
Kyber on ARM64: Compact Implementations of
Kyber on 64-bit ARM Cortex-A Processors

Pakize Sanal1, Emrah Karagoz1, Hwajeong Seo2, Reza Azarderakhsh1 and
Mehran Mozaffari-Kermani3

1 Florida Atlantic University, Boca Raton, USA,
{psanal2018,ekaragoz2017,razarderakhsh}@fau.edu

2 Hansung University, Seoul, South Korea, hwajeong84@gmail.com
3 University of South Florida, Tampa, USA, mehran2@usf.edu

Abstract. Public-key cryptography based on the lattice problem is efficient and
believed to be secure in a post-quantum era. In this paper, we introduce carefully-
optimized implementations of Kyber encryption schemes for 64-bit ARM Cortex-A
processors. Our research contribution includes several optimizations for Number
Theoretic Transform (NTT), noise sampling, and AES accelerator based symmetric
function implementations. The proposed Kyber512 implementation on ARM64
improved previous works by 1.72×, 1.88×, and 2.29× for key generation, encapsulation,
and decapsulation, respectively. Moreover, by using AES accelerator in the proposed
Kyber512-90s implementation, it is improved by 8.57×, 6.94×, and 8.26× for key
generation, encapsulation, and decapsulation, respectively. These results set new
speed records for Kyber encryption on 64-bit ARM Cortex-A processors.
Keywords: Post-quantum Cryptography · Kyber · ARM64 · Vectorized Implemen-
tation

1 Introduction
Conventional Public Key Cryptography (PKC) algorithms, such as RSA and Elliptic
Curve Cryptography (ECC), are based on integer factorization and discrete logarithm
problems. These hard problems have been believed to be secure against even high-end
super computers. However, these hard problems can be easily solved by using Shor’s
algorithm on a quantum computer [Sho94]. For this reason, there are a demand for
quantum-resistant algorithms to prepare the upcoming quantum era.

In 2016, NIST has initiated the post-quantum cryptography standardization process.
In 2020, NIST announced third round finalists. Among them, lattice-based cryptography
algorithms, such as Kyber, Dilithium, Falcon, and NTRU, were selected. Lattice based
cryptography is often considered as a promising candidate since its security relied on
worst-case computational assumptions in lattices that will remain hard even for quantum
computers. Among finalists, Kyber algorithm based on Learning With Errors (LWE) is
fast due to the small parameter size and the algorithm is relatively easier to implement
than other complex problems. Recently, many works devoted to improve the performance
of Kyber on microcontrollers. In Africacrypt’19, the memory efficient implementation of
Kyber on Cortex-M4 was presented [BKS19]. They presented novel optimization techniques
for the Number-Theoretic Transform (NTT) inside Kyber, which utilized the “vector” DSP
instructions of ARM Cortex-M4 microcontrollers. In CHES’20, novel NTT implementation
for Kyber scheme was presented [ABCG20]. The performance enhancement comes from
efficient modular reductions, small polynomial multiplications, and more aggressive layer
merging in the NTT.

mailto:psanal2018@fau.edu,ekaragoz2017@fau.edu,razarderakhsh@fau.edu
mailto:hwajeong84@gmail.com
mailto:mehran2@usf.edu

2
Kyber on ARM64: Compact Implementations of Kyber on 64-bit ARM Cortex-A

Processors

However, the efficient implementation of Kyber on high-end ARM processor (i.e.
ARMv8 Cortex-A) was not conducted. Since the high-end ARM is widely used in smart-
phone, smartwatch, and laptop computer, the efficient implementation should be highly
considered. In this paper, we propose an optimized implementation of Kyber on 64-bit
ARMv8 processors. Detailed contributions are as follows:

• Optimized vectorized implementation of primitive operations of Kyber:
Primitive operations of Kyber are fully vectorized in ASIMD instructions of 64-bit
ARMv8 processors. The proposed NTT implementation improved by 3.0 ∼ 5.0×
and 4.0 ∼ 6.0× than previous works for reduction and NTT, respectively.

• First optimized implementation of Kyber on 64-bit ARM processors:
With optimized primitive operations of Kyber, we implemented full parameters
for Kyber schemes. The result shows that the Kyber512 implementation outper-
forms previous state-of-the-art by 1.72×, 1.88×, and 2.29×, for key generation,
encapsulation, and decapsulation, respectively.

