j∈[2]

AdvMDDH-G2
BI,i+j

(λ) +
∑
j∈[4]

AdvMDDH-G2
BII,j

(λ)

+|T | ·
∑
j∈[2]

(
AdvMDDH-G2

BI,2+j
(λ) + AdvMDDH-G2

BII,4+j
(λ)
)+O

(
Qgen|T |

p

)

and T(B0) ≈ maxj∈[6] {T(BI,j), T(BII,j)} ≈ T(A) + k2Qgen|T | · poly(λ,L), where poly(λ,L) is inde-
pendent of T(A).

17

4.1 Auxiliary Distributions

To prove theorem 1, we introduce the following semi-functional distributions of the challenge ci-
phertext ct⋆, KGC’s sub-key updates kukgc,T,θ, ID’s helper key updates kuID,T such that |ID| ≥ 1,
and decryption keys dkID,T.

Semi-functional Ciphertext : A semi-functional ciphertext for the target for (ID⋆, T⋆) and a plaintext
M⋆

coin is defined as ct⋆ = (C0, C1, C
′
1, C2, tag, tag

′):

tag := v0 + v1id
⋆
1 + · · ·+ v|ID⋆|id

⋆
|ID⋆|, tag′ := v0 + vL+1T

⋆,

C0 := [c]1,

C1 := [
(
V0 + id⋆1V1 + · · ·+ id⋆|ID⋆|V|ID⋆| + tagVL+2

)⊤
c]1,

C ′
1 := [

(
V0 + T⋆VL+1 + tag′VL+2

)⊤
c]1,

C2 := Mcoin · [c ⊤MSK]T ,

(4)

where (v0, v1, . . . , v|ID|, vL+1) ←R Z|ID|+2
p and c ←R Zk+1

p . Here, the boxed parts denote the
change from the normal ciphertext.

Semi-functional KGC’s Key Updates: A semi-functional KGC’s key update kukgc,T for T is defined
with the following sub-key updates kukgc,θ = (KUkgc,T,θ,0,KUkgc,T,θ,1,KUkgc,T,θ,2):

KUkgc,T,θ,0 := [Ztkgc,T,θ]2,

KUkgc,T,θ,1 := [MSK+ αa⊥ − delkkgc,θ]2 · [(V0 + TVL+1)Ztkgc,T,θ]2,

KUkgc,T,θ,2 := [VL+2Ztkgc,T,θ]2,

(5)

where tkgc,T,θ ←R Zk
p and α←R Z∗

p is shared by all semi-functional kukgc,T, kuID,T, and dkID,T
unless stated otherwise. Here, the boxed part denotes the change from the normal KGC’s
key update.

Semi-functional Helper Key Updates: A semi-functional helper key update kuID,T for (ID, T) is de-

fined as kuID,T = (KUID,T,0,KU
′
ID,T,0,KUID,T,1,KUID,T,2,KU

′
ID,T,2, (K̃UID,T,ℓ)ℓ∈[|ID|+1,L]):

KUID,T,0 := [ZtID,T]2, KU
′
ID,T,0 := [Zt

′
ID,T]2,

KUID,T,1 := [MSK+ αa⊥ + delkID,T]2

· [
(
V0 + id1V1 + · · ·+ id|ID|V|ID|

)
ZtID,T]2

· [(V0 + TVL+1)Zt
′
ID,T]2,

KUID,T,2 := [VL+2ZtID,T]2, KU
′
ID,T,2 := [VL+2Zt

′
ID,T]2,

K̃UID,T,ℓ := [VℓZtID,T]2,

(6)

where tID,T,θ, tID,T, t
′
ID,T ←R Zk

p, kID,T ←R Zk+1
p , and α←R Z∗

p is shared by all semi-functional

kukgc,T, kuID,T, and dkID,T unless stated otherwise. Here, the boxed part denotes the change
from the normal helper key update.

Semi-functional Decryption Keys: A semi-functional decryption key for (ID, T) is defined as

18

dkID,T = (DKID,T,0,DK
′
ID,T,0,DKID,T,1,DKID,T,2,DK

′
ID,T,2):

DKID,T,0 := [ZuID,T]2, DK′
ID,T,0 := [Zu′

ID,T]2,

DKID,T,1 := [MSK+ αa⊥]2 · [
(
V0 + id1V1 + · · ·+ id|ID|V|ID|

)
ZuID,T]2

· [(V0 + TVL+1)Zu
′
ID,T]2,

DKID,T,2 := [VL+2ZuID,T]2, DK′
ID,T,2 := [VL+2Zu

′
ID,T]2,

D̃KID,T,ℓ := [VℓZuID,T]2,

(7)

where uID,T,u
′
ID,T ←R Zk

p and α ←R Z∗
p is shared by all semi-functional kukgc,T, kuID,T, and

dkID,T unless stated otherwise. Here, the boxed part denotes the change from the normal
decryption key.

In brief, the above semi-functional ciphertext ct⋆ is the same as the normal ciphertext when we
set c = As, where s ←R Zk

p, while the above semi-functional kukgc,T,θ, kuID,T, and dkID,T are the
same as the normal ones when we set α = 0. If KGC’s sub-key updates kukgc,T,θ or ID’s helper key
updates kuID,T are semi-functional, the decryption keys dkID,T computed by them with the normal
sub-secret keys skID,θ become semi-functional. Both normal and semi-functional decryption keys
dkID,T can correctly decrypt normal ciphertexts, whereas the semi-functional decryption keys dkID,T
cannot correctly decrypt the semi-functional ciphertexts. By following the standard dual system
argument [CGW15, CG17, CW14, Wat09], we first change the challenge ciphertext ct⋆ to be semi-
functional; then, we change a part of keys that A receives to be semi-functional. To this end,
the semi-functional distributions of secret keys skID, key updates kuID,T, and decryption keys dkID,T
are defined so that the MSK is masked by αa⊥. In other words, we do not define semi-functional
distributions for sub-secret keys skID,θ and ID’s sub-key updates kuID,T,θ such that |ID| ≥ 1 since
they do not contain MSK. If all information of the MSK that A receives is masked by αa⊥, the
standard dual system argument [CGW15, CG17, CW14] enables us to show that the plaintext
M⋆

coin is information theoretically hidden. The main technical hurdle to proving the security is to
change all of KGC’s sub-key updates kukgc,T,θ, ID’s helper key updates kuID,T, and decryption keys
dkID,T that A receive to be semi-functional. Care should be taken that A can receive kukgc,T,θ for
T = T⋆, kuID,T for ID ∈ prefix+(ID⋆) ∧ T = T⋆, and dkID,T for ID ∈ prefix+(ID⋆) \ {ID⋆} ∧ T = T⋆,
which the standard dual system argument cannot change to be semi-functional. We will use the
semi-functional randomness switching for changing them to semi-functional.

4.2 Proof of Main Theorem

We conclude this section by introducing the way we prove Theorem 1. By following previous
security proofs of RHIBE (e.g., [ETW20, LP18, SE15]), we divide A’s attack strategy into the
following two types.

Type-I Adversary: A is called Type-I if it makes secret key reveal queries on some ID ∈ prefix+(ID⋆).

Type-II Adversary: A is called Type-II if it does not make secret key reveal queries on any ID ∈
prefix+(ID⋆).

Remark 2. To be precise, previous security proofs of RHIBE (e.g., [ETW20, LP18, SE15]) further
divides the Type-I adversary into L types depending on the value ℓ⋆ ∈ [L] so that A receive skID⋆

[ℓ⋆]

whereas A does not receive skID⋆
[ℓ]

for any ℓ ∈ [ℓ⋆− 1]. Since our proof does not require the division,

our proof saves the reduction loss by a factor O(L).

19

Note that the Type-I adversary and Type-II adversary are mutually exclusive and cover all the
possible strategies of A. We prove the adaptive security of the proposed RHIBE scheme against
the Type-I adversary and Type-II adversary in distinct ways and obtain the following results.

Lemma 1 (Adaptive Security against the Type-I Adversary). The proposed RHIBE scheme sat-
isfies adaptive security against the Type I adversary if the MDDH assumption holds in G1 and G2.
Specifically, for any PPT Type-I adversary A making at most Qgen secret key generation queries,
there exists reduction algorithms B0 and BII,j for j ∈ [6] such that

AdvRHIBEΠ,L,A(λ) ≤ AdvMDDH-G1
B0

(λ) +Qgen

Qgen

∑
i∈{0,4}

∑
j∈[2]

AdvMDDH-G2
BI,i+j

(λ)

+|T | ·
∑
j∈[2]

AdvMDDH-G2
BI,2+j

(λ) +
1

p

and T(B0) ≈ maxj∈[6] T(BI,j) ≈ T(A) + k2Qgen|T | · poly(λ,L), where poly(λ,L) is independent of
T(A).

Lemma 2 (Adaptive Security against the Type-II Adversary). The proposed RHIBE scheme sat-
isfies adaptive security against the Type II adversary if the MDDH assumption holds in G1 and G2.
Specifically, for any PPT Type-II adversary A making at most Qgen secret key generation queries,
there exists a reduction algorithm B0 and BII,j for j ∈ [6] such that

AdvRHIBEΠ,L,A(λ)

≤ AdvMDDH-G1
B0

(λ) +Qgen

∑
j∈[4]

AdvMDDH-G2
BII,j

(λ) + |T | ·
∑
j∈[2]

AdvMDDH-G2
BII,4+j

(λ)

+O

(
Qgen|T |

p

)
.

and T(B0) ≈ maxj∈[6] T(BII,j) ≈ T(A)+Qgen|T | ·poly(λ,L), where poly(λ,L) is independent of T(A).

We omit the proof of Theorem 1 since it is clear from Lemmata 1 and 2. Since the Type-
I adversary can receive skID for some ID ∈ prefix+(ID⋆) as oppose to the Type-II adversary, the proof
against the Type-I adversary is more complicated than the proof against the Type-II adversary;
thus, we first prove Lemma 2 in Section 5. Then, we prove Lemma 1 in Section 6.

5 Adaptive Security against the Type-II Adversary

Here, we repeat the definition of a Type-II adversary:

Type-II Adversary: A is called Type-II if it does not make secret key reveal queries on any ID ∈
prefix+(ID⋆).

We first provide an overview of Emura et al.’s proof for adaptively secure RHIBE schemes against
Type-II Adversary [ETW20] and observe that a simple dual system translation cannot prove the
adaptive security of our RHIBE scheme. Subsequently, we explain the proof of the adaptive security
of our RHIBE scheme against the Type-II adversary.

Overview of Emura et al.’s Proof [ETW20]. Emura et al.’s proof is an adaptively secure
adaptation of Seo–Emura’s proof for selectively secure RHIBE schemes [SE15]. Specifically, Emura

20

et al. reduced the adaptive security of the underlying HIBE scheme to the adaptive security of their
proposed RHIBE schemes. Similar to our secret key skID, Emura et al.’s secret key skID consists of
sub-secret keys skID,θ. Furthermore, similar to our sub-secret key skID,θ, Emura et al.’s sub-secret
key skID,θ is an HIBE secret key with kpa(ID),θ ←R Zk+1

p as the master secret key. Although Emura

et al.’s key update kupa(ID),T does not have a helper key update kupa(ID),T than our KGC’s key update
kukgc,T, the former consists of sub-key updates kupa(ID),T,θ. Furthermore, our KGC’s sub-key update
kukgc,T,θ, Emura et al.’s sub-key update is an HIBE secret key with MSK− kpa(ID),θ = k− kpa(ID),θ

as the master secret key. To prove the adaptive security against Type-II Adversary, Emura et al.
observed that all delkID,θ and skID,θ that is revealed to A satisfy ID /∈ prefix+(ID⋆). Then, Emura
et al. modified the creation of the delegation keys so that kpa(ID),θ ←R Zk+1

p is sampled by the
reduction algorithm. Based on the modification, Emura et al. switched the position of MSK so that
their sub-secret key skID,θ and sub-key update kupa(ID),T,θ are HIBE secret keys with MSK−kpa(ID),θ

and kpa(ID),θ, respectively, as the master secret key. This switching enables the reduction algorithm
to answer all skID,θ and kupa(ID),T,θ upon A’s queries. Specifically, since all skID,θ that is revealed
to A satisfy ID /∈ prefix+(ID⋆), the reduction algorithm can interact with the HIBE challenger to
receive an ID’s HIBE secret key that is sufficient for creating skID,θ. Since the reduction algorithm
knows kpa(ID),θ, the algorithm can create all kupa(ID),T,θ by itself.

The last obstacle to overcome is answering delkpa(ID),θ to A. The security proof of RHIBE
without insider security is relatively easy since we can neglect the obstacle. When the delegation
key delkID,θ follows the same distribution as our scheme, the above proof strategy fails unless the
reduction algorithm knows the master secret key of the underlying HIBE scheme. To avoid the
obstacle and achieve insider security, Emura et al. defined the delegation key delkID,θ so that it is
an HIBE secret key with kpa(ID),θ ←R Zk+1

p as the master secret key. Then, based on the fact that
ID /∈ prefix+(ID⋆), the reduction algorithm interacts with the HIBE challenger to receive an ID’s
HIBE secret key that is sufficient for creating delkID,θ. Therefore, Emura et al.’s delegation key
delkID,θ becomes larger than that of ours by a factor O(L− |ID|).
Overview of Our Proof against the Type-II Adversary. As we observed in Section 4, the
task of our proof is changing all kukgc,T,θ, kuID,T, and dkID,T associated with MSK to be semi-
functional. Here, we observe that Emura et al.’s technique cannot prove the adaptive security of
our scheme. When we switch the position of MSK, we do not have to change kukgc,T,θ and kuID,T
to be semi-functional. Instead, we have to change delkID,θ and skID,θ associated with MSK to be
semi-functional. Since all skID,θ that is revealed to A satisfy ID /∈ prefix+(ID⋆), we can change all
skID,θ to be semi-functional by properly introducing the semi-functional distribution of skID,θ. On
the other hand, we cannot change the distribution of delkID,θ = MSK − kID,θ unless we use larger
delegation keys as adopted in Emura et al.’s scheme.

To avoid this obstacle, we employ the dual system encryption methodology and another the-
oretic trick that we call the semi-functional randomness switching. This switching was implic-
itly introduced by Takayasu and Watanabe [TW21] to construct adaptively secure anonymous
(non-hierarchical) RIBE schemes. In the following texts, we explain how Takayasu and Watanabe
changed kukgc,T⋆ to be semi-functional. Initially, Takayasu and Watanabe changed all skID,θ to
be semi-functional. Then, they guessed the value of T⋆ with a polynomial reduction loss |T | and
changed all kukgc,T for T ̸= T⋆ to be semi-functional. Finally, from these changes, they showed that
normal and semi-functional kukgc,T⋆ were identically distributed.

By following their argument and applying their strategy to the hierarchical case, we can prove
the adaptive security of our RHIBE scheme. Before providing an overview of our proof, we introduce
the following seed secret keys and its semi-functional distribution.

Normal Seed Secret Keys: A normal seed secret key is defined as s.skID := (s.SKID,0, s.SKID,1,

21

s.SKID,2, (s.S̃KID,ℓ)ℓ∈[|ID|+1,L]):

s.SKID,0 := [ZrID]2,

s.SKID,1 := [
(
V0 + id1V1 + · · ·+ id|ID|V|ID|

)
ZrID]2,

s.SKID,2 := [VL+2ZrID]2, s.S̃KID,ℓ := [VℓZrID]2

(8)

where rID ←R Zk
p.

Semi-functional Seed Secret Keys: A semi-functional seed secret key is defined as s.skID :=
(s.SKID,0, s.SKID,1, s.SKID,2, (s.S̃KID,ℓ)ℓ∈[|ID|+1,L]):

s.SKID,0 := [ZrID]2,

s.SKID,1 := [αa⊥]2 · [
(
V0 + id1V1 + · · ·+ id|ID|V|ID|

)
ZrID]2,

s.SKID,2 := [VL+2ZrID]2, s.S̃KID,ℓ := [VℓZrID]2

(9)

where rID ←R Zk
p, and the semi-functional randomness α←R Z∗

p is shared with all seed secret
keys unless otherwise stated. Here, the boxed part denotes the change from the normal seed
secret key.

We prove the adaptive security of our RHIBE scheme against the Type-II adversary based on
the following sequence of games:

GameII,0: This is a real security game between the challenger C and adversary A.
GameII,1: This game is the same as GameII,0 except that the challenge ciphertext ct⋆ is semi-

functional.

GameII,2: This game is the same as GameII,1 except that C modifies the method for creating secret
keys skID, key updates kuID,T, and decryption keys dkID,T as follows:

Secret Key Creation: Upon A’s secret key generation queries on ID, C does not create sub-
secret keys skID,θ. Upon A’s secret key reveal queries on ID, C first creates a normal seed

secret keys s.sk
(1)
ID . Then, C uses s.sk

(1)
ID to create all sub-secret keys skID,θ.

Key Update Creation: Upon A’s secret key generation queries, C first creates seed secret keys

s.sk
(2)
ID . C creates kukgc,T in the same way as done in the real scheme. To create kuID,T

such that |ID| ≥ 1, C creates sub-key updates kuID,T,θ in the same way as done in the

real scheme, while C uses s.sk
(2)
ID to create all helper key updates kuID,T.

Decryption Key Creation: Upon A’s decryption key reveal queries, C does not use skID and
kupa(ID),T to create dkID,T.

GameII,3: This game is the same as GameII,2 except that C creates semi-functional seed secret keys

s.sk
(1)
ID upon A’s secret key reveal queries.

GameII,4: This game is the same as GameII,3 except that C always creates semi-functional kukgc,T.

GameII,5: This game is the same as GameII,4 except that C always creates semi-functional helper
key updates kuID,T to create kuID,T.

GameII,6: This game is the same as GameII,5 except that C creates semi-functional dkID,T to answer
A’s decryption key reveal queries.

GameII,7: This game is the same as GameII,6 except that the challenge ciphertext ct⋆ is the semi-
functional encryption of a random plaintext.

22

Table 1: Distributions of ct⋆, s.sk
(1)
ID for creating skID,θ, and skID,θ in each

game in the proof against the Type-II adversary. In the column ct⋆, we
specify the distribution and encrypted plaintext. In the other columns, we
specify the distributions and semi-functional randomness of s.skID and skID,θ.

Game ct⋆ s.sk
(1)
ID skID,θ

GameII,0
normal

M⋆
coin

normal normal

GameII,1
semi-functional

M⋆
coin

normal normal

GameII,2
semi-functional

M⋆
coin

normal normal

GameII,3
semi-functional

M⋆
coin

semi-functional

α←R Z∗
p

semi-functional

r̃ID,θα; r̃ID,θ ←R Zp

GameII,4
semi-functional

M⋆
coin

semi-functional

α←R Z∗
p

semi-functional

r̃ID,θα; r̃ID,θ ←R Zp

GameII,5
semi-functional

M⋆
coin

semi-functional

α←R Z∗
p

semi-functional

r̃ID,θα; r̃ID,θ ←R Zp

GameII,6
semi-functional

M⋆
coin

semi-functional

α←R Z∗
p

semi-functional

r̃ID,θα; r̃ID,θ ←R Zp

GameII,7
semi-functional

M⋆ ←R GT

semi-functional

α←R Z∗
p

semi-functional

r̃ID,θα; r̃ID,θ ←R Zp

23

Table 2: Distributions of kukgc,T,θ, kuID,T for |ID| ≥ 1, and dkID,T in
each game in the proof against the Type-II adversary. We specify the
distributions and semi-functional randomness of kukgc,T,θ, kuID,T, and
dkID,T.

