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Abstract. Modern cryptography must satisfy a myriad of security properties, ranging
from sound hardness assumptions to correct and secure implementations that resist
side-channel cryptanalysis. Curve-based cryptography is not different in this regard,
and substantial progress in the last few decades has been achieved in both selecting
parameters and devising secure implementation strategies. In this context, the
security of implementations of field inversion is sometimes overlooked in the research
literature, because (i) the approach based on Fermat’s Little Theorem (FLT) suffices
performance-wise for many parameters used in practice; (ii) it is typically invoked only
at the very end of scalar multiplication or pairing computation, with a small impact
in performance; (iii) it is challenging to implement securely for general parameters
without a significant performance penalty. However, field inversion can process
sensitive information and must be protected with side-channel countermeasures
like any other cryptographic operation, as illustrated by recent attacks [ASS17,
AGTB18, AGB20]. In this work, we focus on timing attacks against field inversion
for primes of cryptographic interest, both in the case when FLT-based inversion can
be efficiently implemented or not. We extend the Fiat-Cryptography framework,
which synthesizes provably correct-by-construction implementations, to implement
the Bernstein-Yang constant-time inversion algorithm as a step toward this goal. This
allows a correct implementation of prime field inversion to be conveniently synthesized
for any prime. We benchmark the implementations across a range of primes for
curve-based cryptography and they outperform traditional FLT-based approaches in
most cases, with observed speedups up to 2.5 for the largest parameters. Our work is
already used in production in the MirageOS unikernel operating system1.
Keywords: Field inversion · Constant-time execution · Implementation security ·
Formal verification.

1 Introduction
Finite field arithmetic is pervasive in number-theoretic public-key cryptography, and an
essential ingredient of Elliptic Curve Cryptography (ECC) and Pairing-based Cryptography
(PBC). In many cases, its implementation dictates how efficient and secure the overall
cryptosystem behaves in practice. The field inversion operation is a peculiar case, since
it is rarely among the performance-critical portions of the implementation and most
efficient algorithms for the general case are hard to implement securely without a massive
performance penalty [Bos14]. For this reason, field inversion is often implemented using the
Fermat’s Little Theorem (FLT) approach of exponentiating by p−2 in Fp for prime p. This
is an efficient strategy for ECC implementations relying on special primes with fast modular
reduction, especially when the exponent allows a short addition chain [Ber06]. When

1https://hannes.robur.coop/Posts/EC
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performance is a more pressing concern or parameters are not friendly to FLT inversion,
implementers typically resort to using a variable-time version of the Extended Euclidean
Algorithm (EEA). However, bugs and side-channel leakage in the EEA implementation
can lead to attacks against RSA [AGTB18] and ECC [ASS17, AGB20]. These are not just
threats of research interest, for example a vulnerability recently discovered on the EEA
implementation in Windows could be exploited to mount denial of service attacks 2.

Field arithmetic in Montgomery representation, as commonly found in PBC, is a
particularly challenging case for field inversion. The FLT approach is not favored by
the dense prime moduli in popular pairing-friendly families of curves [BN05, BD17], in
combination with slower modular reduction through Montgomery’s arithmetic [Mon85].
Although field inversion is not performance-critical for the pairing computation itself,
it arises during exponentiation in pairing groups and unlocks the compressed squaring
optimization for the final exponentiation [AKL+11]. With pairings being increasingly
deployed as a fundamental building block for zero-knowledge proofs and privacy-preserving
cryptocurrencies [BLS04, BCG+14], the threat of implementation bugs becomes more
important, as they can allow attacks which may compromise the security and privacy
guarantees of these cryptographic systems ([BBPV12, lfS17, EPG+19]).

In order to satisfy performance constraints, current efficient software implementations
of ECC and PBC rely on hand-optimized architecture-specific Assembly code for the
underlying field arithmetic and a great deal of manual tuning to unlock the best performance
across a range of architectures [AFK+12, ABLR13]. This introduces low-level code which
is both hard to audit and to verify as correct. Moreover, implementations need at least to
be constant-time, in the sense that execution time does not depend on input and protection
against timing attacks is provided given some performance penalty. As an illustrating case
using the popular BLS12-381 curve for motivation, the cost of one scalar multiplication
in the base curve is reported to be around 382,000 cycles on Intel Skylake [Ara17] using
variable-time inversion. According to our benchmarking in Table 3, a constant-time field
inversion using publicly available code would add at least 200,000 cycles to that figure
for the two required conversions to affine coordinates (one for the table of precomputed
points, the other for the result). This impact is prohibitive and motivates the need for
more efficient alternatives.

Recent progress in the literature allows this problem to be solved elegantly. Bernstein
and Yang proposed in 2019 a constant-time Euclidean algorithm based on division steps
that can be generalized for polynomial arithmetic, comes with a mathematical proof and
is surprisingly efficient for field inversion [BY19]. In that same year, an alternative path
for implementing cryptographic libraries was demonstrated as viable in the Fiat-Crypto
framework [EPG+19]. By combining correct-by-construction optimized low-level code
with automatically generated and formally verified high-level code, it became possible to
develop libraries which are both efficient and formally verified. Unfortunately, Fiat-Crypto
does not provide an inversion operation and the implementer must build its own approach
based on the other field operations, creating the same risk of insufficient post-hoc analysis.

Our contributions. We extend the Fiat-Crypto framework with a constant-time imple-
mentation of field inversion based on the Bernstein-Yang approach of iterating division
steps. We implement the original version of the algorithm (with the jumpdivstep optimiza-
tion) and the “half-deta” variant, recently developed to optimize ECDSA signing over the
curve secp256k1 [WMea21] adopted in Bitcoin. This variant requires a lower number of
division steps to be evaluated, which immediately translates to performance improvement.

Our work completes the set of finite field operations which Fiat-Crypto supports, and
consists in the first efficient verified implementation of field inversion for several primes,
including those needed for PBC. Moreover, it allows to conveniently synthesize a correct and

2https://bugs.chromium.org/p/project-zero/issues/detail?id=1804
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portable implementation of the algorithm for any prime using the two main representations
supported in Fiat-Crypto (unsaturated Solinas and Montgomery). We observe that the
Montgomery representation is less competitive with hand-written code when compiled with
GCC, however. Our formulation of the algorithm maximally relies on what is provided
by Fiat-Crypto. In particular, we take advantage of the field operations provided by the
framework whenever possible, instead of introducing custom new operations. In the context
of Montgomery arithmetic, this introduces expensive modular multiplications to update
the matrix coefficients, the effects of which we mitigate by employing the lazy reduction
optimization and adjusting the precomputed constant. According to our benchmarks, we
achieve a performance penalty of up to 4.3 compared to our own unverified constant-time
Assembly-accelerated implementations of inversion for a range of parameters in both ECC
and PBC settings from 254 to 575 bits. This slowdown can be tolerable if correctness is of
critical importance or if inversion performance is less critical. For the PBC primes, our
implementation consistently outperforms the FLT approach accelerated with finite field
arithmetic in Assembly, with speedups ranging from 1.8 to 2.5 for different sizes. For the
ECC primes, we outperform the FLT approaches in the two largest parameters and achieve
performance improvement of up to 25% against an implementation based on Fiat-Crypto
and 5% against the hand-written Assembly counterpart.

In comparison with the FLT approach for inversion, our implementation provides a
performance improvement for all PBC fields employing Mongtomery representation, even
when the FLT implementations are accelerated by record-setting hand-written Assembly.
Our work is already used in production in the MirageOS unikernel3, showing that it is fast
enough for industry projects with a focus on correctness.

