
A Fresh Approach to Updatable Symmetric
Encryption

Andrés Fabrega1, Ueli Maurer2, and Marta Mularczyk2?

1 andresfg@mit.edu, MIT
2 {maurer,mumarta}@inf.ethz.ch, ETH Zurich

Abstract. Updatable encryption (UE) is symmetric encryption which
additionally supports key rotation. UE was introduced for scenarios where
a user stores encrypted data on a cloud and, in order to mitigate secret
key leakage, periodically sends a short update token, which the cloud
uses to re-encrypt stored data to a fresh key. A long line of research re-
sulted in a wide variety of security properties UE schemes can provide,
including confidentiality, integrity protection, and hiding metadata. Un-
fortunately, given the complexity and nuances in the definitions, differ-
ent properties are difficult to compare for non-experts, making it hard
to judge which scheme provides the best security-efficiency trade-off for
a given application.
In this work, we challenge the approach of defining UE as a primitive
with a set of properties. As an alternative, we propose to treat UE as
an interactive protocol, whose goal is to implement secure outsourced
storage, using limited and imperfect resources (such as a small, leak-
able memory). To facilitate this approach, we introduce a framework
that allows to easily formalize different security guarantees and available
resources, making security-efficiency trade-offs of UE protocols easy to
compare.
We believe that our approach opens the way for many constructions
of secure storage that are not compatible with the currently defined
syntax of UE. Indeed, we propose two new protocols: one for the setting
with adversaries who control randomness (an attack vector so far not
considered for UE), and one for the setting with adversaries that actively
tamper with memory. Both protocols provide stronger confidentiality
guarantees than all existing UE schemes.

1 Introduction

1.1 Updatable Encryption

Key rotation and updatable encryption. In today’s globalized world, the need
for (private) data to be constantly available on many devices and to many (au-
thorized) users is evident. A natural way to achieve this is outsourcing storage,
? Research supported by the Zurich Information Security and Privacy Center (ZISC).

namely, uploading data to a commercial platform (often called a cloud). Unfor-
tunately, this introduces new attack vectors, as the platform cannot be trusted
to always protect confidentiality and integrity of data. To prevent these new
attacks, data is encrypted and the secret key is distributed among authorized
devices. However, this is still not fully satisfactory, since, first, devices may get
compromised and reveal the key (e.g. if they are lost or catch a virus) and, sec-
ond, a key should not be used too many times (e.g. due to cryptanalytic attacks).
Mitigating these attacks is the goal of key rotation, which mandates periodically
replacing the key under which (already stored) data is encrypted.

Efficiently implementing an outsourced storage service that supports key ro-
tation is not an easy task. Let us first state the goal more precisely. For simplicity,
from now on we consider only two parties: the host, i.e. the platform where data
is uploaded, and the data owner, who represents all entities that can access
the data.3 They are both honest, but also careless — any piece of information
they see or store, such as a key or a received message, may potentially leak to
the adversary or be modified by her. The goal is to design a protocol for the
parties that constructs a storage service for the owner, which protects confiden-
tiality and integrity of as many stored messages as possible, given which pieces
of information leaked or were corrupted.

The obvious approaches to achieve this are either insecure or inefficient. For
example, if one uses standard symmetric encryption, it is not clear how to im-
plement key rotation: sending the old and the new key to the host achieves sub-
optimal security, because information sent to the host is sufficient to decrypt
all messages. Alternatively, the owner could download all data and re-encrypt it
himself, but this is clearly not efficient.

Enabling more efficient protocols is the goal of updatable encryption (UE)
introduced by Boneh et al.[BLMR13]. In essence, UE has the functionality of
symmetric encryption, but offers two additional algorithms for key rotation: nxt
(meant for the owner), given the old and the fresh key, generates a short update
token, and upd (for the host), given a token and a ciphertext, updates it to the
new key. Importantly, the token does not reveal any information about the keys.

Defining secure UE. UE has received considerable attention in the cryptographic
community [BLMR13, EPRS17, LT18, KLR19, BDGJ20, Jia20, BEKS20, CLT20].
It comes in surprisingly many flavors and with many different security prop-
erties. First, there are multiple versions of syntax. For example, ciphertext-
independent UE, where nxt generates a single token for all ciphertexts and
ciphertext-dependent UE, where nxt generates one token per ciphertext and gets
as input the ciphertext’s short header (sent by the host). Independently, one can
consider deterministic or randomized upd algorithm. Regarding security proper-
ties, there are notions analogous to IND-CPA, IND-RCCA and IND-CCA. The
properties related to integrity include analogues of INT-PTXT and INT-CTXT.

3 Considering a single owner, we implicitly assume that there is an external mechanism
which synchronizes all devices. Achieving this is outside the scope of this work.

2

There are also properties formalizing secrecy of metadata, such as how many
times a ciphertext has been updated.

Different syntaxes and security properties offer different trade-offs between
security and efficiency, which are not always obvious to compare. This makes the
task of choosing the right scheme for given application difficult. For instance,
randomized upd is less efficient in terms of randomness and one cannot meaning-
fully define IND-CCA for it. However, it allows to achieve an additional property
that an updated ciphertext looks like a fresh encryption even given the previous
ciphertext and update token. As another example, notions that consider active
attackers are defined slightly differently in different papers. Namely, sometimes
the adversary can inject arbitrary ciphertexts only to the decryption algorithm
(e.g. IND-CCA in [BDGJ20]), and sometimes to both decryption and upd (e.g.
IND-RCCA in [KLR19]). Intuitively, the first version appears too weak, since it
offers no guarantees if an active attacker modifies the host’s storage and then
the host applies upd. On the other hand, it is much more common in the UE
literature and the difference is sometimes not made explicit.

1.2 Contributions

We claim that viewing UE as a primitive with a fixed syntax and a set of security
properties is perhaps too restrictive. Instead, we propose a different approach,
where we directly formalize the goal of UE. That is, UE is not a scheme but
an interactive protocol between the owner and the host, the goal of which is
to implement a secure storage service in the setting where different pieces of
information may leak to the adversary or be modified by her.

Our modeling framework offers more flexibility than the standard approach
and makes it easy to express different confidentiality and integrity guarantees.
Moreover, it precisely formalizes resources required by protocols (such as chan-
nels and storage), making the security-efficiency trade-offs achieved by different
constructions easy to see. Our framework generalizes all existing definitions, as
well as enables finding new trade-offs, which would require UE with yet different
syntax.

We then give three instantiations of our framework, focusing on ciphertext-
independent UE. The first explains the known notion of IND-CPA security. In
the second instantiation, we consider the setting where the adversary can control
randomness, an attack vector so far not considered for UE. Not being constrained
by any fixed syntax, we design a scheme with better bad-randomness resistance
than what is possible with any existing syntax. Our construction is very simple
and ready to implement in practice. Finally, the third instantiation considers
active attackers who can modify the host’s storage. While this attack vector is
more realistic than, e.g., injecting messages on the channel (since the storage
is long-lived), most existing security notions are not suitable, as they offer no
guarantees if the host updates injected ciphertexts. Our construction protects
confidentiality of data against active attackers. It builds on a suitable IND-RCCA
secure UE scheme [LT18].

3

Framework for defining UE. In particular, we define security of UE protocols
using the simulation-based paradigm, in a composable framework. This means
that the real-world execution of a UE protocol should be indistinguishable from
the ideal-world execution, where a trusted storage service keeps the owner’s
messages secret and all leaked information is simulated without them.

More precisely, the real world consists of a number of limited and imperfect
resources: memories, channels and randomness sources (then the protocol must
be deterministic and stateless). Each resource has bounded capacity and can
only be used once, which formalizes efficiency. Moreover, the adversary may
corrupt each resource and obtain read and/or write access to the contents (i.e.,
the stored, sent or sampled value). Finally, to express assumptions about the
real world (e.g. authenticated channel), each resource is parameterized by two
predicates: can-leak and can-inject, which control the adversary’s read and write
access, respectively. The leakability and injectability guarantees of a resource
may change over time, for example, the first channel is leakable only once the
second channel leaks. This is expressed using events [JMM19]: each resource can
trigger events, such as leaked, and the global list of all events that happened so
far is the input to can-leak and can-inject predicates.

The ideal world, on the other hand, consists of the secure storage service and
a simulator. The ideal storage formalizes security of a UE protocol. It allows the
owner to store, retrieve and delete messages, as well as to update all ciphertexts
at once. Then, it gives to the simulator read and/or write access to only a subset
of stored messages. Whether the access to a message is granted is determined by
the can-leak and can-inject predicates, parameters of the storage. As in the real
world, they can depend on the list of all events (such as the owner updating).

We highlight some relevant points of our model:

– Flexible assumptions and guarantees. Different assumptions and guarantees
can be expressed by adjusting can-leak and can-inject predicates in the real
and the ideal world, respectively.

– Clear semantics. The semantics of our statements are simple — one can
think of the protocol as of the idealized trusted storage — making it easy
to judge if a statement is suited for a given application. In contrast, for
game-based definitions, judging if a given combination of security properties
is exactly what is needed tends to be hard.

– Flexible syntax and comparable efficiency. The protocol can use its resources
in an arbitrary way, and the assumed resources make it easy to compare
efficiency. For instance, a protocol using ciphertext-dependent UE simply
requires more channels, on which the host can send all ciphertext headers.
In a different protocol, the host could collect information from all stored
ciphertexts into a single shorter header. Such protocol would have efficiency
between ciphertext-dependent and ciphertext-independent UE. (Its security
guarantees would probably also be in between, since leaking the token would
not affect messages stored after it is created.) This and many other examples
show that hard-coding the syntax is unnecessarily restrictive.

4

– Stronger statements. The type of statements we make is that a protocol im-
proves arbitrary guarantees of real-world resources. For example, a protocol
using IND-CCA secure UE should improve confidentiality, while preserving
integrity protection. This is stronger than a standard statement formalizing
IND-CCA, where the real-world resources are always injectable.

– Easy to extend. While we focus on memory, channels and randomness, one
can easily model different assumptions, such as a common reference string.
This may enable more efficient solutions than standard UE.

Randomness corruption. As bad randomness generators are a very realistic at-
tack vector (a well-known example is the backdoored DualEC PRNG [SS06,
SF07]), it comes as a surprise that they have never been considered in the con-
text of UE. In fact, existing schemes achieve very different guarantees in the
presence of attackers who can corrupt randomness. For example, consider leak-
ing randomness used to encrypt a message. With the RISE scheme [LT18] (where
encryption is essentially ElGamal) this allows to decrypt the message, while the
BLMR [BLMR13] and SHINE [BDGJ20] schemes remain secure. Second, con-
sider leaking randomness used by nxt to generate a token. The way SHINE is
defined, nxt first chooses the new key at random, and then computes the token
using both keys. This means that leaked randomness contains the new key and
can be used to decrypt all ciphertexts. An equivalent way to define SHINE is to
generate the token at random and compute the new key. Intuitively, this is more
secure, since the token cannot be used to decrypt.

In this work, we propose a construction that improves upon all existing
schemes. Our protocol is for the setting where randomness may be chosen by
the adversary. Roughly, the first idea is to replace the randomized encryption
algorithm with one that is nonce-based and hence deterministic. This is done in
a generic way, using a PRF, as in [Rog04]. This is clearly better, since nonces do
not need to be secret. To choose the nonce, our protocol assumes that each stored
message has a unique identifier. This assumption seems reasonable in practice
— if the owner can keep a key, then he can also store a message counter.4

The only randomized operation left is token generation nxt. The second idea
is to minimize the number of these operations that can be affected by adversary’s
randomness. In particular, the randomness for nxt is derived from a fresh random
value mixed with the old key. This means that randomness is secret as long as
either the old key or the fresh randomness is secret.

We build our protocol from (slightly modified) SHINE0 [BDGJ20] and prove
that it achieves desired security in the ideal-cipher model, assuming DDH. We
stress that it is not possible to generically construct a protocol for our setting
from a UE scheme with some property, because all existing properties deem
secure protocols that trivially break if the adversary controls randomness. While
we could introduce a new syntax for nonce-based UE, as well as security games
that consider randomness corruptions, this would be complicated and is not
necessary with our framework.
4 If he has multiple devices, then each device can have an identifier and a local counter.

5

Injections. Assuming that the host can protect integrity of stored data can often
be considered unrealistic, as storing large amounts of data for long periods of
time increases the risk of data corruption (e.g. due to system errors, or hackers).
Therefore, we now consider active attackers who can, in addition to leaking,
inject arbitrary values into the host’s memory. The goal is to improve confiden-
tiality, while preserving any (very weak) authenticity guarantees of real-world
memory. Intuitively, this means that the attacker can inject, but only values
unrelated to encrypted ones.5

To achieve this, first, we use the UE scheme of [LT18], which provides IND-
RCCA security, where the adversary is allowed to update arbitrary ciphertexts.
The IND-RCCA notion is similar to the well-known IND-CCA, but it does not
consider coming up with a different ciphertext of the exact same message an
attack. This weaker notion is sufficient for our goals. Second, we note that the
ideal storage should be considered as a whole, so, naturally, the expected behav-
ior is that if the owner retrieves a message he stored under identifier i, then he
does not receive the message he stored under j. Since UE schemes are oblivious
to identifiers, we encrypt the message with its identifier. A message with wrong
identifier is treated as malformed.

1.3 Related Work

Ciphertext-dependent and independent UE. There are two main flavors of UE:
ciphertext-dependent [BLMR13, EPRS17, BEKS20, CLT20], where the update
token depends on the ciphertext, and ciphertext-independent [LT18, KLR19,
BDGJ20, Jia20], where one token can be used to update any ciphertext.

Ciphertext-independent UE is more efficient, because a full key rotation re-
quires sending only one token to the host. In contrast, in ciphertext-dependent
UE, the host sends a header for each ciphertext and then the owner sends a token
for each header (which means that the communication cost scales linearly in the
number of stored messages). On the other hand, ciphertext-dependent schemes
have better security guarantees in the presence of fully active attackers. In partic-
ular, the only scheme with the strongest confidentiality (IND-CCA) and integrity
protection (INT-CTXT) in this setting [CLT20] is ciphertext-dependent. The
only ciphertext-independent scheme for this setting [KLR19] achieves weaker
guarantees (IND-RCCA and INT-PTXT).