• Acceleration of symmetric functions through cryptography extension:
Symmetric functions are core operations of Kyber scheme. The operation is acceler-
ated with the cryptography extension of 64-bit ARMv8 processors. Results show
that Kyber512-90s w/ accelerator is faster than w/o accelerator by 8.57×, 6.94×,
and 8.26×, for key generation, encapsulation, and decapsulation, respectively.

The remainder of this paper is organized as follows. Section 2 presents an overview of
the Kyber algorithm. In Section 3, we introduce the ARMv8-A architecture. In Section 4,
proposed implementations of Kyber on 64-bit ARM Cortex-A processors are presented. In
Section 5, the performance evaluation of proposed implementations is described. Finally,
the conclusion is given in Section 6.

2 Kyber
Kyber is an IND-CCA2-secure key-encapsulation mechanism (KEM). It is a lattice-
based algorithm and its security is based on the hardness of solving the learning-with-
errors problem in module lattices (MLWE problem). It was first described in the paper
“CRYSTALS-Kyber: a CCA-secure module-lattice-based KEM” in 2018 [BDK+18]. It is
now a third round candidate in ongoing NIST competition. The details of the algorithm is
given in its specification document [SAB+20].

2.1 Mathematical Background
The ring used in Kyber is Zq[X]/(Xn + 1), denoted by Rq, with n = 256 and q = 3329
in all variants of Kyber. The computations are performed by using Number-Theoretic
Transform (NTT): for a polynomial f =

∑255
i=0 fiX

i ∈ Rq it is defined as

NTT(f) = (f̂0 + f̂1X, f̂2 + f̂3X, . . . , f̂254 + f̂255X)

where

f̂2i =
127∑
j=0

f2jζ
(2i+1)j and f̂2i+1 =

127∑
j=0

f2j+1ζ
(2i+1)j

with ζ = 17 being the 256-th root of unity.

Two polynomials f and g in Rq can be efficiently multiplied by using NTT:

NTT(f) ◦ NTT(g) = f̂ ◦ ĝ = ĥ

Pakize Sanal, Emrah Karagoz, Hwajeong Seo, Reza Azarderakhsh and Mehran
Mozaffari-Kermani 3

where ◦ is the component-wise multiplication of linear polynomials, that is,

ĥ2i + ĥ2i+1X = (f̂2i + f̂2i+1X)(ĝ2i + ĝ2i+1X) mod (X2 − ζ2i+1)

for i = 0, 1, . . . , 127. Then, the product of f and g is

fg = NTT−1(ĥ) = NTT−1(NTT(f) ◦ NTT(g)).

2.2 Compression and Encoding
An element x ∈ Zq is converted to an d-bit integer by Compressq(x, d). An d-bit integer x
is converted to a Zq element by Decompressq(x, d). They are defined as follows:

Compressq(x, d) = d(2d/q) · xc mod 2d,
Decompressq(x, d) = d(q/2d) · xc

where dac is the closest integer to a. When each function is applied to a polynomial (or a
vector/matrix of polynomials), it is applied to each coefficient individually.

Moreover, a polynomial (or a vector/matrix of polynomials) is serialized to byte arrays
by using Encode`() function, where ` is the bit-length of each coefficient. On the other hand,
Decode`() is the inverse of Encode`(), and it deserializes the byte arrays to polynomials.

Lastly, Parse() converts a byte stream to the NTT representation of a polynomial in
Rq.

2.3 Sampling
The noise is sampled from a centered binomial distribution Bη for η = 2 or η = 3. For a
sample (a1, . . . , aη, b1, . . . , bη)← {0, 1}2η, the output is computed as

η∑
i=1

(ai − bi).

The possible outputs are {−2,−1, 0, 1, 2} when η = 2, and {−3,−2,−1, 0, 1, 2, 3} when
η = 3, respectively.

Using Bη, a polynomial f =
∑255
i=0 fiX

i in Rq can be sampled by sampling each
coefficient fi deterministically from 512η-bit output (β0, . . . , β512η−1) of a pseudo-random
function:

fi =
η−1∑
j=0

(β2iη+j − β2iη+j+η) i = 0, 1, . . . , 255.

For this purpose, Kyber uses a function namely CBDη, which takes 512η-bit input and
outputs the corresponding polynomial.