Game kukgc,T,θ kuID,T dkID,T

GameII,0 normal normal normal

GameII,1 normal normal normal

GameII,2 normal normal normal

GameII,3 normal normal normal

GameII,4
semi-functional

α←R Z∗
p

normal normal

GameII,5
semi-functional

α←R Z∗
p

semi-functional

α←R Z∗
p

normal

GameII,6
semi-functional

α←R Z∗
p

semi-functional

α←R Z∗
p

semi-functional

α←R Z∗
p

GameII,7
semi-functional

α←R Z∗
p

semi-functional

α←R Z∗
p

semi-functional

α←R Z∗
p

In Tables 1 and 2, we summarize the distributions of ct⋆, skID, kukgc,T, kuID,T, and dkID,T in each
game. GameII,0 is the real security game. In GameII,1, we change the challenge ciphertext ct⋆ to be
semi-functional as per the standard dual system argument (Lemma 3). GameII,2 is the conceptual
change that is useful to reduce the reduction loss. Thus, the indistinguishability GameII,1 ≡ GameII,2
(Lemma 4) immediately holds. In GameII,2, C does not create skID,θ and kuID,T as the real scheme. In

turn, C first creates seed secret keys s.sk
(1)
ID and s.sk

(2)
ID , and uses the seed secret keys to create skID,θ

and kuID,T, respectively. In GameII,3, all s.sk
(1)
ID revealed to A become semi-functional. We use the

standard dual system argument to prove the indistinguishability GameII,2 ≈c GameII,3 (Lemma 5)
by considering the fact that ID /∈ prefix+(ID⋆). Then, we can apply the semi-functional randomness
switching for kukgc,T,θ. In GameII,4, all kukgc,T,θ become semi-functional. Thus, the proof of the
indistinguishability GameII,3 ≡ GameII,4 (Lemma 9) is the first main part of the proof. Here, we use
the following two facts:

• All skID,θ revealed to A such that pa(ID) = kgc are created by semi-functional s.sk
(1)
ID .

• No delkkgc,θ are revealed to A.
Based on the facts, the randomness of kkgc,θ ←R Zk+1

p enables us to prove that normal and semi-
functional kukgc,T are identically distributed.

In GameII,5, all kuID,T,θ such that |ID| ≥ 1 are created by semi-functional s.sk
(2)
ID . In other words,

all kuID,T,θ follow the semi-functional distribution in GameII,5. The proof of the indistinguishability
GameII,4 ≡ GameII,5 (Lemma 10) is the second main part of the proof, and it is more technical than
the proof of GameII,3 ≡ GameII,4. If ID ∈ prefix+(ID⋆), we cannot apply the standard dual system

argument to change s.sk
(2)
ID to be semi-functional. In contrast, if ID /∈ prefix+(ID⋆), we cannot apply

24

the semi-functional randomness switching since delkID,θ may be revealed to A via secret key reveal
queries. Thus, in brief, the proof is a combination of the standard dual system argument and
semi-functional randomness switching. By following the same procedure, either the standard dual
system argument or semi-functional randomness switching enables us to prove that normal and

semi-functional sk
(2)
ID,T are identically distributed.

In GameII,6, we change all dkID,T to be semi-functional one by one. Here, the standard dual
system argument is sufficient for proving the indistinguishability GameII,5 ≈c GameII,6 (Lemma 14)
considering the fact that (ID, T) ̸= (ID⋆, T⋆). Finally, in GameII,7, we change the challenge ciphertext
ct⋆ to be a semi-functional encryption of a random plaintext. Since all kukgc,T,θ, kuID,T, and dkID,T are
semi-functional, the standard dual system argument is sufficient for proving the indistinguishability
GameII,6 ≡ GameII,7 (Lemma 18).

5.1 Proof of Lemma 2

Now, we are ready to prove Lemma 2.

Proof of Lemma 2. Let Advi(λ) denote A’s advantage in GameII,i. Hereafter, we prove that the
difference of A’s advantage between each game (i.e., |Advi−1(λ)− Advi(λ)|) is negligible. The key
points to note is the transitions GameII,3 ≡ GameII,4 and GameII,4 ≈c GameII,5 since we have to
change kukgc,T and kuID,T such that ID ∈ prefix+(ID⋆) ∧ T = T⋆ to be semi-functional. In other
words, we rely on Chen-Gong’s technique [CG17] to prove the other transitions.

Lemma 3 (Ciphertext Invariance, GameII,0 ≈c GameII,1). GameII,0 and GameII,1 are computationally
indistinguishable under the MDDH assumption in G1. Specifically, for any PPT adversary A making
at most Qgen secret key generation queries, there exists a reduction algorithm B0 such that

|Adv0(λ)− Adv1(λ)| ≤ AdvMDDH-G1
B0

(λ)

and T(B0) ≈ T(A) + k2Qgen|T | · poly(λ,L), where poly(λ,L) is independent of T(A).

The proof completely follows the same step of Chen-Gong [CG17]. For the completeness, we
formally prove Lemma 3.

Proof of Lemma 3. The reduction algorithm B0 is given an MDDH instance in G1:
(G(1λ), [A]1, [c]1 = [As+ e]1), where A←R Dk, s←R Zk

p, e = 0 or e←R Zk+1
p . Then, B0 samples

random matrices ((Vℓ)ℓ∈[0,L+2],Z) ←R (Z(k+1)×k
p)L+3 × Zk×k

p , and a random vector k ←R Zk+1
p

uniformly at random. B0 then returns

MPK =
(
[A]1, ([V

⊤
ℓ A]1)ℓ∈[0,L+2], [Z]2, ([VℓZ]2)ℓ∈[0,L+2], [A

⊤k]T

)
to A. Since B0 knows MSK = k, it can answer all A’s key queries in the same way as the real
scheme.

Upon A’s challenge query on (ID⋆, T⋆,M⋆
0,M

⋆
1), B0 samples coin ←R {0, 1},

(v0, v1, . . . , v|ID⋆|, vL+1) ←R Z|ID⋆|+2
p , and returns the challenge ciphertext ct⋆ =

(C0, C1, C
′
1, C2, tag, tag

′):

tag = v0 + v1id
⋆
1 + · · ·+ v|ID⋆|id

⋆
|ID⋆|, tag′ = v0 + vL+1T

⋆, C0 = [c]1,

C1 = [
(
V0 + id⋆1V1 + · · ·+ id⋆|ID⋆|V|ID⋆| + tagVL+2

)⊤
c]1,

C ′
1 = [

(
V0 + T⋆VL+1 + tag′VL+2

)⊤
c]1, C2 = M⋆

coin · [c⊤MSK]T ,

to A. If e = 0, ct⋆ is a normal ciphertext as in GameII,0. Otherwise, ct⋆ is a semi-functional
ciphertext as in GameII,1. Thus, we complete the proof.

25

Lemma 4 (GameII,1 ≡ GameII,2). GameII,1 and GameII,2 are identically distributed from A’s view.
Specifically, for any PPT Type-II adversary A, it holds that

AdvII,1(λ) = AdvII,2(λ).

The proof is clear since the key creations of our scheme are path-oblivious.

Proof of Lemma 4. C creates MPK in the same way as the real scheme. Hereafter, we describe how
C creates skID, kuID,T, dkID,T, and ct⋆ in GameII,2.

Secret Key Creation: Upon A’s secret key generation query on ID, C runs (ηID, BT
′
pa(ID)) ←

CS.Assign(BTpa(ID), ID) and performs the delegation key generation in the same way as the real

scheme and runs BTID ← CS.SetUp(1λ, ID).

Upon A’s secret key reveal query on ID, C samples r
(1)
ID ←R Zk

p and creates a normal seed

secret key s.skID = (s.SK
(1)
ID,0, s.SK

(1)
ID,1, s.SK

(1)
ID,2, (s.S̃K

(1)

ID,ℓ)ℓ∈[|ID|+1,L]) by computing (8). Then,
for each θ ∈ Path(BTpa(ID), ηID), C retrieves the delegation key delkpa(ID),θ = kpa(ID),θ, samples

r̃ID,θ ←R Zp and r̃ID,θ ←R Zk
p, and computes a sub-secret key skID,θ = (SKID,θ,0, SKID,θ,1, SKID,θ,2,

(S̃KID,θ,ℓ)ℓ∈[|ID|+1,L]):

SKID,θ,0 = (s.SK
(1)
ID,0)

r̃ID,θ · [Zr̃ID,θ]2,

SKID,θ,1 = [kpa(ID),θ]2 · (s.SK
(1)
ID,1)

r̃ID,θ · [
(
V0 + id1V1 + · · ·+ id|ID|V|ID|

)
Zr̃ID,θ]2,

SKID,θ,2 = (s.SK
(1)
ID,2)

r̃ID,θ · [VL+2Zr̃ID,θ]2,

S̃KID,θ,ℓ = (s.S̃K
(1)

ID,ℓ)
r̃ID,θ · [VℓZr̃ID,θ]2.

(10)

The distribution is the same as in GameII,1 by setting rID,θ = r̃ID,θ · r
(1)
ID + r̃ID,θ. Due to the fresh

random r̃ID,θ ←R Zk
p, rID,θ is distributed in Zk

p uniformly at random.

Key Update Creation: Upon A’s secret key generation query on ID, C samples r
(2)
ID ←R Zk

p

and creates a normal seed secret key s.sk
(2)
ID = (s.SK

(2)
ID,0, s.SK

(2)
ID,1, s.SK

(2)
ID,2, (s.S̃K

(2)

ID,ℓ)ℓ∈[|ID|+1,L]) by
computing (8). C runs KUN ID,T ← CS.Cover(BTID,RLID,T) and creates kukgc,T by computing

KUkgc,T,θ,0 = [Ztkgc,T,θ]2,

KUkgc,T,θ,1 = [k− delkkgc,θ]2 · [(V0 + TVL+1)Ztkgc,T,θ]2,

KUkgc,T,θ,2 = [VL+2Ztkgc,T,θ]2.

(11)

To create kuID,T such that |ID| ≥ 1, C samples the ephemeral delegation key delkID,T = kID,T ←R Zk+1
p

and creates the sub-key update kuID,T,θ in the same way as the real scheme. Then, C retrieves the

delegation key kID,θ and ephemeral delegation key kID,T, samples t̃ID,T, t
′
ID,T ←R Zk

p, and computes

a helper key update kuID,T = (KUID,T,0,KU
′
ID,T,0,KUID,T,1,KUID,T,2,KU

′
ID,T,2, (K̃UID,T,ℓ)ℓ∈[|ID|+1,L]):

KUID,T,0 = s.SK
(2)
ID,0 · [Zt̃ID,T]2, KU

′
ID,T,0 = [Zt

′
ID,T]2,

KUID,T,1 = [k+ kID,T]2 · s.SK(2)
ID,1 · [

(
V0 + id1V1 + · · ·+ id|ID|V|ID|

)
Zt̃ID,T]2

· [(V0 + TVL+1)Zt
′
ID,T]2,

KUID,T,2 = s.SK
(2)
ID,2 · [VL+2Zt̃ID,T]2, KU

′
ID,T,2 = [VL+2Zt

′
ID,T]2,

K̃UID,T,ℓ = s.SK
(2)
ID,ℓ · [VℓZt̃ID,T]2.

(12)

26

This is the normal helper key update as in GameII,1 by setting tID,T = r
(2)
ID + t̃ID,T. Due to the fresh

random t̃ID,T ←R Zk
p, tID,T is distributed in Zk

p uniformly at random.

Decryption Key Creations: To create dkID,T, C retrieves the master secret key k, samples
uID,T,u

′
ID,T ←R Zk

p, and computes dkID,T = (DKID,T,0,DK
′
ID,T,0,DKID,T,1,DKID,T,2,DK

′
ID,T,2):

DKID,T,0 = [ZuID,T]2, DK′
ID,T,0 = [Zu′

ID,T]2,

DKID,T,1 = [k]2 · [
(
V0 + id1V1 + · · ·+ id|ID|V|ID|

)
ZuID,T]2 · [(V0 + TVL+1)Zu

′
ID,T]2,

DKID,T,2 = [VL+2ZuID,T]2, DK′
ID,T,2 = [VL+2Zu

′
ID,T]2,

(13)

where the distribution is the same as the real scheme.

Challenge Ciphertext Creation: Upon A’s challenge query on (ID⋆, T⋆,M⋆
0,M

⋆
1), C re-

trieves (Vℓ)ℓ∈[0,|ID⋆|]∪{L+1} and master secret key k, samples c ←R Zk+1
p , (v0, v1, . . . , v|ID⋆|,

vL+1) ←R Z|ID⋆|+2
p , and coin ←R {0, 1}, and creates the semi-functional challenge ciphertext

ct⋆ = (tag, tag′, C0, C1, C
′
1, C2) by computing (4).

As we observed so far, all the elements distribute in the same way as in GameII,1. Thus, we
complete the proof of Lemma 4.

Lemma 5 (Secret Key Invariance, GameII,2 ≈c GameII,3). GameII,2 and GameII,3 are computationally
indistinguishable under the MDDH assumption in G2. Specifically, for any PPT Type-II adversary
A making at most Qgen secret key generation queries and Qrev secret key reveal queries, there exist
reduction algorithms BII,1 and BII,2 such that

|AdvII,2(λ)− AdvII,3(λ)| ≤ Qrev ·
∑
j∈[2]

AdvMDDH-G2
BII,j

(λ) +
4Qrev

p− 1

and maxj∈[2] T(BII,j) ≈ T(A) + k2Qgen|T | · poly(λ,L), where poly(λ,L) is independent of T(A).

Here, we change each seed secret key s.sk
(1)
ID on which A makes a secret key reveal query

to be semi-functional one by one. The proof essentially follows the standard dual system argu-
ment [CGW15, CG17, CW14]. For the completeness, we formally prove Lemma 5.

Proof of Lemma 5. To prove Lemma 5, we further introduce the following auxiliary distributions
for seed secret keys.

Pseudo-normal Seed Secret Keys: A pseudo-normal seed secret key s.skID = (s.SKID,0, s.SKID,1,

s.SKID,2, (s.S̃KID,ℓ)ℓ∈[|ID|+1,L]) is defined as follows:

s.SKID,0 := [ZrID]2,

s.SKID,1 := [
(
V0 + id1V1 + · · ·+ id|ID|V|ID|

)
ZrID]2 · [r̂a⊥]

v0+v1id1+...+v|ID|id|ID|
2 ,

s.SKID,2 := [VL+2ZrID]2 · [r̂a⊥]−1
2 , s.S̃KID,ℓ := [VℓZrID]2 · [r̂a⊥]vℓ2 ,

where rID ←R Zk
p, r̂ ←R Z∗

p, and (v0, v1, . . . , v|ID|) ←R Z|ID|+1
p is the random coin used to

create the challenge ciphertext. Here, the boxed parts denote the change from the normal
seed secret key.

Pseudo-SF Seed Secret Keys: A pseudo-SF seed secret key s.skID = (s.SKID,0, s.SKID,1, s.SKID,2,

(s.S̃KID,ℓ)ℓ∈[|ID|+1,L]) is defined as follows:

s.SKID,0 := [ZrID]2,

27

s.SKID,1 := [αa⊥]2 · [
(
V0 + id1V1 + · · ·+ id|ID|V|ID|

)
ZrID]2 · [r̂a⊥]

v0+v1id1+...+v|ID|id|ID|
2 ,

s.SKID,2 := [VL+2ZrID]2 · [r̂a⊥]−1
2 , s.S̃KID,ℓ := [VℓZrID]2 · [r̂a⊥]vℓ2 ,

where rID ←R Zk
p, r̂ ←R Z∗

p, (v0, v1, . . . , v|ID|) ←R Z|ID|+1
p is the random coin used to create

the challenge ciphertext, and α ←R Z∗
p is shared by all seed secret keys. Here, the boxed

parts denote the change from the pseudo-normal seed secret key.

We further introduce the following sequence of games for q ∈ [0, Qrev]:

GameII,2,q,1: This game is the same as GameII,2 except that

– C creates semi-functional s.sk
(1)
ID to answer A’s first q − 1 secret key reveal queries,

– C creates pseudo-normal s.sk
(1)
ID to answer A’s q-th secret key reveal query,

– C creates normal s.sk
(1)
ID to answer A’s last (Qrev − q) secret key reveal queries.

GameII,2,q,2: This game is the same as GameII,2,q,1 except that

– C creates pseudo-SF s.sk
(1)
ID to answer A’s q-th secret key reveal query.

GameII,2,q,3: This game is the same as GameII,2,q,2 except that

– C creates semi-functional s.sk
(1)
ID to answer A’s q-th secret key reveal query.

Table 3: Distributions of s.sk
(1)
ID in the proof of Lemma 5

Game
first q − 1

s.sk
(1)
ID

q-th

s.sk
(1)
ID

last Qrev − q

s.sk
(1)
ID

GameII,2,q,1 semi-functional pseudo-normal normal

GameII,2,q,2 semi-functional pseudo-SF normal

GameII,2,q,3 semi-functional semi-functional normal

In Table 3, we summarize the distributions of s.sk
(1)
ID in each game. By definition, GameII,2,0,3 =

GameII,2 and GameII,2,Qrev,3 = GameII,3. Hereafter, we prove

GameII,2,q−1,3 ≈c GameII,2,q,1 ≡ GameII,2,q,2 ≈c GameII,2,q,3,

where the fact implies that GameII,2 ≈c GameII,3.

Lemma 6 (Seed Secret Key Transition from Normal to Pseudo-normal,
GameII,2,q−1,3 ≈c GameII,2,q,1). GameII,2,q−1,3 and GameII,2,q,1 are computationally indistinguishable
under the MDDH assumption in G2. Specifically, for any PPT Type-II adversary A making at
most Qgen secret key generation queries, there exists a reduction algorithm BII,1 such that

|AdvII,2,q−1,3(λ)− AdvII,2,q,1(λ)| ≤ AdvMDDH-G2
BII,1

(λ) +
2

p− 1

and T(BII,1) ≈ T(A) + k2Qgen|T | · poly(λ,L), where poly(λ,L) is independent of T(A).

28

Proof of Lemma 6. The reduction algorithm BII,1 is given an MDDH instance in G2:
(G(1λ), [B]2, [b]2 = [Br + r̂e]2), where B ←R Dk, r ←R Zk

p, r̂ = 0 or r̂ ←R Zp, and

e = (0, . . . , 0, 1)⊤ ∈ Zk+1
p . Hereafter, we assume that r̂ ←R Z∗

p in the latter case with the sta-
tistical difference 1/p.

We describe how C creates MPK, skID, kuID,T, dkID,T, and ct⋆.

MPK Creation: At the beginning of the game, BII,1 samples (A,a⊥)← Dk, ((Ṽℓ)ℓ∈[0,L+2], Z̃)←R

(Z(k+1)×k
p)L+3×Zk×k

p , k←R Zk+1
p , (v0, v1, . . . , vL+1)←R ZL+2

p , and α←R Z∗
p. As the special case,

we set vL+2 = −1. Let B ∈ Zk×k
p and B ∈ Z1×k

p denote a top k × k sub-matrix and bottom row

vector of B, respectively, where B is full-rank. Let

M := a⊥(BB
−1

) ∈ Z(k+1)×k
p

denote a matrix that is not computable by BII,1. BII,1 sets

Vℓ = Ṽℓ + vℓM, [Z]2 = [BZ̃]2.

Since B is full-rank, Z is distributed in Zk×k
p uniformly at random as required. Then, BII,1 computes

[Ṽ⊤
ℓ A]1 = [V⊤

ℓ A− vℓ(BB
−1

)⊤ · (a⊥⊤
A)]1 = [V⊤

ℓ A]1,

[ṼℓBZ̃+ vℓa
⊥BZ̃]2 = [VℓZ− vℓa

⊥(BB
−1

) ·BZ̃+ vℓa
⊥BZ̃]2 = [VℓZ]2,

for ℓ ∈ [0, L+ 2]. Therefore, BII,1 can compute

MPK =
(
[A]1, ([V

⊤
ℓ A]1)ℓ∈[0,L+2], [Z]2, ([VℓZ]2)ℓ∈[0,L+2], [A

⊤k]T

)
that is distributed in the same way as the real scheme.

Secret Key Creation: Upon A’s secret key reveal queries on ID, BII,1 creates seed secret keys
s.skID as follows:

• If this is not still the q-th query, BII,1 retrieves a delegation key delkpa(ID),θ = kpa(ID),θ and

α, samples r
(1)
ID ←R Zk

p, and computes a semi-functional seed secret key s.sk
(1)
ID by computing

(9).

• If this is the q-th query, let b ∈ Zk
p and b ∈ Zp denote the first k-entries and last entry

of b, respectively. Then, BII,1 retrieves (v0, v1, . . . , v|ID|) and computes a seed secret key

s.sk
(1)
ID = (s.SK

(1)
ID,0, s.SK

(1)
ID,1, s.SK

(1)
ID,2, (s.S̃K

(1)

ID,ℓ)ℓ∈[|ID|+1,L]):

s.SKID,0 = [b]2

s.SK
(1)
ID,1 = [(Ṽ0 + id1Ṽ1 + id|ID|Ṽ|ID|)b]2 · [a⊥b]

v0+id1v1+···+id|ID|v|ID|
2 ,

s.SK
(1)
ID,2 = [ṼL+2b]2 · [−a⊥b]2, s.S̃K

(1)

ID,ℓ = [Ṽℓb]2 · [a⊥b]vℓ2 .