Active attackers. Unlike standard encryption schemes, UE schemes have two
algorithms that take as input ciphertexts, and hence can be subject to injections:
decryption dec and update upd. Fully active attackers, who can inject to both
algorithms, are only considered in [KLR19, CLT20]. Most notions formalizing
5 One may notice that this setting does not make much sense for standard symmetric

encryption, where one provides authenticity before considering confidentiality. This
is not the case in the presence of key leakage, which makes some injections inherent.
Such injections should not violate confidentiality, which requires a stronger notion
than, e.g., IND-CPA.

6

integrity consider ‘semi-passive” attackers, who can inject to dec but not upd
[EPRS17, BEKS20, BDGJ20]. There are also notions that consider adversaries
who inject into upd but not dec, e.g. IND-CPA in [BLMR13].

Hiding metadata. In addition to traditional confidentiality and integrity pro-
tection, the literature defines properties that formalize confidentiality of various
metadata, for example, how many times (if at all) a ciphertext has been updated
[BDGJ20, BEKS20]. Another property formalizes a form of unlinkability — af-
ter two ciphertexts are updated, it should be hard to tell which is which. See
[BDGJ20] for a better overview of such properties.

1.4 Outline of the Paper

Section 2 presents background on the constructive cryptography framework and
updatable encryption, necessary to define our framework in Section 3. Section 4
presents the first instantiation of our model, explaining IND-CPA secure UE. It
serves as a basis for the next two instantiations, considering randomness corrup-
tion in Section 5 and injections Section 6. Section 7 contains conclusions and
open problems.

2 Preliminaries

2.1 Notation

We use y ←$ alg(x) to denote assigning to the variable y the output of a random-
ized algorithm alg on input x. For simplicity, we make the security parameter
implicit. Furthermore, we use the req command, which is shorthand for verifying
a condition and returning ⊥ if the condition is false.

2.2 Updatable Encryption

The best way to explain UE is to describe how the scheme will be used. See
Fig. 1 for an illustration. The execution proceeds in epochs, where each epoch
corresponds to one secret key and epoch change corresponds to key rotation. The
first epoch e = 0 is created by the owner generating the first key k0 ←$ ue.kg().
He can now use k0 to encrypt and decrypt messages, just like in a standard
encryption scheme. To create a new epoch, the owner takes the current key
ke and runs (ke+1, ∆e) ← $ ue.nxt(ke) to generate the next epoch’s key ke+1
and the update token ∆e. Then, he sends ∆e to the host, who replaces each
stored ciphertext ce by ce+1 ←$ ue.upd(∆e, ce). The new ciphertext ce+1 can be
decrypted using ke+1 (but not ke).

7

k1 k2 k3 k4 k5

c4 c5

∆1 ∆2 ∆3 ∆4

ue.kg()

m
ue.enc(k4,m)

ue.upd(∆4, c4)

Fig. 1: An illustration of a UE scheme being used. Nodes represent epochs and
edges (dashed arrows) represent key rotations. In this scenario, a message m was
encrypted during epoch 4 under k4, resulting in a ciphertext c4. When epoch 5
was created, c4 was updated using ∆4, resulting in c5, encryption of m under
k5.

k1 k2 k3 k4
�

k5 k6

� ��

∆1
�

∆2 ∆3
�

∆4
�

∆5

Fig. 2: An illustration of corruptions of keys and tokens. If the keys and tokens
marked by� are corrupted, then all epochs marked by�are exposed (i.e., those
reachable from a corrupt node via corrupt edges, irrespective of direction).

Syntax and correctness. We adopt the syntax of [LT18]. A UE scheme is defined
over a message space M, ciphertext space C, key space K, and token space T ,
and consists of the following algorithms:

– k0 ←$ ue.kg() generates the first secret key k0 ∈ K
– ce ←$ ue.enc(ke,m) given a key ke ∈ K and a message m ∈ M, outputs a

ciphertext ce ∈ C
– m← ue.dec(ke, ce) given a key ke and a ciphertext ce ∈ C, outputs a message
m ∈M or ⊥

– (ke+1, ∆e) ←$ ue.nxt(ke) given a key ke ∈ K, outputs a fresh key ke+1 ∈ K
and an update token ∆e ∈ T

– ce+1 ← $ ue.upd(∆e, ce) given a token ∆e ∈ T and a ciphertext ce ∈ C,
outputs updated ciphertext ce+1 ∈ C

Correctness, intuitively, requires that any epoch-e ciphertext can be de-
crypted using epoch-e key. We refer to [LT18] for a formal definition.

Confidentiality notions. In this paper, we use two confidentiality notions for UE:
IND-ENC-CPA, where we adopt the definition of [BDGJ20], and IND-ENC-RCCA
defined in [KLR19]. (ENC in IND-ENC-CPA indicates that we only consider se-
crecy of the message, and not of metadata.) We outline them in the rest of this
section. See Appendix A.2 for precise definitions.

8

Intuitively, in IND-ENC-CPA the challenger allows the adversary to drive a
scenario envisioned for UE. In particular, the adversary can create a new epoch,
encrypt messages under the current key, and update a ciphertext to the current
epoch. Any generated or updated ciphertext is given to the adversary, while
keys and tokens are secret and can only be obtained from a corrupt oracle. At
some point the adversary requests a standard IND-CPA challenge and continues
driving the execution. Finally, the adversary wins if it guesses the challenger’s
bit and it does not trivially win, i.e., the challenge ciphertext cannot be trivially
decrypted computed using the keys and tokens to the adversary. See Fig. 2 for
an illustration.

IND-ENC-RCCA security is a relaxed variant of CCA, where the adversary
is allowed to query the decryption oracle with any arbitrary ciphertext, except
when it decrypts to either of the two challenge messages. Moreover, the adversary
is allowed to query the Upd oracle for arbitrary ciphertexts, i.e., these need not
be first generated using the encryption oracle.

2.3 Constructive Cryptography

We state our results in the constructive cryptography (CC) framework [MR11,
Mau11]. We follow the presentation in [JMM19].

Resources. An important notion in CC is that of a resource (resources are similar
to functionalities in the UC framework [Can01]). A resource is simply a reactive
system that can be accessed via one or more interfaces. After receiving input
at an interface, the resource immediately returns outputs at the same interface.
CC does not define any computational model and is only concerned with input-
output behavior of resources. We typically describe this behavior using pseudo-
code and resources should be thought of as black boxes with behavior specified
by the code. (Formally, resources are modeled as random systems [Mau02], where
the interface address is encoded as part of the inputs.)

We usually distinguish between interfaces meant for parties, e.g. an interface
for data owner called O, and those meant for the adversary, typically called E
(for Eve). For example, consider an insecure memory resource defined in Fig. 3,
which allows the owner to store a message and retrieve the last stored value.
The owner’s message is available at the adversary’s interface, modeling that the
memory is insecure. Note that resources can have an initialization procedure
initializing any and all global variables (all other variables local), which runs the
first time any input is triggered on any interface.

Converters. A protocol is modelled by converter-systems, each representing all
local computations performed by a party. Such systems have two types of in-
terfaces: the inner interface that connect to (an interface of) different resources,
such as memories, and the outer interface that is exposed to the environment.
Upon receiving an input on its outside interface, the converter can trigger (a
bounded number of) inputs to the resource via its inner interface, perform some

9

Resource Mem

Initialization
s← empty

Interface E
Input leak
output s

Interface O
Input (store,m) ∈ M
s← m
output ok

Input retrieve
output s

Resource Key

Initialization
k � K

Interface O
Input: fetch

output k

Fig. 3: The memory and key resources the O and E interfaces is are understood
to be controlled by the (honest) data owner and the adversary, respectively.

internal computations, and eventually output some value on the outside inter-
face. Similar to resources, we describe converters using pseudo-code.

For example, consider a protocol in which the owner uses a secret key to
encrypt data in an insecure memory. This is represented by a converter prot
which, on the inner interface, connects to the memory and key resources defined
in Fig. 3 and on the outer interface exposes the same interface as the memory
resource. The behavior of prot can be described as follows: on input (store,m)
on the outer interface, fetch the key from the key resource (using the inner
interface), store m encrypted under the fetched key in the memory resource and
output ok on the outer interface.

A converter prot whose inner interfaces is connected to an interface I or a
resource R yields a new resource, denoted protIR (hence the name — a protocol
converts R into a new resource). In the example above, the new resource is
protO[Mem,Key] (denoting that prot is connected to all O interfaces).

Global Events. We use the enhanced version of constructive cryptography with
the notion of globally observable events, introduced in [JMM19], which encapsu-
lates the dependencies between resources. That is, resources can trigger events
that get added to a global event history (GEH), a global (ordered) record of
all events that have been triggered in the environment, that is accessible to all
resources. So, resources use the global event history in order to get a sense of the
state of other resources, and act accordingly. Formally, events are a generaliza-
tion of monotone binary outputs (MBO) introduced by Maurer et al. [MPR07].
Roughly, an MBO is a value that can change from 0 to 1 but not back, which can
be interpreted as a single event happening once the MBO changes to 1. An event
then just corresponds to a named MBO and the global event history (GEH) H
is a list of event names.

In this work, the global event history is represented by H. Further, to append
the event n to the GEH we use the notation H +← En, and to check if event n1
happened before event n2 (i.e., En1 got appended to the GEH first) we use the
notation En1 ≺ En2 . Lastly, we use the notation En, which is shorthand for En ∈ H.
Importantly, note that the GEH from the real-world and the GEH from the ideal
world are completely independent, and resources in one do not have access to

10

O

E

Rprot O

E

S

sim

Fig. 4: Execution of the protocol in the real world (left) and the ideal world with
the simulator attached to Eve’s interface (right).

the GEH of the other. This is due to the fact that these are two separate and
independent execution environments.

Contrary to the treatment in [JMM19], we allow the same event to be added
to the GEH multiple times. When this happens, however, the event gets ap-
pended with a counter, indicating which instance of the event this is. For exam-
ple, the first time H +← En is called, the event En1:0 gets appended to the GEH.
Then, whenever H +← En is called again, En1:1 gets appended to the GEH, and so
on. If we think of the GEH as an array, adding an event corresponds to scanning
the array for events with the same label and resource id, maintaining a counter
for the number of these, and appending the new event with the final tally. Then,
we can reference an instance of an event by specifying the index of it. Further, if
no index is specified, this implicitly translates to the 0-th index. So, En1:i would
correspond to the i-th instance of the event, and En would correspond to the
event’s first (and potentially only) appearance in the GEH.

We associate events with a label (e.g., leaked), and an id representing the
resource that triggered it. We then use the notation E label

id to fully identify an
event.

Resources and converters have read/write access to the global event history.
That is, the global event history is an additional component (of both the real
and ideal world) that models event-awareness in an abstract manner, rather
than formalizing them as outputs that need to be explicitly passed between
components.

The Construction Notion. The goal of a protocol is to convert the so-called
real-world resources into a better ideal-world resource; that is, to construct the
ideal resource. If this is the case, then instead of the protocol with its real-world
resources, one can think of the ideal resource, which is secure by design. For
instance, the protocol prot discussed above constructs a secure memory, which
leaks to the adversary only message length, from an insecure memory and a key.

To formalize this, we first introduce the simulator, which is a converter at-
tached to the adversary’s interface of the ideal resource. Its task is to emulate
the adversary interfaces of the real world resources. Now the real world with the
assumed resources R and the protocol and the ideal world with the ideal resource
S and a simulator should be indistinguishable. See Fig. 4 for an illustration. In-
tuitively, if this is the case, then whatever the adversary could compute using

11

her interfaces of the real-world resources, she could also compute using the ideal
resource. Hence, the real world is just as good.

We proceed to formalize indistinguishability of two systems R′ and S′. To
this end, we consider a distinguisher D — a system with access to all of the
resource’s interfaces, whose goal is to determine which system it is interacting
with.

The distinguisher also has read/write access to the global event history H,
which we denote DH. Thus, the real and the ideal world can only be indistin-
guishable if they trigger analogous events. That is, after D’s interaction with
either world, the sequence of events must be the same. Since resources in both
worlds are different, however, we cannot have exactly equal events. Instead, we
allow renaming of events, by defining a function τ that maps ideal-world events
to their real-world analogues. This means that in the ideal world D interacts with
H, denoted DH, and in the real world D interacts with τ(H), denoted Dτ(H)

Definition 1. We say that two systems R′ and S′ are indistinguishable under
renaming τ , denoted

R′ ≈̂ S′

if there exists a relabeling τ such that τ only renames events triggered by S′, and
for all efficient event-aware distinguishers DH, the advantage ∆DH(R′,S′) :=
Pr

[
Dτ(H)(S′) = 1

]
− Pr

[
DH(R′) = 1

]
is negligible.

3 Modeling Guarantees of Updatable Encryption

Recall that the goal of an updatable encryption scheme is to enable construct-
ing a storage service for the data owner, maintained with the help of the host.
Moreover, this should be achieved using imperfect and limited resources. In this
section, we formalize this goal using constructive cryptography. The model con-
sists of two parts. First, we formalize the imperfect real-world resources available
to protocols, such as channels and memories that are leakable or even injectable,
and have limited capacity. Then, we define the resource Storage, which models
an ideal storage service. The goal of a protocol is then to construct Storage using
a limited number of real-world resources.

3.1 The Real-World Resources

The resources we are concerned with are memories for the owner and the host,
communication channels between them and randomness. The corresponding
memory, channel and randomness systems are defined in Fig. 5.

At a high level, the memory allows a user at interface U to store a single
message and later delete it, the channel allows a sender at interface S to send
a single message to a receiver at interface R, and the randomness source allows
a user to fetch a single random value. The user, sender and receiver interfaces
are parameters of the resources and can be set, e.g., to the owner O or the
host H. Moreover, each resource has a parameter id, identifying this particular

12

Resource Memid,U
L,I,M

Parameters: Identity id, interface name U,
can-leak predicate L, can-inject pred-
icate I, and message space M with
M∩ {empty, used} = ∅.