Outline of the paper We will briefly explain the necessary preliminaries of Fiat-Crypto
and the inversion algorithm in Sections 2 and 3. Sections 4 and 5 describe our im-
plementation of the algorithm in Fiat and our formalization of the correctness proof,
respectively.

2 Fiat Cryptography
Fiat Cryptography[EPG+19] (or just Fiat-Crypto) is a framework for generating verified
finite field arithmetic which is correct by design. The approach was illustrated through the
implementation of field arithmetic for several standardized elliptic curves using an extensible
code generation framework, capable of producing code competitive in performance with
popular hand-optimized multi-precision libraries. It provides a simple CLI which takes a
prime and a machine word size and generates C source files implementing most finite field
operations necessary to implement e.g. elliptic curve cryptography. Java, Go and Rust are
also supported. Code generated by Fiat-Crypto is currently being used in production in
Firefox4, BoringSSL5 and the WireGuard VPN6.

In Fiat-Crypto there are separate binaries to generate code for each style of multi-
precision arithmetic: Montgomery, saturated and unsaturated representations. Fiat-Crypto
does not formally prove that the generated code is constant time, but only generates
“straight-line code”, i.e. code without branching that should run in constant-time after it
is processed by an optimizing compiler. The verification steps are conducted using the
Coq proof assistant [Tea20]. It consists of a verified compiler from a subset of Coq to a

3https://github.com/mirage/mirage-crypto/tree/main/ec/native
4https://blog.mozilla.org/security/2020/07/06/performance-improvements-via-formally-ver

ified-cryptography-in-firefox/
5https://boringssl.googlesource.com/boringssl/+/master/third_party/fiat/
6https://www.wireguard.com/formal-verification/
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simple language embedded in Coq containing only bitwise and machine-integer operations.
From here, the generated terms can be pretty-printed to several programming languages.

Correct-by-construction vs. verifying existing implementations. Fiat-Crypto differs
from other verification projects in a significant way: Instead of verifying an existing
implementation against a specification, it provides a pipeline for generating verified
implementations. This has the advantage of only requiring a single formalization effort.
Verification of complex software is a laborious procedure, so in many cases it will not be
deemed important enough. Having auto-generated code allows verified code to be used
in such cases. Another advantage is the support for multiple languages; in general each
implementation in a different language would present a separate formalization effort.

Coq. Coq [Tea20] is a state-of-the-art interactive proof assistant based on dependent
type theory. A proof assistant is software that allows one to construct proofs, and in
particular, proofs about (functional) programs. Coq reduces all proofs to a small kernel —
it is thus foundational in that it reduces everything to the axioms of mathematics. Next
to its build-in functional programming language, Coq also has a more ad-hoc scripting
language for tactics. Users write tactics to direct Coq to construct, or search for, proofs.
When, after a list of such tactic instructions, the proof is fully completed it is finally
checked by the kernel for correctness.

We will use the Coq standard library throughout this article. In particular, we use
the standard implementations of (unary) naturals nat and (binary and infinite precision)
integers Z.

Multi-precision arithmetic. For cryptographic purposes, it usually necessary to do arith-
metic on numbers much larger than a single machine word. These are usually represented
using arrays of digits and interpreted as a number in some large radix size (e.g. a full word
size). We will refer to the entries of these arrays as limbs and numbers represented as such
as multi-limb numbers.

In Fiat-Crypto multi-limb integers are represented as lists of integers, i.e. as the type
list Z. Such a list of numbers, say [1;12;123], corresponds to sum of its elements up to
some weighing of the indices, e.g. 1 · 2weight 0 + 12 · 2weight 1 + 123 · 2weight 2, where weight
is some map from nat to int. Note that the representation is low-endian. When reasoning
about multi-limb numbers, one uses the function eval to evaluate the number as an integer
by adding together its limbs (multiplied by their respective weights).

We will refer to representations using a full-word radix as saturated. When doing
arithmetic on such representation one has to take care of propagating carries, as additions
do not fit within one register. Conversely, we will refer to a radix smaller than a full
word size as unsaturated. We will refer to arithmetic on these numbers as multi-precision
arithmetic, as opposed to single-precision arithmetic, which we will assume is implemented
natively in the platform.

There are a variety of optimizations and algorithms for multi-precision arithmetic,
and more precisely for multi-precision modular arithmetic modulo some large number,
as used in cryptography. One of the more expensive operations in modular arithmetic is
reduction, as it generally requires a multi-precision division. Reduction is necessary after
a multi-precision multiplication or squaring. We will briefly describe two specialized ways
of reducing which are both used in our implementations.

For integers a, b and c we write a ≡ b (mod c) when c divides the difference between a
and b. For integers a, c we write a mod c for the unique integer b between 0 and c satisfying
a ≡ b (mod c).
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Generalized Mersenne Reduction If the modulus M is of the form 2k + c12k−1 + · · ·+ ck

for some integers k and ci (which satisfies some constraints [Sol99]), then M is said to be
a generalized Mersenne number (or Solinas number). In that case there is an improved
algorithm for reduction which replaces division with a linear number of additions and
shifting operations.

Depending on the coefficients and exponents of the integral polynomial this can be more
or less efficient, but we will not go into details here. A notable example of a generalized
Mersenne number which is used in cryptographic implementations is the prime 2255 − 19
over which the elliptic curve curve25519 is defined.

Montgomery Reduction Next to Generalized Mersenne Reduction, Fiat-Crypto also
supports Montgomery arithmetic [Mon85]. If R is a number coprime to the modulus M ,
then the Montgomery reduction modulo M of a number a is the number aR−1 mod M .
Montgomery reduction can be computed more efficiently than generic reduction when R
is chosen appropriately. The algorithm performs divisions by R instead of M , so R is
chosen such that divisions are cheap. For example, by choosing R to be a power of 2 such
divisions become simple shifts.

The factor R−1 might look out of place, but Montgomery reduction can be used
when computing multiplications by working in the “Montgomery domain”, which simply
means operations are performed on numbers multiplied by R. That is, to compute
ab mod M we instead compute (aR mod M)(bR mod M) and compute a Montgomery
reduction. We obtain (aR mod M)(bR mod M)R−1 mod M = abR mod M , the product
in the Montgomery domain. This achieves modular multiplication without divisions.

Multiplying with R mod M every time might seem expensive, but if multiple arithmetic
operations can be performed before converting back again, then this cost becomes negligible.
One can also add naturally in the Montgomery domain, since

(aR mod M + bR mod M) mod M = (a+ b)R mod M.

Because Montgomery reduction has the same complexity of a multi-precision multiplication,
another popular optimization in Montgomery arithmetic is lazy reduction, which adds
unreduced multiplication results (up to M ×R) before a full reduction is needed.

3 Bernstein-Yang inversion
The Bernstein-Yang (BY) inversion algorithm [BY19] is a new and competitive constant-
time algorithm for inverting in finite fields. A special case of this is for the fields Z/pZ. The
algorithm is a constant time variant of the classical Extended Euclidean Algorithm (EEA).
We implement (Section 4) and formalize (Section 5) the BY algorithm in Fiat-Crypto.

3.1 Specification and correctness
The algorithm uses a division step (divstep), which we define for all integers δ, g and odd
integers f as

divstep(δ, f, g) =


(

1− δ, g, g−f
2

)
if δ > 0 and g odd(

1 + δ, f, g+(g mod 2)f
2

)
otherwise.

