
Improved guess-and-determine and
distinguishing attacks on SNOW-V

Jing Yang1, Thomas Johansson1 and Alexander Maximov2

1 Dept. of Electrical and Information Technology, Lund University, Lund, Sweden
{jing.yang,thomas.johansson}@eit.lth.se

2 Ericsson Research, Lund, Sweden
alexander.maximov@ericsson.com

Abstract. In this paper, we investigate the security of SNOW-V, demonstrating two
guess-and-determine (GnD) attacks against the full version with complexities 2384

and 2378, respectively, and one distinguishing attack against a reduced variant with
complexity 2303. Our GnD attacks use enumeration with recursion to explore valid
guessing paths, and try to truncate as many invalid guessing paths as possible at
early stages of the recursion by carefully designing the order of guessing. In our first
GnD attack, we guess three 128-bit state variables, determine the remaining four
using four consecutive keystream words, and finally verify the correct guess according
to the next three consecutive keystream words. The second GnD attack is similar
but exploits one more keystream word as side information helping to truncate more
guessing paths. Our distinguishing attack targets a reduced variant where 32-bit
adders are replaced with exclusive-OR. The main advantage of our distinguishing
attack is that the contribution from the linear part can be cancelled locally, while
classical distinguishing attacks require to combine keystream words very far away to
achieve so. Thus the samples in our distinguishing attack can be collected from short
keystream sequences under different (Key, IV) pairs. These attacks do not threaten
SNOW-V, but provide more in-depth details for understanding its security and give
new ideas for cryptanalysis of other ciphers.

Keywords: SNOW-V · Guess-and-determine attack · Distinguishing attack

1 Introduction
SNOW-V is a new member of the SNOW family of stream ciphers, proposed in 2019 in
response to the new requirements of the confidentiality and integrity algorithms in 5G
and beyond from 3GPP [EJMY19]. First, the 256-bit security level is expected in 5G to
resist against attackers equipped with quantum computing capability [3GP19], while the
predecessor SNOW 3G being used in 4G was only specified for 128-bit key length. If the key
length in SNOW 3G would be increased to 256 bits, there exist academic attacks against
it much faster than exhaustive key search, see e.g. [YJM19]. Besides, the algorithms are
expected to achieve high throughput in software environments, as many of the network
nodes in 5G can be virtualised and the ability to use specialised hardware for cryptographic
primitives will thus be reduced. The targeted speed for downlink transmission in 5G is 20
Gbps, while current performance benchmarks for SNOW 3G only give approximately 9
Gbps in a pure software environment [YJ20]. SNOW-V is designed given these motivating
facts and aims to provide a 256-bit security level and perform fast enough in software
environments. It has been submitted to SAGE (Security Algorithms Group of Experts)
within 3GPP for consideration for possible use in 5G and is under evaluation [SAG20].

mailto:{jing.yang, thomas.johansson}@eit.lth.se
mailto:alexander.maximov@ericsson.com

2 Improved guess-and-determine and distinguishing attacks on SNOW-V

SNOW-V follows the design principles of the SNOW family, with a linear part consisting
of LFSRs (Linear Feedback Shift Registers) to serve as the source of pseudo-randomness,
and a non-linear part called FSM (Finite State Machine) to disrupt the linearity. Both
parts are redesigned and better aligned in order to adapt to the higher performance and
stronger security demands in 5G. The FSM part is now increased to a larger size and
accommodates two AES encryption rounds to serve as two large S-boxes for non-linearity,
thus taking full advantage of the intrinsic instruction of AES encryption round supported
by most mainstream CPUs. SNOW-V can achieve rates up to 58 Gbps for encryption in a
pure software environment.

Since proposed, SNOW-V has received internal and external evaluations [EJMY19,
CDM20], which exhaustively visit all the promising cryptanalysis techniques of stream
ciphers and ensure that none of them applies to SNOW-V faster than exhaustive key search.
After that, a number of publications about cryptanalysis of SNOW-V had appeared as well.
The authors in [JLH20] propose a byte-based guess-and-determine (GnD) attack against
SNOW-V with complexity 2406 using seven keystream words. In their attack, the state
registers are split into bytes with some carriers introduced, and dynamic programming
is employed to help search a good guessing path that requires guessing as few bytes as
possible. In [GZ21], the authors perform linear cryptanalysis of SNOW-V and propose
correlation attacks against three reduced variants of it, in which either a permutation
operation is omitted or 32-bit arithmetic additions are replaced with 8-bit additions. The
closest variant is SNOW-V�32,�8 , in which one �32 (four parallel 32-bit adders) is replaced
by 8-bit adders, and the complexity of the correlation attack against it is 2377. The attack
complexity against the full SNOW-V is unknown and one can expect that it would be
even higher. The paper [HII+21] investigates the security of the initialisation of SNOW-V,
using MILP (Mixed-integer linear programming) model to efficiently search for integral
and differential characteristics. The resulting distinguishing or key recovery attacks are
applicable to SNOW-V with reduced initialisation rounds of five, out of the original 16
rounds, which indicates that the SNOW-V initialisation has a very good security margin.

Though none of these cryptanalysis efforts result in a valid attack against SNOW-V
faster than exhaustive key search, they are still of great importance for fully understanding
the security of the cipher.

Contribution. In this paper, we perform improved cryptanalysis of SNOW-V, and
propose two guess-and-determine attacks against the full version with complexities 2384

and 2378, respectively, and one distinguishing attack against a reduced variant with com-
plexity 2303. To the best of our knowledge, our GnD attacks are the best known state
recovery attacks against SNOW-V, while our linear cryptanalysis provides a new sight for
distinguishing attacks against word-based stream ciphers.

In our guess-and-determine attacks, we take full advantage of the observation that some
guessing values will not give valid solutions at some point in the middle of the guessing
process, and one can immediately terminate this guessing branch and trace back to guess
another value. Thus, some efforts of going deeper can be saved. The earlier and more often
one can find such cases, the more efforts can be saved. In our first GnD attack, we guess
three 128-bit state variables, and efficiently enumerate the solutions for the remaining four
using four keystream words. The number of valid solutions is around 2384 and we use the
next three keystream words to uniquely decide the correct one. We carefully design the
guessing order of the variables, such that most guessing paths would be truncated at some
point in the middle without going into the end. In our second GnD attack, we use one
additional keystream word to impose more constraints and truncate more guessing paths,
thus further reduce the complexity to 2378. The improvement is not very big, but the idea
of using side information to truncate more guessing paths and thus reduce the complexity
is interesting in general.

Jing Yang, Thomas Johansson and Alexander Maximov 3

Table 1: Attacks against SNOW-V and its variants.
Attack Complexity Data Reference

Guess-and-Determine 2406 7 keystream words [JLH20]
2384 7 keystream words Section 3
2378 8 keystream words Section 4

Linear Cryptanalysis 2377* long keystream of length 2254 [GZ21]
2303** many short keystreams Section 5

Integral Distinguisher 248 (5 rounds) 248 [HII+21]
Integral Key Recovery 2255 (3 rounds) 215

Differential Distinguisher 237 (5 rounds) 237 [HII+21]
Differential Key Recovery 2154 (4 rounds) 227

* The attack is applied on the reduced variant SNOW-V�32,�8 .
** The attack is applied on the reduced variant SNOW-V⊕.

In our distinguishing attack, we target a reduced variant of SNOW-V, denoted SNOW-
V⊕, in which the 32-bit adders are replaced with exclusive-OR. We consider three consecu-
tive 128-bit keystream words and linearly combine the bytes in these keystream words, such
that the contribution from the LFSR is directly cancelled. We then explore linear masking
coefficients in an efficient way to cancel out as many S-box approximations in the FSM as
possible, thus to make the bias larger. We find a bias evaluated using Squared Euclidean
Imbalance (SEI) around 2−303 and give a distinguishing attack with complexity 2303. Our
distinguishing attack has the advantage that the samples for building the biased keystream
sequence can be collected under different K (Key) and IV (Initialisation Vector) pairs,
while typical distinguishing attacks against LFSR-based stream ciphers can only collect
samples from one very long keystream sequence corresponding to one specific (K, IV) pair.

Table 1 lists the existing cryptanalysis results against SNOW-V, while they all show
that SNOW-V is resistant against these types of attacks.

Outline. We first give notations and expressions in Section 2, together with a brief
description of SNOW-V. We then demonstrate two guess-and-determine attacks in Sec-
tion 3 and Section 4, respectively. In Section 5, we perform linear cryptanalysis against
SNOW-V and propose a distinguishing attack against a reduced variant. We end the paper
with conclusions in Section 6.

2 Preliminaries

2.1 Notations
The exclusive-OR and addition modulo 2m are denoted by ⊕ and �m, respectively. ||
denotes the concatenation operation. The m-dimensional extension field is denoted as F2m .
For two variables x, y ∈ F2m , xy denotes the multiplication over F2m . Given two vectors
of length t, a = (at−1, . . . , a1, a0) and b = (bt−1, . . . , b1, b0), where ai, bi ∈ F2m for 0 ≤ i ≤
t−1, we use ab to denote the point-wise multiplication defined as ab = ⊕ti=0aibi, where aibi
is the multiplication over F2m . We sometimes also use (at−1, . . . , a1, a0) · (bt−1, . . . , b1, b0)
to denote the same point-wise multiplication. If m = 1, ab is the standard inner product.

The variables throughout the paper are normally 128-bit long, unless otherwise specified.
For a 128-bit variable x, we can express it as a byte vector (x15, x14, . . . , x1, x0), where
xi (0 ≤ i ≤ 15) is the i-th byte. We use several subscripts to indicate several bytes of a
variable. For example, x1,5,7 denotes the 1-st, 5-th, 7-th bytes of x. To express the vector
of these bytes, we add a notation [·] outside. For example, [x1,5,7] denotes the byte vector

4 Improved guess-and-determine and distinguishing attacks on SNOW-V

(x1, x5, x7). We add || between subscript indices to denote the concatenation of these bytes,
e.g., x1||5||7 denotes x1||x5||x7.

2.2 Introduction to SNOW-V
In this section, we give a brief introduction to SNOW-V and predefine some notations and
expressions which will be frequently used in the subsequent cryptanalysis. The overall
schematic of SNOW-V is depicted in Figure 1. It follows the design principles of the
SNOW-family, consisting of a linear part made of LFSRs and a non-linear part called
FSM. Both parts are redesigned in order to adapt to the requirements in 5G in terms of
encryption speed and security level.

C1

a15 a14 a13 a12 a11 a10 a9 a8 a7 a6 a5 a4 a3 a2 a1 a0

b0 b1 b2 b3 b4 b5 b6 b7 b8 b9 b10 b11 b12 b13 b14 b15

T2 128 bits

T1 128 bits

R1 AES Enc
Round R2 R3

128 bit keystream output
z

FSM

C2

AES Enc
Round

σ

Figure 1: Overall schematic of SNOW-V [EJMY19].

The LFSR part is a new circular construction consisting of two 256-bit registers, named
LFSR-A and LFSR-B, feeding to each other. Both LFSRs have 16 cells, each of which
holds an element from the finite field F216 . The 32 cells are denoted a15, . . . , a0 and
b15, . . . , b0, respectively. The elements in LFSR-A and LFSR-B are generated according to
the generating polynomials gA(x) and gB(x), respectively, which are expressed as below:

gA(x) = x16 + x15 + x12 + x11 + x8 + x3 + x2 + x+ 1 ∈ F2[x],
gB(x) = x16 + x15 + x14 + x11 + x8 + x6 + x5 + x+ 1 ∈ F2[x].