2.4 Parameters
The fixed parameters are n = 256 and q = 3329. The parameter k represents the dimension
of the matrix of polynomials in Rq. The parameter pair (η1, η2) are used in CBDη function
for sampling. The parameter pair (du, dv) is used in Compress and Decompress functions.
The list of parameters are given in Table 1.

4
Kyber on ARM64: Compact Implementations of Kyber on 64-bit ARM Cortex-A

Processors

Table 1: Kyber parameters.
Algorithm NIST-Level n q k (η1, η2) (du, dv)
KYBER512 1 (AES-128) 256 3329 2 (3,2) (10,3)
KYBER768 3 (AES-192) 256 3329 3 (2,2) (10,4)
KYBER1024 5 (AES-256) 256 3329 4 (2,2) (11,5)

2.5 Symmetric Functions
Kyber makes a use of a pseudo-random function (PRF), an extendable output function
(XOF), two hash functions H, and G, and a key-derivation function (KDF). These functions
are specified in Table 2. At this point, Kyber has an alternative version Kyber-90s which
uses SHA-2 hash functions and AES, while Kyber uses SHA-3 hash functions.

Table 2: Symmetric primitives in Kyber.
Symmetric Kyber Kyber-90s
Primitive

XOF SHAKE-128 AES-256 in CTR mode
H and G SHA3-256 and SHA3-512 SHA-256 and SHA-512

PRF (s, b) SHAKE-256(s||b) AES-256 in CTR mode
(key=s and nonce=b)

KDF SHAKE-256 SHAKE-256

2.6 Kyber-PKE and Kyber-KEM
Kyber-PKE is an IND-CPA-secure public-key encryption scheme. It encrypts messages of
a fixed length of 32 bytes. It contains three algorithms: Key Generation, Encryption, and
Decryption.

In Kyber-PKE Key Generation, the polynomial matrix A is randomly generated, and
the polynomial vectors s and e are sampled according to Bη1 . Then, normally, the secret
key is s and the public key is As + e. However, for efficient implementation purposes, the
multiplication As is performed in NTT domain by generating A in NTT domain (i.e. Â)
and transforming s to ŝ = NTT(s). To avoid NTT−1 operation, e is also transformed to ê
and added to Â ◦ ŝ. Therefore, the values of secret and public keys are left in NTT domain
and encoded to sk and pk, respectively. In addition, the seed for randomness is appended
to the public key for letting the recipient generate the matrix A.

In Kyber-PKE Encryption, the message m is encrypted to the ciphertext c = (c1, c2)
by using the public key pk and random coins r. The polynomial vector t and the matrix
A are obtained using the public key. The polynomial vector r is sampled according to Bη1

using r. The polynomial vector e1 and the polynomial e2 are sampled according to Bη2

using r. Then, normally, the ciphertext c = (c1, c2) is (AT r + e1, tT r + e2 +m). However,
multiplications are performed in NTT domain and then transformed to the normal domain
by using NTT−1. Moreover, the ciphertext is compressed and encoded.

In Kyber-PKE Decryption, the polynomial vector u and the polynomial v are obtained
from the ciphertext by decoding and decompressing. The vector s is obtained from the
secret key. Then, the message m is v − sTu. Again, the multiplications are performed in
NTT domain and then transformed to the normal domain by using NTT−1.

Nonce values (which are 0 in the beginning of the algorithms) are incremental in each
computation. Algorithms are given in Algorithm 1, 2, and 3.

On the other hand, Kyber-KEM is an IND-CCA2-secure KEM and it is constructed
from Kyber-PKE using (a slightly tweaked) Fujisaki-Okamoto transform. It contains three

Pakize Sanal, Emrah Karagoz, Hwajeong Seo, Reza Azarderakhsh and Mehran
Mozaffari-Kermani 5

Algorithm 1: Kyber-PKE Key Generation
Output : secret key and public key pair (pk, sk)

1: d
$←− {0, 1}256

2: ρ, σ ← G(d)
3: Â← Parse(XOF(ρ, nonce))
4: s← CBDη1(PRF(σ, nonce))
5: e← CBDη1(PRF(σ, nonce))
6: ŝ← NTT(s)
7: ê← NTT(e)
8: t̂← Â ◦ ŝ + ê
9: pk ← Encode12(t̂)‖ρ