Events: E leaked, E injected

Initialization
s, t← empty

Interface U
Input (store,m) ∈ M
if s = empty then

s, t← m
output ok

Input retrieve
output s

Input delete
s← used
output ok

Interface E
Input leak
req L(H) ∧ s /∈ {empty, used}
H +← E leaked

output s

Input (inject,m) ∈ M∪ {used, original}
req I(H)
if m 6= original then s← m
else s← t

H +← E injected

output ok

Input leakLength
if s ∈ {empty, used} then output s
else output |s|

Resource Chid,S→R
L,M

Parameters: Identity id, sender interface
S, receiver interface R, can-leak pred-
icate L, and message space M with
M∩ {empty, used} = ∅.

Events: E leaked

Initialization
s← empty

Interface S
Input: (send,m) ∈ M

if s = empty then s← m
output ok

Interface R
Input: receive

if s /∈ {empty, used} then
s′ ← s; s← used
output s′

else output ok

Interface E
Input: leak

req L(H) ∧ s /∈ {empty, used}
H +← E leaked

output s

Input leakLength
if s ∈ {empty, used} then output s
else output |s|

Resource Randid,U
I,R

Parameters: identity id, interface name U, randomness-space R, can-inject predicate I.
Events: E injected

Initialization
r ←$ R

Interface U
Input: sample
r′ ← r; r ← used
output r′

Interface E
Input: (inject, r′) ∈ R

req I(H) ∧ r 6= used
r ← r′

H +← E injected

output ok

Fig. 5: The real-world resources: leakable and injectable memory, leakable chan-
nel and injectable randomness.

13

instance (for example, a protocol can use the i-th channel, meaning it uses a
channel with id = i). This basic functionality is quite simple. We now explain
how further details of the resources formalize efficiency and imperfectness of the
real world.

Formalizing efficiency. To model limited storage and communication bandwidth,
the memory and channel resources are each parameterized by a message space
M and only a value from M can be stored or sent. Moreover, to model limited
number of communication rounds, the channels are single-use (as a result, proto-
cols using more rounds require more channels). Finally, to model limited amount
of randomness, the resource outputs only one value sampled from a space R.

Formalizing imperfectness. The goal is to reflect the setting where any piece of
information may (independently) leak or become corrupted (due to the host’s or
the owner’s negligence). To this end, we make resources leakable and injectable,
meaning that the adversary has read and write access to each stored, sent or
sampled value (via inputs leak and inject). For simplicity, the randomness re-
source is only injectable (here, injecting gives strictly more power than leaking)
and the channel is only leakable (we do not consider this attack in this work, so
we do not define it; see also Section 7).

Each time the adversary leaks or injects a value, which should be thought
of as a corruption, a leaked or injected event is triggered. Looking ahead, the
guarantees provided by protocols will depend on a particular sequence of such
events. Note that a resource can be corrupted multiple times.

Furthermore, the resources are parameterized by predicates can-leak L and
can-inject I, which control the adversary’s read and write access, respectively.
The input to the predicates is the event historyH, modeling that the access rights
change over time. For example, a memory with I always false offers integrity
protection (which is an assumption about the real world). Another example is a
memory with I that is initially false and becomes true after a number of store
operations.

Finally, we note that leakability and injectability are orthogonal, e.g. the
adversary may inject a value into a memory without knowing the value she
overwrites. Therefore, it makes sense to also give her the possibility to undo
the injection and “inject” the original value (this is something she cannot do if
can-leak is false).

Implicit and explicit resources. In principle, in constructive cryptography, every-
thing that matters, for example storage, randomness and even computation, is
modeled explicitly as a resource, while protocols only describe a way to connect
resources they have available. However, for simplicity, one often does not make
resources that are not of concern for a given statement explicit and describes
protocols that use them implicitly without limitations.

For example, we model explicit memory resources and protocols must be
stateless. Randomness is a concern only for some of our statements, where we

14

use explicit randomness resources and the protocols must be deterministic. On
the other hand, in all other statements, we describe randomized protocols.

3.2 The Ideal Storage Service

This section defines the ideal storage service Storage, constructed by protocols
using updatable encryption. At a high level, Storage contains n memory cells,
and offers additional functionality related to being maintained by the owner and
the host. A memory cell is represented as a memory resource defined in Fig. 5
(formally, cells are not individual resources, but sub-modules of a single storage
resource). The can-leak and can-inject predicates of a cell formalize, in a simple
way, the achieved security guarantees for a single value stored by the owner.

The storage service Storage is defined in Fig. 6. In essence, it allows the owner
to access different cells, as well as to update all cells. Before we describe Storage
in more detail, we note that all “inputs” of the owner discussed so far (such as
store or update) are in fact “actions”, which will be implemented in the real world
by interactive protocols between the owner and the host. For example, retrieving
a value requires the owner to request it, then the host to send the ciphertext,
and only then can the owner decrypt it and output the value. Technically, this
means that in the real world each action requires a sequence of activations of the
owner’s and the host’s protocols, in order to complete. This needs to be reflected
in the ideal world, where such activations correspond to additional inputs to the
ideal resource Storage.

For the above reason, we distinguish two types of inputs at the owner interface
of Storage: first, those that initiate an action, such as store or update, and,
second, an additional input activate. Further, the resource has a host interface
that takes only the input activate. Each action has a sequence of activate
inputs from the owner and the host that need to follow it. The last such input in
the sequence always comes from the owner and it returns the output of the action,
e.g. the retrieved value. For simplicity, we make actions atomic — after an action
is initiated, Storage blocks (i.e., outputs ⊥) until the sequence of activations is
completed. That is, no new actions can be initiated during that time. We stress
that this only affects the owner and the host, while the adversary can interact
with the resource at any time.6

For flexibility (different protocols may require different sequences), we param-
eterize the resource by a dictionary ActSeq that maps actions, represented by
commands initiating them, such as store, to activation sequences. An activation
sequence is represented by a stack of values owner-activate and host-activate,
where the activations should be executed from the one on the top of a sequence
to the one on the bottom.
6 One can also consider a weaker statement, where no guarantees are given unless the

correct sequence is executed after each input (formally, this means restricting the
class of distinguishers to those that input activate correctly). We do not formalize
this, since our protocols achieve the stronger guarantee. However, deriving the weaker
notion from our definition is straightforward.

15

Resource Storage
n,~L,~I,M,ActSeq

Parameters:
– Maximum number n of stored values,
– Can-leak predicates ~L = (L1, . . . ,Ln) and can-inject predicates ~I = (I1, . . . ,In),
– Message space M,
– Dictionary ActSeq, assigning to each action act ∈ {store, retrieve, delete, update} a se-

quence of activations that need to follow it, represented as a stack.

Variables:
– Memory cells Mem1,O, . . . ,Memn,O with can-leak predicates L1, . . . ,Ln, can-inject predi-

cates I1, . . . ,In and message space M,
– Values curAct, curCel, curRet, curSeq, each initialized to none.

Interface O
Input (inp, i) ∈ ({retrieve, delete}

∪ {store} ×M)×N
req curAct = none

call ret← inp at int. O of Memi,O
if inp = (store,m) then curAct← store
else curAct← inp
(curCel, curRet)← (i, ret)
curSeq← ActSeq[curAct].copy()
H +← Estart,curAct,curCel

output ok

Input update
req curAct = none
(curAct, curCel, curRet)← (update, 0, ok)
curSeq← ActSeq[update].copy()
H +← Estart,curAct,curCel

output ok

Input activate
req curSeq.peek() = owner-activate
∧ curAct 6= none

curSeq.pop()
H +← Eowner-activate

if curSeq.empty() then
H +← EcurAct,curCel

curAct← none
output curRet

else output ok

Interface E
Input (command, i)

call ret← command at int. E of Memi,O
output ret

Interface H
Input activate
req curSeq.peek() = host-activate
∧ curAct 6= none

curSeq.pop()
H +← Ehost-activate

output ok

Fig. 6: The resource representing the storage system with n memory cells.

In more detail, Storage works as follows. Information about the currently
executed action is stored in the variables curAct, curCel, curRet and curSeq.
In particular, curAct is the action’s name (e.g. store), curCel is the memory
cell the action is related to (an integer), and curRet is the output generated
by the action (to be outputted upon the last activation). Finally, curSeq is the
sequence of activations that still need to be executed before the action completes.

When no action is being executed, curAct is set to none. At this point, and
only then, the owner can initiate an action by inputting (inp, i), where inp is
the input to a cell resource, e.g. (store,m) and i is the index of the cell. Upon
such input, Storage first inputs inp to the i-th Mem resource. If the output from
Mem is not empty nor used (else, no action is initiated and Storage immediately
outputs ⊥), it is stored in curRet and the variables curAct, curCel and curSeq
are initialized according to the input. Finally, it triggers an event signalizing

16

the action’s start. The value inp can also be set to update, in which case i is
ignored. The only consequence of an update is triggering an event, on which the
can-leak predicate of the cells may depend.

While an action is being executed, the only inputs from the owner and the
host accepted by Storage are activate. If the input is the next one in curSeq,
it is removed from the stack and the activation event is triggered. Upon the
owner’s activate, the resource additionally checks if the action is complete,
i.e., if curSeq is empty. If this is the case, an event denoting action’s completion
is triggered and the resource outputs the stored return value curRet.

4 Explaining IND-CPA

In this section, we show how an updatable encryption scheme can be used in a
protocol that constructs the storage resource Storage from a number of leakable
memories for the host and the owner, and a number of channels between them.
In this construction, we do not consider randomness corruption or cost, and
hence for simplicity we allow the protocol to be randomized.

4.1 Protocol

The protocol requires a UE scheme ue. It implements each action by a two-move
protocol: 1) The owner sends to the host the action’s name and the cell index on
a “command” channel. For some actions, he sends more data on an additional
channel. 2) The host performs the requested action and sends back data needed
to compute the action’s output, or an acknowledgment for actions without out-
put. Recall that Storage requires that actions are atomic. To achieve this, the
owner’s protocol, after Step 1), remembers the current action and outputs ⊥
until it receives an acknowledgment. Specifically, the actions proceed as follows:

Action store message m. The owner reads the current key k from his memory
and sends c←$ ue.upd(k,m) to the host on an additional channel. The host
stores c in the memory specified by the index.

Action update. The owner reads the current key k from his memory, computes
(k′, ∆) ←$ ue.nxt(k), stores k′ in the next memory, erases k, and sends ∆
on an additional channel. The host, for each ciphertext c, computes c′ ←
$ ue.upd(∆, c), stores c′ in the next memory and erases c.

Action retrieve. After receiving the command, the host sends the given cipher-
text on an additional channel.

Action delete. After receiving the command, the host deletes the ciphertext.

To summarize, the protocol requires the real-world resources RUE defined
in Fig. 7. Note that all memories are non-malleable. The protocol converters
ue-owner and ue-host are formally described in Appendix B.1, where we take
care of all the necessary bookkeeping.

17

Mem(key,e),O
K , e ∈ [nu] small memories, where the owner stores secret keys

Mem(act,a),O
H , a ∈ [ntot] small memories, which the owner uses to keep track

of which action is being executed, if any.
Mem(i,e),H

C , i ∈ [ns] large memories, where the host stores ciphertexts
Ch(ctx,i),O→H
C , i ∈ [ns] channels, where the owner sends ciphertexts to store

Ch(tok,e),O→H
T , e ∈ [nu] channels, where the owner sends tokens

Ch(ctx,i,j),H→O
C , i ∈ [ns], j ∈ [nsr] a number of channels, where the owner retrieves ci-

phertexts: i-th ciphertext can be retrieved on chan-
nels (ctx, i, 1) to (ctx, i, nsr)

Ch(cmd,p),O→H
ns×{s,r,d,u}, p ∈ [ntot] channels where the owner sends commands he wants

the host to execute
Ch(ack,p),H→O
{1} for p ∈ [ntot] channels where the host acknowledges executing

commands

Fig. 7: The real-world resources RUE, where ns, nd and nu denote, respectively, the
(desired) numbers of store, delete and update actions, nsr denotes the number
of retrieve actions per stored value, and ntot = ns+nd+nu+nsnsr. All can-leak
predicates are arbitrary (except for the command and ACK channels, where L
is true) and all can-inject predicates are false.

4.2 Construction Statement

The protocol constructs the ideal storage resource Storagens,~L,~I,M,ActSeq, where
M is the message space of the UE scheme, all can-inject predicates in ~I are false
and ActSeq := {act : [owner-activate, host-activate] for act ∈ {store,
retrieve, delete, update}}. We need this specific activation dictionary since
each action follows the same structure: the owner sends a message to the host,
the host replies accordingly (an activation), and the owner receives this response
(a second activation).

We proceed to define the can-leak predicate of the i-th cell, Li. We first in-
troduce some notation. Recall that the Eupdated events partition H into segments,
which we call epochs (where each epoch corresponds to a single encryption key).
We define the function epoch(H, E id), which returns the set of all epochs in H
that contain the event E id, as follows:

epoch(H, E id) := e | (Eupdated:e ≺ E id ∧ ¬∃e′ : Eupdated:e ≺ Eupdated:e′ ≺ E id)
∨ (e = 0 ∧ E id ≺ Eupdated:1)

Next, we define the predicate exposed(H, e), which determines if the e-th epoch
in H is exposed, that is, if the information leaked to the adversary is sufficient to
decrypt ciphertexts from epoch e. Intuitively, e is exposed if there exists another
epoch e′ (before or after e) such that the owner’s key in e′, as well as all tokens

18

between e and e′ leaked to the adversary. Formally,

exposed(H, e) := ∃e′ : E leaked
Mem((key,e′),O)

∧ ∀e′′ ∈ [e′ + 1, e] ∪ [e+ 1, e′] : E leaked
Ch((tok,e′′),O→H)

The next predicate ctxLeaked(i, e) determines if the ciphertext containing the
i-th value leaked during epoch e. Recall that the ciphertext may leak in three
ways: 1) from one of the host’s memories, 2) from the owner-to-host channel
used to send the first encryption, and 3) from one of the host-to-owner channels
used to retrieve the value.

ctxLeaked(i, e) := E leaked
Mem((i,e),H) ∨ e ∈ epoch(H, E leaked

Ch((ctx,i),O→H))

∨ ∃j : e ∈ epoch(H, E leaked
Ch((ctx,i,j),H→O))

Finally, the can-leak predicate Li(H) is true if and only if the ciphertext con-
taining the i-th value leaked during an exposed epoch e.