Denote the state of the LFSR-A and LFSR-B at clock t as (a(t)
15 , . . . , a

(t)
0) and (b(t)

15 , . . . , b
(t)
0),

respectively. Every time when clocking, the value in a cell is shifted to the next cell with a
smaller index and a(t)

0 , b
(t)
0 exit the LFSRs. The values in cell a15, b15 are updated as:

a(t+16) = b(t) + αa(t) + a(t+1) + α−1a(t+8) mod gA(α),
b(t+16) = a(t) + βb(t) + b(t+3) + β−1b(t+8) mod gB(β),

where α, β are roots of the two generating polynomials gA(α) and gB(β), respectively.
Such a construction has the maximum cycle of length 2512 − 1.

Jing Yang, Thomas Johansson and Alexander Maximov 5

Every time when updating the LFSR part, LFSR-A and LFSR-B are clocked eight
times, thus half of the states will be updated. After that, the two taps T1 and T2, which
are formed by considering (b15, b14, . . . , b9, b8), and (a7, a6, . . . , a1, a0) as two 128-bit words,
are fed to the FSM.

The FSM has three 128-bit registers, denoted R1, R2 and R3. It takes T1, T2 as inputs
and produces a 128-bit keystream word z by the expression below,

z(t) = (R1(t) �32 T1(t))⊕R2(t). (1)

The three registers are then updated as follows:

R2(t+1) = AESR(R1(t)), (2)
R3(t+1) = AESR(R2(t)), (3)
R1(t+1) = σ(R2(t) �32 (R3(t) ⊕ T2(t))), (4)

where AESR() is one AES encryption round and σ is a byte-oriented permutation defined
as σ = [0, 4, 8, 12, 1, 5, 9, 13, 2, 6, 10, 14, 3, 7, 11, 15]. The AES encryption rounds and �32
provide the source of non-linearity.

The design document has also specified the initialisation phase and AEAD (Authenti-
cated encryption with associated data) mode, as they are not relevant to our attacks, we
skip the details but refer to the design document [EJMY19].

Notations and Expressions. We give some notations and expressions here which will
be frequently used in the guess-and-determine attacks and linear cryptanalysis.

We use (R1, R2, R3) and (A0, A1, B0, B1) to denote the values of the registers in FSM
and in LFSR, respectively, at some specific time t, where A0 (B0) and A1 (B1) are the
low and high 128 bits of LFSR-A (LFSR-B), respectively. Thus, these seven variables are
all 128-bit long. We can then get the following expressions:

B1(t−1) = B0, B0(t+1) = B1, B1(t+1) = A0⊕ lβ(B0)⊕ hβ(B1),
A0(t+1) = A1, R1(t−1) = AES−1

R (R2), R2(t−1) = AES−1
R (R3),

where AES−1
R () is the inverse of one AES encryption round. Here lβ and hβ are two linear

operations relevant to the update of the LFSR, and are defined as below:

lβ(X) = (β(X15||14) || · · · || β(X1||0))⊕X�3·2, (5)
hβ(X) = (β−1(X15||14) || · · · || β−1(X1||0))⊕X�5·2, (6)

where X is a 128-bit variable and X�k, X�k denote the left and right shift by k bytes,
respectively. The multiplication operation with β or β−1 are applied to every 16-bit word
independently over the field of LFSR-B. They can be expressed as the multiplication of
the bit vector of the word and the binary 16× 16-bit matrices of β or β−1. The binary
matrix representations of β and β−1 are given in Appendix A. The explicit expressions of
lβ(X) and hβ(X) in bytes are given in Appendix B.

The expressions for three consecutive keystream words at clock t− 1, t and t+ 1, which
will be frequently used in our attacks, are derived as follows:

z(t−1) = (AES−1
R (R2) �32 B0)⊕AES−1

R (R3)),
z(t) = (R1 �32 B1)⊕R2, (7)

z(t+1) = (σ(R2 �32 (R3⊕A0)) �32 (A0⊕ lβ(B0)⊕ hβ(B1)))⊕AESR(R1).

6 Improved guess-and-determine and distinguishing attacks on SNOW-V

3 The first guess-and-determine attack in O(2384)
In this section, we present our first GnD attack with complexity O(2384), where the value
inside notation O() indicates the number of basic operations, which will be explained later.
We first introduce some basics about guess-and-determine attacks, which apply to our
second GnD attack in Section 4 as well. We then describe the attack in details and discuss
its complexity.

3.1 Basics about guess-and-determine attacks
In a guess-and-determine attack, one guesses some variables and determines others ac-
cording to some predefined relationships. In a GnD attack against a stream cipher, if all
the variables in the whole state could be determined through guessing a number t of bits,
where t is smaller than the security level, the attack is then faster than exhaustive key
search. In this paper, we call every ordered tuple of the values of the guessed and further
determined variables a guessing path or a guess-and-determine path, and use end-nodes to
denote the end points of the guessing paths.

Usually, the complexity of a GnD attack is presented as 2t, if one simply loops over
all the possible values of the chosen variables for guessing. However, we notice that by
guessing the variables in a careful order, one can either guess fewer variables or truncate
some guessing paths in which the guessed and determined variables fail to satisfy some
equation constraints in the middle. In the latter case, we can immediately trace back
without going further and turn to guess another value, thus the complexity could be
reduced.

For example, consider the simplest loop in the pseudo-code in Listing 1, where x, y, z
are three 8-bit variables, it is straightforward to get that the complexity is T = 224.
T = 0 ;
f o r (x=0; x<256; x++)

f o r (y=0; y<256; y++)
f o r (z=0; z<256; z++)

{ T = T + 1 ;
. . .

}

Listing 1: A simple GnD loop

However, for a different loop shown in Listing 2, where L1[x] are lists depending on the
specific values of x and L2[x, y] are lists depending on the values of x, y, the size of the
loop is not fixed but rather depends on the lengths of lists L1[x] and L2[x, y]. For example,
for a specific value of x, after we have gone through every value of L1[x] for y (and
correspondingly subsequent z), we can immediately trace back to another x value, instead
of considering all the 256 values of y. In this case, the complexity is not simply 224, but
instead the number of valid looping paths.
T = 0 ;
f o r (x=0; x<256; x++)

f o r (y = L1 [x] . f i r s t ; y!=NULL; y=y−>next)
f o r (z = L2 [x , y] . f i r s t ; z !=NULL; z=z−>next)

{ T = T + 1 ;
. . .

}

Listing 2: A more complex GnD loop

Thus the complexity of a guess-and-determine attack could be expressed as c ·T , where
c is some constant coefficient which we will explain later, and T is not just the size of
the guessing loop, but rather dominated by the number of guessing paths that the attack
algorithm will reach an end-node. If the exact value of T is infeasible to compute, the
average value of it over the guessed variables is instead considered.

Jing Yang, Thomas Johansson and Alexander Maximov 7

We will use the term enumeration to denote going through all the valid guess-and-
determine paths, and the size/length of such an enumeration will decide the GnD complexity
T . We would like to mention that the organisation of an enumeration may not be only
plain loops, but some more sophisticated algorithms, e.g., enumeration by recursion, in
which we adopt a recursion algorithm to explore all the solutions satisfying a certain
equation or a system of conditions.

The other term c indicates some constant complexity, which solely depends on the
concrete platform and the operations how other values are determined from the known
ones. For example, the value of c for computing D given A,B through D = A ⊕ B or
A = (D �B)⊕ (D ⊕ S(B)) (S denotes S-box operation) will be different. Obviously, the
complexity for the former example can be ignored as it almost consumes nothing, thus
c = 1; however, for the latter case, it is not trivial to get the value of D directly, and
enumerations or some other techniques are required. Thus, the cost for simple derivations
are normally ignored, while if a derivation involves enumeration, the complexity of it
should be included.

3.2 Steps of the first GnD attack
In our first GnD attack, we guess three 128-bit state variables R1, R2, B0 and use three
consecutive keystream words to determine three more variables, R3, B1 and A0. The
derivations for R3 and B1 are simple, while tricky for A0. We show how we derive A0
in a smart way in Section 3.2.2. After that, we use one more keystream word z(t+2) to
determine the final state variable A1 using the same way for deriving A0, and finally
use three additional keystream words to verify the correct guess. In total, seven 128-bit
keystream words are required to determine the seven 128-bit state variables. A simplified
flowchart of this GnD attack can be found in Appendix E.

3.2.1 Initial guessing set and derivations

We consider the three consecutive keystream words given in Equation 7 and introduce two
intermediate 128-bit variables, C and D, which are defined as follows:

C = lβ(B0)⊕ hβ(B1), (8)
D = σ(R2 �32 (R3⊕A0)) �32 (A0⊕ C). (9)

Correspondingly, the three keystream words in Equation 7 can be rewritten as:

z(t−1) =(AES−1
R (R2) �32 B0)⊕AES−1

R (R3)
z(t) =(R1 �32 B1)⊕R2 (10)

z(t+1) =AESR(R1)⊕D

There are six unknown variables in Equation 10, and to determine all of them, one has
to guess not less than three. Since R1 and R2 appear twice in the expressions, we prefer
to first guess them. Let us initially guess (R1, R2, B0) with complexity 2384. Then the
variables below will be directly determined:

R3 from : z(t−1) = (AES−1
R (R2) �32 B0)⊕AES−1

R (R3),
B1 from : z(t) = (R1 �32 B1)⊕R2,
D from : z(t+1) = AESR(R1)⊕D.

Thus, all the variables in Equation 10 are known, either through guessing or determining.
Besides, the intermediate variable C in Equation 8 is also determined, and our last step is
to determine the values of the remaining two state variables, A0 and A1.

8 Improved guess-and-determine and distinguishing attacks on SNOW-V

If we find an efficient way to enumerate all the solutions for A0 (and A1) without
additional guesses, the overall GnD complexity will be exactly 2384. This can be initially
understood from a simple observation: there are six unknowns in the three consecutive
keystream words in Equation 10, thus the space of unknowns F6·128

2 is mapped to the space
of three keystream words F3·128

2 . Therefore, the expected number of combinations of the
six unknowns satisfying 384 bits of the keystream, is 2384. Since we guess 384 bits of the
internal state, the expected number of solutions corresponding to each guess in such an
enumeration is exactly one on average, thus there are 2384 valid guessing paths.

We next show how we efficiently find the solutions of A0 in Section 3.2.2 and A1 in
Section 3.2.3.

3.2.2 Deriving A0 using a 10-step recursive enumeration

A0 is determined using Equation 9, while we would like to note that even though other
variables in Equation 9 are fixed, the value of A0 might not be uniquely or directly
determined as A0 appears twice in the equation with non-linear operations in-between.
So the task now is to efficiently find the solutions for A0 in Equation 9, which we rewrite
with highlight as below:

D = σ(R2 �32 (R3⊕A0)) �32 (A0⊕ C). (11)

We start searching for solutions of A0 in Equation 11 in a byte-wise fashion. Each byte
of D, Di (15 ≥ i ≥ 0) is expressed as:

Di = (R2j �8 (R3j ⊕A0j) �8 uj) �8 (A0i ⊕ Ci) �8 vi, j = σ(i), (12)

where uj , vi ∈ {0, 1} are carry bits that may arrive from arithmetical additions of the
previous bytes. We call these byte-wise equations as D-equations. Note that some of these
carry values are already known: uk = vk = 0 for k = 0, 4, 8, 12. For other carriers, we do
not have to guess them if we derive the bytes of A0 in a careful order in 10 steps as shown
in Table 2.