(14)

• If this is after the q-th query, BII,1 creates a normal seed secret key s.sk
(1)
ID by computing (8).

Then, BII,1 creates sub-secret keys skID,θ by computing (10).

Here, we check that the q-th queried seed secret key s.sk
(1)
ID is properly distributed. By definition,

b = Br, b = Br+ r̂,

29

where r←R Zk
p, r̂ = 0 or r̂ ←R Z∗

p. At first, we show that SKID,θ,0 is properly distributed by setting

r
(1)
ID = Z−1b = (Z̃−1B

−1
) · (Br) = Z̃−1r.

Since Z̃ is distributed in Zk×k
p uniformly at random, the matrix is full-rank with probability at

least 1 − 1/(p − 1). Since r is distributed in Zk
p uniformly at random, r

(1)
ID also follows the same

distribution if Z̃ is full-rank. Next, we observe that

Ṽℓb+ vℓa
⊥b = (Vℓ − vℓa

⊥(BB
−1

)) · (Br) + vℓa
⊥ · (Br+ r̂)

= VℓZr
(1)
ID + vℓr̂a

⊥

for ℓ ∈ [0, L+ 2], where vL+2 = −1. Therefore, it holds that

s.SK
(1)
ID,1 = [

(
V0 + id1V1 + id|ID|V|ID|

)
Zr

(1)
ID]2 · [r̂a⊥]

v0+id1v1+···+id|ID|v|ID|
2 ,

SK
(1)
ID,θ,2 = [VL+2Zr

(1)
ID]2 · [r̂a⊥]−1

2 ,

S̃K
(1)

ID,θ,ℓ = [VZr
(1)
ID]2 · [r̂a⊥]

vℓ
2 .

(15)

If r̂ = 0, s.sk
(1)
ID is a normal seed secret key as in GameII,2,q−1,3. If r̂ ←R Z∗

p, s.sk
(1)
ID is a pseudo-normal

seed secret key as in GameII,2,q,1.

Key Update Creation: BII,1 creates all kuID,T in the same way as in GameII,2.

Decryption Key Creation: BII,1 creates all dkID,T in the same way as in GameII,2.

Challenge Ciphertext Creation: Upon A’s challenge query on (ID⋆, T⋆,M⋆
0,M

⋆
1), BII,1 retrieves

(Ṽℓ)ℓ∈[0,L+2] and (v0, v1, . . . , v|ID⋆|, vL+1), samples c←R Zk+1
p and coin←R {0, 1}, and creates the

challenge ciphertext ct⋆ = (tag, tag′, C0, C1, C
′
1, C2):

tag = v0 + v1id
⋆
1 + · · ·+ v|ID⋆|id

⋆
|ID⋆|, tag′ = v0 + vL+1T

⋆,

C0 = [c]1,

C1 = [(Ṽ0 + id⋆1Ṽ1 + · · ·+ id⋆|ID⋆|Ṽ|ID⋆| + tagṼL+2)
⊤c]1,

C ′
1 = [(Ṽ0 + T⋆ṼL+1 + tag′ṼL+2)

⊤c]1, C2 = M⋆
coin · [c⊤k]T .

(16)

It is clear that tag, tag′, C0, C2 are properly distributed. We check that C1 and C ′
1 are also

properly distributed as follows:

C1 = [(Ṽ0 + id⋆1Ṽ1 + · · ·+ id⋆|ID⋆|Ṽ|ID⋆| + tagṼL+2)
⊤c]1

= [
(
(V0 − v0M) + id⋆1(V1 − v1M) + · · ·+ id⋆|ID⋆|(V|ID⋆| − v|ID⋆|M)

)⊤
c]1

· [(VL+2 +M)⊤c]
v0+v1id⋆1+···+v|ID⋆|id

⋆
|ID⋆|

1

= [(V0 + id⋆1V1 + · · ·+ id⋆|ID⋆|V|ID⋆| + tagVL+2)
⊤c]1,

C ′
1 = [(Ṽ0 + T⋆ṼL+1 + tag′ṼL+2)

⊤c]1

= [((V0 − v0M) + T⋆(VL+1 − vL+1M))⊤c]1 · [(VL+2 +M)⊤c]
v0+vL+1T

⋆

1

= [(V0 + T⋆VL+1 + tag′VL+2)
⊤c]1.

Therefore, ct⋆ is properly distributed semi-functional ciphertext.

Thus, we complete the proof of Lemma 6.

30

Lemma 7 (Seed Secret Key Transition from Pseudo-normal to Pseudo-SF,
GameII,2,q,1 ≡ GameII,2,q,2). GameII,2,q,1 and GameII,2,q,2 are identically distributed. Specifically, for
any Type-II adversary A, it holds that

AdvII,2,q,1(λ) = AdvII,2,q,2(λ).

Proof of Lemma 7. Here, we prove a stronger claim that GameII,2,q,1 and GameII,2,q,2 are identically
distributed for any fixed

• (A,a)←R Dk,

•
(
(Vℓ)ℓ∈[0,L+2],Z

)
←R (Z(k+1)×k

p)L+3 × Zk×k
p ,

• master secret key k←R Zk+1
p ,

• c←R Zk+1
p for creating the challenge ciphertext,

• (ID⋆, T⋆,M⋆
0,M

⋆
1) ∈ Z2

p ×M2 and random coin coin←R {0, 1},
• delegation keys kID,θ ←R Zk+1

p ,

• r
(1)
ID ←R Zk

p and r̂ ←R Zp for creating q-th queried s.sk
(1)
ID ,

• semi-functional randomness α←R Z∗
p.

Specifically, the randomness of (v0, v1, . . . , vL+1) ←R ZL+2
p enables us to prove the claim. Since

s.sk
(1)
ID which is not q-th queried ones, s.sk

(2)
ID , and dkID,T are created in the same way in both

GameII,2,q,1 and GameII,2,q,2, and all the other elements have been already fixed, it is sufficient to
show that {

v0 + v1id
⋆
1 + · · ·+ v|ID⋆|id

⋆
|ID⋆|, v0 + vL+1T

⋆

v0 + v1id1 + · · ·+ v|ID|id|ID|, (vℓ)ℓ∈[|ID|+1,L]

}
≡

{
v0 + v1id

⋆
1 + · · ·+ v|ID⋆|id

⋆
|ID⋆|, v0 + vL+1T

⋆,

α/r̂ + v0 + v1id1 + · · ·+ v|ID|id
⋆
|ID|, (vℓ)ℓ∈[|ID|+1,L]

}
,

where (v0, v1, . . . , vL+1) ←R ZL+2
p . Here, the first and second elements are tag, tag′, and last

element is the exponent of [r̂a⊥]2 of q-th queried (SKID,θ,1, (S̃KID,θ,ℓ)ℓ∈[|ID|+1,L) in GameII,2,q,1 and
GameII,2,q,2, respectively. Due to the randomness of vL+1 ←R Zp, the second element is distributed
in Zp uniformly at random. Since ID /∈ prefix+(ID⋆) holds due to the definition of the Type-
II adversary, the first and last elements are distributed in Z2

p uniformly at random due to the

randomness of (v0, v1, . . . , vL)←R ZL+1
p . Thus, we complete the proof of Lemma 7.

Lemma 8 (Secret Key Transition from Pseudo-SF to Semi-functional, GameII,2,q,2 ≈c GameII,2,q,3).
GameII,2,q,2 and GameII,2,q,3 are computationally indistinguishable under the MDDH assumption in
G2. Specifically, for any PPT Type-II adversary A making at most Qgen secret key generation
queries, there exists a reduction algorithm BII,2 such that

|AdvII,2,q,2(λ)− AdvII,2,q,3(λ)| ≤ AdvMDDH-G2
BII,2

(λ) +
2

p− 1

and T(BII,2) ≈ T(A) + k2Qgen|T | · poly(λ,L), where poly(λ,L) is independent of T(A).

We omit the detailed proof of Lemma 8 since it is almost the same as the proof of Lemma 6.
The only difference is that BII,2 creates s.SKID,1 upon A’s q-th secret key reveal query by

s.SK
(1)
ID,1 = [αa⊥]2 · [(Ṽ0 + id1Ṽ1 + id|ID|Ṽ|ID|)b]2 · [a⊥b]

v0+id1v1+···+id|ID|v|ID|
2 ,

31

= [αa⊥]2 · [(V0 + id1V1 + id|ID|V|ID|)r
(1)
ID]2 · [r̂a⊥]

v0+id1v1+···+id|ID|v|ID|
2 ,

where the boxed parts denote the changes from (14). If r̂ ←R Z∗
p, s.sk

(1)
ID is a pseudo-SF seed secret

key as in GameII,2,q,2. If r̂ = 0, s.sk
(1)
ID is a semi-functional seed secret key as in GameII,2,q,3.

By combining Lemmata 6–8, we have

|AdvII,2(λ)− AdvII,3(λ)|

≤
∑

q∈[Qrev]

|AdvII,2,q−1,3(λ)− AdvII,2,q,1(λ)|+
∑

q∈[Qrev]

|AdvII,2,q,1(λ)− AdvII,2,q,2(λ)|

+
∑

q∈[Qrev]

|AdvII,2,q,2(λ)− AdvII,2,q,3(λ)|

≤ Qrev ·
∑
j∈[2]

AdvMDDH-G2
BII,j

(λ) +
4Qrev

p− 1
.

Thus, we complete the proof of Lemma 5.

Lemma 9 (Semi-functional Randomness Switching for KGC’s Key Updates, GameII,3 ≡ GameII,4).
GameII,3 and GameII,4 are identically distributed from A’s view. Specifically, for any Type-II adver-
sary A, it holds that

AdvII,3(λ) = AdvII,4(λ).

The proof is the first core part of the proof against the Type-II adversary since we have to
change kukgc,T⋆ to be semi-functional. We can prove Lemma 9 based on the fact that all delkkgc,θ
are never revealed to A and all skID such that |ID| = 1 which A receives via secret key reveal queries
are semi-functional due to the modification in GameII,3.

Proof of Lemma 9. Here, we prove a stronger claim that GameII,3 and GameII,4 are identically
distributed from A’s view for any fixed

• (A,a)←R Dk,

•
(
(Vℓ)ℓ∈[0,L+2],Z

)
←R (Z(k+1)×k

p)L+3 × Zk×k
p ,

• master secret key k←R Zk+1
p ,

• r
(1)
ID ←R Zk

p for creating all s.sk
(1)
ID such that |ID| = 1,

• rID,θ ←R Zk
p for creating all skID,θ such that |ID| = 1,

• tkgc,T,θ ←R Zk
p for creating all kukgc,T,

• α←R Z∗
p.

Specifically, the randomnesses of all r̃ID,θ ←R Zp such that |ID| = 1 and all delkkgc,θ ←R Zk+1
p

enable us to prove the claim. We note that skID such that |ID| ≥ 2, kuID,T such that |ID| ≥ 1, and
dkID,T are created in the same way in both GameII,3 and GameII,4. We further note that even when
rID,θ ←R Zk

p are fixed, (SKID,θ,0,SKID,θ,2) do not reveal the quantities of r̃ID,θ ←R Z∗
p since they are

masked by r̃ID,θ ←R Zk
p. Since rID,θ and tkgc,T,θ are fixed, skID,θ such that |ID| = 1 and kukgc,T,θ

are distributed in the same way in both GameII,3 and GameII,4 except SKID,θ,1 and KUkgc,T,θ,1. In
GameII,3, SKID,θ,1 and KUkgc,T,θ,1 are distributed as follows:

SKID,θ,1 = [kkgc,θ + r̃ID,θαa
⊥]2 · [(V0 + IDV1)ZrID,θ]2,

32

KUkgc,T,θ,1 = [k− kkgc,θ]2 · [(V0 + TVL+1)Ztkgc,T,θ]2,

where r̃ID,θ ←R Zp and delkkgc,θ = kkgc,θ ←R Zk+1
p . In contrast, the above distribution can be

written as follows:

SKID,θ,1 = [(kkgc,θ + αa⊥) + (r̃ID,θ − 1)αa⊥]2 · [(V0 + IDV1)ZrID,θ]2,

KUkgc,T,θ,1 = [(k+ αa⊥)− (kkgc,θ + αa⊥)]2 · [(V0 + TVL+1)Ztkgc,T,θ]2,

where r̃ID,θ − 1 is distributed in Zp uniformly at random and kkgc,θ + αa⊥ is distributed in Zk+1
p

uniformly at random. Therefore, the above distribution is the same as the distribution in GameII,4
by setting r̃ID,θ−1 as the randomnesses in (10) and delkkgc,θ = kkgc,θ+αa⊥. We note that the claim
holds for all ID such that |ID| = 1 and all nodes θ ∈ BTkgc, simultaneously. Thus, we complete the
proof of Lemma 9.

Lemma 10 (Helper Key Update Invariance, GameII,4 ≈c GameII,5). GameII,4 and GameII,5 are com-
putationally indistinguishable under the MDDH assumption in G2. Specifically, for any PPT Type-I
I adversary A making at most Qgen secret key generation queries, there exist reduction algorithms
BII,3 and BII,4 such that

|AdvII,4(λ)− AdvII,5(λ)| ≤ Qgen ·
∑
j∈[2]

AdvMDDH-G2
BII,j+2

(λ) +
4Qgen

p− 1

and maxj∈[2] T(BII,j+2) ≈ T(A) + k2Qgen|T | · poly(λ,L), where poly(λ,L) is independent of T(A).

Let IDq denote an identity on which A makes q-th secret key generation query. The structure
of the proof may not look similar to the proof of Lemma 5, the spirit is almost the same.

Proof of Lemma 10. We further introduce the following sequence of games for q ∈ [0, Qgen]:

GameII,4,q,1: This game is the same as GameII,4 except that

– If m < q, C always creates semi-functional s.sk
(2)
IDm

,

– If m = q, C creates pseudo-normal s.sk
(2)
IDq

,

– If m > q, C always creates normal s.sk
(2)
IDm

.

GameII,4,q,2: This game is the same as GameII,4,q,1 except that

– If m = q, C creates pseudo-SF s.sk
(2)
IDq

,

GameII,4,q,3: This game is the same as GameII,4,q,2 except that

– If m = q, C creates semi-functional s.sk
(2)
IDq

,

By definition, GameII,4,0,3 = GameII,4 and GameII,4,Qgen,3 = GameII,5. Hereafter, we prove

GameII,4,q−1,3 ≈c GameII,4,q,1 ≡ GameII,4,q,2 ≈c GameII,4,q,3,

where the fact implies that GameII,4 ≈c GameII,5.

Lemma 11 (Sub-secret Key Transition from Normal to Pseudo-normal,
GameII,4,q−1,3 ≈c GameII,4,q,1). GameII,4,q−1,3 and GameII,4,q,1 are computationally indistinguishable
under the MDDH assumption in G2. Specifically, for any PPT Type-II adversary A making at
most Qgen secret key generation queries, there exists a reduction algorithm BII,3 such that

|AdvII,4,q−1,3(λ)− AdvII,4,q,1(λ)| ≤ AdvMDDH-G2
BII,3

(λ) +
2

p− 1

and T(BII,3) ≈ T(A) + k2Qgen|T | · poly(λ,L), where poly(λ,L) is independent of T(A).

33

We omit the proof of Lemma 11 since it is essentially the same as the proof of Lemma 6.

Lemma 12 (Sub-secret Key Transition from Pseudo-normal to Pseudo-SF,
GameII,4,q,1 ≡ GameII,4,q,2). GameII,4,q,1 and GameII,4,q,2 are identically distributed from A’s
view. Specifically, for any adversary Type-II A, it holds that

AdvII,4,q,1(λ) = AdvII,4,q,2(λ).

The proof of Lemma 12 is the second core part of the proof against the Type-II adversary since

we have to change all s.sk
(2)
ID such that ID ∈ prefix+(ID⋆) to be semi-functional. Here, we use pa(ID)

to denote the q-th queried identity. When pa(ID) /∈ prefix+(ID⋆), we prove Lemma 12 in the same

way as the proof of Lemma 7 by showing that pseudo-normal s.sk
(2)
pa(ID) and pseudo-SF s.sk

(2)
pa(ID)

are identically distributed. On the other hand, when pa(ID) ∈ prefix+(ID⋆), we cannot follow the

dual system argument. Observe that what A receives is not s.sk
(2)
pa(ID) itself, but kupa(ID),T created

by using s.sk
(2)
pa(ID). As the proof of Lemma 9, we use the fact that all delkpa(ID),θ are not revealed to

A and all skID are semi-functional, and apply the semi-functional randomness switching to prove
Lemma 12.

Proof of Lemma 12. If IDq = (idq,1, . . . , idq,|IDq |) /∈ prefix+(ID⋆), we can show that pseudo-normal

and pseudo-SF s.sk
(2)
IDq

are identically distributed by following the same argument as in the proof

of Lemma 7. Then, in GameII,4,q,1, KUIDq ,T,1 is distributed as follows:

KUIDq ,T,1 = [k+ kIDq ,T]2 · [αa⊥]2 · [
(
V0 + idq,1V1 + · · ·+ idq,|IDq |V|IDq |

)
ZtIDq ,T]2

· [(V0 + TVL+1)Zt
′
IDq ,T]2 · [r̂a

⊥]
v0+v1idq,1+...+v|IDq |idq,|IDq |
2 .

The distribution is the same as the distribution in GameII,4,q,2.

If IDq = (idq,1, . . . , idq,|IDq |) ∈ prefix+(ID⋆), we prove a stronger claim that GameII,4,q,1 and
GameII,4,q,2 are identically distributed from A’s view for any fixed

• (A,a)←R Dk,

•
(
(Vℓ)ℓ∈[0,L+2],Z

)
←R (Z(k+1)×k

p)L+3 × Zk×k
p ,

• master secret key k←R Zk+1
p ,

• r̂ ←R Z∗
p for creating s.sk

(2)
IDq

,

• rID,θ ←R Zk
p for creating skID,θ such that pa(ID) = IDq,

• tIDq ,T,θ, tIDq ,T, t
′
IDq ,T ←R Zk

p for creating kuIDq ,T,

• α←R Z∗
p and α←R Z∗

p.

Specifically, the randomnesses of r̃ID,θ ←R Zp and delkIDq ,θ, delkIDq ,T ←R Zk+1
p enable us to prove

the claim. We note that all skID such that pa(ID) ̸= IDq, all kuID,T such that ID ̸= IDq, and
all dkID,T are created in the same way in both GameII,4,q,1 and GameII,4,q,2. We further note that
even when rID,θ ←R Zk

p are fixed, (SKID,θ,0,SKID,θ,2) do not reveal the quantities of r̃ID,θ ←R Zp

in (10) since they are masked by r̃ID,θ ←R Zk
p. Since rID,θ and tIDq ,T,θ, tIDq ,T, t

′
IDq ,T are fixed, skID

and kuIDq ,T are distributed in the same way in both GameII,4,q,1 and GameII,4,q,2 except SKID,θ,1

and KUIDq ,T,θ,1,KUIDq ,T,1. In GameII,4,q,1, SKID,θ,1 and KUpa(ID),T,θ,1,KUpa(ID),T,1 are distributed as
follows:

SKID,θ,1 = [kIDq ,θ + r̃ID,θαa
⊥]2 · [

(
V0 + id1V1 + · · ·+ id|ID|V|ID|

)
ZrID,θ]2,

34

KUIDq ,T,θ,1 = [kIDq ,θ + kIDq ,T]
−1
2 · [(V0 + TVL+1)ZtIDq ,T,θ]2,

KUIDq ,T,1 = [k+ kIDq ,T]2 · [
(
V0 + idq,1V1 + · · ·+ idq,|IDq |V|IDq |

)
ZtIDq ,T]2

· [(V0 + TVL+1)Zt
′
IDq ,T]2 · [r̂a

⊥]
v0+v1idq,1+...+v|IDq |idq,|IDq |
2 ,

where r̃ID,θ ←R Zp, delkIDq ,θ = kIDq ,θ ←R Zk+1
p , and delkIDq ,T = kIDq ,T ←R Zk+1

p . In contrast, the
above distribution can be written as follows:

SKID,θ,1 = [(kIDq ,θ + αa⊥) + (r̃ID,θ − 1)αa⊥]2 · [
(
V0 + id1V1 + · · ·+ id|ID|V|ID|

)
ZrID,θ]2,

KUIDq ,T,θ,1 = [(kIDq ,θ + αa⊥) + (kIDq ,T − αa⊥)]−1
2 · [(V0 + TVL+1)ZtIDq ,T,θ]2,

KUIDq ,T,1 = [k+ αa⊥ + (kIDq ,T − αa⊥)]2 · [
(
V0 + idq,1V1 + · · ·+ idq,|IDq |V|IDq |

)
ZtIDq ,T]2

· [(V0 + TVL+1)Zt
′
IDq ,T]2 · [r̂a

⊥]
v0+v1idq,1+...+v|IDq |idq,|IDq |
2 ,

where r̃ID,θ−1 is distributed in Zp uniformly at random and kIDq ,θ+αa⊥,kIDq ,T−αa⊥ are distributed
in Zk+1

p uniformly at random. Therefore, the above distribution is the same as the distribution in

GameII,4,q,2 by setting r̃ID,θ− 1 as the randomnesses in (10) and delkIDq ,θ = kIDq ,θ +αa⊥, delkIDq ,T =

kIDq ,T−αa⊥. We note that the claim holds for all ID such that pa(ID) = IDq and all nodes θ ∈ BTIDq ,
simultaneously. Thus, we complete the proof of Lemma 12.