Li(H) := ∃e : exposed(H, e) ∧ ctxLeaked(i, e) (1)

Commitment problem. As currently defined, we cannot construct a simulator
that makes the real and ideal worlds indistinguishable because of the so-called
commitment problem: if the distinguisher leaks a ciphertext first and then the
corresponding decryption key, then the simulator must first output a cipher-
text (e.g. encryption of 0’s) and afterwards output a key that explains it to
the message it receives from Storage. Without very long keys or strong assump-
tions, achieving this is often impossible [Nie02]. Therefore, we instead weaken
the statement and tweak the can-leak predicate for the memories containing keys
(and channels containing tokens, since keys can be recovered from token leaks)
to disable such scenarios.7

Essentially, we want to enforce that if some ciphertext leaked in a non-
exposed epoch e, then any action that flips e to exposed is disallowed. Flipping
is formalized as

flip(H, Eid, e) := ¬exposed(H, e) ∧ exposed(H+ {Eid}, e)

This leads to the following can-leak predicate of the real-world memory (the
predicate for channels Ch(tok,e),O→H is analogous).

LMem((key,e),O)(H) ≤ ∀e′ :
(
@i : ctxLeaked(i, e′) ∨ ¬flip(H, E leaked

Mem((key,e),O), e
′)

)
(2)

After taking care of all these technical details, we are now ready to state our
first main theorem, proved in Appendix B.2:
7 Readers more familiar with game-based notions can think of the situation when

adversary’s corruption allowing to trivially decrypt the challenge. In a game, it
simply loses (cannot corrupt). We reflect it closely by saying that a memory cannot
leak. However, this hurts composition — we no longer make a statement about
any environment, which corrupts arbitrarily, but one where the memory is never
corrupted after the ciphertext leaks.

19

Theorem 1. There exists an efficient simulator sim such that, assuming ue is
IND-ENC-CPA secure,

ue-ownerOue-hostHRUE ≈̂ simEStoragens,~L,~I,M,ActSeq,

where the real-world resources RUE are defined in Fig. 7 and have the additional
restrictions from equation (2), and the can-leak predicates ~L of Storage are de-
fined in equation (1).

5 Resistance Against Randomness Corruption

We extend our construction from the previous section to offer better protection
against bad randomness sources. The additional attack vector is modeled by
requiring that all protocols are deterministic and assuming explicit injectable
randomness resources in the real world. The achieved security is reflected by
the can-leak predicates of the constructed storage resource Storage, which now
depend on randomness-injected events.

5.1 Protocol

We start with the construction from Section 4 and assume that the update algo-
rithm ue.upd of the underlying updatable encryption scheme is deterministic.8
At a high level, we mitigate the effect of bad randomness by, first, making the
store operation (which encrypts the message) deterministic. This is possible, be-
cause the protocol can access the cell index i, which is unique for each stored
message. This means that we can derive encryption randomness as the PRF
output on input i, where the secret seed is kept as part of the owner’s current
epoch key. Second, we derive the randomness for update generation by mixing
the fresh random coins with the old epoch key. This way, the new epoch key is
compromised only if both the old epoch key and the randomness are known to
the adversary. In these situations the new key is inherently exposed, because the
adversary can compute it herself.

More precisely, the protocol requires an updatable encryption scheme ue, a
PRF F and a PRG G. It proceeds as in Section 4, except the following. The
epoch keys are now of the form (k, s, t), where k is the current key for ue, s
is a seed for F , and t is a random value. The protocol proceeds identically as
in Section 4, except when storing a message in the i-th cell, the it calls ue.enc
with randomness computed as F(s, i). Moreover, when generating an update,
the owner fetches the current key is (k, s, t), chooses a random r and computes
(r′, s′, t′) ← G(t ⊕ r) and (k′, ∆) ← ue.nxt(k; r′). The new key is (k′, s′, t′) and
the update token is ∆.

8 This is not a significant restriction. In fact, all IND-CCA secure schemes come with
deterministic updates, because IND-CCA cannot be meaningfully defined otherwise.

20

This means that the protocol requires the same real-world memory and chan-
nel resources as the construction from Section 4, as well as nu randomness re-
sources for token generation and one randomness resource for generating the
first epoch’s key:

RUE-RAND := [RUE, {Rande}e∈[nu],Randkg] (3)

The protocol is implemented by the ue-owner-rand and ue-host-rand con-
verters, which are plugged into the O and H interfaces of RUE-RAND, respectively.
The converters are described in detail in Appendix C, albeit they are very similar
to the converters of the simple model.

5.2 Construction Statement

The protocol constructs the ideal storage resource Storage, which differs from
the one constructed in Section 4 only in the can-leak predicates. In particular, we
now use a different predicate to determine if an epoch is exposed: exposedRand
is true if (as before, the key can be computed using leaked information or) the
previous epoch is exposed and the randomness used in the ”next” operation was
injected. Moreover, injecting key-generation randomness exposes the first epoch.

exposedRand(H, e) := exposed(H, e) ∨ (e = 0 ∧ E injected
Rand(kg))

∨ (exposedRand(H, e− 1) ∧ E injected
Rand(e))

Then, as before, the can-leak predicate of the i-th cell is true if an only if the
ciphertext storing the i-th value leaked during an exposed epoch e:

Li(H) := ∃e : exposedRand(H, e) ∧ ctxLeaked(i, e) (4)

Commitment problem. The can-leak predicate of the real-world memory needs
the same restrictions as those introduced in the previous section, defined in
equation (2). Further, note that, even though injecting randomness may result
in epoch exposure, it will never be the case that this will trigger the commitment
problem. This is due to the fact that a randomness injection can only expose
a new epoch (the next one), for which ciphertexts evidently haven’t leaked yet.
So, there is no need to place additional restrictions on the can-inject predicate
of the randomness resources.

Statement. We presented our protocol as a generic compiler but, unfortunately,
no security property defined in the literature implies security of our protocol.

To be concrete, we construct a (contrived) scheme ue, which is IND-ENC-
CPA secure, but makes our protocol completely insecure. The scheme ue modifies
an IND-ENC-CPA secure scheme ue′ as follows: ue.nxt called with randomness
G(0) outputs a bad token ∆ = (k, bad), where k is the old epoch key, and
else executes ue′.nxt. To apply such token, the host decrypts the message and

21

stores it in plain as (m, plain). On input such “ciphertext”, ue.upd does nothing
and ue.dec outputs m. Clearly ue′ is IND-ENC secure, because the probability
of honestly sampling G(0) is negligible. On the other hand, an adversary can
attack our scheme by injecting r = t (assuming she leaked the current key),
which triggers the bad mode.

Therefore, we prove security of our protocol instantiated with the SHINE0
scheme [BDGJ20]. SHINE0 requires a group G where DDH is hard. In Ap-
pendix D we prove the following theorem (the activation sequences are the same
as in Section 4).

Theorem 2. Let G be a group and let ue-owner-rand and ue-host-rand be
instantiated with SHINE0 and G. There exists an efficient simulator sim such
that, assuming DDH in G hard, F is a secure PRF and G is a secure PRG,

ue-owner-randOue-host-randHRUE ≈̂ simEStoragens,~L,~I,M,ActSeq,

where the real-world resources RUE are defined in Fig. 7 and have the additional
restrictions from equation (2), and the can-leak predicates of Storage are defined
in equation (4). Indistinguishability holds in the ideal-cipher model.

6 Active Attackers

In this section, we expand our threat model from Section 4 and consider adver-
saries that are able to tamper with the host’s memory (but not corrupt random-
ness). This is reflected by arbitrary can-inject predicates of the host’s memories
in the real world. We extend the protocol from Section 4 to provide confiden-
tiality also in this setting — the constructed Storage has can-leak predicates the
same as in Section 4, while its can-inject predicates are as good as those for
host’s memories in the real world.

In fact, the protocol needs only slight modifications. First, the UE scheme is
replaced by one that is IND-ENC-RCCA secure (with arbitrary re-encryptions),
e.g. the one from [KLR19]. Second, as described so far, the protocol is vulnerable
to the following attack: copying ciphertexts from one memory to another would
correspond in the ideal world to copying messages from one cell to another.
Storage does not allow this (rightfully so, since the adversary essentially managed
to modify a confidential storage, considered as a whole, into another related one).
To prevent this attack, we modify the protocol as follows. To store message m
in cell i, the owner encrypts (m, i). Then, if a value retrieved from cell i is not
of the form (m′, i), he outputs ⊥, else m′.

The assumed resources are the same as in Section 4, except the can-leak
predicates of Mem(i,e),H are arbitrary. The constructed Storage is also the same,
except the can-inject predicate Li of the i-th cell is true if can-inject of Mem(i,e),H

for the current epoch e is true. Formally, we let currentEpoch(H) be max e such
that EstartUpdated:e ∈ H and

Ii(H) := IMem((i,currentEpoch(H)),H)(H̃) (5)

22

The main result of this section is then the following theorem, proved in
Appendix E:

Theorem 3. There exists an efficient simulator sim such that, assuming ue is
IND-RCCA secure and the message space M is large,

ue-owner-mallOue-host-mallHRUE ≈̂ simEStoragens,~L,~I,M,ActSeq,

where the real-world resources RUE are defined in Fig. 7 and have the addi-
tional restrictions from equation (2), and the can-leak and can-inject predicates
of Storage are defined in equations (1) and (5), respectively.

7 Conclusions and Open Problems

We presented a framework for defining secure UE, which generalizes many pre-
vious definitions, as well as offers flexibility needed to discover new security-
efficiency trade-offs. We took advantage of this new flexibility and constructed
protocols with better security in the presence of randomness corruptions and
active attackers, respectively.

Importantly, we discover that, first, various choices of the syntax have a neg-
ative effect on resistance against randomness corruption. Second, many security
properties (at least ciphertext-independent) UE meant for active attackers only
consider semi-active attacks, where the game allows the adversary to inject into
ue.dec but not ue.upd. In our model, this means that the adversary can inject
only into channels from the host to the owner and not in the opposite direction
(thie would be equivalent to injecting into memory). This seems like a very weak
and contrived setting.

We believe that our work opens new areas for research, some of which we list
below.

Allowing arbitrary re-encryptions. Allowing active attackers to inject to ue.upd
seems very important. It would be ideal to see more schemes (perhaps neither
ciphertext-dependent nor independent) that provide authenticity and/or confi-
dentiality in this setting.

Integrity protection. Our model can be very easily adjusted to model integrity
protection — the only difference is that the adversary can always delete a mes-
sage stored in Storage. We leave analyzing existing notions, as well as designing
new, more efficient and secure protocols as future work.

Hiding meta-data. Often one would like to hide not only the message content,
but also various meta-data, for instance, the message’s “age”, measured in the
number of updates. We believe our model can be extended to formalize such
guarantees.

23

Composition. We phrase our results in the constructive cryptography framework,
which can provide composition of the strongest type: a protocol is secure in
arbitrary environments, with arbitrary other protocols executed in parallel. This
guarantee is very strong and we do not achieve it in this work (because of the so-
called commitment problem, we give guarantees only in “most” environments).
We leave constructing a protocol with the stronger guarantee (under sufficiently
stronger assumptions) as future work.

References

[BDGJ20] Colin Boyd, Gareth T. Davies, Kristian Gjøsteen, and Yao Jiang. Fast
and secure updatable encryption. pages 464–493, 2020.

[BEKS20] Dan Boneh, Saba Eskandarian, Sam Kim, and Maurice Shih. Improving
speed and security in updatable encryption schemes. pages 559–589, 2020.

[BLMR13] Dan Boneh, Kevin Lewi, Hart William Montgomery, and Ananth Raghu-
nathan. Key homomorphic PRFs and their applications. pages 410–428,
2013.

[Can01] Ran Canetti. Universally composable security: A new paradigm for cryp-
tographic protocols. pages 136–145, 2001.

[CLT20] Long Chen, Yanan Li, and Qiang Tang. CCA updatable encryption against
malicious re-encryption attacks. pages 590–620, 2020.

[EPRS17] Adam Everspaugh, Kenneth G. Paterson, Thomas Ristenpart, and Samuel
Scott. Key rotation for authenticated encryption. pages 98–129, 2017.

[Jia20] Yao Jiang. The direction of updatable encryption does not matter much.
pages 529–558, 2020.

[JMM19] Daniel Jost, Ueli Maurer, and Marta Mularczyk. A unified and composable
take on ratcheting. pages 180–210, 2019.

[KLR19] Michael Klooß, Anja Lehmann, and Andy Rupp. (R)CCA secure updat-
able encryption with integrity protection. pages 68–99, 2019.

[LT18] Anja Lehmann and Björn Tackmann. Updatable encryption with post-
compromise security. pages 685–716, 2018.

[Mau02] Ueli M. Maurer. Indistinguishability of random systems. pages 110–132,
2002.

[Mau11] U Maurer. Constructive Cryptography–A New Paradigm for Security Defi-
nitions and Proofs. In Theory of Security and Applications – TOSCA 2011,
pages 33–56. Springer Berlin Heidelberg, 2011.

[MPR07] Ueli M. Maurer, Krzysztof Pietrzak, and Renato Renner. Indistinguisha-
bility amplification. pages 130–149, 2007.

[MR11] Ueli Maurer and Renato Renner. Abstract cryptography. pages 1–21,
2011.