Table 2: The 10 steps to derive A0.

Step 0: D0 = (R20 �8 (R30 ⊕A00) �8 u0) �8 (A00 ⊕ C0) �8 v0
where u0 = v0 = 0
derive → (A00, u1, v1)

Step 1: D1 = (R24 �8 (R34 ⊕A04) �8 u4) �8 (A01 ⊕ C1) �8 v1
D4 = (R21 �8 (R31 ⊕A01) �8 u1) �8 (A04 ⊕ C4) �8 v4

where u4 = v4 = 0 and u1, v1 are known from Step 0
derive → (A01, A04, u2, v2, u5, v5)

Step 2: D5 = (R25 �8 (R35 ⊕A05) �8 u5) �8 (A05 ⊕ C5) �8 v5
where u5, v5 are known from Step 1
derive → (A05, u6, v6)

Step 3: D2 = (R28 �8 (R38 ⊕A08) �8 u8) �8 (A02 ⊕ C2) �8 v2
D8 = (R22 �8 (R32 ⊕A02) �8 u2) �8 (A08 ⊕ C8) �8 v8

where u8 = v8 = 0 and u2, v2 are known from Step 1
derive → (A02, A08, u3, v3, u9, v9)

Step 4: D3 = (R212 �8 (R312 ⊕A012) �8 u12) �8 (A03 ⊕ C3) �8 v3
D12 = (R23 �8 (R33 ⊕A03) �8 u3) �8 (A012 ⊕ C12) �8 v12

where u12 = v12 = 0 and u3, v3 are known from Step 3
derive → (A03, A012, u13, v13)

Step 5: D6 = (R29 �8 (R39 ⊕A09) �8 u9) �8 (A06 ⊕ C6) �8 v6
D9 = (R26 �8 (R36 ⊕A06) �8 u6) �8 (A09 ⊕ C9) �8 v9

Jing Yang, Thomas Johansson and Alexander Maximov 9

where u6, v6, u9, v9 are known from Steps 2 and 3
derive → (A06, A09, u7, v7, u10, v10)

Step 6: D10 = (R210 �8 (R310 ⊕A010) �8 u10) �8 (A010 ⊕ C10) �8 v10
where u10, v10 are known from Step 5
derive → (A010, u11, v11)

Step 7: D7 = (R213 �8 (R313 ⊕A013) �8 u13) �8 (A07 ⊕ C7) �8 v7
D13 = (R27 �8 (R37 ⊕A07) �8 u7) �8 (A013 ⊕ C13) �8 v13

where u7, v7, u13, v13 are known from Steps 4 and 5
derive → (A07, A013, u14, v14)

Step 8: D11 = (R214 �8 (R314 ⊕A014) �8 u14) �8 (A011 ⊕ C11) �8 v11
D14 = (R211 �8 (R311 ⊕A011) �8 u11) �8 (A014 ⊕ C14) �8 v14

where u11, v11, u14, v14 are known from Steps 6 and 7
derive → (A011, A014, u15, v15)

Step 9: D15 = (R215 �8 (R315 ⊕A015) �8 u15) �8 (A015 ⊕ C15) �8 v15
where u15, v15 are known from Step 8
derive → (A015)

For each of the 2384 values of the initial guessing set (R1, R2, B0), there could be
different numbers, either zero or nonzero, of solutions for A0. Most of the guessing values
will even not pass the first step in Table 2 as no valid solutions exist for the first equation,
and we can immediately trace back to guess another value of (R1, R2, B0); while other
guessing values could have more than one solutions. However, we will show in Section 3.3.1
that the average number of solutions over (R1, R2, B0) is exactly one. The simplest way
to enumerate all solutions is to use a recursion procedure. For example, we can loop for all
solutions in the first step, and for each valid solution we recursively call the second step,
and so on.

If we only use simple loops for enumerating all the solutions in each step in Table 2,
the constant c in the complexity will be quite big (c ≈ 28), but later in Section 3.3.3 we
will show how to reduce c to much smaller in efficient ways.

3.2.3 Deriving A1 and final verification

In the above initial guess and enumeration, we know six out of seven 128-bit variables of
the state. There will be 2384 guessing paths that arrive to this final stage of the attack.
In order to derive the final 128-bit state variable A1, we simply use the fourth keystream
word z(t+2):

z(t+2) = (R1(t+2) �32 B1(t+2))⊕R2(t+2),

where

R1(t+2) = σ(R2(t+1) �32 (R3(t+1) ⊕A1)) = σ(AESR(R1) �32 (AESR(R2)⊕A1)),
R2(t+2) = AESR(R1(t+1)) = AESR(σ(R2 �32 (R3⊕A0))),
B1(t+2) = A0(t+1) ⊕ lβ(B0(t+1))⊕ hβ(B1(t+1))

= A1⊕ lβ(B1)⊕ hβ(A0⊕ lβ(B0)⊕ hβ(B1)).

Denote C ′ = lβ(B1)⊕ hβ(A0⊕ lβ(B0)⊕ hβ(B1)), then we can get the equation for A1:

z(t+2) ⊕R2(t+2) = σ(R2(t+1) �32 (R3(t+1) ⊕A1)) �32 (A1⊕ C ′).

One can see that the equation above has exactly the same form as the expression for A0
in Equation 11, and therefore, we could use the ten steps in Table 2 to enumerate all the

10 Improved guess-and-determine and distinguishing attacks on SNOW-V

solutions of A1. The distribution of number of solutions will be the same and there will be
one solution in average for each tuple of values of the other variables.

So far, we have guessed three state variables and determined the four others, such that
the values of the seven 128-bit words satisfy the four consecutive 128-bit keystream words.
The number of valid combinations of values is 2384 and in order to decide which one is
correct, we use three additional subsequent keystream words to verify. The verification
only involves simple derivations thus the cost can be ignored.

3.3 Discussion on the complexity
3.3.1 Study of the two types of D-equations in the 10 steps

In this section, we compute the distribution of the number of solutions for the D-equations
in Table 2 and show that the average value is one. This helps us to derive the total
complexity.

In the equation Di = (R2j �8 (R3j ⊕A0j) �8 uj) �8 (A0i ⊕ Ci) �8 vi, the input carry
bits uj , vi can be removed by setting R2′j = R2j � uj and D′i = Di � vi, which will not
influence the distribution or average value of the number of solutions. The ten groups
of D-equations in Table 2 can be divided into two equivalent types, which we denote as
Type-1 and Type-2 equations.

Type-1 equations have the form below:

A = (B �n (C ⊕X)) �n (X ⊕D),

where (A,B,C,D) are n-bit variables and X is the unknown that we need to enumerate
to find the solutions. Such Type-1 equations appear in Steps {0, 2, 6, 9}.

Type-2 equations have the form below:

A1 = (B1 �n (C1 ⊕X1)) �n (X2 ⊕D1),
A2 = (B2 �n (C2 ⊕X2)) �n (X1 ⊕D2),

where X1, X2 are the unknown variables that we want to enumerate for the solutions,
while others are n-bit variables. Such Type-2 equations appear in Steps {1, 3, 4, 5, 7, 8}.

For both types of equations, we have computed the distribution tables of the numbers
of solutions for the unknown X-bytes, given that the other known variables are uniformly
distributed. We exhaustively (with some optimisations and cut-offs) try all the values of
the known variables, and count all the solutions for the unknowns.

Table 3 presents the probabilities of X having different number of solutions for Type-1
equations corresponding to a random tuple of (A,B,C,D) over binary fields of different
dimensions n. The probabilities are derived through p = x/f , where x’s are the corre-
sponding integers in the table and f is some normalization factor. The probability of
having at least one solution when n = 8 can be computed easily, which is 2−3.91. This
means that in Equation 11, only 2−3.91 of the combinations of (R2, R3, C,D) will result
into valid solutions and continue with Step 1, and so on; while for the remaining majority
combination values, we just stop and trace back to the last step.

We can further compute the average number of solutions, Avr, as below:

Avr =
2n−1∑
i=0

i · Pr{#Solutions = i}.

The computed average value is exactly one.
We can derive the distribution and average value of number of solutions for Type-2

equations as well using a similar way. The distribution table under different n values is

Jing Yang, Thomas Johansson and Alexander Maximov 11

Table 3: Distribution table of the number of solutions of X for type-1 equations.
#Solutions n=1 n=2 n=3 n=4 n=5 n=6 n=7 n=8

normalization factor f 21 23 25 27 29 211 213 215

0 1 5 23 101 431 1805 7463 30581
2 1 2 4 8 16 32 64 128
4 1 4 12 32 80 192 448
8 1 6 24 80 240 672
16 1 8 40 160 560
32 1 10 60 280
64 1 12 84
128 1 14
256 1

given in Appendix D. The probability of having at least one solution is 2−3.53 and the
average number of solutions is one as well.

Since the ten tuples of equations are independent to each other (except the carriers,
but the carriers do not influence the probability of having solutions), the probability of A0
having at least one solution is computed as 2−3.53×6−3.91×4 = 2−36.84. This means that
only a small fraction, i.e., 2−36.84, of the 2384 initial guesses of (R1, R2, B0) will actually
have solutions for A0, while for other guessing values, the guessing process can be just
terminated here. However, when A0 has valid solutions, the number of solutions will be
around 236.84 in average but, again, the overall average number of solutions is exactly one.

3.3.2 The total attack complexity

The large fraction of the guesses, i.e., 2384 · (1 − 2−3.91), will fail in Step 0 in Table 2,
as Step 0 involves solving a Type-1 equation and the probability of having solutions is
2−3.91. The remaining small fraction of the guesses, i.e., 2384 ·2−3.91 ≈ 2380.09, will advance
to Step 1. The number of solutions in Step 0 will be 23.91 in average, thus the total
number of guessing paths that will arrive Step 1 is again 2380.09 · 23.91 ≈ 2384. The same
observation applies to every step in Table 2. Thus for 2384 input combinations to the
recursive enumeration algorithm for deriving A0, we will get 2384 possible solutions, exactly
one per guess in average.

For the final step to determine A1, the situation will be the same, i.e., the majority of
the derived six-word tuple will fail the first step, and only a small fraction will advance to
the next step, and so on. The average number of solutions is again one and there are 2384

valid guessing paths. Thus the total complexity of the GnD attack is O(2384).

3.3.3 Further reducing the complexity constant c

The complexity is written as c · 2384 where c is the complexity of operations involved in
each guessing path, mainly lies in solving the D-equations of either type. The simplest
way to solve the equations is to loop over all the values of the unknown bytes and check if
the values satisfy the equations, which, however, can be improved in a number of ways
listed below.

Loop for one-byte solution in 2 · 8 instead of 28. Recall that to enumerate all
solutions for A0 we make a byte-wise recursion of depth ten, and in each step we loop over
the byte sub-solutions. However, we can make an even deeper recursion and search for
solutions of each bit of A0i. This will shrink the constant complexity c from 256 down
to 2 · 8, since now we only need to get the solutions of the eight bits of a byte using a
recursive way. For each bit we try either 0 or 1, then go into the next bit with considering
the carriers, and so on.

12 Improved guess-and-determine and distinguishing attacks on SNOW-V

So we can enumerate the 128-bit unknown A0 by deriving each of the 128 bits in a
recursive step. We have actually implemented such a bit-oriented recursive enumeration
algorithm, which is given in Appendix C.