Lemma 13 (Sub-secret Key Transition from Pseudo-SF to Semi-functional,
GameII,4,q,2 ≈c GameII,4,q,3). GameII,4,q,2 and GameII,4,q,3 are computationally indistinguishable
under the MDDH assumption in G2. Specifically, for any PPT Type-II adversary A making at
most Qgen secret key generation queries, there exists a reduction algorithm BII,4 such that

|AdvII,4,q,2(λ)− AdvII,4,q,3(λ)| ≤ AdvMDDH-G2
BII,4

(λ) +
2

p− 1

and T(BII,4) ≈ T(A) +Qgen|T | · poly(λ,L), where poly(λ,L) is independent of T(A).

We omit the detailed proof of Lemma 13 since it is almost the same as the proof of Lemma 11.

By combining Lemmata 11–13, we have

|AdvII,4(λ)− AdvII,5(λ)|

≤
∑

q∈[Qgen]

|AdvII,4,q−1,3(λ)− AdvII,4,q,1(λ)|+
∑

q∈[Qgen]

|AdvII,4,q,1(λ)− AdvII,4,q,2(λ)|

+
∑

q∈[Qgen]

|AdvII,4,q,2(λ)− AdvII,4,q,3(λ)|

≤ Qgen ·
∑
j∈[2]

AdvMDDH-G2
BII,j+2

(λ) +
4Qgen

p− 1
.

Thus, we complete the proof of Lemma 10.

Lemma 14 (Decryption Key Invariance, GameII,5 ≈c GameII,6). GameII,5 and GameII,6 are compu-
tationally indistinguishable under the MDDH assumption in G2. Specifically, for any PPT Type-I
I adversary A making at most Qgen secret key generation queries and Qdk decryption key reveal
queries, there exists reduction algorithms BII,5 and BII,6 such that

|AdvII,5(λ)− AdvII,6(λ)| ≤ Qdk ·
∑
j∈[2]

AdvMDDH-G2
BII,j+4

(λ) +
4Qdk

p− 1

and maxj∈[2] T(BII,j+4) ≈ T(A) +Qgen|T | · poly(λ,L), where poly(λ,L) is independent of T(A).

35

The structure of the proof is the same as the proof of Lemma 5. However, the transition
from pseudo-normal to pseudo-SF is a little more complicated since we have to change dkID,T⋆ for
ID ∈ prefix+(ID⋆) \ {ID⋆} to be semi-functional.

Proof of Lemma 14. To prove Lemma 14, we further introduce the following auxiliary distributions.

Pseudo-normal Decryption Keys: A pseudo-normal decryption key dkID,T := (DKID,T,0,DK
′
ID,T,0,

DKID,T,1,DKID,T,2,DK
′
ID,T,2) is defined as follows:

DKID,T,0 := [ZuID,T]2, DK′
ID,T,0 := [Zu′

ID,T]2,

DKID,T,1 := [k]2 · [
(
V0 + id1V1 + · · ·+ id|ID|V|ID|

)
ZuID,T]2

· [(V0 + TVL+1)Zu
′
ID,T]2 · [ûa⊥]v0+v1id1+···+v|ID|id|ID|+vL+1T ,

DKID,T,2 := [VL+2ZuID,T]2 · [ûa⊥]−1 ,

DK′
ID,T,2 := [VL+2Zu

′
ID,T]2 · [ûa⊥]−1 ,

where uID,T,u
′
ID,T ←R Zk

p and û ←R Z∗
p. Here, the boxed part denotes the change from the

normal decryption key.

Pseudo-SF Decryption Keys: A pseudo-SF decryption key dkID,T := (DKID,T,0,DK
′
ID,T,0,DKID,T,1,

DKID,T,2,DK
′
ID,T,2) is defined as follows:

DKID,T,0 := [ZuID,T]2, DK′
ID,T,0 := [Zu′

ID,T]2,

DKID,T,1 := [k+ αa⊥]2 · [
(
V0 + id1V1 + · · ·+ id|ID|V|ID|

)
ZuID,T]2

· [(V0 + TVL+1)Zu
′
ID,T]2 · [ûa⊥]v0+v1id1+···+v|ID|id|ID|+v0+vL+1T,

DKID,T,2 := [VL+2ZuID,T]2 · [ûa⊥]−1, DK′
ID,T,2 := [VL+2Zu

′
ID,T]2 · [ûa⊥]−1,

where uID,T,u
′
ID,T ←R Zk

p, û←R Z∗
p, and α←R Z∗

p. Here, the boxed part denotes the change
from the pseudo-normal decryption key.

Let (IDq, Tq) denote the tuple on which A makes the q-th decryption key reveal query. We
further introduce the following sequence of games for q ∈ [Qdk]:

GameII,5,q,1: This game is the same as GameII,5 except that

– C creates semi-functional dkID,T upon A’s first q − 1 decryption key reveal queries,

– C creates pseudo-normal dkIDq ,Tq upon A’s q-th decryption key reveal query,

– C creates normal dkID,T upon A’s last Qdk − q decryption key reveal queries.

GameII,5,q,2: This game is the same as GameII,5,q,1 except that

– C creates pseudo-SF dkIDq ,Tq upon A’s q-th decryption key reveal query.

GameII,5,q,3: This game is the same as GameII,5,q,2 except that

– C creates semi-functional dkIDq ,Tq upon A’s q-th decryption key reveal query.

We use the notation GameII,5,0,3 = GameII,5. By definition, GameII,5,Qdk,3 = GameII,6. Hereafter, we
prove

GameII,5,q−1,3 ≈c GameII,5,q,1 ≡ GameII,5,q,2 ≈c GameII,5,q,3,

where the fact implies that GameII,5 ≈c GameII,6.

36

Lemma 15 (Decryption Key Transition from Normal to Pseudo-normal,
GameII,5,q−1,3 ≈c GameII,5,q,1). GameII,5,q−1,3 and GameII,5,q,1 are computationally indistinguishable
under the MDDH assumption in G2. Specifically, for any PPT Type-II adversary A making at
most Qgen secret key generation queries, there exists a reduction algorithm BII,5 such that

|AdvII,5,q−1,3(λ)− AdvII,5,q,1(λ)| ≤ AdvMDDH-G2
BII,5

(λ) +
2

p− 1

and T(BII,5) ≈ T(A) + k2Qgen|T | · poly(λ,L), where poly(λ,L) is independent of T(A).

Proof of Lemma 15. The reduction algorithm BII,5 is given a MDDH instance in G2:
(G(1λ), [B]2, [b]2 = [Bu + ûe]2), where B ←R Dk,u ←R Zk

p, û = 0 or û ←R Zp, and

e = (0, . . . , 0, 1)⊤ ∈ Zk+1
p . Hereafter, we assume that û ←R Z∗

p in the latter case with the sta-
tistical difference 1/p.
BII,5 creates MPK and ct⋆ in the same way as the proof of Lemma 6. BII,5 creates kukgc,T,θ by

computing (5) and kuID,T,θ such that |ID| ≥ 1 in the same way as the real scheme. BII,5 creates

s.sk
(1)
ID and s.sk

(2)
ID by computing (9) and computes skID,θ and KUID,T by computing (10) and (12),

respectively.
We describe how BII,5 creates dkID,T.

Decryption Key Creations: Upon A’ m-th decryption key reveal query on (IDm, Tm), BII,5
creates dkIDm,Tm as follows:

• If m < q, BII,5 creates semi-functional dkIDm,Tm by computing (7).

• If m = q, BII,5 retrieves the master secret key k and (v0, v1, . . . , v|IDq |, vL+1), sam-

ples ũIDq ,Tq , ũ
′
IDq ,Tq ←R Zk+1

p , and computes dkIDq ,Tq = (DKIDq ,Tq ,0,DK
′
IDq ,Tq ,0,DKIDq ,Tq ,1,

DKIDq ,Tq ,2,DK
′
IDq ,Tq ,2):

DKIDq ,Tq ,0 = [b]2 · [ZũIDq ,Tq]2, DK′
IDq ,Tq ,0 = [b]2 · [Zũ′

IDq ,Tq]2,

DKIDq ,Tq ,1 = [k]2 · [(Ṽ0 + idq,1Ṽ1 + · · ·+ idq,|ID|Ṽ|ID|)b]2

· [(Ṽ0 + TqṼL+1)b]2 · [a⊥b]
v0+v1idq,1+···+vq,|IDq |id|IDq |+vL+1Tq

2

· [
(
V0 + idq,1V1 + · · ·+ idq,|ID|V|IDq |

)
ZũIDq ,Tq]2

· [(V0 + TqVL+1)Zũ
′
IDq ,Tq]2,

DKIDq ,Tq ,2 = [ṼL+2b]2 · [−a⊥b]2 · [VL+2ZũIDq ,Tq]2,

DK′
IDq ,Tq ,2 = [ṼL+2b]2 · [−a⊥b]2 · [VL+2Zũ

′
IDq ,Tq]2.

(17)

By following the same argument in the proof of Lemma 6, dkIDq ,Tq is a normal decryption key
as in GameII,5,q−1,3 if û = 0, and pseudo-normal decryption key as in GameII,5,q,1 if û←R Z∗

p,

by setting uIDq ,Tq = Z̃−1u+ ũIDq ,Tq and u′
IDq ,Tq = Z̃−1u+ ũ′

IDq ,Tq .

• If m > q, BII,5 creates normal dkIDm,Tm by computing (13).
Thus, we complete the proof of Lemma 15.

Lemma 16 (Decryption Key Transition from Pseudo-normal to Pseudo-SF,
GameII,5,q,1 ≡ GameII,5,q,2). GameII,5,q,1 and GameII,5,q,2 are identically distributed from A’s
view. Specifically, for any Type-II adversary A, it holds that

AdvII,5,q,1(λ) = AdvII,5,q,2(λ).

37

Proof of Lemma 16. Here, we prove a stronger claim that GameII,5,q,1 and GameII,5,q,2 are identically
distributed for any fixed

• (A,a)←R Dk,

•
(
(Vℓ)ℓ∈[0,L+2],Z

)
←R (Z(k+1)×k

p)L+3 × Zk×k
p ,

• master secret key k←R Zk+1
p ,

• û←R Z∗
p for creating dkIDq ,Tq ,

• c←R Zk+1
p for creating the challenge ciphertext,

• (ID⋆, T⋆,M⋆
0,M

⋆
1) ∈ Z2

p ×M2 and random coin coin←R {0, 1},
• uIDq ,Tq ,u

′
IDq ,Tq ←R Zk

p and û←R Z∗
p for creating q-th queried dkIDq ,Tq .

Specifically, the randomness of (v0, v1, . . . , vL+1) ←R ZL+2
p enables us to prove the claim. Since

all skID, kuID,T, and dkID,T except dkIDq ,Tq are created in the same way in both GameII,5,q,1 and
GameII,5,q,2, and all the other elements have been already fixed, it is sufficient to show that{

v0 + id⋆1v1 + · · ·+ ID|ID⋆|v|ID⋆|, v0 + T⋆vL+1,

v0 + idq,1v1 + · · ·+ IDq,|IDq |v|IDq | + TqvL+1

}
≡
{

v0 + id⋆1v1 + · · ·+ ID|ID⋆|v|ID⋆|, v0 + T⋆vL+1,

α/û+ v0 + idq,1v1 + · · ·+ IDq,|IDq |v|IDq | + TqvL+1

}
,

(18)

where (v0, v1, . . . , vL+1) ←R ZL+2
p . Here, the first two elements are tag, tag′ and last el-

ement is the exponent of [ûa⊥]2 of DKIDq ,Tq ,1 in GameII,5,q,1 and GameII,5,q,2, respectively.
If IDq /∈ prefix+(ID⋆) holds,

{
v0 + id⋆1v1 + · · ·+ ID|ID⋆|v|ID⋆|, v0 + idq,1v1 + · · ·+ IDq,|IDq |v|IDq |

}
is distributed in Z2

p uniformly at random by following the standard argument for proving
HIBE. If Tq ̸= T⋆ holds, {v0 + T⋆vL+1, v0 + TqvL+1} is distributed in Z2

p uniformly at ran-
dom by following the standard argument for proving IBE. If IDq ∈ prefix+(ID⋆) \ {ID⋆},{
v0 + id⋆1v1 + · · ·+ ID|ID⋆|v|ID⋆|, v0 + idq,1v1 + · · ·+ IDq,|IDq |v|IDq |

}
is distributed in Z2

p uniformly at
random due to the random IDq,|IDq |+1v|IDq |+1 + ID|ID⋆|v|ID⋆|. Since (IDq, Tq) ̸= (ID⋆, T⋆) holds due
to the security definition of RHIBE, we have proved the claim. Thus, we complete the proof of
Lemma 16.

Lemma 17 (Decryption Key Transition from Pseudo-SF to Semi-functional,
GameII,5,q,2 ≈c GameII,5,q,3). GameII,5,q,2 and GameII,5,q,3 are computationally indistinguishable
under the MDDH assumption in G2. Specifically, for any PPT Type-II adversary A making at
most Qgen secret key generation queries, there exists a reduction algorithm BII,6 such that

|AdvII,5,q,2(λ)− AdvII,5,q,3(λ)| ≤ AdvMDDH-G2
BII,6

(λ) +
2

p− 1

and T(BII,6) ≈ T(A) + k2Qgen|T | · poly(λ,L), where poly(λ,L) is independent of T(A).

We omit the detailed proof of Lemma 17 since it is almost the same as the proof of Lemma 15.
The only difference is that BII,6 creates dkIDq ,Tq upon A’s q-th decryption key reveal query by

DKIDq ,Tq ,1 = [k+ αa⊥]2 · [(Ṽ0 + idq,1Ṽ1 + · · ·+ idq,|ID|Ṽ|ID|)b]2

· [(Ṽ0 + TqṼL+1)b]2 · [a⊥b]
v0+v1idq,1+···+vq,|IDq |id|IDq |+vL+1Tq

2

· [
(
V0 + idq,1V1 + · · ·+ idq,|ID|V|IDq |

)
ZũIDq ,Tq]2

· [(V0 + TqVL+1)Zũ
′
IDq ,Tq]2,

38

where the boxed parts denote the changes from (17). If û←R Z∗
p, dkIDq ,Tq is a pseudo-SF decryption

key as in GameII,5,q,2. If û = 0, dkIDq ,Tq is a semi-functional decryption key as in GameII,5,q,3.

By combining Lemmata 15–17, we have

|AdvII,5(λ)− AdvII,6(λ)|

≤
∑

q∈[Qdk]

|AdvII,5,q−1,3(λ)− AdvII,5,q,1(λ)|+
∑

q∈[Qdk]

|AdvII,5,q,1(λ)− AdvII,5,q,2(λ)|

+
∑

q∈[Qdk]

|AdvII,5,q,2(λ)− AdvII,5,q,3(λ)|

≤ Qdk ·
∑
j∈[2]

AdvMDDH-G2
BII,j+4

(λ) +
4Qdk

p− 1
.

Thus, we complete the proof of Lemma 14.

Lemma 18 (Final Transition, GameII,6 ≡ GameII,7). GameII,6 and GameII,7 are identically dis-
tributed. Specifically, for any Type-II adversary A, it holds that

AdvII,6(λ) = AdvII,7(λ).

Proof of Lemma 18. Run (p,G1,G2,GT , g1, g2, e) ← G(1λ) and sample (A,a⊥) ← Dk,(
(Vℓ)ℓ∈[0,L+2],Z

)
←R (Z(k+1)×k

p)L+3 × Zk×k
p , k←R Zk+1

p , and α←R Z∗
p. We sets MSK = k− αa⊥

and returns

MPK =
(
[A]1, ([V

⊤
ℓ A]1)ℓ∈[0,L+2], [Z]2, ([VℓZ]2)ℓ∈[0,L+2], [A

⊤k]T

)
to A. Since it holds that

[A⊤k]T = e([A]1, [k]2) = e([A]1, [k]2) · e([A]1, [a
⊥]−α

2) = e([A]1, [k− αa⊥]2)

= [A⊤MSK]T ,

MPK follows the same distribution as the real scheme. Furthermore, MPK does not reveal the

quantity of α in both GameII,6 and GameII,7. We create s.sk
(1)
ID by computing (9) and create skID,θ

by computing (10). We create kuID,T,θ such that |ID| ≥ 1 in the same way as the real scheme. In
GameII,6, C uses MSK only for computing semi-functional kukgc,T,θ (5), semi-functional kuID,T (6),
and semi-functional dkID,T (7). In this proof, since [k]2 = MSK + αa⊥, we use [k]2 and create
kukgc,T,θ, kuID,T, and dkID,T by computing (11), (12), and (13), and they follow semi-functional
distribution as in (5), (6), and (7), respectively.

Summarizing the creations so far, we do not use MSK for creating all MPK, skID,θ, kukgc,T,θ,
kuID,T,θ, kuID,T, and dkID,T. In other words, the quantity of α is not revealed to A so far. In both
GameII,6 and GameII,7, ct

⋆ follows the same distribution except C2. In GameII,6, C2 is distributed as
follows:

C2 = Mcoin · [c⊤MSK]T =
(
Mcoin · [−αc⊤a⊥]T

)
· [c⊤k]T .

Since α ∈ Z∗
p, −αca⊥ = 0 holds only when c⊤a⊥ = 0. Since c is distributed in Zk+1

p uniformly

at random, is holds that c⊤a⊥ = 0 with probability 1/p. In contrast, when c⊤a⊥ ̸= 0, −αca⊥ for
α ←R Z∗

p is distributed in Z∗
p uniformly at random. Then, −αca⊥ becomes each non-zero value

39

with probability
(
1− 1

p

)
· 1
p−1 = 1

p . Therefore, Mcoin · [−αc⊤a⊥]T is distributed in GT uniformly

at random. Thus, we complete the proof of Lemma 18.

By combining with Lemmata 3, 4, 5, 9, 10, 14, and 18, we have

AdvRHIBEΠ,L,A(λ)

≤
∑
i∈[7]

|AdvII,i−1(λ)− AdvII,i(λ)|+ AdvII,7(λ)

≤ AdvMDDH-G1
B0

(λ) +Qrev ·
∑
j∈[2]

AdvMDDH-G2
BII,j

(λ) +Qgen ·
∑
j∈[2]

AdvMDDH-G2
BII,j+2

(λ)

+Qdk ·
∑
j∈[2]

AdvMDDH-G2
BII,j+4

(λ) +
4(Qrev +Qgen +Qdk)

p
.

By definition, Qrev ≤ Qgen and Qrev ≤ Qgen|T | hold. Therefore, it holds that

AdvRHIBEΠ,L,A(λ)

≤ AdvMDDH-G1
B0

(λ) +Qgen

∑
j∈[4]

AdvMDDH-G2
BII,j

(λ) + |T | ·
∑
j∈[2]

AdvMDDH-G2
BII,4+j

(λ)

+O

(
Qgen|T |

p

)
.