[Nie02] Jesper Buus Nielsen. Separating random oracle proofs from complexity
theoretic proofs: The non-committing encryption case. pages 111–126,
2002.

[Rog04] Phillip Rogaway. Nonce-based symmetric encryption. pages 348–359, 2004.
[SF07] Dan Shumow and Niels Ferguson. On the possibility of a back door in the

nist sp800-90 dualec prng. CRYPTO Rump Session, 2007.
[SS06] Berry Schoenmakers and Andrey Sidorenko. Cryptanalysis of the dual

elliptic curve pseudorandom generator. Cryptology ePrint Archive, Report
2006/190, 2006. http://eprint.iacr.org/2006/190.

24

http://eprint.iacr.org/2006/190

Supplementary Material
A Additional Preliminaries

A.1 Syntax

The appendix contains the formal definition of all converters and simulators. Just
like for resources, we describe the converters and simulators using pseudo-code,
and following the same conventions delineated in Section 2.3. We also assume
that all arrays are 0-indexed, and we use the notation A[i] to retrieve the i-th
element of array A. So, our pseudocode closely resembles Python syntax.

A.2 Details of UE Security Notions

Formally, the IND-ENC-CPA and IND-ENC-RCCA games are defined in Figs. 8
and 9, respectively.

In IND-ENC-RCCA, the decryption oracle rejects any inputs that decrypt to
either challenge message, and returns a special value test instead. Conversely,
the Upd oracle does accept ciphertexts that decrypt to either challenge message,
but it will add the current epoch to the list of epochs where the adversary knows
the challenge ciphertext.

To determine if the adversary trivially wins, the challenger stores lists K and
T of epochs for which, respectively, keys and tokens were corrupted by the ad-
versary. Furthermore, recall that keys and tokens can be derived/inferred from
corrupted material. So, the challenger also stores lists K∗ and T ∗, extensions of
K and T , respectively, which also contain the inferred keys and tokens. More
specifically, a key can be derived using the key from the prior/future epoch and
the token between the two (i.e., it can be ”upgraded” or ”downgraded”). Con-
versely, tokens can be derived using both keys between the epochs when it was
computed. Lastly, the challenger also maintains a list C∗ of epochs in which the
adversary learned a version of the challenge ciphertext (which is an extension of
the list C of epochs in which the adversary called the UpdC oracle to honestly
update the challenge ciphertext). That is, the adversary can update (bidirec-
tionally) the challenge ciphertext locally using leaked (or derived) tokens. That
is, if the ciphertext is encrypted with ke, she can use ∆e+1 to get a ciphertext
encrypted with ke+1 or she can use ∆e to get a ciphertext encrypted with ke−1.

Formally, the game is defined in Fig. 8. We say that the adversary trivially
wins if K∗ ∩ C∗ 6= ∅.

B Details of Section 4

B.1 Protocol Description

Recall that owner and host communicate via a series of single-use, unidirectional,
authenticated channels. The first set of these are used to send new ciphertexts

25

Game IND-ENC-CPA

ExpIND-ENC-CPA
ue,A ()

b←$ {0, 1}
k0 ←$ ue.kg()
∆0 ← ⊥
e, nc ← 0
phase← 0
L, L̃, C,K, T ← ∅
(m0,m1, st)← AEnc,Nxt,Upd,Cor

1 (λ)
c̃←$ ue.enc(ke,mb)
b′ ← AEnc,Nxt,Upd,Cor,UpdC

2 (st, c̃)
b = b′ ∧ ¬trivial-win(L, L̃K, T , C)

Oracle Enc(m)
c←$ ue.enc(ke,m)
nc++
L +← (nc, c, e)
return c

Oracle Nxt
e++
(ke, ∆e)←$ ue.nxt(ke−1)
if phase = 1 then

c̃e ← ue.upd(∆e, c̃e−1)

Oracle Upd(ce−1)
if (j, ce−1, e− 1) /∈ L then return ⊥
ce ← ue.upd(∆e, ce−1)
L +← (j, ce, e)
return ce

Oracle Cor(inp, e′)
if e′ > e then return ⊥
if inp = key then
K +← e′

return ke′
else if inp = token then
T +← e′

return ∆e′

Oracle UpdC()
C +← e
L̃ +← (c̃e, e)
return c̃e

Fig. 8: Description of the IND-ENC security game.

from the owner to the host during a store action; the second set of these are used
to send a token from the owner to the host during an epoch change; the third set
of these are used to send a ”command” from the owner to the host (e.g., attempt
to retrieve or delete a ciphertext); the fourth set of these are used to (re)send
a stored ciphertext back to the owner during a retrieve action; the fifth (and
last) set of channels are used to send ACK signals from the owner to the host,
after an operation is completed. So, the high-level workflow of an action consists
of the owner sending some message to the host via one of the aforementioned
channels (and, thus, starting the action), followed by the host receiving this value
and performing the appropriate internal computations, (potentially) followed by
the host sending a ciphertext back to the owner (if and only if the action taking
place is a retrieval), followed by the host sending an ACK signal, followed by
the owner receiving this signal and retrieving the ciphertext sent by the host
(if any). In particular, note that all of the host’s activity happens inside/during
its activate input, and the owner receives the ACK signal and finishes the
action during its activate input. Looking at the behavior of the converters
clearly illustrates the need for the activate inputs: each action is an interactive
protocol. Thus, we need inputs on either side that encapsulate the rounds of
interaction (and block further inputs until the other side finishes its round). The
formal description of the converters is in Figs. 10 and 11.

26

Game IND-ENC-RCCA

ExpIND-ENC-CPA
ue,A (λ)

b←$ {0, 1}
k0 ←$ ue.kg(λ)
∆0 ← ⊥
e, nc ← 0
twf, phase← 0
L, L̃, C,K, T ← ∅
(m0,m1, st)← AEnc,Dec,Nxt,Upd,Cor

1 (λ)
c̃←$ ue.enc(ke,mb)
b′ ← AEnc,Dec,Nxt,Upd,Cor,UpdC

2 (λ, st, c̃)

Oracle Dec(c)
m← ue.dec(ke, c)
if m ∈ {m1,m2} then return test
else

return m

Oracle Upd(ce−1)
m← ue.dec(ke, c)
if m ∈ {m1,m2} then
C +← e
L̃ +← (c̃e, e)

ce ← ue.upd(∆e, ce−1)
L +← (j, ce, e)
return ce

Fig. 9: Description of the RCCA security game.

B.2 Proof of Theorem 1

Theorem 1. There exists an efficient simulator sim such that, assuming ue is
IND-ENC-CPA secure,

ue-ownerOue-hostHRUE ≈̂ simEStoragens,~L,~I,M,ActSeq,

where the real-world resources RUE are defined in Fig. 7 and have the additional
restrictions from equation (2), and the can-leak predicates ~L of Storage are de-
fined in equation (1).

Simulator. The simulator simUE is described in detail in Fig. 12. At a high level,
simUE simply executes the protocol, except (fresh) encryptions of values not re-
vealed by Storage are generated by encrypting a vector of 0’s of the length
revealed by the output of leakLength. To do this, the simulator first samples
a secret key with UE.setup. Then, it maintains an array of keys tokens, and
ciphertexts that gets extended, as needed, with UE.next. Since all these keys
and tokens are sampled honestly, they have the same distribution as the ones in
the real world (i.e., an adversary seeing a subset of the keys from either world
can’t know which world she is seeing). For simulating the ciphertexts, we use
the standard strategy of encrypting the message, if possible, or a string of zeroes
of the same length. That is, the simulator will try to leak the message and use
the appropriate key from the array (or generate it) to encrypt it. If the can-leak
predicate of FMem doesn’t allow it to leak the message it will leak the length
of the message (which is always possible), and encrypt a string of zeroes of this
length instead. Further, the simulator maintains an array C of ciphertexts, where
the i-th entry is the ciphertext on memory cell i. Whenever a new ciphertext
gets leaked for the first, the simulator adds the generated ciphertext to C, and
any future leaks simply retrieve the value from it. In addition, on every epoch

27

Converter ue-owner

Initialization
k ← ue.setup(λ)

call ⊥ ← (store, k) at int. O of Mem(key,0),O

call ⊥ ← (delete) at int. O of Mem(loc,0),O

Function checkEvent
Let a be max s.t.Mem(act,a),O 6= empty

call event← (read) at int. O of Mem(act,a),O

return (event = used, a, event)

Procedure sendCommand(ix, act)

Let i be min s.t. Ch(cmd,i),O→H is available.
call ⊥ ← (send, (ix, act))

at interface O of Ch(cmd,i),O→H

return ok

Emulating Interface O of Storage
Input: (store,m, ix) ∈ M× ns

(freshEv, a,⊥)← checkEvent()
req freshEv
Let e be s.t. Mem(key, e),O /∈ {empty, used}

call k ← (read) at int. O of Mem(key,e),O

c← ue.enc(k,m)
call ⊥ ← (send, c) at int. O of Ch(ctx,ix),O→H

sendCommand(ix, s)
H +← EstartStored,ix

call ⊥ ← (write, Estored,ix)
at interface O of Mem(act,a+1),O

return ok

Input: (retrieve, ix) ∈ ns
(freshEv, a,⊥)← checkEvent()
req freshEv
sendCommand(ix, r)
H +← EstartRetrieved,ix

call ⊥ ← (write, E retrieved,ix)
at interface O of Mem(act,a+1),O

return ok

Input: (delete, ix) ∈ ns
(freshEv, a,⊥)← checkEvent()
req freshEv
sendCommand(ix, d)
H +← EstartDeleted,ix

call (write, Edeleted,ix)
at interface O of Mem(act,a+1),O

return ok

Input: update
(freshEv, a,⊥)← checkEvent()
req freshEv
Let e be s.t. Mem(key, e),O /∈ {empty, used}

call ke ← (read) at int. O of Mem(key,e),O

(ke+1, ∆e+1)← ue.nxt(ke)
call ⊥ ← (delete) at int. O of Mem(key,e),O

call ⊥ ← (store, ke+1)
at interface O of Mem(key,e+1),O

Let i be the min s.t. Ch(tok,i),O→H is avail-
able.

call ⊥ ← (send, ∆e+1)
at interface O of Ch(tok,e),O→H

sendCommand(0, u)
H +← EstartUpdated

call ⊥ ← (write, Eupdated)
at interface O of Mem(act,a+1),O

return ok

Input: activate
Let p be s.t. Ch(ack,p),H→O /∈ {empty, used}.
(freshEv, a, event)← checkEvent()
req p 6= ⊥ ∧ ¬freshEv

call ⊥ ← (receive) at int. O of Ch(ack,p),H→O

H +← Eowner-activate

out← ok
if ∃i : event = E retrieved,i then

Let j be s.t. Ch(ctx,i,j),H→O /∈
{empty, used}

call c← (receive)
at interface O of Ch(ctx,i,j),H→O

if c = ret-empty then out← empty
else if c = ret-used then out← used
else

Let e be s.t. Mem(key, e),O /∈
{empty, used}

call k ← (retrieve)
at interface O of Mem(key,e),O

out← ue.dec(k, c)
H +← event

call ⊥ ← (delete)
at interface O of Mem(act,a),O

return out

Fig. 10: Description of the owners’ converter for the simple model.

28

Converter ue-host

Emulating Interface H of StorageO,H

Input: activate
Let p be s.t. Ch(cmd,p),O→H /∈ {empty, used}
req p 6= ⊥

call (i, cmd)← (receive) at int. H of Ch(cmd,p),O→H

Let e be max s.t. Ch(tok,e),O→H = used or −1 if no such e.
if cmd = s then

call c← (receive) at int. H of Ch(ctx,i),O→H

if c 6= ok then
call ⊥ ← (write, c) at int. H of Mem(i,e+1),H

else if cmd = r then
call c← (retrieve) at int. H of Mem(i,e+1),H

if c ∈ empty, used then c = ret-c
Let j be min s.t. Ch(ctx,i,j),H→O is available.

call ⊥ ← (send, c) at int. H of Ch(ctx,i,j),H→O

else if cmd = d then
call ⊥ ← (erase) at int. H of Mem(i,e),H

else
call ∆e ← (receive) at int. H of Ch(tok,e+1),O→H

for ix ∈ [ns] do
call c← (read) at int. H of Mem(ix,e+1)H

if c /∈ {empty, used} then
call ⊥ ← (write, ue.upd(c,∆e)) at int. H of Mem(ix,e+2),H

call ⊥ ← (erase) at int. H of Mem(ix,e+1),H

H +← Ehost-activate

Let p be min s.t. Ch(ack,p),H→O is available.
call ⊥ ← (send, 1) at int. H of Ch(ack,p),H→O

return ok

Fig. 11: Description of the host’s converter for the simple model.

29

change, all (non-⊥) ciphertexts in C get updated, enforcing the fact that C
always contains ciphertexts that are encrypted under the latest key.