10: sk ← Encode12(ŝ)
11: return = (pk, sk)

Algorithm 2: Kyber-PKE Encryption
Input : public key pk, message m, random coins r ∈ {0, 1}256

Output : ciphertext c = (c1, c2)
1: t̂← Decode12(pk)
2: ρ← pk
3: Â← Parse(XOF(ρ, nonce))
4: r← CBDη1(PRF(r, nonce))
5: e1 ← CBDη2(PRF(r, nonce))
6: e2 ← CBDη2(PRF(r, nonce))
7: r̂← NTT(r)
8: u← NTT−1(ÂT ◦ r̂) + e1
9: v ← NTT−1(t̂T ◦ r̂) + e2 + Decompressq(Decode1(m), 1)

10: c1 ← Encodedu (Compressq(u, du))
11: c2 ← Encodedv (Compressq(v, dv))
12: return c = (c1, c2)

Algorithm 3: Kyber-PKE Decryption
Input : secret key sk, ciphertext c = (c1, c2)
Output :message m

1: u← Decompressq(Decodedu
(c1), du)

2: v ← Decompressq(Decodedv
(c2), dv)

3: ŝ← Decode12(sk)
4: m← Encode1(Compressq(v − NTT−1(ŝT ◦ NTT(u)), 1)
5: return m

6
Kyber on ARM64: Compact Implementations of Kyber on 64-bit ARM Cortex-A

Processors

steps: Key Generation, Encapsulation, and Decapsulation. In the first step, Alice generates
the public and secret keys by using Kyber-PKE Key Generation algorithm, and shares
her public key with Bob. In the second step, Bob encrypts the message to the ciphertext
by using Kyber-PKE Encryption algorithm, and sends the ciphertext to Alice. He also
computes the shared secret by using the message, Alice’s public key, and the ciphertext. In
the last step, Alice decrypts the ciphertext to the message by using Kyber-PKE Decryption
algorithm, and then verifies whether it can be encrypted to the same ciphertext (sent by
Bob) by following similar steps as Bob did by using Kyber-PKE Encryption algorithm. If
ciphertexts match, Alice computes the shared secret by using the message, her public key,
and the ciphertext. Otherwise, she computes the shared secret by using a random value
and the ciphertext. Details of Kyber-KEM are illustrated in Figure 1.

Public parameters
n = 256, q = 3329, k, (η1, η2), (du, dv)

Alice

KeyGen

1. z $←− {0, 1}256

2. (pk, sk′) := Kyber.CPAPKE.KeyGen()
3. sk := (sk′‖pk‖H(pk)‖z)

Bob

Encaps

1. m $←− {0, 1}256

2. m← H(m)
3. (K̄, r) := G(m‖H(pk))
4. c := Kyber.CPAPKE.Enc(pk,m, r)
5. K := KDF(K̄‖H(c))

Decaps

1. pk, h = H(pk), z ← sk

2. m′ := Kyber.CPAPKE.Dec(sk, c)
3. (K̄′, r′) := G(m′‖h)
4. c′ := Kyber.CPAPKE.Enc(pk,m′, r′)
5. If c = c′ then

K := KDF(K̄′‖H(c))
else

K := KDF(z‖H(c))

pk

c

Figure 1: Kyber-CCA-KEM.

3 ARMv8-A Architecture
ARMv8-A is a 64-bit architecture. It provides 31 general purpose registers which can
hold 32-bit values in registers w0-w30 or 64-bit values in registers x0-x30. It provides
SIMD (Single Instruction Multiple Data) instruction set, which can process 128 bit data
per instruction on average. The SIMD vectorization is possible for same data per vector
registers and it does not allow carry handling. There are 32 128-bit registers (v0-v31),
which can be divided into lanes which are 8, 16, 32, or 64 bits wide. They are defined
via operand suffix b, indicated byte, h indicates half-word, s indicates word, d indicated
double-word. For instance, v0.8h create a vector with eight 16-bit elements. Single element
of a vector can be accessed via square brackets (e.g. v0.4s[0] is the first 32-bit element
of the vector v0, and v1.8h[2] is the third 16-bit element of the vector v1).