Precomputed lookup tables. We can also precompute lookup tables helping to instantly
give the list of sub-solutions for each tuple of D-equations given known variables. The
tables record all the possible values of the known variables and the corresponding solutions
for the unknowns, thus one can immediately get the solutions by looking up the tables.

The smallest table will be of size 232 → 256 × 10 bits for Step 0, where each entry
corresponds to one value of the known variables, 256 is the maximum number of possible
solutions corresponding to one entry, and 10 bits correspond to the value of one unknown
(one byte) and two carriers (two bits). There will be exactly 232 valid records of size 10
bits in the table. An example of the smallest table is as below:

T0[R20, R30, C0, D0]→ {A00, u1, v1}.

The largest table is of size 268 → 256× 20 bits in Step 5:

T5[R26, R36, C6, D6, u6, v6, R29, R39, C9, D9, u9, v9]→ {A06, A09, u7, v7, u10, v10}.

Truncating guessing paths reaching the 10-step stage for deriving A0. The
number of guessing paths that reach the 10-step stage for deriving A0 can be further
reduced by guessing the variables in the initial set in bytes, instead of 128 bits, in a careful
order. We give a simple example here, and there exist some more tricky ones.

We first guess the following 25 bytes and 2 bits in complexity 2202:

R10,1,3,4,5,9,10,14,15, R20,1,4,5, R30,1,4,5, B00,1,4,5,6,7,10,11, w0,4,

where w0,4 are two carry bits for 32-bit additions. Then the following variables can be
derived:

D0 = z
(t+1)
0 ⊕ (2 · S(R10)⊕ 3 · S(R15)⊕ 1 · S(R110)⊕ 1 · S(R115)),

D1 = z
(t+1)
1 ⊕ (1 · S(R10)⊕ 2 · S(R15)⊕ 3 · S(R110)⊕ 1 · S(R115)),

D4 = z
(t+1)
4 ⊕ (1 · S(R13)⊕ 2 · S(R14)⊕ 3 · S(R19)⊕ 1 · S(R114)),

D5 = z
(t+1)
5 ⊕ (1 · S(R13)⊕ 1 · S(R14)⊕ 2 · S(R19)⊕ 3 · S(R114)),

B10||1 = (z(t)
0||1 ⊕R20||1) �32 R10||1 �32 w0,

B14||5 = (z(t)
4||5 ⊕R24||5) �32 R14||5 �32 w4,

C0||1 = βB00||1 ⊕B06||7 ⊕ β−1B10||1,

C4||5 = βB04||5 ⊕B010||11 ⊕ β−1B14||5.

With the set of the guessed and determined values, we can now check whether a solution
for bytes A00, A01, A04, A05 exists, in the first three steps in Table 2. The probability of
valid solutions, denoted p0−2, can be computed as p0−2 = 2−3.91×2−3.52 = 2−11.34. If no
solutions exist, we just roll back and make another guess; otherwise we guess the remaining
23 (= 48− 25) bytes of the initial guessing set and run the 10-step algorithm to enumerate
all values of A0. The total number of nodes that will arrive to the 10-step stage will be:

T = 2200+2 + (p0−2 · 2200+2) · 2184−2 = 2202 + p0−2 · 2384.

This means that only 2372.66 guessing paths (out of 2384) will reach the 10-step stage for
enumerating A0. However, the total complexity will still be 2384, as the fact that there
are 2384 solutions satisfying the three consecutive keystream words remains unchanged.
Figure 2 gives an illustration of the first GnD attack and the “effect” of the idea to do a
pre-test after guessing only 202 bits.

Jing Yang, Thomas Johansson and Alexander Maximov 13

4 The second guess-and-determine attack in O(2378.16)
In this section, we provide a second guess-and-determine attack which can further reduce
the complexity by using one additional keystream block, z(t−2), as side information to
truncate more guessing paths. The improvement over the first GnD attack is not very big,
but the idea of exploiting more equation constraints to truncate guessing paths itself is
interesting, and our second GnD attack serves as a direct illustration of this idea.

4.1 Use z(t−2) to truncate more guessing paths
In the first GnD attack we have four equations in seven 128-bit unknowns, we guess three
of them and determine the others. For each guessing value, one solution in average will be
derived and thus there are 2384 valid solutions in total. Even if we apply the idea of first
guessing 202 bits to truncate some guessing paths at a even earlier stage, we still have to
run through all 2384 solutions in average. Using the next three keystream words we can
verify which guess is correct, thus we can recover all the seven state variables by guessing
three 128-bit variables and the complexity is 2384.

If we want to further reduce the complexity, we could try to see if we can truncate more
guessing paths of the initial 384-bit guessing set. Besides the guessing paths that have no
solutions in the D-equations, we can also truncate those having solutions for D-equations
but not satisfying some other side equation constraints, such that we will have a smaller
than 2384 number of solutions for A0 overall.

Specifically, we use one additional keystream word at clock t− 2, i.e., z(t−2), to impose
more constraints and truncate more guessing paths. The expression of z(t−2) is shown
below:

z(t−2) = (R1(t−2) �32 B1(t−2))⊕R2(t−2),

where R1(t−2), B1(t−2), R2(t−2) are derived as follows:

R1(t−2) = AES−1
R (R2(t−1)) = AES−1

R (AES−1
R (R3)),

B1(t−2) = B0(t−1),

R2(t−2) = AES−1
R (R3(t−1)) = AES−1

R ((σ(R1) �32 R2(t−1))⊕A0(t−1))
= AES−1

R ((σ(R1) �32 AES−1
R (R3))⊕A0(t−1)).

Guess R1, R2, B0
Derive R3, B1, C, D

2384 nodes
...

...

...

10-steps recursive
enumeation for A0

2384 nodes

10-steps recursive
enumeation for A1

2384 nodes

Many nodes will have zero solutions for A0,
others will have one or multiple solutions

If we do a pre-test after guessing 202 bits,
we will truncate some (but not all) nodes

 that will anyways have zero solutions for A0

Verify the 7x128-bit state by using the next 3 keystream words

Figure 2: Illustration of the first GnD attack.

14 Improved guess-and-determine and distinguishing attacks on SNOW-V

According to the LFSR update functions, we can derive:

A0(t−1) = B1⊕ lβ(B0(t−1))⊕ hβ(B1(t−1)) = B1⊕ lβ(B0(t−1))⊕ hβ(B0).

Thus z(t−2) can be written as an equation in one unknown variable B0(t−1) (given the
other values are known or guessed):

z(t−2) = (AES−1
R (AES−1

R (R3))︸ ︷︷ ︸
X

�32B0(t−1))

⊕AES−1
R ((σ(R1) �32 AES−1

R (R3))⊕ hβ(B0)⊕B1︸ ︷︷ ︸
Y

⊕lβ(B0(t−1))).

Using X,Y to denote the expressions in the brackets, we could simplify the above
equation as z(t−2) = (X�32B0(t−1))⊕AES−1

R (Y ⊕lβ(B0(t−1))). Similar to the situation for
A0 in our first GnD attack, B0(t−1) appears twice with non-linear operations in-between,
thus it can have different numbers of solutions given specific values of X,Y . If we change
to initially guess the two 128-bit variables X and Y , the expression of z(t−2) can help to
truncate more guessing paths that have no valid solutions for B0(t−1). Specifically, for
each guessing value of the (X,Y) pair, if we can immediately give a binary answer, i.e,.
Yes or No, about whether there is at least one solution for B0(t−1), we can discard those
(X,Y) values with no solutions, and only continue guessing the third 128-bit variable for
the others. Note that we do not enumerate solutions for B0(t−1) in z(t−2), since then we
would get the same complexity 2384 as the first GnD attack, and we will later show how we
efficiently get the binary answer of whether valid solutions exist without enumeration in
Section 4.2.1. Actually, we will guess (X,B0(t−1)) instead of (X,Y) there, but we still first
describe the idea by guessing (X,Y) since it is easier to illustrate how z(t−2) is exploited
to truncate more guessing paths.

Let pz denote the probability that B0(t−1) has solutions in the equation of z(t−2), then
the total complexity of the second GnD attack would be computed as:

T = 2256︸︷︷︸
guess X,Y

·((1− pz)︸ ︷︷ ︸
“No”

+ pz︸︷︷︸
“Yes”

· 2128︸︷︷︸
3rd guess

) ≈ pz · 2384.

We have derived the specific value of pz in Appendix G, which is 2−5.84, thus the total
complexity of the second GnD attack is around O(2384−5.84) ≈ O(2378.16).

4.2 Scenario of the second GnD attack
The flowchart of the second GnD attack is given in Appendix E, which follows the steps
below:

(1) Guess X and Y with complexity 2256;

(2) For each (X,Y) value, check if B0(t−1) in z(t−2) has solutions: if yes, continue with
guessing the third variable in the next step; otherwise roll back to the last step;

(3) Guess B0 in complexity 2128 and further derive R2, R3 as below:

R3 from: X = AES−1
R (AES−1

R (R3))
R2 from: z(t−1) = (AES−1

R (R2) �32 B0)⊕AES−1
R (R3))

This step will be entered pz · 2256 times in average.

Jing Yang, Thomas Johansson and Alexander Maximov 15

(4) For each valid combination of (X,Y,B0), we get the following two equations in two
unknowns R1 and B1:

z(t) ⊕R2 = R1 �32 B1,
Y ⊕ hβ(B0) = (σ(R1) �32 AES−1

R (R3))⊕B1. (13)

We check if B1, R1 have valid solutions given other variables, and roll back if the
answer is negative, otherwise we enumerate all solutions recursively. We have
computed the distribution and average value of the number of solutions using the
similar way for the D-equations in the first GnD attack and the details are given
in Appendix F. There is again one solution in average for each combination of the
known variables. Similarly, lookup tables can be precomputed to help enumerate
solutions efficiently.

(5) Derive the D-equations in A0 and enumerate all the solutions recursively as done
in the first GnD attack;

(6) Derive the D-equations in A1 and enumerate all the solutions recursively as done
in the first GnD attack;

(7) Use the next three keystream words to verify the correct guess.

4.2.1 Guess (X,B0(t−1)) instead of (X,Y)

In the first step, we need to give a binary answer about whether solutions exist for B0(t−1)

in the equation:

z(t−2) = (B0(t−1) �32 X)⊕AES−1
R (lβ(B0(t−1))⊕ Y).

One simple way to achieve this is to run an enumeration algorithm on B0(t−1), and
whenever a solution is found, we stop and move to the next step. This is similar to the
process of computing pz in Appendix G. However, the process is actually an enumeration
algorithm on B0(t−1) with complexity 248−5.84, resulting in the total complexity even
higher than O(2384).

Instead, we can actually guess (X,B0(t−1)) instead of (X,Y), and Y can be uniquely
determined given (X,B0(t−1)). But it could happen that for different (X,B0(t−1)) pairs,
the values of Y are the same. So for every new X we must ensure that the value of Y is
new, and skip the cases when the same (X,Y) pair has already been considered. Thus, for
each new value of X we make a binary vector of length 2128 in which we flag (i.e., set to
1) those Y ’s that have already been considered for this specific X. Thus, in step (1) in
Subsection 4.2, we guess (X,B0(t−1)) and determine Y , and in step (2), we check if (X,Y)
pair has already been flagged as 1: if so, we roll back to guess another value; otherwise,
continue with guessing B0 in step (3). Other steps are just the same as before.
T = 0 ;
N = pow(2 , 128) ; // 2 to the power o f 128
char f l a g [N] ;
f o r (X = 0 ; X < N; ++X)
{ f o r (i = 0 ; i < N; ++i)

f l a g [i] = 0 ;
f o r (B0 = 0 ; B0 < N; ++B0) // B0 at c l o ck t−1
{ de r i v e Y;

i f (f l a g [Y] == 0)
{ // we ente r t h i s branch with p r obab i l i t y p_z in average

f l a g [Y] = 1 ;
f o r (B0t = 0 ; B0t < N; ++B0t)
// guess the th i rd unknown B0t : B0 at c l o ck t
{ T = T + 1 ; // complexity to enumerate a l l guess ba s i s

(∗) . . . f u r t h e r d e r i v a t i on and enumerations , Steps 3−7
}

16 Improved guess-and-determine and distinguishing attacks on SNOW-V

}
}

}

Listing 3: Outline of the second GnD attack.