Consistency of events. We next show that the event histories in the real and
in the ideal worlds are consistent. The ideal-world events are mapped to the
real-world events by the mapping τ that sends Eevent

Storage to Eevent
ue-owner, for event in

{(start-store, i), (start-retrieve, i, j), (start-delete, i), start-update,
(store, i), (retrieve, i), (delete, i), update, owner-activate}. In addi-
tion, τ maps Ehost-activate

Storage to Ehost-activate
ue-host . Other events get mapped by τ to

themselves.
To show that τ yields consistent event histories, we first note that the ad-

versary’s leaked events are clearly triggered at the same time. Moreover, in both
worlds the history can be partitioned into consecutive segments, where in each
segment all non-adversarial events relevant for τ correspond to one action (this
easily follows by inspection). Therefore, we now analyze each segment separately:

– Action store. In both worlds, this action starts with a (store, m, i) in-
put to the O interface, which returns ok and triggers equivalent (modulo τ)
start-store events. The O interface is now ”blocked”, returning ⊥ for any
input and triggering no events. The ideal world enforces this by checking the
activation dictionary, and the real world enforces this using an event local
variable, stored in a memory, which blocks all inputs until it is cleared at the
end of the action. The activate input is the only exception: instead of using
the event local variable, it gets unblocked when it receives an ACK signal
from the host. The H interface was blocked until now: the ideal world, again,
uses the interleaving dictionary, and the real world returns ⊥ until one of the
command channels is available (which happens if and only if an action was
initiated by the owner; in this case, a ciphertext channel is available). How-
ever, the H interface is now active, accepting (only) activate inputs. In both
worlds, ok is returned and a host-activate is triggered. This inactivates
the H interface (since, as before, no new channels are available), and enables
the O interface only for the activate input (all other interfaces return ⊥,
since they are still blocked from the first input). As mentioned earlier, in
the real world, at the end of the previous input (the host’s activate) an
ACK signal is sent to the owner, which unblocks the activate input. In the
ideal world, the (un)blocking is still enforced with the interleaving dictionary.
Lastly, the owner finally inputs activate, which triggers owner-activate
and (store, i) events (in that order), and returns ok. This blocks the
activate input for now (since no key in the interleving dictionary has this
value, and there are no empty ACK channels), but unblocks all other inputs
in the O interface (since there is a key for each of them in the interleaving
dictionary, and the event variable got wiped back to ⊥). Importantly, note
that attempting to store a message in an unavailable cell fails silently in both
worlds. That is, the owner and host still go through the sequence of activa-
tions, but the store input to the memory cell (in both worlds) simply ignores
the input, but doesn’t fail. After this lengthy analysis, we can see that both

30

Simulator simUE

Initialization
k0 ← ue.kg()
K ← [k0]
T ← []
C ← [⊥ for i in range(ns)]
L← [⊥ for i in range(ns)]

Emulating Interface E of Mem(i,e),H

Input: leak
req ¬isMemEmpty(i, e) ∧ LR

UE
Mem(i,H)(H̃)

updateState(i,Mem((i, e), H))
return C[i]

Input: leakLength
if isMemUnused(i) then return empty
else if isMemDeleted(i, e) then return used
else

updateState(i, length)
return |L[i]|

Emulating Interface E of Mem(key,e),O

Input: leak
req e = currentEpoch() ∧ LR

UE
Mem(key,O)(H̃)

updateState()

H +← E leaked
Mem((key,e),O)

return |K[e]|
Input: leakLength
E ← currentEpoch()
if e > E then return empty
else if e < E then return used
else

updateState()
return |K[e]|

Emulating Interface E of Mem(act,a),H

Input: leak
o← findCommand(p)
req o 6= ⊥ ∧ LR

UE
Mem((act),H)(H̃)

return Eo
Storage

Input: leakLength
call o← (leak) at int. E of Mem(act,a),O

return |o|

Emulating Interface E of Ch(ctx,i),O→H

Input: leak
req ¬isChEmpty(ctx, i) ∧ LR

UE
Ch((ctx,i),O→H)(H̃)

e← epoch(EstartStored,i:0
Storage)

updateState(i,Ch((ctx, i), O→ H))
return C[i]

Input: leakLength
if ¬EstartStored,i:0

Storage then return empty
else if ¬isMemUnused(i) then return used
else

updateState(i, length)
return |L[i]|

Emulating Interface E of Ch(cmd,p),O→H

Input: leak
(a, i)← findCommand(p)
req (a, i) 6= ⊥ ∧ ¬E(a,i)

Storage ≺ E
host-activate
Storage

∧ LR
UE

Ch((cmd,p),O→H)(H̃)
return (a[0], i)

Input: leakLength
call o← (leak) at int. E of Ch(cmd,p),O→H

return |o|

Emulating Interface E of Ch(tok,e),O→H

Input: leak
req ¬isChEmpty(tok, e) ∧ LR

UE
Ch((tok,e),O→H)(H̃)

H +← E leaked
Ch((tok,e),T ,O→H)

updateState()
return T[e]

Input: leakLength
if ¬ EstartUpdated:e

Storage then return empty

else if EstartUpdated:e
Storage ≺ Ehost-activate

Storage then
return used

else
updateState()
return |T[e]|

Emulating Interface E of Ch(ctx,i,j),H→O

Input: leak
req¬isChEmpty(ctx, i, j) ∧
LR

UE
Ch((ctx,i,j),O→H)(H̃)

updateState(i,Ch((ctx, i, j), O→ H))
return C[i]

Input: leakLength
if ¬EstartRetrieved,i:j

Storage ≺ Ehost-activate
Storage then

return empty
else if Eretrieved,i:j

Storage then return used
else

updateState(i, length)
return |L[i]|

Emulating Interface E of Ch(ack,p),H→O

Input: leak
Let E

′
be the p-th s.t. Ehost-activate

Storage

req E
′
6= ⊥ ∧ ¬E

′
≺ Eowner-activate

Storage

∧ LR
UE

Ch((ack,p),H→O)(H̃)
return 1

Input: leakLength
call o← (leak) at int. E of Ch(ack,p),O→H

return |o|

Fig. 12: Formal definition of the simulator. Additional procedures are defined in
Fig. 13. Recall that after any start event, the only possible (non-adversarial)
event is an activation from the host. Further, seeing this event implies that the
messages sent from the owner to the host are no longer on their channels.

31

Simulator simUE: Additional Procedures

Procedure currentEpoch()
Let e be max s.t. EstartUpdated:e

Storage
or −1 if no such event occurred

return e + 1
Procedure epoch(E id)

return max e s.t. Eupdated:e
Storage ≺ E id

or 0 if such e exists
Procedure isMemUnused(i)

return ¬EstartStored,i:0
Storage ≺ Ehost-activate

Storage
Procedure isMemDeleted(i, e)

return e 6= currentEpoch()
∨ EstartDeleted,i:0

Storage ≺ Ehost-activate
Storage

Procedure isMemEmpty(i, e)
return isMemUnused(i) ∨ isMemDeleted(i, e)

Procedure isChEmpty(tok, e)
return ¬ EstartUpdated:e

Storage

∨ EstartUpdated:e
Storage ≺ Ehost-activate

Storage
Procedure isChEmpty(ctx, i)

return ¬EstartStored,i:0
Storage ∨ ¬isMemUnused(i)

Procedure isChEmpty(ctx, i, j)
return ¬EstartRetrieved,i:j

Storage ≺ Ehost-activate
Storage

∨ Eretrieved,i:j
Storage

Procedure findCommand(p)
t← 0
l← {Stored, Retrieved, Deleted, Updated}
if p < len(l) then return ⊥
for E

′
∈ H do

if ∃act ∈ l, i : E
′

= EstartAct,ix then
if t = p then return (a, i)
else t++

return ⊥

Procedure updateState(i = ⊥, R = ⊥)
e← currentEpoch()
l← len(K)
for j ∈ [l, e] do

(K[j], ∆)← ue.nxt(K[-1])
T[j]← ∆
for i s.t. C[i] 6= ⊥ do

C[i]← ue.upd(∆,C[i])
for l s.t. L[l] 6= ⊥ do

L[l]← ue.upd(∆,L[l])
if R /∈ {length,⊥} then

if C[i] = ⊥ then
k ← K[-1]

call m← (leak, i) at int. E of Storage
if m = ⊥ then
H +← E leaked

R
call l← (leakLength, i)

at interface E of Storage
m = 0l

c← ue.enc(k,m)
C[i]← c
L[i]← c

else
H +← E leaked

R
else if R = length ∧ L[i] = ⊥ then

call l← (leakLength, i)
at interface E of Storage

c← ue.enc(k, 0l)
L[i]← c

return

Fig. 13: Additional procedures used by the simulator.

32

worlds are indistinguishable during the execution of this action: equivalent
events are triggered and the same values are returned on all inputs at all
times (including ⊥, meaning that inputs get blocked and unblocked in the
same manner).

– delete. In both worlds, this action starts with a (delete, i) input to the
O interface. If no message has been stored yet, the cell is now inactive in
both worlds, by virtue of the internal value being set to used a priori. Con-
versely, if i is contains a message, the action proceeds exactly as store,
triggering analogous events. The only subtle difference is that the channel
that gets activated (which, in turn, unblocks the host’s activate input),
is now a ”command” channel instead of a ciphertext channel. Thus, by the
same argument, both worlds are indistinguishable during the execution of
this action.

– retrieve In both worlds, this action starts with a (retrieve, i) input to
the O interface. The analysis and behavior is the same as the delete action,
except for the last return value (after the owner’s activate): instead of
returning ok, the i-th stored message is returned. In the ideal world, the i-th
message is retrieved directly (conceptually, this corresponds to forwarding
the retrieve input to the i-th memory cell). In the real world, at the end
of the host’s activate, it sends the i-th ciphertext via a channel back to
the owner. Then, in the owner’s activate (the next input), this value is
retrieved and decrypted, and thus the same message is retrieved. Note that,
even though this ciphertext may not be the same one that was originally
stored (since epochs may have changed) the correctness guarantees of the
UE scheme ensure that this decryption returns the correct message. Further,
note that in both worlds, trying to retrieve a value from an empty cell fails
silently: either empty or used is returned. So, it follows that the behavior of
both worlds is indistinguishable once again.

– update In both worlds, this action starts with an update input to the O in-
terface. This action follows the same framework from the previous ones, so
the indistinguishability argument is the same. One important thing to note,
however, is that the internal computations of this action are particularly
relevant: after the first input, the O converter rotates the key and sends the
update token to the host, via a dedicated channel. Then, the H converter up-
dates all ciphertexts using this new token. The fact that these computations
take places is precisely what guarantees that the owner receives the same
message after a retrieval, even if multiple epoch changes have taken place.

Indistinguishability. Finally, we show that if the updatable encryption scheme is
IND-ENC secure, then the outputs at the E interface in the real and ideal world
are indistinguishable. To this end, we first show that the outputs from each
resource are of the same type, e.g. a ciphertext or ⊥, ignoring what is encrypted.

We now proceed to go over every simulated resource, and how the outputs
agree. with those in the real world. Note that, in all resources below,⊥ is returned
in both worlds if the can-leak predicate of the (real world) resource is false (the

33

simulator explicitly checks this condition). As such, the analysis below will focus
on the scenarios where the predicate is true.

– Mem(i,e),C,H. We will describe this first entry in greater detail, since it serves
as a template for all others.
If the message is not stored or if it was deleted, this operation returns ⊥.
More specifically, ⊥ is returned if there has not been a store input for the
i-th message directly followed by an activation from the host (with any arbi-
trary adversarial inputs in between, of course). A store input is not enough,
since the ciphertext doesn’t reach the memory cell until the host receives it
(i.e., an activation). Similarly, ⊥ is returned if there was a delete input for
that cell, immediately followed by an activation from the host. As before,
the delete input is not enough, since the ciphertext doesn’t actually get
deleted from the cell until the host receives the deletion command. So, it
follows that an adversary could retrieve a ciphertext even after a delete ac-
tion was started, and could fail to do so even after a store action started;
timing is crucial. The protocol enforces these scenarios by construction (the
aforementioned arguments correspond to the real world resources), and the
simulator enforces them by explicitly checking the global event history for
the events that correspond to these inputs.

Conversely, if the message is present, the simulator leaks the message and
generates a ciphertext for a message of the same length as the i-th stored
one (using the strategy defined above) and, in the real world, the memory
leaks the ciphertext itself. As such, in both cases, a distinguisher sees an
encryption of a message of the same length, under a valid key of the UE
world for that epoch (note how the simulator samples all keys up to the
needed epoch). The RW is in the e-th epoch explicitly (as the converters
rotate keys every update operation), and the IW is in it implicitly (every
update operation, an event is triggered, so we can retrieve the epoch number
via the global event history). As such, applying the same number of updates
in both worlds results in the same epoch number being used.

– Mem(key,e),K,O. Recall that the current secret key gets deleted after an epoch
change. As such, only one of these memories contains a key at a given time
(namely, the memory whose index corresponds to the current epoch). In
both worlds, if this memory is not empty, a valid key (for the same epoch)
is leaked. In the real world, the owner stored the secret key in it, so it can
be leaked directly. In the ideal world, as mentioned earlier, the simulator
maintains an array of honestly sampled keys. If it already has a key for the
current epoch (computed during some other input), this can be leaked. If
not, the simulator sequentially computes a new key for every epoch between
the latest key’s epoch and the present one, using the UE.next algorithm and
the previous key, and stores all of these in the array, before releasing the last
one. Conversely, if the memory does not correspond to a current epoch, ⊥
is returned. In the real world, since this is an old epoch, the owner wiped

34

the memory when it transitioned to the next epoch. In the ideal world, the
simulator compares the global epoch and the memory’s index, and returns
⊥ if these values don’t match.

– Ch(tok,e),T ,O→H. Recall that channels get cleared after the message is received.
Thus, unless the adversary leaks the contents of the channel between the time
the message is sent and when it is received, ⊥ will be returned. In this case,
the adversary needs to leak the message after the owner starts an epoch
change for that channel’s ID (update input) and before the host receives it
the update token (an activation by the host). To match this behavior, the
simulator, as before, simply checks the global event history for the presence
of an event indicating that an update for this channel’s epoch started, but
that it is not followed by an event indicating the host triggered an activation.
If the timing is right, the adversary can leak the token from the channel. In
the ideal world, as in the key memory, the simulator leaks the token from
the array it has been maintaining, or computes it if needed. In both cases,
the adversary sees a token if and only if it triggered this input at the exact
same time.

– Ch(ctx,i),T ,O→H. The analysis is exactly the same as the token channel, but
with ciphertexts being leaked instead. The simulator uses the same strategy
as in the memories in order to generate the ciphertexts.

– Ch(cmd,p),O→H. The adversary can leak the contents of this channel if her input
is triggered after the owner starts an action, but before the host activates
to process the operation. To enforce this, the simulator simply checks if the
last (non-adversarial) event in the global event history is a start event for
one of these three actions. If so, based on the ID of the event, it can extract
the contents of the command sent and return this, which is exactly what is
seen in the real world. If, conversely, the timing is off, the simulator returns
⊥, just like it happens in the real world.