(1)

The requirement that f is odd makes divstep an endofunction on Z× Z× (2Z + 1). The
branch can be implemented in constant time and thus so can divstep.
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Algorithm 1: divsteps
Input : Integers n, δ, f and g such that f is odd
Output :The integers δn, fn and gn and the matrix product TnTn−1 · · · T0

1 u← 1, v ← 0, q ← 0, r ← 1 ;
2 for i← 1 to n do
3 if 0 < δ and g odd then
4 δ ← −δ, f ← g, g ← −f , u← q, v ← r, q ← −u, r ← −v ;
5 g0 ← g mod 2 ;
6 δ ← δ + 1 ;
7 g ← g+g0f

2 ;
8 u← 2u ;
9 v ← 2v ;

10 q ← q + g0u ;
11 r ← r + g0v ;

12 return δ, f, g,

(
u v
q r

)

Algorithm 2: BY-inversion
Input : Integers f and g such that f is odd and gcd(f, g) = 1
Output : Integer g−1 such that gg−1 = 1 (mod f)

1 d← max(log2 f, log2 g) ;
2 if d < 46 then
3 m← b(49d+ 80)/17c ;
4 else
5 m← b(49d+ 57)/17c ;
6 e← ((f + 1)/2)m mod f ;
7 δ ← 1 ;

8 δ, f, g,

(
u v
q r

)
← divsteps(m, δ, f, g) ;

9 g−1 ← e · v · sgn f ;

We will also use the following transition matrices

T (δ, f, g) =



(
0 2
−1 1

)
if δ > 0 and g odd

(
2 0

g mod 2 1

)
otherwise.

(2)

These are transition matrices in the sense that multiplication captures applying divstep
once (up to a factor; see also theorem 9.1 in [BY19]).

To compute the inverse of g modulo f we will need to iterate the divstep, compute
the transition matrix of the resulting values and sequentially multiply these matrices.
This procedure is captured in alg. 1. For integers δ, f and g we write (δn, fn, gn) =
divstepn(δ, f, g) and Tn = T (δn, fn, gn).

The divstep procedure can then be used to implement modular inversion as described
in alg. 2. To implement field inversion for a fixed modulus, we can precompute d,m and e
in the algorithm. The algorithm does precomputations (lines 1-7), iterates division steps a
constant number of times (line 8) and combines the two (line 9); where sgn(·) computes
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the sign of an integer.
The correctness of this algorithm is summarized in the following theorem:

Theorem 1 (Theorem 11.2 in [BY19]). Let f and g be integers with f odd. Let d be a real
number such that f2 + 4g2 ≤ 5 · 22d. Let m be an integer such that m ≥ b(49d+ 80)/17c if
d < 46 and m ≥ b(49d+ 57)/17c if d ≥ 46.

For i = 1, 2, . . . ,m, let (δi, fi, gi) = divstepi(1, f, g) and Ti = T (δi, fi, gi) and
(
ui vi

qi ri

)
=

Ti−1Ti−2 · · · T0. Then gm = 0, fm = ± gcd(f, g) and vmg = 2mfm (mod f).

The correctness of alg. 2 follows from Theorem 1 since f and g are assumed to be
coprime, the final values of f and v are fm and vm, and p is the inverse of 2m modulo f , so

p · v · (sgn f) · g = (2m)−1 · v · (±1) · g = (±1) · (±1) = 1 (mod f)

as required.
The theorem as stated here differs slightly from the one in [BY19] since our definition

of T is scaled by a factor to avoid having to reason about rational numbers.

3.2 Outline of proof

The proof of Theorem 1 is in 4 parts:

• Specification of a related algorithm for computing the gcd of two numbers.

• Complexity analysis of the related algorithm.

• Applying the complexity of the gcd algorithm to bound the amount of divsteps
needed before reaching a fixpoint.

• Proving that reaching a fixpoint of divstep yields the modular inverse.

Respectively, these are described in appendix E, F, G and section 11 in [BY19].
We will expand on how each part was formalized in Section 5. For the proofs we

need the definition of 2-adic valuation. If g is an integer and p is a prime then the p-adic
valuation of g is the highest power of p which divides g. We will denote it by ordp g or
valp g (in the literature νp is also common). We will also write splitp g for g divided by
this maximal power of p, i.e. splitp g = g/pordp g.

While the paper proof usually uses 2-adic integers, we only use the corresponding
statements for integers. This facilitates the formalization and suffices to prove Theorem 1.
Using 2-adic integers does however lead to some more general results, so one could imagine
redoing the formalization in this more general setting.

3.3 The jumpdivstep optimization

Algorithm 1 can be optimized by observing that computing the k first iterations of divsteps
only depends on the k first bits in f and g. This allows us to work on smaller numbers
and “jump” through the divsteps computation in larger steps.
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Algorithm 3: The jumpdivstep algoritm
Input : Integers n, k, δ, f and g such that f is odd and k | n
Output :The integers δn, fn and gn and the matrix product TnTn−1 · · · T0

1 T ←
(

1 0
0 1

)
;

2 for i← 1 to n/k do
3 f ′ ← f mod 2k, g′ ← g mod 2k ;
4 δ, f ′, g′, T ′ ← divsteps(k, δ, f ′, g′) ;

5

(
f
g

)
← T

(
f
g

)
/2k ;

6 T ← T ′ · T ;
7 return δ, f, g, T

One way to see that this is correct is to note that one run through the loop corresponds
to k runs through the loop in alg. 1 (where the matrix T corresponds to the four variables
u, v, q and r). Indeed, which branch is chosen in divsteps for the first k iterations only
depends on the first k bits of f and g, since the the k − 1 first bits in (g − f)/2 and
(g + (g mod 2)f)/2 (the two possibilities for next g-value) only depend on the k first bits
of g and f .

The concrete values of f and g have no influence on u, v, q and r. So, the matrix we
get in line 4 of alg. 3 is indeed correct and we multiply with the current product in line 6
as required. Now, to see that the updated values of f and g are correct, simply note that
for integers i ≤ j

2j−i

(
fj

gj

)
= Tj−1Tj−2 · · · Ti

(
fi

gi

)

which follows from the fact that 2
(
fi+1
gi+1

)
= Ti

(
fi

gi

)
(by definition) and induction (see

also theorem 9.1 in [BY19]). We already established that T ′ is equal to the intermediate
matrix product. So, f ′ and g′ are equal to fik and gik (in the i’th iteration).

4 Verified and efficient field inversion in Fiat-Crypto
Our implementation of alg. 1 was already integrated to Fiat-Crypto, and alg. 3 will be
submitted to the main repository after peer review. Meanwhile, we provide a forked version
of the library containing the implementations7. The generated code for programming
language lang can be found in folder fiat-lang, and standalone testing/benchmarking
programs for illustration can be found in the folder inversion-c together with a Makefile.
All file paths in this section will be relative to this root. To implement the Bernstein-Yang
algorithm in Fiat-Crypto we needed to add several primitives to the framework. The
implementation is verified by relating it to the algorithm formalized in Section 5.

A major part of specifying and implementing the algorithm was implementing and
formalizing signed multi-precision arithmetic for the types of f and g in alg. 1, since this
was absent from the framework. Our main contributions to the repository are the files
src/Arithmetic/BYInv.v and src/Arithmetic/BYInvJump.v. Beyond these files, we
also made several additions to the src/Util/ZUtil folder (mainly theorems about two’s
complement representations of integers, e.g. TwosComplement.v, TwosComplementMul.v,
SignExtend.v etc.). Furthermore integrating the implementations from BYInv.v and
BYInvJump.v into the compilation pipeline required some additions (see e.g. the files src-

7https://github.com/bshvass/fiat-crypto

https://github.com/bshvass/fiat-crypto
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/PushButtonSynthesis/BYInversionReificationCache.v, src/PushButtonSynthesis-
/WordByWordMontgomery.v and src/PushButtonSynthesis/UnsaturatedSolinas.v.