Listing 3 gives the pseudo-code of the second GnD attack. It is easy to see that the
number of times that the GnD attack arrives to the point (*) is T ≈ 2256 · pz · 2128 where
pz = 2−5.84, thus the complexity is about O(2378).

5 New ideas in linear cryptanalysis of SNOW-V
The basic idea of linear cryptanalysis is to approximate the non-linear operations of a cipher
as linear ones, and further to explore linear relationships either between keystream words,
or between keystream words and initial states, which could result into a distinguishing
attack or a correlation attack, respectively. Usually, such a linear approximation will
introduce a noise, and the quality of the linear approximation is measured by the bias
of this noise, which will directly influence the attack complexity. There are many ways
to define the bias and derive the complexity, and in our attack, we use SEI as defined in
[BJV04]. For a variable with distribution D, the SEI of it is computed as:

ε(D) = |D| ·
|D|−1∑
i=0

(
D[i]− 1

|D|

)2
,

where D[i] is the occurrence probability of the value in the i-th entry. For a distribution
with SEI ε(D), the number of samples required to distinguish the distribution from the
uniform random distribution is in the order of 1/ε(D) [BJV04].

In a distinguishing attack against LFSR-based stream ciphers, one has to cancel out
the contribution from the linear part, i.e., the LFSR, thus introducing a biased property
for the keystream. Typically, this is achieved by finding a low-weight (usually weights 3, 4
or 5) multiple of the generating polynomial and combining the keystream words at time
instances corresponding to this multiple. The linear contribution will be cancelled and thus
one biased keystream sample is constituted. By collecting enough many such samples, it is
possible to distinguish this keystream sample sequence from random. The time instances
corresponding to the multiple are very far away from each other, thus an extremely large
length of keystream sequence corresponding to one (K, IV) pair is required.

In this section, we perform linear cryptanalysis of SNOW-V and propose a distinguishing
attack with complexity O(2303) against a reduced version in which the 32-bit adders are
replaced with exclusive-OR. Our attack has the advantage that it does not need to combine
keystream words at multiple time instances far away to build samples. Thus, the samples
can be collected from short keystream sequences under different (K, IV) pairs.

5.1 Linear Approximation in SNOW-V
We first express the operations in the AES encryption round as L · S, where S denotes
S-box operation and L is the combination of the ShiftRow and Mixcolumn operations.
Similarly, the inverse AES encryption round can be expressed as S−1 · L−1, where S−1

denotes the inverse S-box operation and L−1 is the combination of inverse Mixcolumn and
inverse ShiftRow operations. L and L−1 can be expressed as two 16× 16-byte matrices,
in which each entry is an element from F28 . The expressions of L and L−1 are given in
Appendix A. Besides, we replace �32 with ⊕, and make a substitution of the variables
R2, R3 as L ·R2, L ·R3, respectively. Hence, R2, R3 are not the original variables, but for
ease of reading, we still use the original notations.

Jing Yang, Thomas Johansson and Alexander Maximov 17

Then the expressions of the three consecutive keystream words in Equation 7 can be
rewritten as follows:

z(t−1) = S−1(R2)⊕B0⊕ S−1(R3),
z(t) = R1⊕B1⊕ L ·R2,

z(t+1) = σL ·R2⊕ σL ·R3⊕ (σA0⊕A0)⊕ lβ(B0)⊕ hβ(B1)⊕ L · S(R1).

The variables B0, B1, A0 are contributions from the LFSR, and we would like to cancel
them out. To achieve so, we first apply two linear masks lβ , hβ , which can be expressed
as two 128 × 128 binary matrices, to z(t) and z(t−1), respectively, and introduce a new
128-bit variable Y defined as below:

Y = lβ(z(t−1))⊕ hβ(z(t))⊕ z(t+1). (14)

The contribution from the variables B0 and B1 is cancelled in Y , and what remains
from the LFSR is only (σA0⊕A0). Now let us introduce ten byte-based variables from Y ,
shown below:

E0 = Y0, E1 = Y1 ⊕ Y4, E2 = Y5, E3 = Y2 ⊕ Y8, E4 = Y6 ⊕ Y9,

E5 = Y10, E6 = Y3 ⊕ Y12, E7 = Y7 ⊕ Y13, E8 = Y11 ⊕ Y14, E9 = Y15,

where Yi is the i-th byte of Y . Each byte-wise expression Ek (0 ≤ k ≤ 9) cancels out the
contribution from A0, and only the byte variables from registers R1, R2, R3 remain. Each
of the above Ek terms can be expressed in a form as below:

Ek =
15⊕
i=0

[l(1)
k,i ·R1i ⊕ n(1)

k,i · S(R1i)]

⊕[l(2)
k,i ·R2i ⊕ n(2)

k,i · S
−1(R2i)]⊕ [l(3)

k,i ·R3i ⊕ n(3)
k,i · S

−1(R3i)], (15)

where l(j)k,i , n
(j)
k,i (j ∈ {1, 2, 3}, 0 ≤ k ≤ 9, 0 ≤ i ≤ 15) are 8× 8 binary matrices that can be

derived following the expressions of Y and E terms. This means that each Ek can contain
up to 48 independent noise terms of the form ax⊕ bS(x), i.e., up to 48 approximations of
the S-boxes or the inverse S-boxes. We can derive the expression for the total noise N as
a linear combination of these ten E-bytes as follows:

N = c0 · E0 ⊕ c1 · E1 ⊕ · · · ⊕ c9 · E9,

where ci’s are linear masking coefficients or binary matrices that an attacker can freely
choose. It is computationally infeasible to exhaust all the values of these matrices, and
below we show how we efficiently search them to achieve a decent bias.

Since we have ten byte expressions each of which can have up to 48 S-box approximations,
it is possible to find some linear combinations of these ten bytes such that some S-box
approximations could be removed in N , i.e., the coefficients of the linear part and the
S-box part of some bytes both become zero. Now we are interested in the maximum
number of S-box approximations that can be removed, as it can give a higher bias.

We first use MILP (Mixed-Integer Linear Programming) to help find a lower bound on
the number of active S-boxes, as done in [ENP19]. By solving the MILP problem, we get
a first insight that there will be not less than 37 active S-boxes. We next show how we
explore linear masking coefficients to remove as many S-box approximations as possible.

18 Improved guess-and-determine and distinguishing attacks on SNOW-V

5.2 Exploring maskings to remove S-box approximations
We can construct a t-bit noise Nt using the ten 8-bit E-expressions, which is expressed in
a matrix form as below:

Nt =
(
c0 c1 . . . c9

)
t×10·8 ·


E0
E1
...
E9


10·8

= c ·E,

where ci’s, 0 ≤ i ≤ 9, are t×8 binary matrices that the attacker can choose freely, but with
the constraint that the rank of c is t, i.e., all rows are nonzero and linearly independent.
For simplicity purposes, let us introduce 96 8-bit variables as follows:

for i = 0, . . . , 15 : Xi = R1i, Yi = S(R1i),
X16+i = R2i, Y16+i = S−1(R2i),
X32+i = R3i, Y32+i = S−1(R3i).

Note that every Xj (0 ≤ j ≤ 47) can be regarded as a uniformly distributed random
variable, and Yj is the corresponding value after the application of the S-box or inverse
S-box. Thus, an expression of the form a ·Xj ⊕ b · Yj , where a, b are two linear maskings,
can be possibly biased only when a 6= 0, b 6= 0. When a = 0, b 6= 0 or a 6= 0, b = 0, the
expression will be uniform; and when a = 0, b = 0, this approximation can be removed.
Since every Ei is a linear expression of the X,Y variables, the expression of the noise Nt
can be rewritten as:

Nt =
(
c0 c1 . . . c9

)
t×10·8 ·

A10·8×48·8 ·

 X0
...

X47


48·8

⊕B10·8×48·8 ·

 Y0
...
Y47


48·8


= c · [A ·X⊕B ·Y],

where A and B are two 10 · 8× 48 · 8 binary matrices derived from the ten E-expressions
in Equation 15. It is therefore clear that the total t-bit noise Nt consists of at most 48
sub-noise parts:

Nt =
47⊕
i=0

(c ·A)[0:t−1; 8i:8i+7]︸ ︷︷ ︸
ai

·Xi ⊕ (c ·B)[0:t−1; 8i:8i+7]︸ ︷︷ ︸
bi

·Yi,

where ai and bi are t× 8 binary sub-matrices, constituted from the t rows and the eight
columns from 8i to 8i+ 7 of the matrices c ·A and c ·B, respectively. There are in total
96 such matrices.

Obviously, if ai = bi = 0, the i-th sub-noise part vanishes to zero, and thus the total
noise will have a larger bias. If, on the other hand, only one of the two matrices is zero,
the contribution of that i-th sub-noise will make some or all bits of Nt pure random, thus
these bits will have no contribution to the bias. If all bits are affected and become random,
the total bias will be 0. Therefore, we are interested in selecting the masking matrix c
such that we can cancel as many S-box approximations out of 48 as possible, meanwhile
guaranteeing that the xor-sum of the remaining sub-noises is biased. Next we show how
we achieve this.

Algorithm to derive the linear masking matrix c. Let us select k distinct indices
{i1, i2, . . . , ik} ∈ {0, 1, . . . , 47}, and we want to cancel the sub-noise parts corresponding

Jing Yang, Thomas Johansson and Alexander Maximov 19

to these k indices, i.e., to make aij = bij = 0 for j = 1, 2, . . . , k, by carefully choosing the
linear masking ci’s. We can construct a matrix K that consists of the corresponding 8-bit
columns taken from the matrices A and B:

K10·8×2k·8 =
A[0:7; 8i1:8i1+7] B[0:7; 8i1:8i1+7] . . . A[0:7; 8ik:8ik+7] B[0:7; 8ik:8ik+7]
A[8:15; 8i1:8i1+7] B[8:15; 8i1:8i1+7] . . . A[8:15; 8ik:8ik+7] B[8:15; 8ik:8ik+7]

...
A[72:79; 8i1:8i1+7] B[72:79; 8i1:8i1+7] . . . A[72:79; 8ik:8ik+7] B[72:79; 8ik:8ik+7]

 ,

and we want to find a nonzero matrix c such that:

ct×80 ·K80×2k·8 = 0t×2k·8.

First of all, if the rank r of the matrix K is 80, there are no valid solutions of c satisfying
c ·K = 0. While if r < 80, there exist t = 80− r nonzero linear combinations that will
map through K to zero. This also explains how the size t for the total noise Nt is derived
in our attack.

In order to search for the kernel linear combinations, we initially set c as a square
identity matrix c80×80 = I80×80, then perform the standard Gaussian elimination on the
binary matrix K to transform it to the row echelon form K′, and apply the same operations
to the matrix c80×80. This is quite similar to the steps of deriving an inverse matrix of K,
if K would be a square matrix.