Thus, we complete the proof of Lemma 2.

6 Adaptive Security against the Type-I Adversary

We repost the definition of the Type-I adversary:

Type-I Adversary: A is called Type-I if it makes the secret key reveal queries on some ID ∈
prefix+(ID⋆).

It is clear that our proof strategy against the Type-II adversary is insufficient for proving the
adaptive security against the Type-I adversary since A receives skID such that ID ∈ prefix+(ID⋆).
Although we do not perform a detailed analysis of this problem, we believe that by combining the
proof technique of Emura et al. [ETW20] against the Type-I adversary and the semi-functional
randomness switching, we may be able to prove the adaptive security of our RHIBE scheme against
the Type-I adversary. As we claimed in Remark 2, Emura et al. divided the Type-I adversary into
the Type-I-ℓ⋆ adversary for ℓ⋆ ∈ [L] such that A makes the secret key reveal a query on ID⋆[ℓ⋆],

while A does not make the secret key reveal queries on any ID⋆[ℓ] for ℓ ∈ [ℓ⋆ − 1]. Thus, Emura et

al.’s proof technique inherently suffers from O(L) reduction loss. This reduction loss is unavoidable
for their proof technique since they used the value ℓ⋆ to define the way in which the reduction
algorithm answers A’s key queries.

We adopted another approach for achieving tighter reduction. Let IDq denote the identity on
which A makes q-th secret key generation query. First, we determine the number Q⋆ ∈ [Qgen]
such that IDQ⋆ = ID⋆[ℓ⋆] with Qgen reduction loss. Although we also use the value ℓ⋆ to design the
manner in which the reduction algorithm answers A’s key queries, as done by Emura et al., our
proof does not suffer from O(L) reduction loss since the reduction algorithm answers all the key
queries of A in the same manner until A’s Q⋆-th secret key generation query. By definition of ID⋆[ℓ⋆],

40

all ID on which A makes the secret key reveal queries satisfy ID /∈ prefix+(ID⋆) until A’s Q⋆-th
secret key generation query. After A’s Q⋆-th secret key generation query, we can detect whether
ID⋆[ℓ⋆] /∈ prefix+(ID) holds for any ID. Thus, upon A’s secret key reveal queries on ID, we change

skID to be semi-functional only when it holds that ID⋆[ℓ⋆] /∈ prefix+(ID).
Next, we explain how to change all kuID,T to be semi-functional. In this case, our proof technique

against the Type-II adversary is still insufficient for proving adaptive security against the Type-
I adversary. By definition of ID⋆[ℓ⋆], skID⋆[ℓ⋆−1]

that includes the delegation keys delkID⋆
[ℓ⋆−1]

,θ is not

revealed to A. Nevertheless, we cannot apply the semi-functional randomness switching to change
kuID⋆

[ℓ⋆−1]
,T to be semi-functional since we cannot change skID⋆

[ℓ⋆]
to be semi-functional. To overcome

this problem, we use the information derived from the guess of Q⋆. After A’s Q⋆-th secret key
generation query, we can detect the time period TRL when ID⋆[ℓ⋆] is revoked. From the security
definition of RHIBE, since ID⋆[ℓ⋆] has to be revoked by the challenge time period T⋆, TRL ≤ T⋆ holds.
In other words, we can use the fact T ̸= T⋆ to change all kuID,T and dkID,T to be semi-functional
before the time period TRL. From the above discussion, A receives normal skID⋆

[ℓ⋆]
. On the other

hand, after time period TRL, all kuID⋆
[ℓ⋆−1]

,T,θ and skID⋆
[ℓ⋆]

,θ do not share the same node since ID⋆[ℓ⋆] is

already revoked. Based on this fact, we can apply semi-functional randomness switching to change
all kuID⋆

[ℓ⋆−1]
,T to be semi-functional.

Following this argument, we prove the adaptive security of our RHIBE scheme. Before provid-
ing an overview of our proof, we introduce the following seed key update and its semi-functional
distribution.

Normal Seed Key Updates: A normal seed key update is defined as s.kuT := (s.KUT,0, s.KUKU,1,
s.KUKU,2):

s.KUT,0 := [ZtT]2, s.KUT,1 := [(V0 + TVL+1)ZtT]2,

s.KUT,2 := [VL+2ZtT]2,
(19)

where tT ←R Zk
p.

Semi-functional Seed Key Updates: A semi-functional seed key update is defined as s.kuT :=
(s.KUT,0, s.KUKU,1, s.KUKU,2):

s.KUT,0 := [ZtT]2, s.KUT,1 := [αa⊥]2 · [(V0 + TVL+1)ZtT]2,

s.KUT,2 := [VL+2ZtT]2,
(20)

where tT ←R Zk
p and α ←R Z∗

p. Here, the term in the box denotes the change from the
normal seed key update.

We use the following sequence of games to prove the adaptive security against the Type-I ad-
versary:

GameI,0: This is the real security game between the challenger C and adversary A.
GameI,1: This game is the same as GameII,0 except that the challenge ciphertext ct⋆ is semi-

functional.

GameI,2: Let ID⋆[ℓ⋆] ∈ prefix+(ID⋆) denote an identity such that Amakes the secret key reveal queries

on ID⋆[ℓ⋆], while A does not make the secret key reveal any query on any (ID⋆[ℓ])ℓ∈[ℓ⋆−1]. Let
IDq denote the identity on which A makes q-th secret key generation query. This game is the
same as GameI,1 except that C guesses the number Q⋆ such that IDQ⋆ = ID⋆[ℓ⋆]. If the guess

is not correct, C aborts the game and outputs a random bit ĉoin ←R {0, 1}. Hereafter, let

41

TRL denote the first time period such that IDQ⋆ ∈ RLTRL . From the definition of the Type-
I adversary, it holds that TRL ≤ T⋆ if the guess is correct. Hereafter, we describe the case only
when the guess is correct.

GameI,3: This game is the same as GameI,2 except that C modifies the method of creating secret
keys skID, key updates kuID,T, and decryption keys dkID,T as follows:

Table 4: Distributions of ct⋆, s.sk
(1)
ID for creating skID,θ, and skID,θ in each game

in the proof against the Type-I adversary. In the column ct⋆, we specify the
distribution and encrypted plaintext. In the other columns, we specify the
distributions and semi-functional randomness of s.skID and skID,θ.

Game ct⋆
s.sk

(1)
ID for

ID⋆[ℓ⋆] /∈ prefix+(ID)

skID,θ for

ID⋆[ℓ⋆] /∈ prefix+(ID)

GameI,0
normal

M⋆
coin

normal normal

GameI,1
semi-functional

M⋆
coin

normal normal

GameI,2
semi-functional

M⋆
coin

normal normal

GameI,3
semi-functional

M⋆
coin

semi-functional

α←R Z∗
p

semi-functional

r̃ID,θα; r̃ID,θ ←R Zp

GameI,4
semi-functional

M⋆
coin

semi-functional

α←R Z∗
p

semi-functional

r̃ID,θα; r̃ID,θ ←R Zp

GameI,5
semi-functional

M⋆
coin

semi-functional

α←R Z∗
p

semi-functional

r̃ID,θα; r̃ID,θ ←R Zp

GameI,6
semi-functional

M⋆
coin

semi-functional

α←R Z∗
p

semi-functional

r̃ID,θα; r̃ID,θ ←R Zp

GameI,7
semi-functional

M⋆
coin

semi-functional

α←R Z∗
p

semi-functional

r̃ID,θα; r̃ID,θ ←R Zp

GameI,8
semi-functional

M⋆ ←R GT

semi-functional

α←R Z∗
p

semi-functional

r̃ID,θα; r̃ID,θ ←R Zp

Secret Key Creation: Upon A’s secret key generation queries on ID, C does not create sub-secret
keys skID,θ. Upon A’s secret key reveal queries on ID, C first creates normal seed secret keys

s.sk
(1)
ID . Then, C uses s.sk

(1)
ID to create all sub-secret keys skID,θ.

Key Update and Decryption Key Creation: C proceeds as follows.

– For each time period T < TRL upon the setup and A’s revoke & key update queries,
C first creates normal seed key updates s.kuT. To create kuID,T (including kukgc,T) for
T < TRL, C uses the seed key updates s.kuT for computing the sub-key updates kuID,T,θ.
It also creates the helper key updates kuID,T such that |ID| ≥ 1 in the same way as in

42

the real scheme. To create dkID,T for T < TRL, C uses the seed key updates s.kuT for
computing the decryption keys dkID,T.

– Upon A’s secret key generation queries on ID, C first creates normal seed secret keys

s.sk
(2)
ID . C creates kukgc,T for T ≥ TRL in the same manner as in the real scheme. To create

kuID,T such that |ID| ≥ 1 and dkID,T for all T ≥ TRL, C uses the seed secret keys s.sk
(2)
ID for

computing the helper decryption keys dkID,T and creating the sub-key updates kuID,T,θ
in the same way as in the real scheme.

GameI,4: This game is the same as GameI,3 except that C creates semi-functional seed secret keys

s.sk
(1)
ID upon A’s secret key reveal queries if IDQ⋆ /∈ prefix+(ID) holds.

GameI,5: This game is the same as GameI,4 except that C creates semi-functional seed key updates
s.kuT. Furthermore, each helper key update kuID,T for T < TRL is also semi-functional.

GameI,6: This game is the same as GameI,5 except that C creates semi-functional kukgc,T for T ≥ TRL.

GameI,7: This game is the same as GameI,6 except that C creates semi-functional helper key updates
kuID,T and decryption keys dkID,T for T ≥ TRL.

43

Table 5: Distributions of kuID,T,θ, kuID,T for |ID| ≥ 1, and dkID,T for
T < TRL in each game in the proof against the Type-I adversary. We
specify the distributions and semi-functional randomness of kukgc,T,θ,
kuID,T, and dkID,T.

Game
kuID,T,θ

for T < TRL

kuID,T

for T < TRL

dkID,T

for T < TRL

GameI,0 normal normal normal

GameI,1 normal normal normal

GameI,2 normal normal normal

GameI,3 normal normal normal

GameI,4 normal normal normal

GameI,5

semi-functional

t̃ID,T,θα;

t̃ID,T,θ ←R Zp

semi-functional

t̃ID,Tα;

t̃ID,T ←R Zp

semi-functional

ũ′ID,Tα;

ũ′ID,T ←R Zp

GameI,6

semi-functional

t̃ID,T,θα;

t̃ID,T,θ ←R Zp

semi-functional

t̃ID,Tα;

t̃ID,T ←R Zp

semi-functional

ũ′ID,Tα;

ũ′ID,T ←R Zp

GameI,7

semi-functional

t̃ID,T,θα;

t̃ID,T,θ ←R Zp

semi-functional

t̃ID,Tα;

t̃ID,T ←R Zp

semi-functional

ũ′ID,Tα;

ũ′ID,T ←R Zp

GameI,8

semi-functional

t̃ID,T,θα;

t̃ID,T,θ ←R Zp

semi-functional

t̃ID,Tα;

t̃ID,T ←R Zp

semi-functional

ũ′ID,Tα;

ũ′ID,T ←R Zp

44

Table 6: Distributions of kukgc,T,θ, kuID,T for |ID| ≥ 1, and dkID,T for
T ≥ TRL in each game in the proof against the Type-I adversary. In the
columns, we specify the distributions and semi-functional randomness
of kukgc,T,θ, kuID,T, and dkID,T.

Game
kukgc,T,θ

for T ≥ TRL

kuID,T

for T ≥ TRL

dkID,T

for T ≥ TRL

GameI,0 normal normal normal

GameI,1 normal normal normal

GameI,2 normal normal normal

GameI,3 normal normal normal

GameI,4 normal normal normal

GameI,5 normal normal normal

GameI,6
semi-functional

α←R Z∗
p

normal normal

GameI,7
semi-functional

α←R Z∗
p

semi-functional

α←R Z∗
p

semi-functional

α←R Z∗
p

GameI,8
semi-functional

α←R Z∗
p

semi-functional

α←R Z∗
p

semi-functional

α←R Z∗
p

GameI,8: This game is the same as GameI,7 except that the challenge ciphertext ct⋆ is the semi-
functional encryption of a random plaintext.

In Tables 4–6, we summarize the distributions of ct⋆, skID, kukgc,T, kuID,T, and dkID,T in each
game. The definitions of GameI,0 and GameI,1 are identical to those of GameII,0 and GameII,1,
respectively. Thus, we can prove the indistinguishability GameI,0 ≈c GameI,1 by Lemma 3. In
GameI,2, we guess the value Q⋆ with Qgen reduction loss. GameI,3 is the conceptual change that is
useful to reduce the reduction loss. In GameI,3, C does not create skID,θ and kuID,T unlike in the

real scheme. In turn, C first creates seed secret keys s.sk
(1)
ID and s.sk

(2)
ID , and uses the seed secret

keys to create skID,θ and kuID,T, dkID,T for T ≥ TRL, respectively. For each time period T < TRL, C
creates seed key update s.kuT and uses the seed key update to create kuID,T,θ, dkID,T. In GameI,4,

s.sk
(1)
ID revealed to A become semi-functional when ID⋆[ℓ⋆] /∈ ID. We use the standard dual system

argument to prove the indistinguishability GameI,3 ≈c GameI,4 (Lemma 21) by considering the
fact that ID /∈ prefix+(ID⋆). In GameI,5, s.kuT revealed to A becomes semi-functional. We use
the standard dual system argument to prove that all s.kuT are semi-functional by considering the
fact that T ̸= T⋆. Although s.kuT are used to create kuID,T,θ and dkID,T, we define GameI,5 so that
kuID,T are semi-functional. Hence, we apply semi-functional randomness switching and prove the
indistinguishability GameI,4 ≈c GameI,5 (Lemma 22). In GameI,6 and GameI,7, we change kukgc,T and
kuID,T, dkID,T for T ≥ TRL to be semi-functional by applying semi-functional randomness switching.
Finally, in GameI,8, we change the challenge ciphertext ct⋆ to be a semi-functional encryption of a
random plaintext as done in the proof against the Type-II adversary.

45

6.1 Proof of Lemma 1

Now, we are ready to prove Lemma 1.

Proof of Lemma 1. Let Advi(λ) denote A’s advantage in GameII,i. Hereafter, we prove that the
difference of A’s advantage between each game (i.e., |Advi−1(λ) − Advi(λ)|) is negligible. The
indistinguishability GameI,0 ≈c GameI,1 is proven as Lemma 3. The key points to note is the
transitions GameII,3 ≡ GameII,4 and GameII,4 ≈c GameII,5 since we have to change kukgc,T and kuID,T
such that ID ∈ prefix+(ID⋆) ∧ T = T⋆ to be semi-functional. In other words, we rely on standard
dual system proof [CGW15, CG17, CW14] to prove most of the other transitions.

Lemma 19 (GameI,1 ≡ GameI,2). GameII,1 and GameI,2 are identically distributed from A’s view
with non-negligible probability. Specifically, for any Type-I adversary A making at most Qgen secret
key generation queries, it holds that

AdvI,1(λ) = Qgen · AdvI,2(λ).

Proof of Lemma 19. Let EI,1 and EI,2 denote the event that A wins in GameI,1 and GameI,2,
respectively. Let F denote the event that C’s guess is correct in GameI,2. By definition, it holds
that Pr[F] = 1/Qgen and GameI,1 and GameI,2 are identically distributed if F happens since all the
behavior of C is the same. Thus, it holds that

Pr[EI,1] = Pr[EI,2 | F]. (21)

If F does not happen, C outputs a random bit and aborts the game. Thus, it holds that

Pr[EI,2 | ¬F] =
1

2
. (22)

Observe that

AdvI,2(λ) =

∣∣∣∣Pr[EI,2]−
1

2

∣∣∣∣
=

∣∣∣∣Pr[EI,2 ∧ F] + Pr[EI,2 ∧ ¬F]−
1

2

∣∣∣∣
=

∣∣∣∣Pr[EI,2 | F] · Pr[F] + Pr[EI,2 | ¬F] · Pr[¬F]−
1

2

∣∣∣∣.
From the equation (21) and (22), we have

AdvI,2(λ) =

∣∣∣∣Pr[EI,1] · Pr[F]−
1

2
(1− Pr[¬F])

∣∣∣∣
=

∣∣∣∣Pr[EI,1] · Pr[F]−
1

2
· Pr[F]

∣∣∣∣
=

1

Qgen

∣∣∣∣Pr[EI,1]−
1

2

∣∣∣∣
=

1

Qgen
· AdvI,1(λ).

Thus, we complete the proof.

46

Lemma 20 (GameI,2 ≡ GameI,3). GameI,2 and GameI,3 are identically distributed from A’s view.
Specifically, for any PPT Type-I adversary A, it holds that

AdvI,2(λ) = AdvI,3(λ).

Proof of Lemma 20. We describe how C creates skID, kuID,T, and dkID,T in GameI,3. C creates MPK,
skID, and ct⋆ in the same way as GameII,2.

Key Update and Decryption Key Creation for T < TRL: For each time period T upon the
setup and A’s revoke & key update queries, C samples tT ←R Zk

p and creates a seed key update
s.kuT = (s.KUT,0, s.KUKU,1, s.KUKU,2) by computing (19).

For each θ ∈ KUN kgc,T, C retrieves a delegation key kkgc,θ, samples t̃kgc,T,θ ←R Zp and
t̃kgc,T,θ ←R Zk

p, and computes a sub-key update kukgc,T,θ := (KUkgc,T,θ,0,KUkgc,T,θ,1,KUkgc,T,θ,2):

KUkgc,T,θ,0 = (s.KUT,0)
t̃kgc,T,θ · [Zt̃kgc,T,θ]2,

KUkgc,T,θ,1 = [k− kkgc,θ]2 · (s.KUT,1)
t̃kgc,T,θ · [(V0 + TVL+1)Zt̃kgc,T,θ]2,

KUkgc,T,θ,2 = (s.KUT,2)
t̃kgc,T,θ · [VL+2Zt̃kgc,T,θ]2.

(23)

This is the normal sub-key update by setting tkgc,T,θ = t̃kgc,T,θ ·tT+ t̃kgc,T,θ. Due to the fresh random
t̃kgc,T,θ ←R Zk

p, tkgc,T,θ is distributed in Zk
p uniformly at random.

For each θ ∈ KUN ID,T such that |ID| ≥ 1, C retrieves a delegation key kID,θ, samples the
ephemeral delegation key kID,T ←R Zk+1

p , t̃ID,T,θ ←R Zp, and t̃ID,T,θ ←R Zk
p, and computes a sub-

key update kuID,T,θ := (KUID,T,θ,0,KUID,T,θ,1,KUID,T,θ,2):

KUID,T,θ,0 = (s.KUT,0)
t̃ID,T,θ · [Zt̃ID,T,θ]2,

KUID,T,θ,1 = [kID,θ + kID,T]
−1
2 · (s.KUT,1)

t̃ID,T,θ · [(V0 + TVL+1)Zt̃ID,T,θ]2,

KUID,T,θ,2 = (s.KUT,2)
t̃ID,T,θ · [VL+2Zt̃ID,T,θ]2.

(24)

This is the normal sub-key update by setting tID,T,θ = t̃ID,T,θ · tT + t̃ID,T,θ. Due to the fresh random
t̃ID,T,θ ←R Zk

p, tID,T,θ is distributed in Zk
p uniformly at random. C creates the helper key update

kuID,T in the same way as the real scheme.
C retrieves the master secret key k, samples ũ′ID,T ←R Zp and uID,T, ũ

′
ID,T ←R Zk

p, and computes
dkID,T = (DKID,T,0,DK

′
ID,T,0,DKID,T,1,DKID,T,2,DK

′
ID,T,2):

DKID,T,0 = [ZuID,T]2, DK′
ID,T,0 = s.KU

ũ′
ID,T

T,0 · [Zũ
′
ID,T]2,

DKID,T,1 = [k]2 · s.KU
ũ′
ID,T

T,1 · [
(
V0 + id1V1 + · · ·+ id|ID|V|ID|

)
ZuID,T]2

· [(V0 + TVL+1)Zũ
′
ID,T]2

DKID,T,2 = [VL+2ZuID,T]2, DK′
ID,T,2 = s.KU

ũ′
ID,T

T,2 · [VL+2Zũ
′
ID,T]2.