In the following m will refer to the machine word size for which the implementation
is parameterized. In Fiat-crypto word-sized integers are represented as infinite precision
integers, i.e. Z, and multi-limb integers are represented as lists of word sized integers in
Coq, i.e. list Z.

When programming in Fiat-Crypto, one has to use the supported low-level language,
i.e. the language whose terms it can compile into the embedded C-like language and
consequently generate the code. Notable supported operations are bitwise operations on
integers: >> for right shifts, |' for bitwise or and |' for bitwise and. Furthermore, there is
Z.lnot_modulo which interprets a number as of some bit-length and then flips all bits in its
binary representation.

We will use the functions that are already implemented in the framework whenever
we can. Important examples include Z.zselect, a constant time selection implementation
on word sized integers, select, a constant time selection implementation on multi-limb
integers, and several multi-precision modular arithmetic implementations.

4.1 Representing signed word sized integers
We use the following definition to represent the numbers from −2m to 2m − 1

Definition twos_complement m a :=
(if ((a mod 2 ^ m) <? 2 ^ (m - 1)) then a mod 2 ^ m else a mod 2 ^ m - 2 ^ m).

Then e.g. twos_complement m (2 ^ m - 1) = -1 as usual for a two’s-complement representation.
We need three operations on this representation to be able to implement the algorithms.

Arithmetic right shift To get efficient division by powers of two we implement division
as shifts and since we have signed integers the shift has to preserve the most significant
bit. We will need shifts for both alg. 1 and alg. 3. We implement it as follows

Definition arithmetic_shiftr m a k :=
dlet q := Z.zselect (sign_bit m a) 0 (ones_from m k) in

q |' (a >> k).

where the sign_bit and ones_from are defined as

Definition sign_bit m a := a >> (m - 1).
Definition ones_from m k := (Z.ones k) << (m - k).

where Z.ones k simply is 2k − 1 (k ones in binary).
We prove it correct, in the sense that arithmetically shifting an integer and interpreting it

in two’s complement corresponds to first interpreting it and then dividing by an appropriate
power of 2.

Lemma arithmetic_shiftr_spec m a k
(Hm : 0 < m)
(Ha : 0 <= a < 2 ^ m)
(Hk : 0 <= k) :

Z.twos_complement m (Z.arithmetic_shiftr m a k) = (Z.twos_complement m a) / 2 ^ k.

Negation To compute −a for an integer a in two’s complement, you simply flip all bits
of the number and add 1. In Coq we get the definition

Definition twos_complement_opp m a :=
((Z.lnot_modulo a (2 ^ m)) + 1) mod (2 ^ m).

and correctness
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Lemma twos_complement_opp_spec m a
(Hm : 0 < m)
(corner_case : Z.twos_complement m a <> - 2 ^ (m - 1)) :

Z.twos_complement m (Z.twos_complement_opp m a) = - (Z.twos_complement m a).

Note that the corner_case assumption is quite natural, since −2m−1’s inverse 2m−1 cannot
be represented with m bits (in two’s complement).

Comparison to zero Computing 0 ≤ a for an integer a in two’s complement is done by
checking the most significant bit. What we need to compute is 0 < a, and since 0 < a if
and only if −a ≤ 0, we simply check the most significant bit of −a.
Definition twos_complement_pos m a :=
dlet b := twos_complement_opp m a in sign_bit m b.

The corresponding correctness of this operation is
Lemma twos_complement_pos_spec m a

(mw0 : 0 < m)
(corner_case : Z.twos_complement m a <> - 2 ^ (m - 1)) :

Z.twos_complement_pos m a = Z.b2z (0 <? Z.twos_complement m a).

Here Z.b2z is simply the map on booleans sending false to 0 and true to 1.

4.2 Representing signed multi-limb integers
Since we will need signed multi-limbs integers, we define our own extended evaluation to
reason about these, which also interprets a list as a number in two’s complement. This is
simply first evaluating as a regular multi-limb number and then interpreting it in two’s
complement, i.e.
Definition eval_twos_complement machine_wordsize n f :=

Z.twos_complement (machine_wordsize * Z.of_nat n) (eval (uweight machine_wordsize) n f).

where uweight is a saturated weight function and n is the amount of limbs needed, i.e. the
length of f .

We will need the following operations on signed multi-limb numbers.

Arithmetic right shift As for word sized integers, we will need to divide multi-limb
numbers by powers of two.
Definition sat_arithmetic_shiftr machine_wordsize n f k :=

(map
(fun i =>

((nth_default 0 f i) >> k) |' (Z.truncating_shiftl machine_wordsize
(nth_default 0 f (i + 1))
(machine_wordsize - k)))

(seq 0 (n - 1)))
++ [Z.arithmetic_shiftr machine_wordsize (nth_default 0 f (n - 1)) k].

The function Z.truncating_shiftl shifts an integer to left, but truncates at a specified bit
width. It is equivalent to left shifting and then reducing mod 2m, where m is the specified
bit width. The function nth_default takes a default value, a list and an index as arguments
and returns the element of the list at the index unless the index is out of bounds; in that
case it returns the default value. The expression seq n m constructs the list of consecutive
integers of length m integers starting at n, e.g. seq 2 3 = [2,3,4]. Thus, the function picks
out each element in f , shifts them to the right and changes their k most significant bits to
the k least significant bits of the following element, except for the last element which it
simply arithmetically shifts to the right.

The correctness theorem is as follows
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Lemma eval_sat_arithmetic_shiftr machine_wordsize n f k
(Hn : (0 < n)%nat)
(Hf : length f = n)
(Hk : 0 <= k < machine_wordsize)
(Hf2 : forall z, In z f -> 0 <= z < 2^machine_wordsize) :

eval_twos_complement machine_wordsize n
(sat_arithmetic_shiftr machine_wordsize n f k) =

eval_twos_complement machine_wordsize n f / (2 ^ k).

For correctness, the shifted amount must be less than a word size. Fiat-Crypto cannot
compile this implementation. When using this for generating code one has to instantiate
k with some constant, i.e., you can only generate shifts by a constant. This suffices to
implement the Bernstein-Yang algorithm.

Negation To negate we flip all bits of all limbs in the list and then use our addition with
carry to add one. This gives the inverse as in the word sized case.
Definition sat_opp machine_wordsize n f :=

sat_add machine_wordsize n
(sat_one n)
(map (fun i => Z.lnot_modulo i (2^machine_wordsize)) f).

Here is the correctness of the implementation.
Lemma eval_twos_complement_sat_opp machine_wordsize n f

(mw0 : 0 < machine_wordsize)
(n0 : (0 < n)%nat)
(Hz : forall z, In z f -> 0 <= z < 2^machine_wordsize)
(Hf : length f = n)
(corner_case : eval_twos_complement machine_wordsize n f <> - 2 ^ (machine_wordsize * n - 1)):

eval_twos_complement machine_wordsize n (sat_opp machine_wordsize n f) =
- eval_twos_complement machine_wordsize n f.

Addition We also need addition but this is already implemented in the Fiat-Crypto
library, so we simply take it from there. Note that we do not need subtraction, since we
can do this by adding the inverse (which is computed by sat_opp).

Parity checking Computing the parity of a multi-limb integer is straight forward: It is
simply checking the parity of the least significant limb.
Definition sat_mod2 f := nth_default 0 f 0 mod 2.