In the end, we get the row echelon form K′ = c ·K, where the last t = 80− r rows of
K′ are zeroes, while the matrix c will be of the full-rank 80. Then we keep the last t rows
of c and discard all other r rows, thus deriving the desired ct×80 satisfying c ·K = 0.

Search strategy for a good linear approximation. It is now clear that a larger
bias of the total noise can be achieved by removing as many S-box approximations (out
of 48) as possible. We can do it by exhaustively selecting k indices in

(48
k

)
ways, then

applying the algorithm above to check if a solution for the matrix c exists for the selected
sub-noises, and if so, derive t and the corresponding linear masking matrix c. Then given
the derived ct×80, we construct the distribution of the total t-bit noise Nt and compute
the bias. We pick the solution for which the total bias is the largest.

Correction approach. For many k-tuples of indices we would get a full-rank K, and
thus we do not have to continue further computations. However, another step of cutting
out k-tuples is to do a correction approach for the matrix c. If t is shrunk down to 0
during such a correction, there is no need to continue further computations and we jump
to the next k-tuple. The correction idea is as follows.

Given a derived masking matrix ct×80, we can meet the situation when some of the 48
sub-noises will have ai = 0 and bi 6= 0 (or vice versa), which means that some bits of the
t-bit total noise become uniformly distributed. In such a case, we can try to correct the
masking matrix ct×80 by removing those rows where the rows of bi are nonzero. In this
way we shrink t down but get ai = bi = 0. If t becomes 0 at the end of this procedure, we
proceed to the next k-tuple.

If for all 48 sub-noises we get either ai = 0, bi = 0 or ai 6= 0, bi 6= 0, the resulting linear
masking matrix c may lead to a biased total noise. We then construct the distribution of
the total noise Nt and compute the corresponding bias. When constructing the distribution,
we can utilise the Walsh-Hadamard Transforms to speed up the convolution of the 48 t-bit
sub-noises [MJ05, YJM19].

Results. In our simulations we managed to find a 16-bit approximation N16, i.e., t = 16,

20 Improved guess-and-determine and distinguishing attacks on SNOW-V

and the masking matrix c16×80 can effectively eliminate nine S-box approximations. The
received bias (SEI) is

ε(N16) ≈ 2−303.

The linear masking c16×80 is given in Listing 4, where the bits are encoded as 64-bit
unsigned integers in C/C++, and are mapped to the bits of c as follows:

c16×80[i, j] = (C[i][j/64]� (j%64))&1.

uint64_t C [16][2] = {
{ 0 x0000020200020000ULL , 0 x0000ULL }, { 0 x94730000005e0000ULL , 0 x0000ULL },
{ 0 x0000080800080000ULL , 0 x0000ULL }, { 0 x48c4159600fa0120ULL , 0 x0002ULL },
{ 0 x48c421a200ce0120ULL , 0 x0002ULL }, { 0 x0000444400440000ULL , 0 x0000ULL },
{ 0 x3c15810000220080ULL , 0 x0001ULL }, { 0 x0000000000000022ULL , 0 x0000ULL },
{ 0 x40c1000000600000ULL , 0 x0100ULL }, { 0 x0000000000000008ULL , 0 x0000ULL },
{ 0 x0000000000000060ULL , 0 x0000ULL }, { 0 x0000000000000021ULL , 0 x0000ULL },
{ 0 x0000000000000004ULL , 0 x0000ULL }, { 0 x0000000000000010ULL , 0 x0000ULL },
{ 0 x4b39000000ee0000ULL , 0 x0000ULL }, { 0 x54cc000000fe0000ULL , 0 x8000ULL }};

Listing 4: The linear masking c16×80.

We also tested if there exists a linear masking that can eliminate ten or more S-box
approximations. We ran our exhaustive search program with k = 10 for all the

(48
10
)
≈ 232.6

10-tuples, but with no valid results returned. By this we confirm that at most nine S-box
approximations can be removed from the total noise expression.

5.3 Distinguishing attack against SNOW-V
If all arithmetical additions are substituted with exclusive-OR, we could have a distin-
guishing attack against this variant with data complexity 2303. Specifically, one should
collect around 2303 triples of consecutive keystream words, and construct Y by applying
lβ , hβ operations on z(t−1), z(t), respectively, for each t; then build the E-bytes from Y
and finally apply the linear masking c16×80 in Listing 4 to the vector of E-bytes, thus one
keystream sample of the form Nt is derived. One needs to collect 2303 such samples and
the derived sequence can be distinguished from random.

We emphasize that the bias derived in our attack does not depend on the key or IV.
Moreover, unlike the typical linear attacks against LFSR-based stream ciphers in which
the keystream samples can only be collected through one very long keystream sequence
corresponding to one (K, IV) pair, the data in our attack can be collected from many
short keystream sequences under different (K, IV) pairs. Though the data complexity
is still out of reach in practice, the attacking scenario is more relevant to the practical
situation. For example, in the mobile communication system, one (K, IV) pair only allows
to maximally generate 232 keystream words (SNOW-V design limits it to 264), and many
encryption sessions are short signalling messages. Classical linear attacks subject to these
constraints, while our attack can still collect samples from these short keystream sequences.
The attack can also be used to recover some unknown bits of a plaintext encrypted a
large number of times with different IVs and potentially different keys, e.g., in a broadcast
setting [SSS+19].

Our attack is the first linear attack that can exploit short keystream sequences among
the SNOW family of stream ciphers. However, the attack complexity is still beyond the
exhaustive key search.

Discussion on the full version. If we take the 32-bit adders into consideration, the
bias would change. However, how the bias would vary is not clear, as the �32 operations
can be seen as part of multiple S-boxes and their approximations. On the other hand, it is
computationally difficult to compute the bias by exhaustive looping. We do not have a

Jing Yang, Thomas Johansson and Alexander Maximov 21

good idea about how to compute that bias in practice, and leave it as an open question for
further research.

6 Conclusions
In this paper, we investigate the security of SNOW-V and propose two guess-and-determine
attacks with complexities 2384 and 2378, respectively, and one distinguishing attack against
a reduced version of SNOW-V, in which the 32-bit adders are replaced with exclusive-OR,
with complexity 2303. These attacks do not threaten the full SNOW-V, but provide a deeper
understanding into its security. Besides, our attacks provide new ideas for cryptanalysis
against other ciphers. Specifically, we recommend that in a guess-and-determine attack,
instead of simple looping, one should carefully design the order of the guessing and always
truncate those paths invalidating some equation constraints. In this way, one can save
the cost for going through the invalid guessing paths and thus the complexity is reduced.
For linear cryptanalysis against LFSR-based stream ciphers, it is valuable to check if
the LFSR contribution can be cancelled locally without need to find a multiple of the
generating polynomial and combine keystream words very far away. In this way, the
required keystream samples can be collected under different key and IV pairs, exempt
from the restrictions on length limits of keystream sequences in practice.

References
[3GP19] 3GPP. TS 33.841 (V16.1.0): 3rd generation partnership project; tech-

nical specification group services and systems aspects; security as-
pects; study on the support of 256-bit algorithms for 5G (release 16).
March 2019. https://portal.3gpp.org/desktopmodules/Specifications/
SpecificationDetails.aspx?specificationId=3422.

[BJV04] Thomas Baigneres, Pascal Junod, and Serge Vaudenay. How far can we go
beyond linear cryptanalysis? In International Conference on the Theory and
Application of Cryptology and Information Security, pages 432–450. Springer,
2004.

[CDM20] Carlos Cid, Matthew Dodd, and Sean Murphy. A Security Evaluation of the
SNOW-V Stream Cipher. 4 June 2020. Quaternion Security Ltd. https://www.
3gpp.org/ftp/tsg_sa/WG3_Security/TSGS3_101e/Docs/S3-202852.zip.

[EJMY19] Patrik Ekdahl, Thomas Johansson, Alexander Maximov, and Jing Yang. A
new SNOW stream cipher called SNOW-V. IACR Transactions on Symmetric
Cryptology, 2019(3):1–42, Sep. 2019. https://tosc.iacr.org/index.php/
ToSC/article/view/8356.

[ENP19] Maria Eichlseder, Marcel Nageler, and Robert Primas. Analyzing the linear
keystream biases in AEGIS. IACR Transactions on Symmetric Cryptology,
pages 348–368, 2019.

[GZ21] Xinxin Gong and Bin Zhang. Resistance of SNOW-V against fast correlation
attacks. IACR Transactions on Symmetric Cryptology, (1):378–410, March
2021. https://tosc.iacr.org/index.php/ToSC/article/view/8843.

[HII+21] Jin Hoki, Takanori Isobe, Ryoma Ito, Fukang Liu, and Kosei Sakamoto. Dis-
tinguishing and key recovery attacks on the reduced-round SNOW-V and
SNOW-Vi. Cryptology ePrint Archive, Report 2021/546, 2021. https:
//eprint.iacr.org/2021/546.

https://portal.3gpp.org/desktopmodules/Specifications/SpecificationDetails.aspx?specificationId=3422
https://portal.3gpp.org/desktopmodules/Specifications/SpecificationDetails.aspx?specificationId=3422
https://www.3gpp.org/ftp/tsg_sa/WG3_Security/TSGS3_101e/Docs/S3-202852.zip
https://www.3gpp.org/ftp/tsg_sa/WG3_Security/TSGS3_101e/Docs/S3-202852.zip
https://tosc.iacr.org/index.php/ToSC/article/view/8356
https://tosc.iacr.org/index.php/ToSC/article/view/8356
https://tosc.iacr.org/index.php/ToSC/article/view/8843
https://eprint.iacr.org/2021/546
https://eprint.iacr.org/2021/546

22 Improved guess-and-determine and distinguishing attacks on SNOW-V

[JLH20] Lin Jiao, Yongqiang Li, and Yonglin Hao. A guess-and-determine attack on
SNOW-V stream cipher. The Computer Journal, 63(12):1789–1812, 03 2020.
https://doi.org/10.1093/comjnl/bxaa003.

[MJ05] Alexander Maximov and Thomas Johansson. Fast computation of large dis-
tributions and its cryptographic applications. In Bimal Roy, editor, Advances
in Cryptology - ASIACRYPT 2005, pages 313–332, Berlin, Heidelberg, 2005.
Springer Berlin Heidelberg.

[SAG20] ETSI SAGE. 256-bit algorithms based on SNOW 3G or SNOW V. 4 Novem-
ber 2020. LS S3-203338. https://www.3gpp.org/ftp/tsg_sa/WG3_Security/
TSGS3_101e/Docs/S3-203338.zip.

[SSS+19] Danping Shi, Siwei Sun, Yu Sasaki, Chaoyun Li, and Lei Hu. Correlation of
quadratic boolean functions: Cryptanalysis of all versions of full MORUS. In
Annual International Cryptology Conference, pages 180–209. Springer, 2019.

[YJ20] Jing Yang and Thomas Johansson. An overview of cryptographic primitives for
possible use in 5G and beyond. Science China Information Sciences, 63(12):1–
22, 2020.

[YJM19] Jing Yang, Thomas Johansson, and Alexander Maximov. Vectorized linear
approximations for attacks on SNOW 3G. IACR Transactions on Symmetric
Cryptology, pages 249–271, 2019.