(25)

This is the normal decryption key by setting u′
ID,T = ũ′ID,T · tT + ũ′

ID,T. Due to the fresh random

ũ′
ID,T ←R Zk

p, u
′
ID,T is distributed in Zk

p uniformly at random.

Key Update and Decryption Key Creation for T ≥ TRL: Upon A’s secret key generation

query on ID, C samples r
(2)
ID ←R Zk

p and creates a seed secret key s.sk
(2)
ID = (s.SK

(2)
ID,0, s.SK

(2)
ID,1, s.SK

(2)
ID,2,

(s.S̃K
(2)

ID,ℓ)ℓ∈[|ID|+1,L]) by computing (8). C creates kukgc,T in the same way as the real scheme.

To create kuID,T such that |ID| ≥ 1, C samples the ephemeral delegation key kID,T ←R Zk+1
p

and creates the sub-key update kuID,T,θ in the same way as the real scheme. Then, C retrieves the

47

delegation key kID,θ and ephemeral delegation key kID,T, samples t̃ID,T, t
′
ID,T ←R Zk

p, and computes

a helper key update kuID,T = (KUID,T,0,KU
′
ID,T,0,KUID,T,1,KUID,T,2,KU

′
ID,T,2, (K̃UID,T,ℓ)ℓ∈[|ID|+1,L]):

KUID,T,0 = s.SK
(2)
ID,0 · [Zt̃ID,T]2, KU

′
ID,T,0 = [Zt

′
ID,T]2,

KUID,T,1 = [k+ kID,T]2 · s.SK(2)
ID,1 · [

(
V0 + id1V1 + · · ·+ id|ID|V|ID|

)
Zt̃ID,T]2

· [(V0 + TVL+1)Zt
′
ID,T]2,

KUID,T,2 = s.SK
(2)
ID,2 · [VL+2Zt̃ID,T]2, KU

′
ID,T,2 = [VL+2Zt

′
ID,T]2,

K̃UID,T,ℓ = s.SK
(2)
ID,ℓ · [VℓZt̃ID,T]2.

(26)

This is the normal helper key update as in GameI,2 by setting tID,T = r
(2)
ID + t̃ID,T. Due to the fresh

random t̃ID,T ←R Zk
p, tID,T is distributed in Zk

p uniformly at random.

C retrieves the master secret key k, samples ũID,T,u
′
ID,T ←R Zk

p and computes dkID,T = (DKID,T,0,
DK′

ID,T,0,DKID,T,1,DKID,T,2,DK
′
ID,T,2):

DKID,T,0 = s.SK
(2)
ID,0 · [ZũID,T]2, DK′

ID,T,0 = [Zu′
ID,T]2,

DKID,T,1 = [k]2 · s.SK(2)
ID,1 · [

(
V0 + id1V1 + · · ·+ id|ID|V|ID|

)
ZũID,T]2

· [(V0 + TVL+1)Zu
′
ID,T]2

DKID,T,2 = s.SK
(2)
ID,2 · [VL+2ZũID,T]2, DK′

ID,T,2 = [VL+2Zu
′
ID,T]2.

(27)

This is the normal decryption key by setting uID,T = rID+ ũID,T. Due to the fresh random ũID,T ←R

Zk
p, uID,T is distributed in Zk

p uniformly at random.

As we observed so far, all the elements distribute in the same way as in GameI,2. Thus, we
complete the proof of Lemma 20.

Lemma 21 (Secret Key Invariance, GameI,3 ≈c GameI,4). GameI,3 and GameI,4 are computationally
indistinguishable under the MDDH assumption in G2. Specifically, for any PPT Type-I adversary
A making at most Qgen secret key generation queries and Qrev secret key reveal queries, there exist
reduction algorithms BI,1 and BI,2 such that

|AdvI,3(λ)− AdvI,4(λ)| ≤ Qrev ·
∑
j∈[2]

AdvMDDH-G2
BI,j

(λ) +
4Qrev

p− 1

and maxj∈[2] T(BI,j) ≈ T(A) + k2Qgen|T | · poly(λ,L), where poly(λ,L) is independent of T(A).

We omit the proof of Lemma 21 since it is essentially the same as the proof of Lemma 5. The only
essential difference is that s.skID such that IDQ⋆ ∈ prefix+(ID) are always normal by computing (8).
Since A makes secret key reveal queries on ID such that IDQ⋆ ∈ prefix+(ID) only after A’s secret key
generation query on IDQ⋆ , the reduction algorithm can detect whether IDQ⋆ ∈ prefix+(ID) holds.

Lemma 22 (Key Update and Decryption Key Invariance for T < TRL, GameI,4 ≈c GameI,5). GameI,4
and GameI,5 are computationally indistinguishable under the MDDH assumption in G2. Specifically,
for any PPT Type-I adversary A making at most Qgen secret key generation queries, there exist
reduction algorithms BI,3 and BI,4 such that

|AdvI,4(λ)− AdvI,5(λ)| ≤ TRL ·
∑
j∈[2]

AdvMDDH-G2
BI,j+2

(λ) +
4TRL
p− 1

and maxj∈[2] T(BI,j+2) ≈ T(A) + k2Qgen|T | · poly(λ,L), where poly(λ,L) is independent of T(A).

48

Proof of Lemma 20. To prove Lemma 20, we further introduce the following auxiliary distributions.

Pseudo-normal Seed Key Updates: A pseudo-normal seed key update is defined as s.kuT :=
(s.KUT,0, s.KUT,1, s.KUT,2):

s.KUT,0 := [ZtT]2, s.KUT,1 := [(V0 + TVL+1)ZtT]2 · [t̂a⊥]v0+vL+1T ,

s.KUT,2 := [VL+2ZtT]2 · [t̂a⊥]−1 ,

where tID,T ←R Zk
p, t̂ ←R Z∗

p, and (v0, vL+1) ←R Z2
p is the randomness for creating the

challenge ciphertext. Here, the boxed parts denote the changes from the normal seed key
update.

Pseudo-SF Seed Key Updates: A pseudo-SF seed key update is defined as s.kuT := (s.KUT,0,
s.KUT,1, s.KUT,2):

s.KUT,0 := [ZtT]2, s.KUT,1 := [αa⊥]2 · [(V0 + TVL+1)ZtT]2 · [t̂a⊥]v0+vL+1T,

s.KUT,2 := [VL+2ZtT]2 · [t̂a⊥]−1,

where tID,T ←R Zk
p, t̂ ←R Z∗

p, (v0, vL+1) ←R Z2
p is the randomness for creating the challenge

ciphertext, and α ←R Z∗
p is the semi-functional randomness shared by all s.sk

(1)
ID and s.kuT.

Here, the boxed part denotes the change from the pseudo-normal seed key update.

We further introduce the following sequence of games for T ∈ [0, TRL − 1]:

GameI,4,T,1: This game is the same as GameI,3 except that

– If T < T , C creates semi-functional s.kuT upon A’s secret key generation queries,

– If T = T , C creates pseudo-normal s.kuT upon A’s secret key generation queries,

– If T > T , C always creates normal s.kuT upon A’s secret key generation queries, secret
key generation queries.

GameI,4,T,2: This game is the same as GameI,4,T,1 except that

– If T = T , C creates pseudo-SF s.kuT upon A’s secret key generation queries,

GameI,4,T,3: This game is the same as GameI,4,T,2 except that

– If T = T , C creates semi-functional s.kuT upon A’s secret key generation queries,

By definition, GameI,4,0,3 = GameI,4. Hereafter, we prove

GameI,4,T−1,3 ≈c GameI,4,T,1 ≡ GameI,4,T,2 ≈c GameI,4,T,3,

where the fact implies that GameI,4 ≈c GameI,4,TRL−1,3. We note that GameI,4,TRL−1,3 ≡ GameI,5 will
be proved later.

Lemma 23 (Seed Key Updates Transition from Normal to Pseudo-normal,
GameI,4,T−1,3 ≈c GameI,4,T,1). GameI,4,T−1,3 and GameI,4,T,1 are computationally indistinguishable
under the MDDH assumption in G2. Specifically, for any PPT Type-I adversary A making at most
Qgen secret key generation queries, there exists a reduction algorithm BI,3 such that

|AdvI,4,T−1,3(λ)− AdvI,4,T,1(λ)| ≤ AdvMDDH-G2
BI,3

(λ) +
2

p− 1

and T(BI,3) ≈ T(A) + k2Qgen|T | · poly(λ,L), where poly(λ,L) is independent of T(A).

49

Proof of Lemma 23. The reduction algorithm BI,3 is given a MDDH instance in G2:
(G(1λ), [B]2, [b]2 = [Bt + t̂e]2), where B ←R Dk, t ←R Zk

p, t̂ = 0 or t̂ ←R Zp, and e =

(0, . . . , 0, 1)⊤ ∈ Zk+1
p . Hereafter, we assume that t̂ ←R Z∗

p in the latter case with the statisti-
cal difference 1/p.
BI,3 creates MPK and ct⋆ in the same way as the proof of Lemma 6. BI,3 creates semi-functional

s.sk
(1)
ID by computing (9) and creates skID by computing (10). BI,3 creates kuID,T and dkID,T for

T ≥ TRL in the same way as the proof of Lemma 20.
After creating s.kuT, BI,3 creates kuID,T and dkID,T for T ≥ TRL in the same way as the proof of

Lemma 20. We describe how BI,3 creates s.kuT = (s.KUT,0, s.KUT,1, s.KUT,2).

• If T < T , BI,3 creates semi-functional s.kuT by computing (20).

• If T = T , BI,3 retrieves (v0, vL+1) and computes s.kuT = (s.KUT,0, s.KUT,1, s.KUT,2):

s.KUT,0 = [b]2, s.KUT,1 = [(Ṽ0 + TṼL+1)b]2 · [a⊥b]v0+vL+1T,

s.KUT,2 = [ṼL+2b]2 · [−a⊥b].
(28)

By following the same argument in the proof of Lemma 6, s.kuT is a normal seed key update
as in GameI,4,T−1,3 if t̂ = 0, and pseudo-normal seed key update as in GameI,4,T,1 if t̂←R Z∗

p,

by setting tT = Z̃−1t.

• If T > T , BI,3 creates normal s.kuT by computing (19).

Thus, we complete the proof of Lemma 23.

Lemma 24 (Seed Key Update Transition from Pseudo-normal to Pseudo-SF,
GameI,4,T,1 ≡ GameI,4,T,2). GameI,4,T,1 and GameI,4,T,2 are identically distributed from A’s
view. Specifically, for any Type-I adversary A, it holds that

AdvI,4,T,1(λ) = AdvI,4,T,2(λ).

We can prove that s.kuT follows the same distribution in GameI,4,T,1 and GameI,4,T,2 by following
the same argument as in the proof of Lemma 7 based on the fact that T ̸= T⋆ for all T < TRL.

Lemma 25 (Seed Key Update Transition from Pseudo-SF to Semi-functional,
GameI,4,T,2 ≈c GameI,4,T,3). GameI,4,T,2 and GameI,4,T,3 are computationally indistinguishable
under the MDDH assumption in G2. Specifically, for any PPT Type-I adversary A making at most
Qgen secret key generation queries, there exists a reduction algorithm BI,4 such that

|AdvI,4,T,2(λ)− AdvI,4,T,3(λ)| ≤ AdvMDDH-G2
BI,4

(λ) +
2

p− 1

and T(BI,4) ≈ T(A) + k2Qgen|T | · poly(λ,L), where poly(λ,L) is independent of T(A).

We omit the detailed proof of Lemma 25 since it is almost the same as the proof of Lemma 23.
The only difference is that BI,4 creates T -th s.kuT by computing (28) except that

s.KUT,1 = [αa⊥] · [(Ṽ0 + TṼL+1)b]2 · [a⊥b]v0+vL+1T,

where the boxed parts denote the changes from (28). If t̂ ←R Z∗
p, s.kuT is a pseudo-SF seed key

update as in GameI,4,T,2. If t̂ = 0, s.kuT is a semi-functional seed key update as in GameI,4,T,3.

50

Lemma 26 (Semi-functional Randomness Switching for Helper Key Updates for T < TRL,
GameI,4,TRL−1,3 = GameI,5). GameI,4,TRL−1,3 and GameI,5 are identically distributed from A’s view.
Specifically, for any Type-I adversary A, it holds that

AdvI,4,TRL−1,3(λ) = AdvI,5(λ).

The proof is the first core part of the proof against the Type-I adversary. In GameI,4,TRL−1,3, all
the seed key updates s.kuT for T < TRL become semi-functional. Although we use s.kuT to create
kuID,T,θ and dkID,T, we defined GameI,5 so that all kuID,T for T < TRL to be semi-functional. For this
purpose, we apply the semi-functional randomness switching to show that GameI,4,TRL−1,3 ≡ GameI,5.

Proof of Lemma 26. Here, we prove a stronger claim that GameI,4,TRL−1,3 and GameI,5 are identically
distributed from A’s view for any fixed

• (A,a)←R Dk,

•
(
(Vℓ)ℓ∈[0,L+2],Z

)
←R (Z(k+1)×k

p)L+3 × Zk×k
p ,

• master secret key k←R Zk+1
p ,

• tID,T,θ ←R Zk
p for creating kuID,T,θ,

• tID,T ←R Zk
p for creating kuID,T,

• α←R Z∗
p.

Specifically, the randomnesses of t̃ID,T,θ ←R Zp in (24) and delkID,T ←R Zk+1
p enable us to prove

the claim. Note that even when tID,T,θ ←R Zk
p are fixed, (KUID,T,θ,0,KUID,T,θ,2) do not reveal the

quantities of t̃ID,T,θ ←R Zp since they are masked by t̃ID,T,θ ←R Zk
p. Since tID,T,θ ←R Zk

p and

tID,T ←R Zk
p are fixed, (KUID,T,θ,0,KUID,T,θ,2) and (KUID,T,0,KUID,T,2) follow the same distribution in

both GameI,4,TRL−1,3 and GameI,5. In GameI,4,TRL−1,3, KUID,T,θ,1 and KUID,T,1 for T < TRL such that
|ID| ≥ 1 are distributed as follows:

KUID,T,θ,1 = [kID,θ + kID,T − t̃ID,T,θαa
⊥]−1

2 · [(V0 + TVL+1)ZtID,T,θ]2,

KUID,T,1 = [k+ kID,T]2 · [
(
V0 + id1V1 + · · ·+ id|ID|V|ID|

)
ZtID,T]2

· [(V0 + TVL+1)Zt
′
ID,T]2,

where t̃ID,T,θ ←R Zp and delkID,T = kID,θ ←R Zk+1
p . In contrast, the above distribution can be

written as follows:

KUID,T,θ,1 = [kID,θ + (kID,T − αa⊥)− (t̃ID,T,θ − 1)αa⊥]−1
2

· [(V0 + TVL+1)ZtID,T,θ]2,

KUID,T,1 = [(k+ αa⊥) + (kID,T − αa⊥)]2

· [
(
V0 + id1V1 + · · ·+ id|ID|V|ID|

)
ZtID,T]2 · [(V0 + TVL+1)Zt

′
ID,T]2,

where t̃ID,T,θ − 1 is distributed in Zp uniformly at random and kID,T − αa⊥ is distributed in Zk+1
p

uniformly at random. Therefore, the above distribution is the same as the distribution in GameI,5
by setting t̃ID,T,θ − 1 as the randomnesses in (10) and delkID,T = kID,T + αa⊥. We note that the
claim holds for all ID such that |ID| ≥ 1, all T < TRL, and all nodes θ ∈ BTID, simultaneously. Thus,
we complete the proof of Lemma 26.

By combining Lemmata 23–26, we have

|AdvI,4(λ)− AdvI,5(λ)|

51

≤
∑

T∈[TRL]

|AdvI,4,T−1,3(λ)− AdvI,4,T,1(λ)|+
∑

T∈[TRL]

|AdvI,4,T,1(λ)− AdvI,4,T,2(λ)|

+
∑

T∈[TRL]

|AdvI,4,T,2(λ)− AdvI,4,T,3(λ)|+ |AdvI,4,TRL−1,3(λ)− AdvI,5(λ)|

≤ TRL ·
∑
j∈[2]

AdvMDDH-G2
BI,j+2

(λ) +
4TRL
p− 1

.

Thus, we complete the proof of Lemma 22.

Lemma 27 (Semi-functional Randomness Switching for KGC’s Key Updates for T ≥ TRL,
GameI,5 ≡ GameI,6). GameI,5 and GameI,6 are identically distributed from A’s view. Specifically, for
any Type-I adversary A, it holds that

AdvI,5(λ) = AdvI,6(λ).

The proof is the second core part of the proof against the Type-I adversary since we have to
change kukgc,T⋆ to be semi-functional. We want to discuss the difference from the proof of Lemma 9.
In the proof of Lemma 9, all skID such that |ID| = 1 which A receives via secret key reveal queries
are semi-functional. In contrast, in the proof of Lemma 27, A may receive skID⋆

[ℓ⋆]
= skID⋆

[1]
when

ℓ⋆ = 1. However, once A receives skID⋆
[1]
, ID⋆[1] must be revoked at TRL. In other words, skID⋆

[1]
,θ

and kukgc,T,θ for T ≥ TRL do not share the same nodes θ ∈ BTkgc. The fact is sufficient for proving
Lemma 27 by combining with the modifications so far.

Proof of Lemma 27. Here, we prove a stronger claim that GameI,5 and GameI,6 are identically
distributed from A’s view for any fixed

• (A,a)←R Dk,

•
(
(Vℓ)ℓ∈[0,L+2],Z

)
←R (Z(k+1)×k

p)L+3 × Zk×k
p ,

• master secret key k←R Zk+1
p ,

• rID,θ ←R Zk
p for creating skID,θ such that |ID| = 1,

• tkgc,T,θ ←R Zk
p for creating kukgc,T,

• α←R Z∗
p that is the semi-functional randomness of kukgc,T in GameI,6.

Specifically, the randomnesses of r̃ID,θ ←R Zp in (10), t̃kgc,T,θ ←R Zp in (23), and delkkgc,θ ←R Zk+1
p

enable us to prove the claim. Note that skID such that |ID| ≥ 2, kuID,T such that |ID| ≥ 1, and
dkID,T are created in the same way in both GameI,5 and GameI,6. Since rID,θ and tkgc,T,θ are fixed,
skID,θ such that |ID| = 1 and kukgc,T,θ are distributed in the same way in both GameI,5 and GameI,6
except SKID,θ,1 and KUkgc,T,θ,1. Note that even when rID,θ ←R Zk

p and tkgc,T,θ ←R Zk
p are fixed,

(SKID,θ,0,SKID,θ,2, (S̃KID,θ,ℓ)ℓ∈[|ID|+1,L]) and (KUkgc,T,θ,0,KUkgc,T,θ,2) do not reveal the quantities of

r̃ID,θ ←R Zp and t̃kgc,T,θ ←R Zp since they are masked by r̃ID,θ ←R Zk
p and t̃kgc,T,θ ←R Zk

p,
respectively. In GameI,5, for all nodes θ ∈ BTkgc that correspond to kukgc,T,θ for T ≥ TRL, SKID,θ,1

and KUkgc,T,θ,1 are distributed as follows:

SKID,θ,1 = [kkgc,θ + r̃ID,θαa
⊥]2 · [(V0 + IDV1)ZrID,θ]2,

KUkgc,T,θ,1 = [k− kkgc,θ + t̃kgc,T,θαa
⊥]2 · [(V0 + TVL+1)Ztkgc,T,θ]2 for T < TRL,

KUkgc,T,θ,1 = [k− kkgc,θ]2 · [(V0 + TVL+1)Ztkgc,T,θ]2 for T ≥ TRL,

where r̃ID,θ ←R Zp, t̃kgc,T,θ ←R Zp, and delkkgc,θ = kkgc,θ ←R Zk+1
p . As we observed above, the

quantities of r̃ID,θ ←R Zp and t̃kgc,T,θ ←R Zp are revealed to A only via SKID,θ,1 and KUkgc,T,θ,1.

52

Although skID⋆
[1]

,θ, which is created by the normal s.sk
(1)
ID⋆

[1]
, may be revealed to A, they do not share

the same nodes with kukgc,T,θ for T ≥ TRL since ID⋆[1] is revoked by TRL and the property of the CS
method ensures the fact. Thus, all skID,θ that share the same nodes with kukgc,T,θ are created by

the semi-functional s.sk
(1)
ID as we specified above.