– Ch(ctx,i,j),T ,H→O. Since this channel goes in the opposite direction, the timing
is a bit different. Namely, the leak must occur after the host’s activation
(which followed the owner’s retrieve input) but before the owner’s activa-
tion, which completes the action. If this is the case, a ciphertext is generated,
using the standard strategy. If timing is off, ⊥ is returned.

– Ch(ack,p),H→O. The analysis is the same as the prior channel. The only differ-
ence is that this resource is used on every action, instead of only during a
retrieval. As such, the simulator verifies that the host’s activation when us-
ing this channel was not followed by the owner’s activation (i.e., the channel
has not been cleared, and the action has not been completed). If this is the
case, the adversary leaks an ACK bit.
With this list, we can see that the E interface in both worlds yields indis-

tinguishable behavior, both in terms of events and inputs/outputs. The last
technical point to discuss is the IND-ENC security of the UE scheme. As men-
tioned earlier, it may be the case that, even though a message is present, the

35

simulator cannot forge an encryption of it (if can-leak predicate is false), and
needs to encrypt a same-length string of zeroes instead. Hence, these two sce-
narios should be indistinguishable, assuming arbitrary corruptions of keys and
tokens by the adversary. This is (almost) the precise definition of IND-ENC se-
curity, with a few small differences. First, the IND-ENC security game allows
for only one challenge ciphertext, whereas the simulator may need to simulate
more than one ciphertext. Secondly, we need to make sure that our fix for the
commitment problem and can-leak predicates are compatible with the trivial
wins of IND-ENC. That is, these disallow the trivial wins in the game. If an
IND-ENC adversary uses the distinguisher as a subroutine, we need to make
sure that this distinguisher will not be able to trigger trivial wins, as this would
imply the adversary loses the game, and the reduction doesn’t hold.

Every time the simulator needs to ”fake” a ciphertext (encrypt a same-length
string of zeroes) corresponds a pair of challenge messages in the IND-ENC secu-
rity game. So, the UE scheme needs to be secure when the adversary is allowed
to submit multiple challenge pairs, instead of just one. However, this reduction
is simply the standard hybrid argument that proves that CPA security with one
challenge implies CPA security with many challenge rounds.

For the second issue, recall that the trivial wins in the IND-ENC game are
those where the adversary learns the secret key (either directly, by corrupting
it, or indirectly, using corrupted tokens) in some epoch where she learned a
version of one of the challenge ciphertexts. Note that it doesn’t matter if the
adversary learns the key first or the ciphertext first; as long as she eventually
knows both, this is a trivial win. However, for our purposes, we only care about
instances where she learns the ciphertext first and then the key. This is because
the simulator only needs to ”fake” ciphertexts in this scenario: when it commits
to a ciphertext a priori, and then exposes the epoch key. If the key is corrupted
first, the can-leak predicate of the memory cell is true, so the message can be
leaked and there is no need to fake it, so this would not be a challenge ciphertext.
For the other instances which we do care about, our fix for the commitment
problem prevents the distinguisher from reaching this situation. Recall that our
fix for the commitment problem blocks leakages of keys and tokens which ”flip”
an epoch, in which a ciphertext leaked, from uncompromised to compromised.
Then, note that our exposed predicate encapsulates exactly the list K∗ of epochs
in which the the adversary learns the secret key in the IND-ENC security game,
assuming bi-directional updates: K∗ includes both direct corruptions of the key
via an oracle, and indirect corruptions of it by updating a previously leaked key
using corrupted tokens. Similarly, our exposed predicate checks if a key leaked
for the current epoch (direct corruption), or if a key leaked from some other
epoch that is reachable by a series of leaked tokens (indirect corruption). So, an
epoch e is in K∗ if and only if exposed(H, e) is true. Further, even though we
only explicitly check for epochs in which a ciphertext leaked, whereas the IND-
ENC game also considers epochs to which the adversary can (locally) update
ciphertets, our commitment problem fix is still consistent: the later scenario is
simply an extension of the former scenario, where the ”chain of corruption”

36

gets extended by the tokens between the corruption of the ciphertext and the
corruption of the epoch. This is still taken into account in our predicate. So,
our fix for the commitment problem blocks the distiguisher from leaking keys or
tokens that would result in a trivial win for the adversary, as desired.

With these two technical details resolved, it follows that the real world and
ideal world are indistinguishable if the UE scheme is IND-ENC secure. In other
words, if such a distinguisher exists, then an adversary could use it as a subrou-
tine to break the IND-ENC security of the UE scheme by using the oracles from
its game to handle all queries from the distinguisher. Furthermore, as mentioned
above, the distinguisher will not force the adversary to lose the game by means
of a trivial win, so all queries can be answered. At some point, the distinguisher
correctly differentiates between the encryption of a string of zeroes or an ac-
tual message (two challenges messages in the IND-ENC game), since this is the
only distinctive behavior between both worlds, which tells the adversary how to
answer the challenger, and win its game.

C Details of Section 5

The protocol in the bad randomness setting only differs from the basic protocol
in the way the owner deals with randomness. As such, the host converter remains
unchaged. The owner converter has some minor changes as it incorporates the
use of the PRF and PRG, as described in Section 4. The description of the new
owner converter is in Fig. 14. To avoid being unnecessarily redundant, we will
cover only the changes to Fig. 10.

D Proof of Theorem 2

The proof is structured as follows. First, we introduce a modified IND-ENC-CPA
security notion, IND-ENC-CPA∗, and prove that it is satisfied by SHINE0. (The
notion is quite arbitrary, but it simplifies the proof.) Then, we formally define the
simulator and finally prove that the real and ideal worlds are indistinguishable.

D.1 IND-ENC-CPA∗ Security of SHINE0

IND-ENC-CPA∗ is the same as IND-ENC-CPA, except the Nxt oracle is replaced
by Nxt∗(r) defined in Fig. 15. Intuitively, Nxt∗(r) allows to call ue.nxt with
arbitrary randomness r, but marks both new key and token as exposed in case
r is given. Similarly, the adversary is allowed to choose randomness for ue.kg
executed at the beginning of the experiment, in which case the first key is marked
as exposed.

Claim. SHINE0 defined in Fig. 15 is IND-ENC-CPA∗ secure, in the ideal-cipher
model, assuming DDH in G is hard.

37

Converter ue-owner-rand

Initialization

call (r, s, t)← (sample) at int. O of Randkg

k ← (ue.setup(λ; r), s, t)

call ⊥ ← (store, k) at int. O of Mem(key,0),O

call ⊥ ← (delete) at int. O of Mem(loc,0),O

Emulating Interface O of StorageO,H

Input: (store,m, ix) ∈ M× ns
(freshEv, a,⊥)← checkEvent()
req freshEv
Let e be s.t. Mem(key, e),O /∈ {empty, used}

call (k, s, t)← (read)
at interface O of Mem(key,e),O

c← ue.enc(k,m;F(s, ix))

call ⊥ ← (send, c) at int. O of Ch(ctx,ix),O→H

sendCommand(ix, s)
H +← EstartStored,ix

call ⊥ ← (write, Estored,ix)
at interface O of Mem(act,a+1),O

return ok

Input: update
(freshEv, a,⊥)← checkEvent()
req freshEv
Let e be s.t. Mem(key, e),O /∈ {empty, used}

call (ke, s, t)← (read)
at interface O of Mem(key,e),O

call r ← (sample)
at interface O of Rande,O

(r′, s′, t′)← G(t⊕ r)
(ke+1, ∆e+1)← ue.nxt(ke; r′)

call ⊥ ← (delete) at int. O of Mem(key,e),O

call ⊥ ← (write, (ke+1, s
′, t′))

at interface O of Mem(key,e+1),O

Let i be the min s.t. Ch(tok,i),O→H is avail-
able.

call ⊥ ← (send, ∆e+1)
at interface O of Ch(tok,e),O→H

sendCommand(0, u)
H +← EstartUpdated

call ⊥ ← ((write, Eupdated))
at interface O of Mem(act,a+1),O

return ok

Fig. 14: Changes the owner’s converter for the randomness model. The differences
from the converter in Appendix B.1 are marked by boxes.

38

Oracle Nxt∗

Oracle Nxt∗(r)
e++
if r 6= ⊥ then

(ke, ∆e)←$ ue.nxt(ke−1; r)
K +← e
T +← e

else
(ke, ∆e)←$ ue.nxt(ke−1)

if phase = 1 then
c̃e ← ue.upd(∆e, c̃e−1)

Scheme SHINE0

SHINE0.kg
k ←$ Z∗q
output k

SHINE0.nxt(k)
k′ ←$ Z∗q
output (k′, k′/k)

SHINE0.upd(∆, c)

output c∆

SHINE0.enc(k,m)
N ←$ N
output π(N ‖
m)k

SHINE0.dec(k, c)

N ‖ m← c1/k

output m

Fig. 15: The modified Nxt∗ oracle for the IND-ENC-CPA∗ game and the algo-
rithms of SHINE0.

Proof (Proof of claim). The proof is almost the same as for SHINE0 [BDGJ20].
We sketch it here for completeness. Assume A is an IND-ENC-CPA∗ adversary
against SHINE0. Given a DDH instance (gx, gy, gz), we emulate A’s oracles and
the ideal cipher π as follows; See Fig. 16 for an intuitive picture.

k1 k2 a k6 k7

epoch 1 epoch 2 epoch 3 epoch 4 epoch 5 epoch 6 epoch 7

K3 = gx K4 = gx∆3 K5 = gx∆3∆4

∆1 ∆3 ∆4 ∆6

Fig. 16: An example execution with A, where we embed a DDH instance
(gx, gy, gz). The firewalls are epochs 2 and 5, marked by . When A requests
challenge in epoch 5, the ciphertext is computed as (gz)∆3∆4 and the ideal ci-
pher is programmed as gy for mb and at random for mb⊕1.

First, we guess three epochs:

1. e∗ is the epoch during which A requests the challenge
2. el is the left firewall, i.e. the last epoch before e∗ for which the update token

is not exposed (technically, exposed means contained in T ∗)
3. er is the right firewall, i.e., the first epoch after e∗ for which the token is not

exposed

Then, we keep a (dynamically extended) list of epochs, where each epoch e has
a token ∆e and either a secret key ke or a public key Ke = gke . In particular:

– Each epoch except el and er has a token.
– Each epoch between firewalls (i.e., e s.t. el < e ≤ er) has a public key, and

each other epoch has a secret key.

39

The first epoch has a key set during setup (using A’s randomness if necessary).
Then, the list is extended when A queries Nxt as follows. For epochs that are not
between firewalls, we can simply set ke and ∆e as in Nxt (using A’s randomness
if necessary). For the first epoch between firewalls, we set the public key to gx
from the DDH instance. For next epochs between firewalls we choose a random
∆e (by assumption that the tokens are not exposed, A must query Nxt with
r = ⊥) and compute the public key using ∆e and the previous epoch’s key.

When A’s queries Enc(m) during an epoch e between firewalls (other Enc
queries can be emulated trivially) we compute the ciphertext c follows:

N ←$ N
r ←$ |G|
π(N ‖ m)←$ gr

c← Kr
e

Note that we program the ideal cipher π at this point. This is possible, because
N is random, so A couldn’t have queried π on N ‖ m.

To compute the challenge ciphertext c∗, let ∆ be the product of all tokens
for epochs between el and e∗ and do:

N ←$ N
b←$ {0, 1}
π(N ‖ mb)← gy

π(N ‖ mb⊕1)←$ G

c∗ ← (gz)∆

We output “real” if A guesses b correctly. If z = xy, then c∗ is an encryption of
mb. Hence, we perfectly emulated the IND-ENC-CPA∗ game, which chooses b
at random and encrypts mb. Else, we win with probability 1/2. ♦

D.2 Simulator

The simulator needs to emulate all E interfaces of the randomness resources.
Recall that, as long as the key is not compromised, randomness injections have
essentially no effect, as guaranteed by the security of F and G. If, on the other
hand, the key is compromised, the adversary is able to decrypt the messages
either way, so the effects of bad encryption randomness are not relevant. More
concretely, if a ciphertexts leaks before an attempted key leak, then the fix
for the commitment problem prevents the key from being leaked to begin with
(so, the injections have no effect, and we fall back to rely on the IND-ENC
security of the scheme, like in the simple model). If, on the other hand, the key
leaks first, then we can just encrypt the same message in both worlds (since the
leak predicate of the IW is true). So, it doesn’t matter that the ciphertexts are
compromised, since the messages are the same. However, we can’t simply encrypt
the message in the IW with the current key (as we were doing before): even if

40

both ciphertexts decrypt to the same message, an adversary can very easily
tell if a ciphertext was created/updated with good or bad randomness. So, we
can’t ”cheat” and honestly encrypt the message with the current key, since the
adversary can trivially tell this apart from an encryption of the same message
with bad randomness. That is, we need to dynamically ”recreate” the updates.
In particular, an adversary could leak all keys and inject all randomness, and the
protocol is deterministic for her point of view. So, the strategy oof the simulator
will be to use fresh randomness whenever possible, except when a distinguisher
would be able to trivially differentiate both world (e.g., a leaking a ciphertext
during an exposed epoch), in which case the simulator uses F and/or G, just
like the real world does, in order to preserve consistency.

The formal description of the simulator is very similar to the one in the
prior section, simUE, which is is described in detail in Fig. 12. We show only
the changes to simUE. First, besides maintaining a running array of ciphertexts,
keys, and tokens, the simulator will also record if the randomness for some epoch
change was injected. To do this, we need to update our initialization procedure,
and emulate the interface of the new randomness resources. This is shown in
Fig. 17.

Lastly, we modify the updateState() procedure, to take into account the
fact that, in the real world, the encryption and next algorithms are deterministic
(and the former nonce-based). That is, as mentioned earlier, fresh randomness
will be used for encryptions and updates. However, in situations where the se-
curity of F and/or G is compromised, the simulator will use F or G, just like
in the real world. For instance, if a ciphertext leaks during an exposed epoch,
the randomness parameter of ue.enc will be computed with F , using part of
the secret key as seed. Similarly, if a new key/token needs to be computed dur-
ing an exposed epoch, and randomness for the epoch change was injected, the
randomness parameter of ue.nxt will be computed with G. The new version of
updateState() is in Fig. 17.