A The matrices
0 0 0 0 0 0 0 0 | 0 0 0 0 0 0 0 1 1 1 0 0 0 0 0 0 | 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 | 0 0 0 0 0 0 0 1 0 0 1 0 0 0 0 0 | 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 | 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 | 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 | 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 | 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 | 0 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 | 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 | 0 0 0 0 0 0 0 1 1 0 0 0 0 0 1 0 | 0 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 | 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 | 0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0 | 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 | 1 0 0 0 0 0 0 0
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
0 0 0 0 0 0 0 1 | 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 | 0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 | 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | 0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 0 | 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 | 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0 | 0 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 | 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 | 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 | 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 | 0 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 | 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 | 0 0 0 0 0 1 0 1 1 0 0 0 0 0 0 0 | 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 | 0 0 0 0 0 0 1 1 1 0 0 0 0 0 0 0 | 0 0 0 0 0 0 0 0

Listing 5: The 16× 16 binary matrices for β (left) and β−1 (right).

e b d 9 | 0 0 0 0 | 0 0 0 0 | 0 0 0 0 2 0 0 0 | 0 3 0 0 | 0 0 1 0 | 0 0 0 1
0 0 0 0 | 0 0 0 0 | 0 0 0 0 | 9 e b d 1 0 0 0 | 0 2 0 0 | 0 0 3 0 | 0 0 0 1
0 0 0 0 | 0 0 0 0 | d 9 e b | 0 0 0 0 1 0 0 0 | 0 1 0 0 | 0 0 2 0 | 0 0 0 3
0 0 0 0 | b d 9 e | 0 0 0 0 | 0 0 0 0 3 0 0 0 | 0 1 0 0 | 0 0 1 0 | 0 0 0 2

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
0 0 0 0 | e b d 9 | 0 0 0 0 | 0 0 0 0 0 0 0 1 | 2 0 0 0 | 0 3 0 0 | 0 0 1 0
9 e b d | 0 0 0 0 | 0 0 0 0 | 0 0 0 0 0 0 0 1 | 1 0 0 0 | 0 2 0 0 | 0 0 3 0
0 0 0 0 | 0 0 0 0 | 0 0 0 0 | d 9 e b 0 0 0 3 | 1 0 0 0 | 0 1 0 0 | 0 0 2 0
0 0 0 0 | 0 0 0 0 | b d 9 e | 0 0 0 0 0 0 0 2 | 3 0 0 0 | 0 1 0 0 | 0 0 1 0

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
0 0 0 0 | 0 0 0 0 | e b d 9 | 0 0 0 0 0 0 1 0 | 0 0 0 1 | 2 0 0 0 | 0 3 0 0
0 0 0 0 | 9 e b d | 0 0 0 0 | 0 0 0 0 0 0 3 0 | 0 0 0 1 | 1 0 0 0 | 0 2 0 0
d 9 e b | 0 0 0 0 | 0 0 0 0 | 0 0 0 0 0 0 2 0 | 0 0 0 3 | 1 0 0 0 | 0 1 0 0
0 0 0 0 | 0 0 0 0 | 0 0 0 0 | b d 9 e 0 0 1 0 | 0 0 0 2 | 3 0 0 0 | 0 1 0 0

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
0 0 0 0 | 0 0 0 0 | 0 0 0 0 | e b d 9 0 3 0 0 | 0 0 1 0 | 0 0 0 1 | 2 0 0 0
0 0 0 0 | 0 0 0 0 | 9 e b d | 0 0 0 0 0 2 0 0 | 0 0 3 0 | 0 0 0 1 | 1 0 0 0
0 0 0 0 | d 9 e b | 0 0 0 0 | 0 0 0 0 0 1 0 0 | 0 0 2 0 | 0 0 0 3 | 1 0 0 0

https://doi.org/10.1093/comjnl/bxaa003
https://www.3gpp.org/ftp/tsg_sa/WG3_Security/TSGS3_101e/Docs/S3-203338.zip
https://www.3gpp.org/ftp/tsg_sa/WG3_Security/TSGS3_101e/Docs/S3-203338.zip

Jing Yang, Thomas Johansson and Alexander Maximov 23

b d 9 e | 0 0 0 0 | 0 0 0 0 | 0 0 0 0 0 1 0 0 | 0 0 1 0 | 0 0 0 2 | 3 0 0 0

Listing 6: The L−1 (left) and L (right) matrices.

B The operations of lβ and hβ in bytes
lβ(B0) can be expressed in bytes as below:

lβ(B0)0||1 = βB00||1 ⊕B06||7, lβ(B0)2||3 = βB02||3 ⊕B08||9,

lβ(B0)4||5 = βB04||5 ⊕B010||11, lβ(B0)6||7 = βB06||7 ⊕B012||13,

lβ(B0)8||9 = βB08||9 ⊕B014||15, lβ(B0)10||11 = βB010||11,

lβ(B0)12||13 = βB012||13, lβ(B0)14||15 = βB014||15.

hβ(B1) can be expressed in bytes as below:

hβ(B1)0||1 = β−1B10||1, hβ(B1)2||3 = β−1B12||3,

hβ(B1)4||5 = β−1B14||5, hβ(B1)6||7 = β−1B16||7

hβ(B1)8||9 = β−1B18||9, hβ(B1)10||11 = β−1B110||11 ⊕B10||1

hβ(B1)12||13 = β−1B112||13 ⊕B12||3, hβ(B1)14||15 = β−1B114||15 ⊕B14||5.

C Recursion implementation for the 10-steps algorithm
Note that for a random choice of inputs C,D,R2, R3, the probability that there is at least
one solution of A0 is 2−36.84. However, if solutions exist, the average number of solutions
will be 236.84. Therefore, in the code below we also include the flag solvable=0/1 as the
argument to the method Dequation::random() that generates either a fully random input
where A0 may possibly have a solution, or a random input where A0 is guaranteed to have
a solution – that is for testing and simulation purposes.
struct Dequation
{

u8 R2 [16] , R3 [16] , C[16] , D [16]; // input
u8 u[16] , v [16]; // internal
u8 A0 [16]; // result

void computeD (u8 * Dr)
{

u8 T1 [16];
for (int i = 0; i < 4; i++)

((u32 *) T1)[i] = ((u32 *) R2)[i] + (((u32 *) R3)[i] ^ ((u32 *) A0)[i]);
for (int i = 0; i < 16; i++)

Dr[i] = T1 [((i >> 2) | (i << 2)) & 0xf];
for (int i = 0; i < 4; i++)

((u32 *) Dr)[i] += ((u32 *) A0)[i] ^ ((u32 *)C)[i];
}

void random (int solvable =0)
{ memset (this , 0xff , sizeof (* this));

for (int i = 0; i < 16; i++)
{ R2[i] = rand ();

R3[i] = rand ();
C[i] = rand ();
A0[i] = rand ();
D[i] = rand ();

}
if(solvable) computeD (D);

}

24 Improved guess-and-determine and distinguishing attacks on SNOW-V

int expr(int i, int j, int Xi , int Xj)
{ return D[i] ^ ((R2[j] + (R3[j] ^ Xj) + u[j]) + (Xi ^ C[i]) + v[i]);
}

void solve1 (int step , int i, int X=0, int bit = -1)
{

if (bit >= 0 && (expr(i, i, X, X) & (1 << bit))) return ;
if (bit == 7)
{

A0[i] = X;
next_carries (i, i);
solve (step + 1);
return ;

}
solve1 (step , i, X, ++ bit);
solve1 (step , i, X ^ (1 << bit), bit);

}

void solve2 (int step , int i, int j, int Xi = 0, int Xj=0, int bit = -1)
{

if (bit >=0 && ((expr(i, j, Xi , Xj)|expr(j, i, Xj , Xi)) & (1<< bit)))
return ;

if (bit == 7)
{

A0[i] = Xi;
A0[j] = Xj;
next_carries (i, j);
next_carries (j, i);
solve (step + 1);
return ;

}
int t = (1 << ++ bit);
solve2 (step , i, j, Xi , Xj , bit);
solve2 (step , i, j, Xi ^ t, Xj , bit);
solve2 (step , i, j, Xi , Xj ^ t, bit);
solve2 (step , i, j, Xi ^ t, Xj ^ t, bit);

}

void next_carries (int i, int j)
{

int nu = ((int)R2[j] + (int)(R3[j] ^ A0[j]) + (int)u[j]);
int nv = (nu & 0xff) + (int)(A0[i] ^ C[i]) + (int)v[i];
++i, ++j;
if (j & 3) u[j] = nu >> 8;
if (i & 3) v[i] = nv >> 8;

}

void solve (int step = 0)
{

static int S[10] = { 0, 1, 2, 5, 3, 6, 10, 7, 11, 15 };
if (step == 0)

u[0] = u[4] = u[8] = u[12] = v[0] = v[4] = v[8] = v[12] = 0;

if (step == 10)
{

// A solution for A0 is found ! do something with it ...
u8 ver [16]; // we just verify that the solution is correct
computeD (ver);
if (memcmp (D, ver , 16))

printf (" ERROR : Verification of the derived A0 failed !\n");
return ;

}

Jing Yang, Thomas Johansson and Alexander Maximov 25

int i = S[step], j = ((i >> 2) | (i << 2)) & 0xf; // j = sigma (i)
if (i == j) solve1 (step , i);
else solve2 (step , i, j);

}

};

Listing 7: A possible recursion organisation for 10-steps.

D The distribution table of solutions for Type-2 equations
Consider n-bit variables A1,2, B1,2, C1,2, D1,2, X1,2 and two n-bit equations:

A1 = (B1 �n (C1 ⊕X1)) �n (X2 ⊕D1),
A2 = (B2 �n (C2 ⊕X2)) �n (X1 ⊕D2).

Table 4 contains the probabilities of the pair (X1, X2) having k solutions for a random
tuple (A1,2, B1,2, C1,2, D1,2), which are derived through p = x/f , where x’s are the
corresponding integers in the table and f is some normalization factor. For the GnD attack
against SNOW-V we are interested in the distribution where n = 8.

#Solutions n=1 n=2 n=3 n=4 n=5 n=6 n=7 n=8
f 22 23 27 210 214 218 222 226

0 1 5 91 793 13484 225652 3734648 61316512
2 1 2 16 64 512 4096 32768 262144
4 1 18 119 1377 14759 150417 1478903
8 3 43 803 12265 166035 2071185
12 1 29 529 7761 100077
16 4 162 3978 76314 1256786
20 1 33 661 10405
24 5 205 5001 94273
28 1 33 661 10405
32 10 536 16552 385832
36 3 117 2691
40 5 225 5901
44 1 37 809
48 18 978 30258
52 1 37 809
56 5 225 5901
60 1 41 985
64 24 1632 61440
68 1 41
72 19 981
76 1 41
80 18 1050
84 5 217
88 5 245
92 1 41
96 56 3864
100 1 43
104 5 245
108 1 49
112 18 1050
116 1 41

26 Improved guess-and-determine and distinguishing attacks on SNOW-V

120 5 273
124 1 41
128 56 4688
132 5
136 5
140 5
144 82
148 1
152 5
156 5
160 56
164 1
168 33
172 1
176 18
180 5
184 5
188 1
192 160
196 3
200 5
204 1
208 18
212 1
216 5
220 1
224 56
228 1
232 5
236 1
240 18
244 1
248 5
252 1
256 128

Table 4: Distribution table for Type-2 equations.