In contrast, the above distribution can be written as follows:

SKID,θ,1 = [(kkgc,θ + αa⊥) + (r̃ID,θ − 1)αa⊥]2 · [(V0 + IDV1)ZrID,θ]2,

KUkgc,T,θ,1 = [k− (kkgc,θ + αa⊥) + (t̃kgc,T,θ + 1)αa⊥]2 · [(V0 + TVL+1)Ztkgc,T,θ]2 for T < TRL,

KUkgc,T,θ,1 = [(k+ αa⊥)− (kkgc,θ + αa⊥)]2 · [(V0 + TVL+1)Ztkgc,T,θ]2 for T ≥ TRL,

where r̃ID,θ − 1 and t̃kgc,T,θ + 1 are distributed in Zp uniformly at random and kkgc,θ + αa⊥ is
distributed in Zk+1

p uniformly at random. Therefore, the above distribution is the same as the
distribution in GameI,6 by setting r̃ID,θ − 1 and t̃kgc,T,θ + 1 as the randomnesses in (10) and (23),
respectively, and delkkgc,θ = kkgc,θ + αa⊥. We note that the claim holds for all T ≥ TRL and all
nodes θ that correspond to kukgc,T,θ for T ≥ TRL, simultaneously. Thus, we complete the proof of
Lemma 27.

Lemma 28 (Key Update and Decryption Key Invariance for |ID| ≥ 1 and T ≥ TRL,
GameI,6 ≈c GameI,7). GameI,6 and GameI,7 are computationally indistinguishable under the MDDH
assumption in G2. Specifically, for any PPT Type-I adversary A making at most Qgen secret key
generation queries, there exists reduction algorithms BI,5 and BI,6 such that

|AdvI,6(λ)− AdvI,7(λ)| ≤ Qgen ·
∑
j∈[2]

AdvMDDH-G2
BII,j+4

(λ) +
4Qgen

p− 1

and maxj∈[2] T(BII,j+4) ≈ T(A) + k2Qgen|T | · poly(λ,L), where poly(λ,L) is independent of T(A).

The structure of the proof is the same as the proof of Lemma 5 although the transition from
pseudo-normal to pseudo-SF is more technical.

Proof of Lemma 28. Let IDq denote an identity on which A makes q-th secret key generation query.
We further introduce the following sequence of games for q ∈ [0, Qgen]:

GameI,6,q,1: This game is the same as GameI,6 except that

– If m < q, C creates semi-functional kuIDm,T and dkIDm,T,

– If m = q, C creates pseudo-normal s.sk
(2)
IDq

upon A’s q-th secret key generation query,

– If m > q, C creates normal s.sk
(2)
IDm

upon A’s last Qgen− q secret key generation queries.

GameI,6,q,2: This game is the same as GameI,6,q,1 except that

– If m = q, C creates pseudo-SF s.sk
(2)
IDq

upon A’s q-th secret key generation query,

GameI,6,q,3: This game is the same as GameI,6,q,2 except that

– If m = q, C creates semi-functional s.sk
(2)
IDq

upon A’s q-th secret key generation query,

By definition, GameI,6,0,3 = GameI,6 and GameI,6,Qgen,3 = GameI,7. Hereafter, we prove

GameI,6,q−1,3 ≈c GameI,6,q,1 ≡ GameI,6,q,2 ≈c GameI,6,q,3,

where the fact implies that GameI,6 ≈c GameI,7.

53

Lemma 29 (Sub-secret Key Transition from Normal to Pseudo-normal,
GameI,6,q−1,3 ≈c GameI,6,q,1). GameI,6,q−1,3 and GameI,6,q,1 are computationally indistinguish-
able under the MDDH assumption in G2. Specifically, for any PPT Type-I adversary A making at
most Qgen secret key generation queries, there exists a reduction algorithm BI,5 such that

|AdvI,6,q−1,3(λ)− AdvI,6,q,1(λ)| ≤ AdvMDDH-G2
BI,5

(λ) +
2

p− 1

and T(BI,5) ≈ T(A) + k2Qgen|T | · poly(λ,L), where poly(λ,L) is independent of T(A).

We omit the proof since it is almost the same as the proof of Lemma 6.

Lemma 30 (Sub-secret Key Transition from Pseudo-normal to Pseudo-SF,
GameI,6,q,1 ≡ GameI,6,q,2). GameI,6,q,1 and GameI,6,q,2 are identically distributed from A’s
view. Specifically, for any Type-I adversary A, it holds that

AdvI,6,q,1(λ) = AdvI,6,q,2(λ).

The proof of Lemma 30 is the final core part of the proof against the Type-I adversary since we
have to change all kuIDq ,T and dkIDq ,T such that IDq ∈ prefix+(ID⋆[ℓ⋆−1]) to be semi-functional. We

note that since ID⋆[ℓ⋆] is revoked at the time period TRL we do not have to change kuID,T and dkID,T

such that ID⋆[ℓ⋆] ∈ prefix+(ID) to be semi-functional. When it holds that IDq /∈ prefix+(ID⋆[ℓ⋆−1]), we
prove Lemma 30 in the same way as the proof of Lemma 12 by showing that pseudo-normal and

pseudo-SF s.sk
(2)
IDq

are identically distributed. When IDq ∈ prefix+(ID⋆[ℓ⋆−1]), we also follow the same
argument as in the proof of Lemma 12 by applying the semi-functional randomness switching. In
addition, as the proof of Lemma 27, we use the fact that although all skID,θ such that pa(ID) = IDq

may be created by the normal s.sk
(1)
ID , all skID,θ that share the same nodes with kuIDq ,T,θ for T ≥ TRL

are created by the semi-functional s.sk
(1)
ID .

Proof of Lemma 30. If IDq = (idq,1, . . . , idq,|IDq |) /∈ prefix+(ID⋆[ℓ⋆−1]), we can show that pseudo-

normal and pseudo-SF s.sk
(2)
IDq

are identically distributed by following the same argument as in the
proof of Lemma 7.

If IDq = (idq,1, . . . , idq,|IDq |) ∈ prefix+(ID⋆[ℓ⋆−1]), we prove a stronger claim that GameI,6,q,1 and
GameI,6,q,2 are identically distributed from A’s view for any fixed

• (A,a)←R Dk,

•
(
(Vℓ)ℓ∈[0,L+2],Z

)
←R (Z(k+1)×k

p)L+3 × Zk×k
p ,

• master secret key k←R Zk+1
p ,

• rID,θ ←R Zk
p for creating skID,θ such that pa(ID) = IDq,

• kIDq ,T ←R Zk
p for creating kuIDq ,T for T < TRL,

• tIDq ,T,θ, tIDq ,T, t
′
IDq ,T ←R Zk

p for creating kuIDq ,T,

• uIDq ,T,u
′
IDq ,T ←R Zk

p for creating dkIDq ,T,

• α←R Z∗
p.

Note that skID such that pa(ID) ̸= IDq, kuID,T and dkID,T such that ID ̸= IDq are created in the same
way in both GameI,6,q,1 and GameI,6,q,2.

At first, we show that the randomness of (v0, v1, . . . , v|ID⋆|, vL+1)←R Z|ID⋆|+2
p enables us to prove

that all dkIDq ,T created by using s.sk
(2)
IDq

follow the same distribution in GameI,6,q,1 and GameI,6,q,2.

54

For this purpose, it is sufficient to show that (s.SK
(2)
IDq ,θ,0

, s.SK
(2)
IDq ,θ,1

, s.SK
(2)
IDq ,θ,2

) follows the same

distribution in GameI,6,q,1 and GameI,6,q,2 since (s.S̃K
(2)

IDq ,θ,ℓ)ℓ∈[|IDq |+1,L] is not used for creating dkIDq ,T.
By following the same argument in the proof of Lemma 7, what we have to show is{

v0 + v1id
⋆
1 + · · ·+ v|ID⋆|id

⋆
|ID⋆|, v0 + vL+1T

⋆,

v0 + v1idq,1 + · · ·+ v|IDq |id
⋆
|IDq |

}

≡

{
v0 + v1id

⋆
1 + · · ·+ v|ID⋆|id

⋆
|ID⋆|, v0 + vL+1T

⋆,

α/r̂ + v0 + v1idq,1 + · · ·+ v|IDq |id
⋆
|IDq |

}
,

(29)

where (v0, v1, . . . , v|ID⋆|, vL+2)←R Z|ID⋆|+2
p . Here, the first and second elements are tag and tag′ and

the last element is the exponent of [r̂a⊥]2 of s.SK
(2)
IDq ,θ,1

in GameI,6,q,1 and GameI,6,q,2, respectively.
Since the only second element depends on vL+1 ←R Zp, the second element is distributed in Zp

uniformly at random. As we observed above, it holds that |IDq| < ℓ⋆ ≤ |ID⋆|. Thus, since the

only first element depends on (v|IDq |+1, . . . , v|ID⋆|)←R Z|ID⋆|−|IDq |+1
p , the first element is distributed

in Zp uniformly at random. As a result, the last element is also distributed in Zp uniformly at
random. Summarizing the discussion so far, both hand sides of (29) are distributed in Z3

p uniformly

at random. Thus, we complete the proof of the claim that all dkIDq ,T created by using s.sk
(2)
IDq

follow
the same distribution in GameI,6,q,1 and GameI,6,q,2.

Finally, we show that for any fixed

• (v0, v1, . . . , vL+1)←R ZL+2
p ,

the randomnesses of r̃ID,θ ←R Zp such that pa(ID) = IDq in (10), t̃IDq ,T,θ ←R Zp in (23), and

delkIDq ,θ, delkIDq ,T ←R Zk+1
p for T ≥ TRL enable us to prove that all kuIDq ,T created by using s.sk

(2)
IDq

follow the same distribution in GameI,6,q,1 and GameI,6,q,2. Since rID,θ and tIDq ,T,θ, tIDq ,T are fixed,
skID such that pa(ID) = IDq and kuIDq ,T for T ≥ TRL are distributed in the same way in both

GameI,6,q,1 and GameI,6,q,2 except SKID,θ,1 and KUIDq ,T,θ,1,KUIDq ,T,1. Note that even when rID,θ ←R

Zk
p and tIDq ,T,θ are fixed, (SKID,θ,0,SKID,θ,2, (S̃KID,θ,ℓ)ℓ∈[|ID|+1,L]) and (KUIDq ,T,θ,0,KUIDq ,T,θ,2) do not

reveal the quantities of r̃ID,θ ←R Zp and t̃IDq ,T,θ ←R Zp since they are masked by r̃ID,θ ←R Zk
p and

t̃IDq ,T,θ ←R Zk
p, respectively. In GameI,6,q,1, for all nodes θ ∈ BTIDq that correspond to kuIDq ,T,θ for

T ≥ TRL, SKID,θ,1 and KUIDq ,T,θ,1,KUIDq ,T,1 with the same nodes are distributed as follows:

• SKID,θ,1:

SKID,θ,1 = [kID,θ + r̃ID,θαa
⊥]2 · [

(
V0 + id1V1 + · · ·+ id|ID|V|ID|

)
ZrID,θ]2,

• KUIDq ,T,θ,1 and KUIDq ,T,1 for T < TRL:

KUIDq ,T,θ,1 = [kIDq ,θ + kIDq ,T − t̃IDq ,T,θαa
⊥]−1

2 · [(V0 + TVL+1)ZtIDq ,T,θ]2,

KUIDq ,T,1 = [k+ αa⊥ + kIDq ,T]2 · [
(
V0 + idq,1V1 + · · ·+ idq,|IDq |V|IDq |

)
ZtIDq ,T]2

· [(V0 + TVL+1)Zt
′
IDq ,T]2,

• KUIDq ,T,θ,1 and KUIDq ,T,1 for T ≥ TRL:

KUIDq ,T,θ,1 = [kIDq ,θ + kIDq ,T]
−1
2 · [(V0 + TVL+1)ZtIDq ,T,θ]2

KUIDq ,T,1 = [k+ kIDq ,T]2 · [
(
V0 + idq,1V1 + · · ·+ idq,|IDq |V|IDq |

)
ZtIDq ,T]2

· [(V0 + TVL+1)Zt
′
IDq ,T]2 · [r̂a

⊥]
v0+v1idq,1+···+v|IDq |idq,|IDq |
2 ,

55

where r̃ID,θ ←R Zp, t̃IDq ,T,θ ←R Zp, delkIDq ,θ = kIDq ,θ ←R Zk+1
p , and delkIDq ,T = kIDq ,T ←R Zk+1

p . In
contrast, the above distribution can be written as follows:

• SKID,θ,1:

SKID,θ,1 = [(kIDq ,θ + αa⊥) + (r̃ID,θ − 1)αa⊥]2 · [
(
V0 + id1V1 + · · ·+ id|ID|V|ID|

)
ZrID,θ]2,

• KUIDq ,T,θ,1 and KUIDq ,T,1 for T < TRL:

KUIDq ,T,θ,1 = [(kIDq ,θ + αa⊥) + kIDq ,T − (t̃IDq ,T,θ + 1)a⊥]−1
2 · [(V0 + TVL+1)ZtIDq ,T,θ]2,

KUIDq ,T,1 = [k+ αa⊥ + kIDq ,T]2 · [
(
V0 + idq,1V1 + · · ·+ idq,|IDq |V|IDq |

)
ZtIDq ,T]2

· [(V0 + TVL+1)Zt
′
IDq ,T]2,

• KUIDq ,T,θ,1 and KUIDq ,T,1 for T ≥ TRL:

KUIDq ,T,θ,1 = [(kIDq ,θ + αa⊥) + (kIDq ,T − αa⊥)]−1
2 · [(V0 + TVL+1)ZtIDq ,T,θ]2

KUIDq ,T,1 = [(k+ αa⊥) + (kIDq ,T − αa⊥)]2 · [
(
V0 + idq,1V1 + · · ·+ idq,|IDq |V|IDq |

)
ZtIDq ,T]2

· [(V0 + TVL+1)Zt
′
IDq ,T]2 · [r̂a

⊥]
v0+v1idq,1+···+v|IDq |idq,|IDq |
2 ,

where each r̃ID,θ−1 and t̃IDq ,T,θ+1 is distributed in Zp uniformly at random, and each kIDq ,θ+αa⊥

and kIDq ,T − αa⊥ for T ≥ TRL is distributed in Zk+1
p uniformly at random. Therefore, the above

distribution is the same as the distribution in GameI,6,q,2 by setting r̃ID,θ − 1 and t̃IDq ,T,θ + 1 as the

randomnesses in (10) and (23), respectively, and delkIDq ,θ = kIDq ,θ + αa⊥, delkIDq ,T = kIDq ,T − αa⊥.
We note that the claim holds for all T ≥ TRL and all nodes θ that correspond to kuIDq ,T,θ for T ≥ TRL,
simultaneously. Thus, we complete the proof of Lemma 30.

Lemma 31 (Sub-secret Key Transition from Pseudo-SF to Semi-functional,
GameI,6,q,2 ≈c GameI,6,q,3). GameI,6,q,2 and GameI,6,q,3 are computationally indistinguishable
under the MDDH assumption in G2. Specifically, for any PPT Type-I adversary A making at most
Qgen secret key generation queries, there exists a reduction algorithm BI,6 such that

|AdvI,6,q,2(λ)− AdvI,6,q,3(λ)| ≤ AdvMDDH-G2
BI,6

(λ) +
2

p− 1

and T(BI,6) ≈ T(A) +Qgen|T | · poly(λ,L), where poly(λ,L) is independent of T(A).

We omit the detailed proof of Lemma 31 since it is almost the same as the proof of Lemma 13.

By combining Lemmata 29–31, we have

|AdvI,6(λ)− AdvI,7(λ)| ≤
∑

q∈[Qgen]

|AdvI,6,q−1,3(λ)− AdvI,6,q,1(λ)|

+
∑

q∈[Qgen]

|AdvI,6,q,1(λ)− AdvI,6,q,2(λ)|

+
∑

q∈[Qgen]

|AdvI,6,q,2(λ)− AdvI,6,q,3(λ)|

≤ Qgen ·
∑
j∈[2]

AdvMDDH-G2
BI,j+4

(λ) +
4Qgen

p− 1
.

Thus, we complete the proof of Lemma 28.

56

Lemma 32 (Final Transition, GameI,7 ≡ GameI,8). GameI,7 and GameI,8 are identically distributed
with probability 1− 1/p. Specifically, for any Type-I adversary A, it holds that

|AdvI,7(λ)− AdvI,8(λ)| =
1

p
.

We omit the proof of Lemma 32 since it is almost the same as the proof of Lemma 18.

By combining with Lemmata 3, 19, 20, 21, 22, 27, 28, and 32, against the Type-I adversary we
have

AdvRHIBEΠ,L,A(λ)

≤ |AdvI,0(λ)− AdvI,1(λ)|+ AdvI,1(λ)

= AdvMDDH-G1
B0

(λ) +Qgen · AdvI,2(λ)

≤ AdvMDDH-G1
B0

(λ) +Qgen ·
∑

i∈[3,8]

|AdvI,i−1(λ)− AdvI,i(λ)|+ AdvI,8(λ)

≤ AdvMDDH-G1
B0

(λ) +Qgen

Qrev ·
∑
j∈[2]

AdvMDDH-G2
BI,j

(λ) + TRL ·
∑
j∈[2]

AdvMDDH-G2
BI,j+2

(λ)

+Qgen ·
∑
j∈[2]

AdvMDDH-G2
BI,j+4

(λ) +
1

p

 .

By definition, Qrev ≤ Qgen and TRL ≤ |T | hold. Therefore, we obtain the ineqaulity of Lemma 1.

7 Comparison

In this section, we compare our proposed RHIBE schemes with other known RHIBE schemes
achieving the same property. We use the SXDH assumption for instantiating the schemes that
are secure under the k-linear assumption. Columns |MPK|, |ctID,T|, |skID|, |dkID,T|, and |kupa(ID),T|
present a comparison of the size of MPK, ctID,T, skID, dkID,T, and kupa(ID),T, respectively. In the
column #pairing, the number of pairing computations for the Dec algorithm are compared.

57

7.1 Comparison among RHIBE Schemes with Compact Ciphertexts

Table 7: Comparison of RHIBE schemes with compact ciphertexts

Scheme security |MPK| |ctID,T| |dkID,T|

SE15 [SE15] selective (L+ 6)|G| 3|G|+ |GT | 3|G|

ETW20 [ETW20] adaptive (L+ 5)|G1|+ 2|GT | 3|G1|+ |Zp|+ |GT | 5|G2|

Our Scheme adaptive (L+ 5)|G1|+ 2|GT | 4|G1|+ 2|Zp|+ |GT | 8|G2|

Scheme |skID| #pairing

SE15 [SE15] |PRF|+ (L− |ID|+ 2)#skID,θ|G| 3

ETW20 [ETW20] (2(L− |ID|) + 7)(#delkID,θ +#skID,θ) |G2| 3

Our Scheme 2#delkID,θ|Zp|+ (2(L− |ID|) + 5)#skID,θ|G2| 4

Scheme |kupa(ID),T| assump. reduction loss

SE15 [SE15] (L− |pa(ID)|+ 3)#kupa(ID),T,θ|G| q-type O(L)

ETW20 [ETW20] (2(L− |pa(ID)|) + 5)#kupa(ID),T,θ|G2| SXDH O(LQ2
gen|T |)

Our Scheme (2(L− |ID|) + 9 + 5#kupa(ID),T,θ)|G2| SXDH O(Qgen(Qgen + |T |))

Table 7 compares our proposed RHIBE scheme with the other RHIBE schemes with compact
ciphertexts [SE15, ETW20], i.e., Seo and Emura’s selectively secure scheme (SE15) and Emura et
al.’s scheme (ETW20). Since we modify Chen and Gong’s HIBE scheme [CG17] for constructing
the proposed RHIBE scheme, we use the same Chen and Gong’s HIBE scheme to instantiate Emura
et al.’s semi-generic construction. We note that #delkID,θ, #skID,θ, and #kupa(ID),T,θ are the same
among all the schemes except that SE15 does not depend on #delkID,θ. All schemes have similar
sizes of MPK, ctID,T, and dkID,T and almost the same #pairing. Although |skID| is much larger than
that of the selectively secure SE15, it is much shorter than that of the adaptively secure ETW20.
We achieve the parameter saving since a delegation key delkID,θ of SE15 consists of 2(L− |ID|) + 7
G2 elements, while that of ours consists of two Zp elements. Moreover, |kupa(ID),T| of our scheme is
much shorter than those of both SE15 and ETW20. We achieve the parameter saving due to the
existence of helper key update kupa(ID),T that consists of 2(L− |ID|) + 9 G2 elements. Specifically,
sub-key updates kupa(ID),T,θ of SE15 and ETW20 consists of L−|pa(ID)|+3 and 2(L−|pa(ID)|)+5
G2 elements, while that of ours consists of five G2 elements. Although the security of SE15 is based
on the non-standard q-type assumption, the security of ETW20 and ours are based on the same
k-linear assumption. Unlike SE15 and ETW20, the reduction loss of our scheme does not depend
on L, while that of SE15 is tighter than ours. We achieve strictly tighter reduction than ETW20.