The ARMv8-A has a various SIMD instructions. Load and store operations are
performed by using LD and ST operations. Each has 4 types according to the degree of
interleaving: LD1/ST1, LD2/ST2, LD3/ST3 and LD4/ST4. For example, LD1 fills the vector

Pakize Sanal, Emrah Karagoz, Hwajeong Seo, Reza Azarderakhsh and Mehran
Mozaffari-Kermani 7

va first, and continues to fill the vector vb later. However, LD2 fills the vectors va and vb
simultaneously, that is, one element for va and the next element for vb, another element for
va again and so on. LD3 follows a similar order for the vectors va, vb and vc. ZIP1/ZIP2 zip
two vectors into a single vector according to even/odd indices. UZP1/UZP2 concatenate even
or odd elements from two vectors. The SXTL/SXTL2 instructions widens the lower/upper
halfs of the source register (e.g. widens 8-bit elements to 16-bit elements). TBL is an
instruction used for permutation according the indices given in a look-up table. SSHR/USHR
performs vectorized signed/unsigned right shift operations. AND/ORR are bitwise and/or
operations. ADD/SUB performs vectorized addition/subtraction. MUL performs vectorized
multiplication restricted to the vector element size, however, SMULL/SMULL2 perform the
actual multiplication and widens the vector element. All of MUL/SMULL/SMULL2 also
support multiplication by a scalar, that is, all the vector elements are multiplied with a
single scalar element. The details of ARMv8-A architecture can be found in [ARM].

4 Implementation Details
As mentioned in Section 2.1, Kyber performs its mathematical operations over the ring
Rq = Zq[X]/(Xn + 1) and the elements are represented as polynomials over Zq or vectors
in NTT domain. However, both representations can be serialized as follows:

f =
255∑
i=0

fiX
i → (f0, f1, . . . , f255)

and
f̂ = NTT(f) = (f̂0 + f̂1X, . . . , f̂254 + f̂255X)→ (f̂0, . . . , f̂255).

Considering both serialized vector representations of two polynomials f and g, addition and
subtraction can be performed component-wise: fi±gi or f̂i±ĝi. However, the multiplication
is only performed in NTT domain (for efficiency) by multiplying component-wise pairs:
(f̂2i, f̂2i+1) ◦ (ĝ2i, ĝ2i+1). Modular reductions can also be performed component-wise: fi
mod q, or f̂i mod q.

In our implementation, the basic goal is to vectorize the input and take the advantage of
SIMD operations on ARM. As q = 3329 is a 12-bit integer, the input values can be stored
in 16-bit (or multiples of 16-bit). Later, 16-bit values are vectorized in vx.8h registers. In
addition, 32-bit values are vectorized in vx.4s registers, if needed. Here, x is the vector
index in {0, 1, . . . , 31}.

4.1 Reduction
We use the vectorized form of Barrett reduction as given in Listing 1. For a given 16-bit
integer a, Barrett reduction computes the centered representative congruent to a mod q,
that is, the unique integer x in the interval

[
− q−1

2 , ..., q−1
2
]
such that x = a mod q. Barrett

reduction is used in poly_reduce function to compute modular reduction of polynomial
coefficients in Zq. It uses a special constant value r = b(226 + bq/2c)/qc), which is 20159
as q = 3329.

On the other hand, for a given 32-bit integer a, Montgomery reduction computes
16-bit integer congruent to aR−1 mod q, where R = 216, in the interval [−q + 1, . . . , q − 1].
We use the vectorized form of Montgomery reduction inplaced in tomont (see Listing 2)
and fqmul (see Listing 3) functions. The tomont function performs the conversion of
polynomial coefficients from normal domain to Montgomery domain by multiplying them
with t = 232 mod q first and by applying the Montgomery reduction later. As q = 3329,

8
Kyber on ARM64: Compact Implementations of Kyber on 64-bit ARM Cortex-A

Processors

the constant values in tomont are q′ = 62209 = q−1 mod 216 and t = 1353. Moreover,
the fqmul function performs the multiplication of two Zq-elements and then apply the
Montgomery reduction. It uses the constant value q′ as defined before.

In the comments of the listings, MSB16 and LSB16 refer to the most significant and the
least significant 16-bit of a 32-bit integer, respectively.