E The flowcharts of the guess-and-determine attacks

F The probability of valid solutions of Equation 13
In this section, we compute the probability of valid solutions in Equation 13. We recall
that the equations are:

z(t) ⊕R2 = R1 �32 B1,
Y ⊕ hβ(B0) = (σ(R1) �32 AES−1

R (R3))⊕B1,

where R1 and B1 are the two unknowns. First we note that z(t) and R2 are independent
from the rest variables, looping over the xor-sum of z(t) and R2 is equivalent to looping
over one random variable. Thus, we use a new variable U to denote z(t) ⊕R2. Similarly,
Y and B0 are independent from the rest variables, and we can regard Y ⊕ hβ(B0) as a

Jing Yang, Thomas Johansson and Alexander Maximov 27

Start

(2) check if B0
(t-1)

 has

solutions

Yes

(1) guess X, Y

Yes

End

(3) guess B0, derive R3, R2

(5) enumerate A0

(6) enumerate A1

(7) verify if the values are

correct

Start

Yes

End

(1) guess R1, R2, B0

(3) enumerate A0

(4) enumerate A1

(5) verify if the values are

correct

(2) derive R3, B1 (4) enumerate R1, B1

Figure 3: Illustration of the GnD attacks (left: first; right: second).

new variable V . Here we should be careful about hβ(B0): since hβ is a full-rank matrix,
when B0 takes all the values, hβ(B0) will also take all the values. AES−1

R (R3) can also be
regarded as a random variable W as is is a bijective mapping.

Thus we have a simplified system of equations:

U = R1 �32 B1,
V = (σ(R1) �32 W)⊕B1. (16)

According to Equation 16, we have B1 = (σ(R1) �32 W)⊕ V , and further get:

U = R1 �32 ((σ(R1) �32 W)⊕ V). (17)

The distributions of number of solutions of Equation 16 and Equation 17 are the same,
since B1 is uniquely determined given V,W and R1. We have experimentally verified this
observation over smaller dimensions. Thus we can use Equation 17 to get the distribution
of number of solutions of R1 and B1.

Similarly, we would have two types of equations, the first type with the form below,

U0 = R10 �8 ((R10 �8 W0 �8 v0)⊕ V0) �8 u0,

and the second type with the form below:

U1 = R11 �8 ((R14 �8 W1 �8 v1)⊕ V1) �8 u1

U4 = R14 �8 ((R11 �8 W4 �8 v4)⊕ V4) �8 u4.

28 Improved guess-and-determine and distinguishing attacks on SNOW-V

We have experimentally computed the distributions of solutions for these two types of
equations, and the probabilities of having solutions are 2−3.91 and 2−3.53, respectively. The
average number of solutions is exactly one for each combination of other variables. The
results are just the same to the ones of the D-equations for A0 in the first GnD attack.

G The probability pz
In this section, we derive the probability pz of B0(t−1) having solutions in the equation of
z(t−2).

Recall that the equation of z(t−2) is expressed as below:

z(t−2) = (B0(t−1) �32 X)⊕AES−1
R (lβ(B0(t−1))⊕ Y),

where AES−1
R (X) can be expressed as S−1(L−1 · X), and lβ operation is defined in

Equation 5. We temporarily replace �32 with �8. For simplicity, we denote Y ′ = L−1Y
and ignore the time notations, then we can simplify the equation as:

z = (B0 �8 X)⊕ S−1(L−1lβ(B0)⊕ Y ′).

Now our task is to compute the probability of B0 having solutions given z,X, Y ′. We
use an enumeration algorithm to achieve this by considering four groups of equations
recursively, which are given below.

Step 1. Before giving the first group of equations, we first use z12 as an example
to illustrate how to derive each byte of z in details. z12 can be expressed as:

z12 = (B012 �8 X12)
⊕ S−1((e, b, d, 9) · (β(B012||13)0, β(B012||13)1, β(B014||15)0, β(B014||15)1)⊕ Y ′12),

where β(B0i||i+1)j , i ∈ {12, 14}, j ∈ {0, 1} is the j-th byte of β(B0i||B0i+1).
For simplicity of expressions, we use [B0i,i+1,i+2,i+3] to denote the vector of the four

bytes (B0i, B0i+1, B0i+2, B0i+3) and [ψB0i,i+1,i+2,i+3] to denote the vector of the four
bytes after multiplying with β, i.e., (β(B0i||i+1)0, β(B0i||i+1)1, β(B0i+2||i+3)0, β(B0i+2||i+3)1),
for i = 0, 4, 8, 12.

Now consider the first group of equations:

z12 = (B012 �8 X12)⊕ S−1((e, b, d, 9) · [ψB012,13,14,15]⊕ Y ′12),
z11 = (B011 �8 X11)⊕ S−1((b, d, 9, e) · [ψB012,13,14,15]⊕ Y ′11),
z6 = (B06 �8 X6)⊕ S−1((d, 9, e, b) · [ψB012,13,14,15]⊕ Y ′6),
z1 = (B01 �8 X1)⊕ S−1((9, e, b, d) · [ψB012,13,14,15]⊕ Y ′1).

Given the bytes of z,X, Y ′, we can freely choose the values of B013,14,15, then in z12 only
B012 remains unknown. Once B012 is further determined, B01,6,11 will be derived uniquely
from z1,6,11, thus there is always a solution for these bytes if B012 in z12 has solutions. So
the main task now is to compute the probability of B012 having solutions in z12. According
to the expression of β matrix given in Appendix A, z12 can be further derived as:

z12 = (B012 �8 X12)⊕ S−1(e · (B012 � 1)⊕ b · (B012 � 7)⊕ Y ′′12),

where Y ′′12 is a new variable, which is the linear combination of Y ′12, B013, B014, B015. We
can compute the probability of B012 having at least one solution, denoted pz(B012), which
is:

pz(B012) ≈ 0.363230705.

Jing Yang, Thomas Johansson and Alexander Maximov 29

Thus, in Step 1 we can loop over B013,14,15, solve B012 with valid solutions of probability
pz(B012), and further derive B01,6,11 correspondingly.

Step 2. Consider the second group of equations:

z13 = (B013 �8 X13)⊕ S−1((9, e, b, d) · ([ψB08,9,10,11]⊕ (B014, B015, 0, 0))⊕ Y ′13),
z8 = (B08 �8 X8)⊕ S−1((e, b, d, 9) · ([ψB08,9,10,11]⊕ (B014, B015, 0, 0))⊕ Y ′8),
z7 = (B07 �8 X7)⊕ S−1((b, d, 9, e) · ([ψB08,9,10,11]⊕ (B014, B015, 0, 0))⊕ Y ′7),
z2 = (B02 �8 X2)⊕ S−1((d, 9, e, b) · ([ψB08,9,10,11]⊕ (B014, B015, 0, 0))⊕ Y ′2).

Here we can only freely choose B09,10, as the values of B011,14,15 have already been
considered in Step 1. We add the linear combinations of these known variables to the
Y ′-terms, resulting in new Y ′′ variables, and use a new variable X ′13 to denote B013 �X13,
which is also known. Thus we need to find solutions of B08 that satisfies the two equations
below:

z13 = X ′13 ⊕ S−1(9 · (B08 � 1)⊕ e · (B08 � 7)⊕ Y ′′13),
z8 = (B08 �8 X8)⊕ S−1(e · (B08 � 1)⊕ b · (B08 � 7)⊕ Y ′′8).

We have computed that the probability of valid solutions for B08 is:

pz(B08) ≈ 0.363230705 · 2−8.

This can be understood in another way: the probability of B08 having solutions in z8 is
0.363230705, and the solutions will satisfy the equation of z13 with probability around 2−8.
After we have solved B08, we can further derive B07 and B02 uniquely. Thus in Step 2 we
can loop over B09,10, solve B08 with valid solutions of probability pz(B08), and further
derive B02,7.

Step 3. We further consider the next group of equations:

z14 = (B014 �8 X14)⊕ S−1((d, 9, e, b) · ([ψB04,5,6,7]⊕ [B010,11,12,13])⊕ Y ′14),
z9 = (B09 �8 X9)⊕ S−1((9, e, b, d) · ([ψB04,5,6,7]⊕ [B010,11,12,13])⊕ Y ′9),
z4 = (B04 �8 X4)⊕ S−1((e, b, d, 9) · ([ψB04,5,6,7]⊕ [B010,11,12,13])⊕ Y ′4),
z3 = (B03 �8 X3)⊕ S−1((b, d, 9, e) · ([ψB04,5,6,7]⊕ [B010,11,12,13])⊕ Y ′3).

The known bytes B06,7,10,11,12,13 are added to the Y ′-terms, while the bytes B09,14 are
added to the X-terms. We can freely loop over B05 and solve the following equation in
B04:

z4 = (B04 �8 X4)⊕ S−1(e · (B04 � 1)⊕ b · (B04 � 7)⊕ Y ′′4).

The probability of valid B04 solutions in z4 is again computed as 0.363230705, and such
solutions will satisfy z14, z9 with probability around 2−16. Thus the total probability of
valid B04 solutions, denoted pz(B04), is computed as:

pz(B04) ≈ 0.363230705 · 2−16.

After B04 having been solved, B03 can be uniquely determined according to z3. Thus
in Step 3 we can loop over B05, solve B04 with valid solutions of probability pz(B04), and
further derive B03.

30 Improved guess-and-determine and distinguishing attacks on SNOW-V

Step 4. The last group of equations contain the remaining four byte expressions z0,5,10,15
in only one unknown variable B00, while other variables are already known:

z0 = (B00 �8 X0)⊕ S−1((e, b, d, 9) · ([ψB00,1,2,3]⊕ [B06,7,8,9])⊕ Y ′0),
z5 = (B05 �8 X5)⊕ S−1((9, e, b, d) · ([ψB00,1,2,3]⊕ [B06,7,8,9])⊕ Y ′5),
z10 = (B010 �8 X10)⊕ S−1((d, 9, e, b) · ([ψB00,1,2,3]⊕ [B06,7,8,9])⊕ Y ′10),
z15 = (B015 �8 X15)⊕ S−1((b, d, 9, e) · ([ψB00,1,2,3]⊕ [B06,7,8,9])⊕ Y ′15).

Similarly, B00 will have valid solutions with probability 0.363230705 in z0, and these
solutions will satisfy z5, z10, z15 with probability 2−24. Thus the probability of valid B00
solutions, denoted pz(B00), is:

pz(B00) ≈ 0.363230705 · 2−24.

Summary. We can freely choose six bytes of B0, i.e., B05,9,10,13,14,15, of total size 248,
which will result into valid solutions for bytes B00,4,8,12 with probability pz(B00) ·pz(B04) ·
pz(B08) · pz(B12). Other bytes will be further uniquely determined. Thus the total
probability pz is computed as:

pz = 248 · pz(B00) · pz(B04) · pz(B08) · pz(B12) ≈ 2−5.84.

We cannot really compute an exact success probability for 32-bit adders �32, but one
can expect that it would be very similar to the derived probability, as only several carrier
bits need to be further considered.

	Introduction
	Preliminaries
	Notations
	Introduction to SNOW-V

	The first guess-and-determine attack in O(2384)
	Basics about guess-and-determine attacks
	Steps of the first GnD attack
	Discussion on the complexity

	The second guess-and-determine attack in O(2378.16)
	Use z(t-2) to truncate more guessing paths
	Scenario of the second GnD attack

	New ideas in linear cryptanalysis of SNOW-V
	Linear Approximation in SNOW-V
	Exploring maskings to remove S-box approximations
	Distinguishing attack against SNOW-V

	Conclusions
	The matrices
	The operations of l and h in bytes
	Recursion implementation for the 10-steps algorithm
	The distribution table of solutions for Type-2 equations
	The flowcharts of the guess-and-determine attacks
	The probability of valid solutions of Equation 13
	The probability pz