7.2 Comparison among RHIBE Schemes with Adaptive Security

58

Table 8: Comparison of RHIBE schemes with adaptive security

Scheme |MPK| |ctID,T| |skID| |kuID,T| |dkID,T|

ETW20 [ETW20] O(L) O(1)
O((L− ℓ)#delkID,θ)

+O((L− ℓ) log λ)
O(R(L− ℓ) log λ) O(1)

LK21 [LK21]

(basic)
O(L) O(ℓλ) O(L− ℓ) O(Rλ+ ℓ) O(ℓ)

LK21 [LK21]

(shorter ct)
O(L+ λ) O(ℓ) O(L+ λ− ℓ) O(Rλ2 + ℓ) O(ℓ)

ETW21 [ETW21]

(basic)
O(L) O(ℓλ) O(L− ℓ) O(Rλ+ ℓ) O(ℓ)

ETW21 [ETW21]

(shorter ct)
O(L+M) O

(
ℓ λ
M

)
O(L+M − ℓ) O(RMλ+ ℓ) O(ℓ)

ETW21 [ETW21]

(shorter ku)
O(L+M) O(ℓMλ) O(L+M − ℓ) O

(
Rλ
M + ℓ

)
O(ℓ)

Ours O(L) O(1)
O(#delkID,θ)

+O((L− ℓ) log λ)

O(R log λ)

+O(L− ℓ)
O(1)

Table 8 compares the asymptotic space efficiency of adaptively secure RHIBE schemes [ETW20,
LK21, ETW21], i.e., Emura et al.’s semi-generic construction (ETW20), Lee and Kim’s generic
construction (LK21), and Emura et al.’s generic construction (ETW21). Since we modify Chen
and Gong’s HIBE scheme [CG17] for constructing the proposed RHIBE scheme, we use the same
Chen and Gong’s HIBE scheme to instantiate all the (semi-)generic constructions. We use a nota-
tion |ID| = ℓ for simplicity. Here, we assume that ETW20 and our scheme use binary trees with
N = λω(1) leaves as claimed in Section 3.1, while KL21 and ETW21 use binary trees with N = 2O(λ)

leaves since the latter use collision resistant hash functions to assign every ID. LetR denote the num-
ber of users in RLID,T. As we claimed in Section 3.1, it holds that |KUN pa(ID),T| = O(R log(N/R)).
Here, we set |KUN pa(ID),T| ≈ O(R log λ) in the cases of ETW20 and our scheme, while we set
|KUN pa(ID),T| ≈ O(Rλ) in the cases of LK21 and ETW21 for simplicity. The parameter M used
in shorter ct variant of ETW21 is an integer such that 1 ≤ M ≤ λ, while M used in shorter ku
variant of ETW21 is a non-negative integer.

Since we compare our scheme with ETW20 in Section 7.1, we here compare our scheme with
LK21 and ETW21. At first, we compare our scheme with the basic schemes of LK21 and ETW21
that have the same asymptotic efficiency. All LK21, ETW21, and our scheme have the same size of
MPK. The main bottleneck of our scheme is a large |skID| that depends on #delkID,θ and log λ, while
those of LK21 and ETW21 do not depend on #delkID,θ and log λ. In contrast, we achieve constant-
size of |ctID,T| and |dkID,T|, while those of LK21 and ETW21 depend on ℓλ and ℓ, respectively.
Moreover, |kuID,T of our scheme tends to be smaller than those of LK21 and ETW21 since we can
use binary trees with less leaves N than LK21 and ETW21.

Next, we compare our scheme with shorter ct variants of LK21 and ETW21. When we set
M = Θ(λ), the shorter ct variants of LK21 and ETW21 have the same asymptotic efficiency.
Although |skID| of shorter ct variants of LK21 and ETW21 become larger than their basic schemes,
they are still much shorter than that of our scheme. In contrast, all the other |MPK|, |ctID,T|,
|kuID,T|, and |dkID,T| of our schemes are smaller than those of the shorter ct variants of LK21 and
ETW21.

59

Finally, we compare our scheme with shorter ku variant of ETW21. Although |skID| of the
shorter ku variant of ETW21 becomes larger than their basic schemes, they are still much shorter
than that of our scheme. In contrast, |MPK|, |ctID,T|, and |dkID,T| of our scheme are smaller than
those of the shorter ku variant of ETW21 regardless of the selections of parameter M . When we
set a parameter M = o(λ/ log λ), |kuID,T| of our scheme is also smaller than that of the shorter ku
variant of ETW21. In other words, |kuID,T| of the shorter ku variant of ETW21 is smaller than that
of our scheme only when M = Ω(λ/ log λ).

8 Conclusion

We propose an adaptively secure RHIBE scheme with compact ciphertexts under the standard k-
linear assumption. The adaptive security of the previous scheme proposed by Emura et al. [ETW20]
was proved by reducing the adaptive security of the underlying HIBE scheme to the adaptive
security of their RHIBE scheme. In contrast, we proved the adaptive security of the proposed
scheme directly by the dual system encryption methodology. Thus, we achieved a tighter reduction
than that of Emura et al.’s scheme. Moreover, our scheme has much shorter secret keys and key
updates than that of Emura et al. with ciphertexts made compact by a factor O(L− |ID|). Since
each parent user of the current adaptively secure RHIBE scheme has to store delegation keys whose
number grows at least linearly with the number of children users, reducing the size of secret keys
may pose a major problem by maintaining compact ciphertexts.

References

[BF01] Dan Boneh and Matthew K. Franklin. Identity-based encryption from the weil pairing.
In Joe Kilian, editor, Advances in Cryptology - CRYPTO 2001, 21st Annual Interna-
tional Cryptology Conference, Proceedings, volume 2139 of Lecture Notes in Computer
Science, pages 213–229. Springer, 2001.

[BGK08] Alexandra Boldyreva, Vipul Goyal, and Virendra Kumar. Identity-based encryption
with efficient revocation. In Peng Ning, Paul F. Syverson, and Somesh Jha, editors,
Proceedings of the 2008 ACM Conference on Computer and Communications Security,
CCS 2008, pages 417–426. ACM, 2008.

[BKP14] Olivier Blazy, Eike Kiltz, and Jiaxin Pan. (hierarchical) identity-based encryption
from affine message authentication. In Juan A. Garay and Rosario Gennaro, editors,
Advances in Cryptology - CRYPTO 2014 - 34th Annual Cryptology Conference, Pro-
ceedings, Part I, volume 8616 of Lecture Notes in Computer Science, pages 408–425.
Springer, 2014.

[CCKS18] Donghoon Chang, Amit Kumar Chauhan, Sandeep Kumar, and Somitra Kumar Sanad-
hya. Revocable identity-based encryption from codes with rank metric. In Nigel P.
Smart, editor, Topics in Cryptology - CT-RSA 2018 - The Cryptographers’ Track at
the RSA Conference 2018, volume 10808 of Lecture Notes in Computer Science, pages
435–451. Springer, 2018.

[CG17] Jie Chen and Junqing Gong. ABE with tag made easy - concise framework and new
instantiations in prime-order groups. In Tsuyoshi Takagi and Thomas Peyrin, editors,
Advances in Cryptology - ASIACRYPT 2017 - 23rd International Conference on the

60

Theory and Applications of Cryptology and Information Security. Proceedings, Part II,
volume 10625 of Lecture Notes in Computer Science, pages 35–65. Springer, 2017.

[CGW15] Jie Chen, Romain Gay, and Hoeteck Wee. Improved dual system ABE in prime-order
groups via predicate encodings. In Elisabeth Oswald and Marc Fischlin, editors, Ad-
vances in Cryptology - EUROCRYPT 2015 - 34th Annual International Conference on
the Theory and Applications of Cryptographic Techniques, volume 9057 of Lecture Notes
in Computer Science, pages 595–624. Springer, 2015.

[CLL+12] Jie Chen, Hoon Wei Lim, San Ling, Huaxiong Wang, and Khoa Nguyen. Revocable
identity-based encryption from lattices. In Willy Susilo, Yi Mu, and Jennifer Seberry,
editors, Information Security and Privacy - 17th Australasian Conference, ACISP 2012,
volume 7372 of Lecture Notes in Computer Science, pages 390–403. Springer, 2012.

[CW14] Jie Chen and Hoeteck Wee. Dual system groups and its applications - compact HIBE
and more. IACR Cryptology ePrint Archive, 2014:265, 2014.

[DG17] Nico Döttling and Sanjam Garg. From selective IBE to full IBE and selective HIBE.
In Yael Kalai and Leonid Reyzin, editors, Theory of Cryptography - 15th International
Conference, TCC 2017, volume 10677 of Lecture Notes in Computer Science, pages
372–408. Springer, 2017.

[EHK+17] Alex Escala, Gottfried Herold, Eike Kiltz, Carla Ràfols, and Jorge Luis Villar. An al-
gebraic framework for Diffie-Hellman assumptions. J. Cryptology, 30(1):242–288, 2017.

[ESY16] Keita Emura, Jae Hong Seo, and Taek-Young Youn. Semi-generic transformation of
revocable hierarchical identity-based encryption and its DBDH instantiation. IEICE
Transactions, 99-A(1):83–91, 2016.

[ETW20] Keita Emura, Atsushi Takayasu, and Yohei Watanabe. Adaptively secure revocable
hierarchical IBE from k-linear assumption. IACR Cryptol. ePrint Arch., 2020:886,
2020.

[ETW21] Keita Emura, Atsushi Takayasu, and Yohei Watanabe. Generic constructions of re-
vocable hierarchical identity-based encryption. IACR Cryptol. ePrint Arch., 2021:515,
2021.

[GCTC16] Junqing Gong, Zhenfu Cao, Shaohua Tang, and Jie Chen. Extended dual system group
and shorter unbounded hierarchical identity based encryption. Des. Codes Cryptogra-
phy, 80(3):525–559, 2016.

[HLCL18] Ziyuan Hu, Shengli Liu, Kefei Chen, and Joseph K. Liu. Revocable identity-based
encryption from the computational Diffie-Hellman problem. In Willy Susilo and
Guomin Yang, editors, Information Security and Privacy - 23rd Australasian Confer-
ence, ACISP 2018, Proceedings, volume 10946 of Lecture Notes in Computer Science,
pages 265–283. Springer, 2018.

[ISW17] Yuu Ishida, Junji Shikata, and Yohei Watanabe. CCA-secure revocable identity-based
encryption schemes with decryption key exposure resistance. IJACT, 3(3):288–311,
2017.

61

[KMT19] Shuichi Katsumata, Takahiro Matsuda, and Atsushi Takayasu. Lattice-based revoca-
ble (hierarchical) IBE with decryption key exposure resistance. In Dongdai Lin and
Kazue Sako, editors, Public-Key Cryptography - PKC 2019 - 22nd IACR International
Conference on Practice and Theory of Public-Key Cryptography, Proceedings, Part II,
volume 11443 of Lecture Notes in Computer Science, pages 441–471. Springer, 2019.

[Lee19] Kwangsu Lee. A generic construction for revocable identity-based encryption with
subset difference methods. IACR Cryptology ePrint Archive, 2019:798, 2019.

[Lew12] Allison B. Lewko. Tools for simulating features of composite order bilinear groups
in the prime order setting. In David Pointcheval and Thomas Johansson, editors,
Advances in Cryptology - EUROCRYPT 2012 - 31st Annual International Conference
on the Theory and Applications of Cryptographic Techniques. Proceedings, volume 7237
of Lecture Notes in Computer Science, pages 318–335. Springer, 2012.

[LK21] Kwangsu Lee and Joon Sik Kim. A generic approach to build revocable hierarchical
identity-based encryption. IACR Cryptology ePrint Archive, 2021:502, 2021.

[LLP17] Kwangsu Lee, Dong Hoon Lee, and Jong Hwan Park. Efficient revocable identity-based
encryption via subset difference methods. Des. Codes Cryptography, 85(1):39–76, 2017.

[LP18] Kwangsu Lee and Seunghwan Park. Revocable hierarchical identity-based encryption
with shorter private keys and update keys. Des. Codes Cryptography, 86(10):2407–2440,
2018.

[LP19] Roman Langrehr and Jiaxin Pan. Tightly secure hierarchical identity-based encryption.
In Dongdai Lin and Kazue Sako, editors, Public-Key Cryptography - PKC 2019 - 22nd
IACR International Conference on Practice and Theory of Public-Key Cryptography,
Proceedings, Part I, volume 11442 of Lecture Notes in Computer Science, pages 436–465.
Springer, 2019.

[LP20a] Roman Langrehr and Jiaxin Pan. Hierarchical identity-based encryption with tight
multi-challenge security. In Aggelos Kiayias, Markulf Kohlweiss, Petros Wallden, and
Vassilis Zikas, editors, Public-Key Cryptography - PKC 2020 - 23rd IACR International
Conference on Practice and Theory of Public-Key Cryptography, Proceedings, Part I,
volume 12110 of Lecture Notes in Computer Science, pages 153–183. Springer, 2020.

[LP20b] Roman Langrehr and Jiaxin Pan. Unbounded HIBE with tight security. In Shiho
Moriai and Huaxiong Wang, editors, Advances in Cryptology - ASIACRYPT 2020 - 26th
International Conference on the Theory and Application of Cryptology and Information
Security, Proceedings, Part II, volume 12492 of Lecture Notes in Computer Science,
pages 129–159. Springer, 2020.

[LV09] Benôıt Libert and Damien Vergnaud. Adaptive-ID secure revocable identity-based en-
cryption. In Marc Fischlin, editor, Topics in Cryptology - CT-RSA 2009, The Cryptog-
raphers’ Track at the RSA Conference 2009. Proceedings, volume 5473 of Lecture Notes
in Computer Science, pages 1–15. Springer, 2009.

[ML19] Xuecheng Ma and Dongdai Lin. Generic constructions of revocable identity-based en-
cryption. In Zhe Liu and Moti Yung, editors, Information Security and Cryptology -
15th International Conference, Inscrypt 2019, Revised Selected Papers, volume 12020
of Lecture Notes in Computer Science, pages 381–396. Springer, 2019.

62

[NNL01] Dalit Naor, Moni Naor, and Jeffery Lotspiech. Revocation and tracing schemes for
stateless receivers. In Joe Kilian, editor, Advances in Cryptology - CRYPTO 2001,
21st Annual International Cryptology Conference. Proceedings, volume 2139 of Lecture
Notes in Computer Science, pages 41–62. Springer, 2001.

[OT15] Tatsuaki Okamoto and Katsuyuki Takashima. Achieving short ciphertexts or short
secret-keys for adaptively secure general inner-product encryption. Des. Codes Cryp-
tography, 77(2-3):725–771, 2015.

[RLPL15] Geumsook Ryu, Kwangsu Lee, Seunghwan Park, and Dong Hoon Lee. Unbounded hier-
archical identity-based encryption with efficient revocation. In Howon Kim and Dooho
Choi, editors, Information Security Applications - 16th International Workshop, WISA
2015, volume 9503 of Lecture Notes in Computer Science, pages 122–133. Springer,
2015.

[RS14] Somindu C. Ramanna and Palash Sarkar. Efficient (anonymous) compact HIBE from
standard assumptions. In Sherman S. M. Chow, Joseph K. Liu, Lucas Chi Kwong Hui,
and Siu-Ming Yiu, editors, Provable Security - 8th International Conference, ProvSec
2014. Proceedings, volume 8782 of Lecture Notes in Computer Science, pages 243–258.
Springer, 2014.

[SE13a] Jae Hong Seo and Keita Emura. Efficient delegation of key generation and revocation
functionalities in identity-based encryption. In Ed Dawson, editor, Topics in Cryptology
- CT-RSA 2013 - The Cryptographers’ Track at the RSA Conference 2013, volume 7779
of Lecture Notes in Computer Science, pages 343–358. Springer, 2013.

[SE13b] Jae Hong Seo and Keita Emura. Revocable identity-based encryption revisited: Security
model and construction. In Kaoru Kurosawa and Goichiro Hanaoka, editors, Public-
Key Cryptography - PKC 2013 - 16th International Conference on Practice and Theory
in Public-Key Cryptography. Proceedings, volume 7778 of Lecture Notes in Computer
Science, pages 216–234. Springer, 2013.

[SE15] Jae Hong Seo and Keita Emura. Revocable hierarchical identity-based encryption:
History-free update, security against insiders, and short ciphertexts. In Kaisa Nyberg,
editor, Topics in Cryptology - CT-RSA 2015, The Cryptographer’s Track at the RSA
Conference 2015, volume 9048 of Lecture Notes in Computer Science, pages 106–123.
Springer, 2015.

[Sha84] Adi Shamir. Identity-based cryptosystems and signature schemes. In G. R. Blakley and
David Chaum, editors, Advances in Cryptology, Proceedings of CRYPTO ’84, volume
196 of Lecture Notes in Computer Science, pages 47–53. Springer, 1984.

[TW17] Atsushi Takayasu and Yohei Watanabe. Lattice-based revocable identity-based encryp-
tion with bounded decryption key exposure resistance. In Josef Pieprzyk and Suriadi
Suriadi, editors, Information Security and Privacy - 22nd Australasian Conference,
ACISP 2017, Proceedings, Part I, volume 10342 of Lecture Notes in Computer Science,
pages 184–204. Springer, 2017.

[TW21] Atsushi Takayasu and Yohei Watanabe. Revocable identity-based encryption with
bounded decryption key exposure resistance: Lattice-based construction and more.
Theor. Comput. Sci., 849:64–98, 2021.

63

[Wat09] Brent Waters. Dual system encryption: Realizing fully secure IBE and HIBE under
simple assumptions. In Shai Halevi, editor, Advances in Cryptology - CRYPTO 2009,
29th Annual International Cryptology Conference. Proceedings, volume 5677 of Lecture
Notes in Computer Science, pages 619–636. Springer, 2009.

[WES17] Yohei Watanabe, Keita Emura, and Jae Hong Seo. New revocable IBE in prime-order
groups: Adaptively secure, decryption key exposure resistant, and with short public
parameters. In Helena Handschuh, editor, Topics in Cryptology - CT-RSA 2017 -
The Cryptographers’ Track at the RSA Conference 2017. Proceedings, volume 10159 of
Lecture Notes in Computer Science, pages 432–449. Springer, 2017.

[WLXZ14] Changji Wang, Yuan Li, Xiaonan Xia, and Kangjia Zheng. An efficient and provable
secure revocable identity-based encryption scheme. PLoS ONE, 9(9):e106925, 2014.

[WZH+19] Shixiong Wang, Juanyang Zhang, Jingnan He, Huaxiong Wang, and Chao Li. Simplified
revocable hierarchical identity-based encryption from lattices. In Yi Mu, Robert H.
Deng, and Xinyi Huang, editors, Cryptology and Network Security - 18th International
Conference, CANS 2019, Proceedings, volume 11829 of Lecture Notes in Computer
Science, pages 99–119. Springer, 2019.

64

	Introduction
	Background
	Our Contribution
	Technical Overview
	Related Work
	Roadmap

	Preliminaries
	Bilinear Groups
	RHIBE

	Proposed RHIBE Scheme
	CS Method
	Construction
	Correctness

	Main Theorem
	Auxiliary Distributions
	Proof of Main Theorem

	Adaptive Security against the Type-II Adversary
	Proof of Lemma 2

	Adaptive Security against the Type-I Adversary
	Proof of Lemma 1

	Comparison
	Comparison among RHIBE Schemes with Compact Ciphertexts
	Comparison among RHIBE Schemes with Adaptive Security

	Conclusion