Listing 1: BARR: Vectorized Barrett Reduction
(r = b(226 + bq/2c)/qc)

Input : va.8h = [a0, a1, ..., a7] (a0, a1, . . . , a7)
vq.8h = [q, r, ...]
(vb, vc, vd are intermediate vectors)

Output : va.8h = [a0, a1, ..., a7] (a0, a1, . . . , a7)

1: SMULL vb.4s, va.4h, vq.h[1]
2: SMULL2 vc.4s, va.8h, vq.h[1]
3: UZP2 vd.8h, vb.8h, vc.8h . t← (MSB16)(r · a)
4: SSHR vd.8h, vd.8h, 10 . t← t� 10
5: MLS va.8h, vd.8h, vq.h[0] . a← a− q · t

Listing 2: TOMONT: Vectorized conversion of polynomial coefficients from normal
domain to Montgomery domain (q′ = q−1 mod 216 and t = 232 mod q)

Input : va.8h = [a0, a1, ..., a7] (a0, a1, . . . , a7)
vq.8h = [q, q′, t, ...]
(vb, vc, vd, ve, vf are intermediate vectors)

Output : va.8h = [a0, a1, ..., a7]

1: SMULL vb.4s, va.4h, vq.h[2]
2: SMULL2 vc.4s, va.8h, vq.h[2]
3: UZP1 vd.8h, vb.8h, vc.8h . d← (LSB16) a · t
4: UZP2 ve.8h, vb.8h, vc.8h . e← (MSB16) a · t
5: MUL vf.8h, vd.8h, vq.h[1] . f ← (LSB16) q−1 · d
6: SMULL vb.4s, vf.4h, vq.h[0]
7: SMULL2 vc.4s, vf.8h, vq.h[0]
8: UZP2 va.8h, vb.8h, vc.8h . a← (MSB16) f · q
9: SUB va.8h, ve.8h, va.8h . a← e− a

4.2 NTT Operations
In NTT, the state-of-art computation is performed using Butterfly operations. As n =
256 = 28 in Kyber, the Butterfly operations are performed in 7 levels. In each level, the
serialized representation (f0, f1, . . . , f255) are filled into the 8×16-bit vectors, and each two
vectors (according to some distance in each level) are updated using Butterfly operation
in NTT (see Listing 4). In the end, the its NTT representation (i.e. (f̂0, f̂1, . . . , f̂255)) is
obtained. Vice versa, a vector in NTT domain can also be transformed to the normal
domain by using the Butterfly operation in NTT−1 (see Listing 5).

4.3 Polynomial Multiplication
As mentioned in Section 2.1, two linear polynomials a0 + a1X and b0 + b1X are multiplied
to compute their product c0 + c1X in modulo X2 − ζk. For this purpose, we use the

Pakize Sanal, Emrah Karagoz, Hwajeong Seo, Reza Azarderakhsh and Mehran
Mozaffari-Kermani 9

Listing 3: FQMUL: Multiplication followed by Montgomery Reduction
Input : va.8h = [a0, a1, ..., a7]

vb.8h = [b0, b1, ..., b7]
vq.8h = [q, q′, ...]
(vd, ve, vf, vg, vh are intermediate vectors)

Output : vc.8h = [c0, c1, ..., c7]

1: SMULL vd.4s, va.4h, vb.4h . (LO) a · b
2: SMULL2 ve.4s, va.8h, vb.8h . (HI) a · b
3: UZP1 vf.8h, vd.8h, ve.8h . f
4: UZP2 vg.8h, vd.8h, ve.8h . g
5: MUL vh.8h, vf.8h, vq.h[1] . u = q−1 · e
6: SMULL vd.4s, vh.4h, vq.h[0] . (LO) q · g
7: SMULL2 ve.4s, vh.8h, vq.h[0] . (HI) q · g
8: UZP2 vc.8h, vd.8h, ve.8h . t← (MSB16) q · g
9: SUB vc.8h, vg.8h, vc.8h . a← a− t

Listing 4: Butterfly operation in NTT
Input : va.8h = [a0, a1, ..., a7] (a0, a1, . . . , a7)

vb.8h = [b0, b1, ..., b7] (b0, b1, . . . , b7)
vz.8h = [z0, z1, ..., z7] (ζ0, ζ1, . . . , ζ7)
(vc is an intermediate vector)

Output : va.8h = [a0, a1, ..., a7] (a0, a1, . . . , a7)
vb.8h = [b0, b1, ..., b7] (b0, b1, . . . , b7)