4.3 Implementing divsteps
The implementation of divsteps is in the file src/Arithmetic/BYInv.v. There is both a
definition for the Montgomery arithmetic and Unsaturated Solinas. In the same file we
prove that the implementation computes a divstep as specified in Section 3.1. We have
included the implementation using Montgomery style arithmetic here in Fig. 1.

The implementation uses modular arithmetic for u, v, q and r variables since these
would otherwise grow much larger than necessary (by Theorem 1 we only need these
numbers modulo f), regular signed multiple-precision arithmetic for f and g and word
sized arithmetic for δ.

We have already explained most of the functions used but some remain. Function
addmod is multiple-precision modular addition and oppmod is multiple-precision modular
negation. These were already implemented in Fiat-Crypto. The correctness theorem of
divstep is divstep_correct_full in src/Arithmetic/BYInv.v which asserts that the method
computes a divstep.

Note that the implementation does include the loop in alg. 1. The issue with loops is
that the only way to get Fiat-Crypto to generate them is to unroll them. However, the
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Definition divstep_aux (machine_wordsize : Z)
(sat_limbs mont_limbs : nat)
(m : Z)
(data : Z * (list Z) * (list Z) * (list Z) * (list Z)) :=

let '(d,f,g,v,r) := data in
dlet cond := Z.land (twos_complement_pos' machine_wordsize d) (sat_mod2 g) in
dlet d' := Z.zselect cond d (twos_complement_opp' machine_wordsize d) in
dlet f' := select cond f g in
dlet g' := select cond g (sat_opp machine_wordsize sat_limbs f) in
dlet v' := select cond v r in
let v'':= addmod machine_wordsize mont_limbs m v' v' in
dlet r' := select cond r (oppmod machine_wordsize mont_limbs m v) in
dlet g0 := sat_mod2 g' in
let d'' := (fst (Z.add_get_carry_full (2^machine_wordsize) d' 1)) in
dlet f'' := select g0 (sat_zero sat_limbs) f' in
let g'' := sat_arithmetic_shiftr1 machine_wordsize sat_limbs

(sat_add machine_wordsize sat_limbs g' f'') in
dlet v''' := select g0 (sat_zero mont_limbs) v' in
let r'' := addmod machine_wordsize mont_limbs m r' v''' in
(d'',f',g'',v'',r'').

Figure 1: Implementation of a divstep in Fiat-Crypto

body of the loop is already very large so unrolling the entire loop for even moderately
large primes becomes unreasonable.

As of now, one has to write the loop manually after generating the code, with small
effort and low risk of making mistakes. There are templates for this in src/inversion-c.
We have included the template for Montgomery arithmetic in Fig. 2. As discussed later,
another solution could be to use more advanced tools to generate the loop and reason
about its correctness (see Section 7).

4.4 Implementing jumpdivsteps
The implementation of jumpdivsteps (alg. 3) is in the file src/Arithmetic/BYInvJump.v.
There is both a definition for the Montgomery arithmetic and Unsaturated Solinas. We
have included the implementation in Montgomery arithmetic here in Fig. 3.

For jumpdivsteps we need a couple of additional methods. The idea of jumpdivsteps is
that we can compute the divsteps (in line 4) on word sized integers (we use k = m − 2
such that all intermediate values in divstep fit in a word). This however also means that
the entries of the result matrix T ′ are word sized integers and thus we have to multiply
word sized and multi-limb numbers when computing the matrix vector product in line 5.
This functionality was basically already implemented in Fiat-Crypto, but we wrapped it
in word_sat_mul.

Also, the numbers in T have to be modular reduced (otherwise they grow too
large), so when we have to compute the matrix product in line 6, we have to re-
duce the entries of T modulo f (they might for instance be negative). This is what
twos_complement_word_to_montgomery_no_encode does. It does this by computing the negation
and then choosing based on sign (recall that it has to compute the negation always otherwise
a branch is introduced). This conversion does not convert into the Montgomery domain;
we avoid doing this to save several expensive multiplications. We simply accumulate these
factors and multiply them after the loop.

The correctness of outer_loop_body is outer_loop_body_correct, which expresses the fact
that computing outer_loop_body amounts to computing m-2 division steps.

As in the case of regular divsteps, one also has to write the loop manually after
generating the code for jumpdivsteps, but only for the outer loop though. We do in fact
unroll the inner divsteps computation (in line 4 in alg. 3). This is what the fold_right
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void inverse(WORD out[LIMBS], WORD g[SAT_LIMBS]) {

WORD precomp[LIMBS];
PRECOMP(precomp);

WORD d = 1;
WORD f[SAT_LIMBS];
WORD v[LIMBS];
WORD r[LIMBS];
WORD out1;
WORD out2[SAT_LIMBS], out3[SAT_LIMBS], out4[LIMBS], out5[LIMBS];

MSAT(f);
MONE(r);
for (int j = 0; j < LIMBS; j++) v[j] = 0;

for (int i = 0; i < ITERATIONS - (ITERATIONS % 2); i+=2) {
DIVSTEP(&out1,out2,out3,out4,out5,d,f,g,v,r);
DIVSTEP(&d,f,g,v,r,out1,out2,out3,out4,out5);

}
if (ITERATIONS % 2) {

DIVSTEP(&out1,out2,out3,out4,out5,d,f,g,v,r);
for (int k = 0; k < LIMBS; k++) v[k] = out4[k];
for (int k = 0; k < SAT_LIMBS; k++) f[k] = out2[k];

}

WORD h[LIMBS];
OPP(h, v);
SZNZ(v, f[SAT_LIMBS -1 ] >> (WORDSIZE - 1), v, h);
MUL(out, v, precomp);

return;
}

Figure 2: Handwritten loop to implement alg. 2 from alg. 1; all functions called are
generated by Fiat.

term achieves in Fig. 3.
Note that in the source files there are two implementations of jump divstep (jump-

_template.c and jump_alt_template.c). The “alt” version is the one we have discussed
here, which generates the entire body of the jump divstep loop. The other implementation
requires one to write the body by hand and only generates the required functions. Since
this requires more handwritten code and the observed performance is the approximately
same, we regard the “alt”-version as the optimal one. There are however two caveats: (i)
the size of the generated code implementing the entire loop body is quite big since it has
to be unrolled for Fiat to generate it (this is worse for larger primes) and (ii) the time
needed for code generation grows by a non-trivial factor.

Differences from [BY19]. In [BY19] section 12, the authors compute the matrix product
in alg. 3 by recursively dividing it into halves, resulting in a total of n − 1 matrix
multiplications. They utilize this by keeping the precision of the entries as low as possible.

We compute the product differently, by instead computing it iteratively. Because we
attempt to minimize the new code introduced to Fiat-Crypto, this requires 4n modular
multiplications; and since only the top right entry of the final matrix is needed, it suffices
to do matrix-vector multiplications (note that this is not possible when recursively dividing
the product). However using this method, one cannot keep the precision low for as many
multiplications. This was fine for our implementation, since keeping track of different
precision (and using appropriate multiplication implementations) in Fiat-Crypto would be
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difficult. Our unverified implementation of the jumpdivstep approach keeps track of how
these coefficients grow (one limb with every iteration of the outer loop), making it possible
to delay the expensive modular reduction until it is strictly necessary (lazy reduction).