D.3 Indistinguishability

To prove the indistinguishability between the RW and the IW (assuming that
F is a secure PRF, G is a secure PRG, and the ue scheme is IND-ENC secure),
we will use a hybrid argument. Our worlds are as follows:

– World 0. Real world
– World 1. The real world, with a slight modification: during an epoch change,

if the key hasn’t leaked or no randomness was injected, we sample good
randomness instead of calling G (that is, s′, t′, and r′ are sampled randomly).
Otherwise, we use the injected randomness and G, setting (r′, s′, t′) = G(t⊕
r).

– World 2. We modify game 1, in order to also get rid of F . During an encryp-
tion, if the key hasn’t leaked, sample and use good randomness. Otherwise,
use the PRF (with either injected or sampled randomness). Note that, during

41

Simulator simUE-RAND

Initialization
k0 ← ue.kg()
K ← [k0]
T ← []
C ← [⊥ for i in range(ns)]
L← [⊥ for i in range(ns)]
R← [⊥ for i in range(nu)]

Emulating Interface E of Rande

Input: (inject, r′)
req IR

UE

Rand(e)(H̃) ∨ ¬ EstartUpdated,e
Storage

H +← E injected
Rand(e)

R[e]← r′

return ok

Procedures
Procedure updateState(i = ⊥, R = ⊥)
e← currentEpoch()
l← len(K)
for j ∈ [l, e] do

if ¬exposedRand(H̃, j) ∨ ¬E injected
Rand(j) then

(r′, s′, t′) � R3

else
(r′, s′, t′)← G(t⊕ R[j])

(k,∆)← ue.nxt(K[-1]; r′)
K[j]← (k, s′, t′)
T[j]← ∆

for i s.t. C[i] 6= ⊥ do
C[i]← ue.upd(∆,C[i])

for l s.t. L[l] 6= ⊥ do
L[l]← ue.upd(∆,L[l])

if ¬exposedRand(H̃, e) then r ← F(s, i)
else

r � R
if R /∈ {length,⊥} then

if C[i] = ⊥ then
(k, s, t)← K[-1]

call m← (leak, i) at int. E of Storage
if m = ⊥ then
H +← E leaked

R
call l← (leakLength, i)

at interface E of Storage
m = 0l

c← ue.enc(k,m; r)
C[i]← c
L[i]← c

else
H +← E leaked

R
else if R = length ∧ L[i] = ⊥ then

call l← (leakLength, i)
at interface E of Storage

c← ue.enc(k, 0l; r)
L[i]← c

Fig. 17: Changes to the simulator in the randomness model. The differences from
the simulator in Appendix B.2 are marked by boxes.

42

encryptions, the PRF provides no security guarantees if the key/seed leaks,
regardless of the randomness used (which makes sense, since the adversary
can decrypt either way, regardless of the quality of randomness used).

– World 3. Ideal world.

Claim. Worlds 0 and 1 are indistinguishable, assuming that G is a secure PRG.

Proof (Proof of claim). assume that we have a distinguisher D for worlds 0 and
1. We want to construct an adversary A that breaks the security of the PRG,
using D as a subroutine. Recall that A wants to differentiate between G(s) and r,
for randomly sampled s and r. Note that this is precisely the difference between
both worlds: if the input is random or the key is secret, we use G in world 0
and sample a random string in world 1. More formally, A will emulate interfaces
H, O, and E for D, and execute the real world protocol, with the only difference
being how (s, t) are computed. As such, we can ignore the rest of the protocol,
and think of A’s emulation as specifying a ”PRG” chain. In particular, the PRG
chain of world 0 is just a sequence of calls to G, and the PRG chain of world 1
is an interleaving of calls to G and randomly sampled strings (depending on the
security of the epoch change). By assumption, D is able to differentiate these
two chains (i.e., D exists if and only if he can tell these two apart).

We will now define a series of intermediate chains: the 0-th chain is the chain
of world 0, the nu-th chain is the chain of world 1, and, ∀i : 0 < i < nu,
the i-th chain is such that the first i − 1 links are from chain nu, and the rest
are from chain 0. It follows then that, assuming said distinguisher exists, he
should be able to differentiate (at least) two consecutive chains from each other
(if this is not the case, he can’t differentiate the endpoints of the sequence of
hybrids, due to the triangle inequality). Let i and i+1 be two of the consecutive
chains that D can distinguish (A can easily find this pair by running D with
all the hybrid chains, in order, until D changes his answer). A will now inject
the challenge message in place of the i-th link (which is where the two chains
differ). Note that this link must correspond to a ”good” epoch change (bad
epoch changes are treated completely analogously in both worlds (using G with
the leaked key and the bad randomness), so it cannot be possible for D to gain
any distinguishing advantage). As such, A now simply runs D and, depending on
his answer, replies back to the challenger (if the challenge is a randomly sampled
string, this corresponds to chain i+ 1, and if the challenge is the output of G on
a randomly chosen seed, this corresponds to chain i). Importantly, note that the
input to G in chain i will be uniformly random (since either the key is good or
the randomness is good, so their XOR is random), which is also the case for the
challenge, so D’s answer should be consistent with this. Put another way, for
whatever the current value of t is, there is some value of r that could be sampled
such that t⊕ r equals the challenge seed, for every possible challenge seed.

As a final caveat, note that A never has to reveal his challenge seed. By
construction, each link where the challenge is inserted corresponds to a good
epoch change. As such, if A has to leak the secret key, this means r was not
injected. So, the input to G is still random, from the adversary’s point of view. In

43

other words, for whatever value of s that D may see, the distribution of possible
seeds for G is still uniform (due to r being uniformly sampled and secret). ♦

Claim. worlds 1 and 2 are indistinguishable, assuming F is a secure PRF.

Proof (Proof of claim). Since it is very similar to the above, we will be more brief
here. A now tries to differentiate between F(s, r) and f(r), for randomly chosen
f (from the PRF family) and s (from the key space). A and D interact just as
explained in the prior proof. In these two worlds, the usage of G is completely
analogous, but the usage of F is different. So, A specifies a sequence of ”PRF
chains” instead, which determines if we are in world 1 or 2 (or an intermediate
one). Each time F could be invoked corresponds to a new link (that is, one link
for every encryption). The endpoints of the hybrids are the chains from world 1
and world 2, and each intermediate hybrid i is such that the first i− 1 links are
from world 2, and the rest from world 1. By assumption, D is able to differentiate
between the two endpoint chains, so he must be able to differentiate between
two consecutive chains. If we take any two of said chains, these differ in one link.
Note that, as before, this difference needs to correspond to an encryption during
an epoch where the key didn’t leak (otherwise, the behavior between both worlds
is analogous, so D can’t gain a distinguishing advantage). However, if the key is
still secret, this means that F ’s seed is random in world 1. As such, A inserts
the challenge in this link, and replies based on D’s answer. ♦

Claim. Worlds 2 and 3 are indistinguishable, assuming that ue is IND-ENC-
CPA∗ secure.

Proof (Proof of claim). The proof that event histories are consistent in both
worlds, and that the adversary’s outputs are of the same type, is identical to the
proof for our first statement Appendix B.2 (the randomness-injected events are
trivially consistent). This means that the worlds differ only in that in World 2
all ciphertexts contain the owner’s messages, while in World 3, come ciphertexts
contain 0’s. Now given a distinguisher D, we can construct an adversary A
against IND-ENC-CPA∗ security of ue as follows: A executes the code of Storage
and the simulator, except arrays K and T are not used. Instead, leakage from
token channels and key memories is computed using the Cor oracle. Moreover,
the ue algorithms are evaluated as follows:

– Evaluating ue.nxt is replaced by calling the Nxt oracle, with injected ran-
domness if necessary.

– Evaluating ue.upd is replaced by calling the Upd or UpdC oracle.
– To evaluate ue.enc when exposedRand is true, A corrupts the key and en-

crypts the message
– To evaluate ue.enc when exposedRand is false, A calls the Chal oracle with

inputs m and 0l, where m is the message encrypted in World 2 (note that
A knows all messages from the inputs to the owner given by D).

It easily follows by inspection that with our can-leak predicate and the commitment-
problem restriction, A does not trigger the trivial-win flag twf. ♦

44

E Proof of Theorem 3

We modify the simulator used in the proof of Theorem 1 in Appendix B.2 as
follows. First, when generating an encryption of an unknown message for cell i,
instead of encrypting 0’s, the simulator encrypts (i, r) for a random message r of
appropriate length and stores r in an array R[i]. Second, when the distinguisher
injects a ciphertext c′ into memory Mem(i,e),H (and the real-world injection is
successful), the simulator decrypts the plaintext ptx and

– If ptx = (i, R[i]), it injects original into Storage.
– Else if ptx = (i,m′), it injects m′ into Storage.
– Else, it injects ⊥ into Storage.

The intuition is that D does not know R[i], so any injection descrypting to R[i]
is a re-encryption of the ciphertext outputted by the simulator. This holds with
high probability, assuming the message space is large. See Fig. 18 for the formal
definition of the simulator.

To show that the two worlds are indistinguishable, we consider a sequence
of ns hybrids. In hybrid i, cells 1 to i − 1 are as in the ideal world, i.e., main-
tained by Storage and the simulator, and cells i to ns are as in the real world,
i.e., maintained by the protocol and all necessary memories and channels. (The
simulator and protocol use the same keys. Upon update, the simulator does not
simulate the channels and updates only cells 1 to i− 1.)

Assume D distinguishes between hybrids i and i+ 1. We construct an IND-
ENC-RCCA adversary A who emulates D’s experiment as follows. First, it calls
Nxt nu times, so the only actions left are cell-specific.

Cells j 6= i are handled as follows: A executes the simulator’s code (cells 1
to i − 1) or the protocol’s code (cells i + 1 to ns). To evaluate ue.enc, ue.upd
and ue.dec, call the Enc, Upd and Dec oracles with the message used by the
simulator or the protocol. If Dec returns test, treat it as ⊥.

Cell i is handled as follows: Say the message stored by D in this cell is m.
Set M ← m and when the owner retrieves his message, output M . To create
the ciphertext (executed when first leaked), receive challenge c∗ on input ptx0 =
(i,m) (owner’s message as in hybrid i) and ptx1 = (i, r) for random r (simulator’s
message as in hybrid i+ 1). When D injects c′, call the Dec oracle on c′, receive
ptx and:

– If ptx = test, set M ← m.
– Else if ptx = (i,m′), set M ← m′.
– Else, set M ← ⊥.

To update, call Upd. All other actions are trivial.
Observe that challenge is of the form (i,m), so if in Step 1. it is injected

into cell j 6= i, the simulator (decrypts it immediately and) injects ⊥, and the
protocol (decrypts it on retrieve and) outputs ⊥. Further, note that in Step
1. executing the protocol’s code requires calling the Upd oracle with arbitrary
ciphertexts injected by D.

45

Simulator simUE-MALL

Initialization
k0 ← ue.kg()
K ← [k0]
T ← []
C ← [⊥ for i in range(ns)]
L← [⊥ for i in range(ns)]
R← [⊥ for i in range(ns)]

Emulating Interface E of Mem(i,e),H

Input: (inject, c)
req ¬isMemDeleted(i, e) ∧ IR

UE
Mem(i,eH)(H̃)

updateState()
C[i]← c

ptx← ue.dec(K[-1], c)
if ptx = (i, R[i]) then m← original
else if ptx = (i,m′) then m← m′

else m← ⊥
call ⊥ ← (inject,m) at int. E of Storage
return ok

Procedures
Procedure updateState(i = ⊥, R = ⊥)
e← currentEpoch()
l← len(K)
for j ∈ [l, e] do

(K[j], ∆)← ue.nxt(K[-1])
T[j]← ∆
for i s.t. C[i] 6= ⊥ do

C[i]← ue.upd(∆,C[i])
for l s.t. L[l] 6= ⊥ do

L[l]← ue.upd(∆,L[l])
if R /∈ {length,⊥} then

if C[i] = ⊥ then
k ← K[-1]

call m← (leak, i) at int. E of Storage
if m = ⊥ then
H +← E leaked

R
call l← (leakLength, i)

at interface E of Storage
mr � {m ∈ M : len(m) = l}
R[i]← mr
m = mr

c← ue.enc(k, (i,m))
C[i]← c
L[i]← c

else
H +← E leaked

R
else if R = length ∧ L[i] = ⊥ then

call l← (leakLength, i)
at interface E of Storage

c← ue.enc(k, 0l)
L[i]← c

Fig. 18: Changes to the simulator in the malleability model. The differences from
the simulator in Appendix B.2 are marked by boxes.

If the challenge c∗ contains ptx1, then A simulates hybrid i+ 1 exactly (the
encrypted message is (i, r) and A executes the code of the simulator). If c∗
contains ptx0, then emulation is perfect except if D injects (i, r) (then in A’s
emulation the owner retrieves m, and in hybrid i the owner’s protocol decrypts
and outputs r). However, this happens with negligible probability, because all
values seen by D are independent of r, which is contained only in ptx1 (assuming
that the message space is large).

46

	A Fresh Approach to Updatable Symmetric Encryption
	Introduction
	Updatable Encryption
	Contributions
	Related Work
	Outline of the Paper

	Preliminaries
	Notation
	Updatable Encryption
	Constructive Cryptography

	Modeling Guarantees of Updatable Encryption
	The Real-World Resources
	The Ideal Storage Service

	Explaining IND-CPA
	Protocol
	Construction Statement

	Resistance Against Randomness Corruption
	Protocol
	Construction Statement

	Active Attackers
	Conclusions and Open Problems
	Additional Preliminaries
	Syntax
	Details of UE Security Notions

	Details of sec:basic
	Protocol Description
	Proof of Theorem 1

	Details of sec:rand
	Proof of thm:rnd
	IND-ENC-CPA* Security of SHINE0
	Simulator
	Indistinguishability

	Proof of thm:mall