1: FQMUL vc.8h, vz.8h, vb.8h
2: SUB vb.8h, va.8h, vc.8h . b← a− b · ζ
3: ADD va.8h, va.8h, vc.8h . a← a+ b · ζ

Listing 5: Butterfly operation in NTT−1

Input : va.8h = [a0, a1, ..., a7] (a0, a1, . . . , a7)
vb.8h = [b0, b1, ..., b7] (b0, b1, . . . , b7)
vz.8h = [z0, z1, ..., z7] (ζ0, ζ1, . . . , ζ7)
(vc is an intermediate vector)

Output : va.8h = [a0, a1, ..., a7] (a0, a1, . . . , a7)
vb.8h = [b0, b1, ..., b7] (b0, b1, . . . , b7)

1: MOV vc.16b, va.16b . c← a
2: ADD va.8h, vc.8h, vb.8h . a← b+ c
3: BARR va.8h . a← BarrettRed(a)
4: SUB vb.8h, vc.8h, vb.8h . b← b− c
5: FQMUL vb.8h, vz.8h, vb.8h . b← b · ζ

10
Kyber on ARM64: Compact Implementations of Kyber on 64-bit ARM Cortex-A

Processors

BASEMUL function (see Listing 6) as the vectorized multiplication of two linear polynomials.

Listing 6: BASEMUL: Vectorized multiplication of two linear polynomials
Input : va0.8h = [a00, a01, ..., a07]

va1.8h = [a10, a11, ..., a17] a0 + a1X
vb0.8h = [b00, b01, ..., b07]
vb1.8h = [b10, b11, ..., b17] b0 + b1X
vz.8h = [z0,−z0, ..., z3,−z3] ζ values
(vd is an intermediate vector)

Output : vc0.8h = [c00, c01, ..., c07]
vc1.8h = [c10, c11, ..., c17] c0 + c1X

1: FQMUL vc0.8h, va1.8h, vb1.8h
2: FQMUL vc0.8h, vc0.8h, vz.8h . c0 ← a1 · b1 · ζ
3: FQMUL vd.8h, va0.8h, vb0.8h
4: ADD vc0.8h, vc0.8h, vd.8h . c0 ← c0 + a0b0
5: FQMUL vc1.8h, va0.8h, vb1.8h
6: FQMUL vd.8h, va1.8h, vb0.8h
7: ADD vc1.8h, vc1.8h, vd.8h . c1 ← a0 · b1 + a1 · b0

4.4 Polynomial Addition and Subtraction
Vectors are simply added or subtracted using ADD or SUB as many times as needed.

4.5 Noise Sampling
Vectors are sampled according to B2 or B3 since η ∈ {2, 3}. We use CBD2 (see Listing 7)
and CBD3 (see Listing 8) when η = 2 and η = 3, respectively. We initialize some vector
registers (as many as needed) in the beginning: the vectors vmi are used for masking and
the vector vs is used for shuffling. As mentioned in Section 2.3, every 4 bits (resp. 6
bits) produce an output when η = 2 (resp. η = 3). Therefore, CBD2 takes a 128-bit input
and produces 32 output values (which are stored in vc0.8h, vc1.8h, vc2.8h and vc3.8h).
Similarly, CBD3 takes a 96-bit input and produces 16 output values (which are stored in
vc0.8h and vc1.8h). For these functions, we mainly followed the steps in Kyber’s AVX
implementation given in [BDK+].

4.6 Symmetric Functions
As described in Table 2, symmetric functions, including SHAKE-128/256, SHA-256/512,
SHA3-256/512, and AES-256, are required for symmetric primitives, such as XOF, H,
G, PRF, and KDF. For hash functions, we utilized the implementation provided by
PQClean [KRS+]. For the AES implementation, we utilized the AES accelerator in the
target board. If the board does not support the AES accelerator, we utilized PQClean
AES implementations.