The half-deta optimization. We incorporate in our jumpdivstep implementation the
faster variant proposed by Wuill et al. in [WMea21]. This variant starts with the
value δ = 1/2 and runs for around 18% fewer iterations, as given by the closed formula
b(45907 log2(M) + 26313)/19929c for inversion modulo M . While the authors provide a
mathematical correctness proof in the latest version of the repository for the result, we
understand this has not passed peer-review and take the extra precaution with validating the
lower number of iterations. We adapted the 256-bit Coq proofs in [WMea21] for our various
parameter sizes and executed them with two optimizations: using the native_compute
reduction machine in Coq, which cut execution time to 32 hours from the initially reported
2.5 days; and extracted the proofs using Coq’s built-in extraction mechanism [Let02] to
OCaml native binaries for another 2-factor reduction in time. Table 1 reports on our
progress towards running all proofs. We expect finishing the remaining OCaml native
proofs in about a month more of computation time.

Table 1: Our progress in running computational proofs to validate the lower number
of iterations for various prime moduli sizes in the half-delta optimization using different
proof strategies. A cell containing a number of hours indicates that the proof finished with
a positive outcome in the specified time; or that it is still running otherwise.

Prime size (bits) Iterations Coq-native_compute Coq-ExtractedOCaml
254 590 32.1 hours 14.7 hours
381 878 213 hours 100.5 hours
448 1033 In progress 281.1 hours
521 1201 In progress In progress
575 1325 In progress In progress

4.5 Experimental results
We have generated and benchmarked modular inversion in C for the primes commonly
used in both ECC and PBC settings of curve-based cryptography. For the ECC case,
we chose the well-known primes 2255 − 19, 2448 − 2224 − 1 and 2521 − 1 labeled by their
named curves Curve25519, Curve448 and NIST-P521 at the 128-, 224- and 256-bit security
levels. For the PBC case, we took the base fields for Barreto-Naehrig (BN) [BN05] and
Barreto-Lynn-Scott (BLS) curves [BLS02] at three different security levels. These are the
254-bit prime used in the now legacy 110-bit secure BN curves [AKL+11, MSS16], the
381-bit prime for BLS curves with embedding degree 12 undergoing standardization at
128-bit security [MSS16], and the 575-bit prime for BLS curves with embedding degree 48
proposed for 256-bit security [MAF20].

The generated code was integrated in the RELIC toolkit [AGM+], a cryptographic
library containing several state-of-the-art implementations of pairings. RELIC uses a
combination of hand-written Assembly (ASM) with higher-level C-code and has set speed
records for several of the chosen parameters in the PBC case. Integrating the code with
RELIC allowed convenient benchmarking to compare the efficiency of our approach with
other field inversion algorithms already implemented in the library.

We present our results in Table 2 and Table 3. In both tables, the first part has
baseline implementations from the GMP 6.2.1 library [Gt12] for reference. These timings
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Definition outer_loop_body f g (v r : list Z) :=
let '(_,f1,g1,u1,v1,q1,r1) :=
fold_right (fun i data => twos_complement_word_full_divstep_aux machine_wordsize data)

(1,nth_default 0 f 0,nth_default 0 g 0,1,0,0,1)
(seq 0 (Z.to_nat (machine_wordsize - 2))) in

dlet f2 := word_sat_mul machine_wordsize sat_limbs u1 f in
dlet f3 := word_sat_mul machine_wordsize sat_limbs v1 g in
dlet g2 := word_sat_mul machine_wordsize sat_limbs q1 f in
dlet g3 := word_sat_mul machine_wordsize sat_limbs r1 g in
dlet f4 := BYInv.sat_add machine_wordsize word_sat_mul_limbs f2 f3 in
dlet g4 := BYInv.sat_add machine_wordsize word_sat_mul_limbs g2 g3 in
dlet f5 := sat_arithmetic_shiftr machine_wordsize word_sat_mul_limbs f4 (machine_wordsize - 2) in
dlet g5 := sat_arithmetic_shiftr machine_wordsize word_sat_mul_limbs g4 (machine_wordsize - 2) in
dlet f6 := firstn sat_limbs f5 in
dlet g6 := firstn sat_limbs g5 in
dlet u2 := twos_complement_word_to_montgomery_no_encode u1 in
dlet v02 := twos_complement_word_to_montgomery_no_encode v1 in
dlet q2 := twos_complement_word_to_montgomery_no_encode q1 in
dlet r02 := twos_complement_word_to_montgomery_no_encode r1 in
dlet v2 := mulmod machine_wordsize n m m' u2 v in
dlet v3 := mulmod machine_wordsize n m m' v02 r in
dlet r2 := mulmod machine_wordsize n m m' q2 v in
dlet r3 := mulmod machine_wordsize n m m' r02 r in
dlet v4 := addmod machine_wordsize n m v2 v3 in
dlet r4 := addmod machine_wordsize n m r2 r3 in
(f6, g6, v4, r4).

Figure 3: Implementation of a jump-divstep in Fiat-Crypto

set a lower bound (aggressively optimized variable-time code) and upper bound (generic
constant-time approach) that illustrate how challenging implementing field inversion in
constant-time can be in terms of performance for general fields. The next part has timings
for the FLT approaches using exponentiation by p− 2. For the ECC primes, we took state-
of-the-art timings from the literature in the ASM case [KN20, FLD19] and benchmarked
the same addition chains over field arithmetic generated by Fiat-Crypto. For the PBC
case, we built and benchmarked RELIC using both the existing ASM backends and field
arithmetic code generated by Fiat-Crypto. These timings illustrate the penalty of going
from handwritten field arithmetic in ASM to field arithmetic generated by Fiat-Crypto for
the different parameters. The data indicates an approximate slowdown of a factor 1.2–1.7
when compiling using clang and a factor over 2 when using GCC. It is clear that GCC has
much more trouble compiling Montgomery arithmetic generated by Fiat-Crypto.

The rest of tables benchmark describe the performance of various implementations of the
Bernstein-Yang algorithm (alg. 2). The most interesting entries performance-wise are the
jumpdivstep and hdjumpdivstep, which respectively are the jumpdivstep implementation
that we generate automatically from Fiat-Crypto; and the variant using half-delta proposed
recently. These are also benchmarked in RELIC in the PBC case using the provided
ASM backends. The performance difference between the two ranges from a factor of 1.8
to 4.44, a reasonable trade-off considering the correctness guarantees provided by the
Fiat-crypto version. More importantly, the hdjumpdivstep implementations outperform
the FLT implementations in almost all cases, both for the ASM and Fiat-Crypto finite
field arithmetic backends, except 2255 − 19. The speedups over FLT+Fiat increase for
larger primes, illustrating that FLT approaches do not scale well for larger parameters.

Timings for Curve25519. We report detailed timings for the prime 2255−19 generated in
the unsaturated representation. There are many applications for such an implementation,
due to the widespread adoption of Curve25519 and Ed25519 as key exchange and digital
signature algorithms [Ber06, BDL+12]. The Bernstein-Yang paper reports 8,778 Skylake
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cycles, later improved to 3,900 cycles8. An alternative implementation approach by Thomas
Pornin [Por20] was benchmarked at 6,200 cycles in our Skylake processor.In comparison,
the performance degradation of our best implementation is around 3.8 in comparison
to those results, but we note that these faster implementations are not verified beyond
exhaustive testing and/or they employ hand-written Assembly optimizations including
vector instructions.

Table 2: Benchmarks of different approaches for field inversion over ECC fields on an
Intel Skylake Core i7-6700K CPU running at 4.00GHz, using GCC version 11 and clang
from LLVM 12. With the exception of Variable-time GMP, all operations are implemented
in constant-time. Numbers were obtained by computing the average of 104 consecutive
executions of an implementation measured using the cycle counter, and computing the
average. TurboBoost and HyperThreading were disabled for benchmarking stability.
Numbers in bold are the fastest for this work or related work among the different compilers
for a certain prime.

Curve25519 Curve448 NIST-P521
Verified Auto clang gcc clang gcc clang gcc

Variable-time GMP No No 3,098 3,314 4,724 5,799 6,814 7,128
Constant-time GMP No No 75,895 76,300 186,637 186,186 257,935 270,085
FLT+ASM No No – 9,301 ∗41,400 – – 53,828
FLT+Fiat No Partially 13,638 18,253 52,344 54,957 82,679 61,327
This work+Fiat (divstep) Yes Yes 72,421 98,655 195,571 266,130 249,752 379,965
This work+Fiat (jumpdivstep) Yes Yes 17,696 19,531 48,144 53,677 65,832 76,740
This work+Fiat (hdjumpdivstep) Yes Yes 14,837 17,134 39,541 45,740 52,828 64,858

(∗) The authors also report 35,000 for an AVX2 implementation, but we consider the 64-bit ASM
implementation more fair for comparison.

Table 3: Benchmarks of different approaches for field inversion over pairing fields on
an Intel Skylake Core i7-6700K CPU running at 4.00GHz, using GCC version 11 and
clang from LLVM 12. With the exception of Variable-time GMP, all operations are
implemented in constant-time. Numbers were obtained by computing the average of
104 consecutive executions of an implementation measured using the cycle counter, and
computing the average. TurboBoost and HyperThreading were disabled for benchmarking
stability. Numbers in bold are the fastest for this work or related work among the different
compilers for a certain prime.

BN-254 BLS12-381 BLS48-575
Verified Auto clang gcc clang gcc clang gcc

Variable-time GMP No No 3,291 3,270 4,724 4,716 7,495 7,504
Constant-time GMP No No 75,639 76,168 146,157 146,083 270,631 271,168
FLT + ASM No No 31,452 31,492 104,513 103,361 288,719 288,109
FLT + Fiat No Partially 52,954 68,173 143,325 257,851 470,925 867,331
This work+ASM (divstep) No No 87,456 87,584 167,724 166,580 335,864 337,641
This work+ASM (jumpdivstep) No No 14,382 14,383 23,820 23,810 43,941 43,989
This work+ASM (hdjumpdivstep) No No 9,777 9,873 16,377 16,183 31,963 27,911
This work+Fiat (divstep) Yes Yes 79,653 118,305 181,344 289,786 403,309 655,831
This work+Fiat (jumpdivstep) Yes Yes 20,762 28,998 49,030 71,990 147,016 212,511
This work+Fiat (hdjumpdivstep) Yes Yes 17,489 23,394 41,036 62,018 120,179 183,996

8https://gcd.cr.yp.to/software.html

https://gcd.cr.yp.to/software.html
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5 Formalization of Bernstein-Yang inversion
The main theorem that we have formalized is Theorem 1. A pervasive tactic used in our
proofs is lia (linear integer arithmetic) and lra (linear real arithmetic). These tactics
respectively solve (linear) inequalities over the integers and reals. It will use all available
inequalities in the context, so a recurring method is to introduce all necessary inequalities
to the context and then use lia/lra to solve the goal.

5.1 p-adic valuations
Since some theory of p-adic valuations were required for the proof we developed a small
library for the basics of this theory. This is in the file src/PadicVal.v. We implementented
the p-adic simply by counting the number of times a number is divisible by p and prove
the following specification
Lemma pval_spec p a (Ha : a <> 0) (Hp : 1 < p) :

(p ^+ (pval p a) | a) /\ ~ (p ^+ (S (pval p a)) | a).

i.e. that p to the power of pval p a divides a but not p to any higher power. We also prove
uniqueness such that the full specification becomes
Lemma pval_full_spec p a v (Ha : a <> 0) (Hp : 1 < p) :

pval p a = v <-> (p ^+ v | a) /\ ~ (p ^+ (S v) | a).

We also define split from and prove the specification
Lemma psplit_spec p a (Ha : a <> 0) (Hp : 1 < p) :

a = (p ^+ (pval p a)) * psplit p a /\ ~ (p | psplit p a).

The proofs of these are all very straightforward. The proof of pval_spec is perhaps the
most involved, but it follows by generalizing the amount of divisions and doing induction
in that number.

5.2 The gcd algorithm
The formalization of the gcd algorithm related to divsteps (described in Appendix E in
[BY19]) is in src/AppendixE.v. We prove three main things here

1. The existence and specification of q(f, g) (Theorem E.1 in [BY19])

2. The correctness of the gcd algorithm assuming termination (Theorem E.3 in [BY19])

We implemented a function computing q(f, g) instead of proving its existence abstractly.
We did this to able to use it in the recursive definition of Ri (see Theorem E.2 in [BY19]).
One minor issue here is that to construct q(f, g) one needs to compute the inverse of
split2 g as a 2-adic number. Recall that in the paper most theorems are stated over this
larger ring. This inverse is not necessarily an integer (e.g. 2 does not have a multiplicative
inverse), but when constructing q(f, g) one only needs this inverse to a finite precision.

Thus, we implemented the function which computes the inverse of an integer in Z2
to a finite precision. This is implicit in our definition of q(f, g) but to compute this, you
compute the modular inverse of split2 g in 2i to get the 2-adic inverse to precision i. This
follows from the construction of Z2 as lim← Z/2iZ.

Another choice we made in this section was to use the real number type R defined
in the Coq standard library which depends on the axioms of classical logic. This means
that certain expressions no longer evaluate directly in Coq. We could have avoided this
by developing a library of algebraic numbers. For example, the expression f div2 g is a
rational number, but to avoid coercing it to a real number later on we define it as a term
of R. Concretely, the definition is given as
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Definition div_2 f g : R := IZR (q f g) / IZR (2 ^+ ord2 g).

where IZR is the embedding from the Z to R from the standard library (see also Theorem
E.1 in [BY19]).

The formal proofs follows the paper quite closely. We use two custom induction
principles in the proof of Theorem E.3, one for getting the induction hypothesis for the
two previous naturals and one to make induction from n > 0 and down to zero. These are
induction2 and rev_2_ind from src/InductionPrinciples.v.

5.3 Complexity analysis
The formalization of the termination proof of the gcd algorithm is in src/AppendixF.v.
This part of the proof is the content of Appendix F in [BY19]. Here, the proof becomes
more complicated and there is one theorem from [BY19] which we do not formally prove
in Coq due to performance constraints. We thus add it as an axiom in Coq.

The theorem is a computational one which is proven by observing that a certain program
terminates. It was carried out in Sage [The20] by Bernstein and Yang (see theorem F.22
in [BY19]). We have implemented the algorithm in Coq’s built-in functional language.
When extracting the implementation to OCaml [Let02], it terminates in approx. 8 hours
with the same output as reported in [BY19].

5.3.1 The operator norm

The first complication is how to define the operator norm of a matrix, since this is the
measure we will use to prove termination. That is, we will prove that the operator norm
of products of transition matrices is bounded by an exponentially decreasing sequence of
numbers and then use this to prove termination of the gcd algorithm.

The standard definition of the operator norm as the supremum over lengths of images
of unit vector under matrix-vector multiplication is however quite cumbersome since it
requires quite a lot of analysis to prove that this supremum is computable. Computability
is not necessary for Coq’s classical reals, but we would like to use a smaller (computable)
field in the future, for example the real algebraic numbers. Our solution is simply to
only define operator norms for real 2 by 2 matrices and then use the associated formula.
One major issue with this approach is that we lose all the nice analytical mathematical
properties and have to do proofs algebraically. More concretely, the proofs of the properties
|Mv|2 ≤ |M ||v|2 and |MN |2 ≤ |M |2|N |2 become a lot more involved.

In particular, the latter property is tedious to prove algebraically since the formula
for the operator norm of a product becomes quite complex. To prove it we instead used
the observation that is also used in the Bernstein-Yang paper to prove the formula of
the operator norm but in the “opposite direction”. This is the theorem F.11 in the paper.
This proof however uses the spectral theorem for real matrices of 2 by 2 dimensions so
we formalize this in src/Spectral.v. The proof of this is standard. We then use it in
the proofs of the two operator norm properties in mat_norm_vmult and mat_norm_mmult in
src/Spectral.v. See also the comment in src/Spectral.v.

The file src/Spectral.v only contains lemmas pertaining to the spectral theorem and
the norm of matrices over reals. Our formalization of 2 by 2 matrices over general rings is
in Matrix.v. This theory is built on top of a small theory of algebraic structures, which is
the content of src/Hierarchy.v. The reason we developed our own small library instead
of using an established one (such as the one in [MT20]) is to be able to do proofs by
computation and have easier access to the implementation details (as these are abstracted
away in e.g. [MT20]). We used automation in this development to avoid tedious algebraic
proofs. The tactics auto_mat and inversion_mat use the decision procedure ring over types
declared as algebraic rings to solve most equational proofs about matrix operations.
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5.3.2 Bounding the operator norm

Next, the proof proceeds by computing a bound on the operator norm of products of
matrices of a particular form, namely matrices given by the definition

Definition M (e : nat) (q : Z) := [ 0 , 1 / (2 ^ e) ; - 1 / (2 ^ e) , q / (2 ^ (2 * e)) ]

The bound is given by theorem F.16 in [BY19], which is formalized in src/AppendixF.v.
The formalized proof is rather messy and ad hoc, since we did not find any published tactics
for manipulating expressions involving square roots (sqrt). The general strategy is to reduce
the expression to an expression without square roots by isolating and squaring appropriately.
These two methods do not, however, generally suffice (consider e.g.

√
5 ≤ 1 +

√
2 +
√

3).
We did consider developing a decision procedure to handle equations and inequalities

involving square roots, but since the complexity of the expressions can grow exponentially
unless one is careful we decided not to. It appears that developing such a procedure would
be as involved as developing a type of integers extended with square roots, which would be
much more interesting to pursue anyway (this could potentially also relieve us of having
to use classical reals).

5.3.3 The bounding sequence

Next, we define the number sequence αn which will bound the operator norms. Using this
we prove two main facts

• If a particular subset of the matrices M(e, q) are bounded by αn, then all such
matrices are bounded by αn (Theorem F.21 in [BY19]).

• Prove that the gcd algorithm terminates (Theorem F.26 in [BY19]).

Now, notably we do not formally prove Theorem F.22 in [BY19], i.e. that the matrices on
this particular subset are bounded by αn. This is proof that we discussed at the beginning
of Section 5.3.

The other proofs in this section were more straightforward as they mostly com-
bine previously established theorems (about matrices and about the Rj sequence from
src/AppendixE.v).

We developed a small “big operation” library to reason about the big multiplications
and big additions, as required in theorem F.21. Similarly to our theory of matrices, it
is built on top of Hierarchy.v. Again, as with the reasoning for using our own matrix
library, this was to have a greater degree of control over the implementation.

5.4 Relating the gcd algorithm and divstep
We finally prove Theorem 1 in Section11.v by proving and utilizing the connection
between the gcd algorithm and iterating divstep in src/AppendixG.v. We have also
included an implementation of the inversion algorithm, alg. 2, in src/BYInv.v with an
accompanying correctness proof.

The proofs in src/AppendixG.v did not introduce too many complications since they
are mostly about combining the previous results. There is however again one theorem here
that we do not prove. This is theorem G.4 from [BY19]. Again this is a computational
proof which proves difficult to execute inside Coq. The algorithm that has to be executed
does however not require any particularly advanced operations, so we have succeeded
in extracting a version from Coq to OCaml which can be run. This is implemented in
src/Comp2/Definitions.v and src/Comp2/Extraction.v. To achieve a high enough
performance we use native 63-bit integers instead of the regular arbitrary precision integers
implemented in Coq.
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The content of this theorem is basically a bound on number of iteration of divstep
required before termination for small values (by brute force). Thus if one is not interested
in computing modular inverses for small numbers, then this lemma is not even necessary
for correctness. More concretely, if the modulus has more than 21 bits, then theorem
G.4 is not necessary (see theorem G.6). Since this will almost always be the case for
cryptographic purposes we consider the lack of proof less critical.

6 Related work
The verified synthesis approach adopted by Fiat-Crypto is not the only possibility for
verifying implementations of cryptography algorithms. An alternate approach is writing
optimized code by hand in a low level language embedded in a proof assistant.

EverCrypt [PPF+20] is one example of this approach that provides a formally verified
cryptographic provider, i.e., a collection of verified cryptographic implementation together
with an API. It builds on two other projects HACL* [ZBPB17], which is a collection
of cryptographic protocols implemented, specified and verified in a subset of the the F*
language (Low*) and compiled to C, and ValeCrypt which is a collection of cryptographic
primitives implemented in an assembly language and verified using the Vale tool [BHK+17].
EverCrypt does not generate code for new primitives, but it supports a large amount of
cryptographic primitives including AES, SHA-3, MD5 and implementations of elliptic
curves as well as signature and key exchange protocols on top of these. Notably, EverCrypt
does not support curves for pairing-based cryptography. Yet another approach is followed by
Jasmin [ABB+17], which provides a higher level assembly language and a verified compiler
to write Intel Assembly directly. Jasmin has been used to verify a high-performance SHA3
implementation [ABB+19].

There are differences in the guarantees of the tools mentioned. Coq is foundational in
that it reduces all proofs to the axioms of mathematics. Neither Easycrypt nor F* are
foundational, even though they were carefully designed, they dependent on an unverified
reduction to unverified SMT-solvers.

7 Future Work
We can extend our work in several directions. In one angle, we can target embedded
platforms running over ARM or RISC-V and study the performance trade-offs in those
systems. In another angle, we can extend the scope to other arithmetic layers employed in
many other cryptographic protocols based on pairings or isogenies. Fiat-Crypto can be
extended with the general construction of field extension, by implementing polynomial
arithmetic. Since these polynomials would have coefficients in the finite fields currently
generated by Fiat-Crypto, one would have to be able to generate representations of these,
e.g. as arrays of integers. It is unclear whether or not Fiat is geared for this, but if it is
then the implementation should be no more difficult than what is presented in Section 4.

Going even further, one could extend Fiat-Crypto to generate elliptic curve arithmetic
directly. One obstacle is that Fiat-Crypto’s low-level language does not include function
calls which are necessary to implement elliptic curve operations. One prospective solution
is to use the Rupicola compiler, which has some links to the Fiat-Crypto library. Rupicola
is a verified compiler from a subset of Coq to bedrock2, which is a low-level language
embedded in Coq. One can then go from bedrock2 to C or RISC-V to obtain an efficient
implementation.

After generating elliptic curve arithmetic, we can go yet another step up the abstraction
layer and implement billinear pairings over these curves. Bilinear pairings are maps from
a product of curve groups of prime order to the multiplicative subgroup of an extension
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field. At this point we would have all necessary primitives to implement pairing-based
protocols. This has the added complexity of requiring a formalization of bilinear pairings
in Coq. Formalizations of elliptic curves in Coq already exist, e.g. in [BS14] and in the
Fiat-Crypto library, but no formalized implementation of a pairing has been developed.
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