5 Performance Results
Benchmark results were measured both ARM and Apple chips. The ARM board is on
Google Pixel 3 Android smartphone. The processor (Snapdragon 845) on it has 8 cores
including 4 of ARM Cortex-A53 (@1.77 GHz) and 4 of ARM Cortex-A75 (@2.8 GHz)
based. Performance results are taken by using Cortex-A75 processor and on debug mode

Pakize Sanal, Emrah Karagoz, Hwajeong Seo, Reza Azarderakhsh and Mehran
Mozaffari-Kermani 11

Listing 7: CBD2: Vectorized noise sampling for η = 2
Input : va.16b = [a0, a1, ..., a15], (input values)

vm0.16b = [0x55, ..., 0x55],
vm1.16b = [0x33, ..., 0x33],
vm2.16b = [0x03, ..., 0x03],
vm3.16b = [0x0F, ..., 0x0F] (masking)
(vd, ve, vf are intermediate vectors)

Output : vc0.8h = [c00, c01, ..., c07]
vc1.8h = [c10, c11, ..., c17]
vc2.8h = [c20, c21, ..., c27]
vc3.8h = [c30, c31, ..., c37]

1: USHR vd.8h, va.8h, 1
2: AND va.16b, va.16b, vm0.16b
3: AND vd.16b, vd.16b, vm0.16b
4: ADD va.16b, va.16b, vd.16b
5: USHR vd.8h, va.8h, 2
6: AND va.16b, va.16b, vm1.16b
7: AND vd.16b, vd.16b, vm1.16b
8: ADD va.16b, va.16b, vm1.16b
9: SUB va.16b, va.16b, vd.16b

10: USHR vd.8h, va.8h, 4
11: AND va.16b, va.16b, vm3.16b
12: AND vd.16b, vd.16b, vm3.16b
13: SUB va.16b, va.16b, vm2.16b
14: SUB vd.16b, vd.16b, vm2.16b
15: ZIP1 ve.16b, va.16b, vd.16b
16: ZIP2 vf.16b, va.16b, vd.16b
17: SXTL vc0.8h, ve.8b
18: SXTL2 vc1.8h, ve.16b
19: SXTL vc2.8h, vf.8b
20: SXTL2 vc3.8h, vf.16b

12
Kyber on ARM64: Compact Implementations of Kyber on 64-bit ARM Cortex-A

Processors

Listing 8: CBD3: Vectorized noise sampling for η = 3
Input : va.16b = [a0, a1, ..., a7]

vs.16b = [−1, 11, 10, 9,−1, 8, 7, 6,
−1, 5, 4, 3,−1, 2, 1, 0], (shuffle)

vm0.4s = [0x00249249, ...],
vm1.4s = [0x006DB6DB, ...]
vm2.16b = [0x00000007, ...],
vm3.16b = [0x00070000, ...],
vm4.16b = [0x00030003, ...], (masking)
(vd is an intermediate vectors)

Output : vc0.4s = [c00, c01, c02, c03]
vc1.4s = [c10, c11, c12, c13]

1: TBL va.16b, va.16b, vs.16b
2: USHR vd.4s, va.4s, 1
3: USHR vc0.4s, va.4s, 2
4: AND va.16b, va.16b, vm0.16b
5: AND vd.16b, vd.16b, vm0.16b
6: AND vc0.16b, vc0.16b, vm0.16b
7: ADD va.4s, va.4s, vd.4s
8: ADD va.4s, va.4s, vc0.4s
9: USHR vd.4s, va.4s, 3

10: ADD va.4s, va.4s, vm1.4s
11: SUB va.4s, va.4s, vd.4s
12: SHL vd.4s, va.4s, 10
13: USHR vc0.4s, va.4s, 12
14: USHR vc1.4s, va.4s, 2
15: AND va.16b, va.16b, vm2.16b
16: AND vd.16b, vd.16b, vm3.16b
17: AND vc0.16b, vc0.16b, vm2.16b
18: AND vc1.16b, vc1.16b, vm3.16b
19: ADD va.8h, va.8h, vd.8h
20: ADD vd.8h, vc0.8h, vc1.8h
21: SUB va.8h, va.8h, vm4.8h
22: SUB vd.8h, vd.8h, vm4.8h
23: ZIP1 vc0.4s, va.4s, vd.4s
24: ZIP2 vc1.4s, va.4s, vd.4s

Pakize Sanal, Emrah Karagoz, Hwajeong Seo, Reza Azarderakhsh and Mehran
Mozaffari-Kermani 13

to get more accurate results. The executable is aarch64 cross-compiled on Linux operating
system (Ubuntu 20.04) with gcc-9.

The Apple board is on iPad mini 5-th generation. The processor (A12 Bionic) on it
has 6 cores including 2 of Vortex (@2.49 GHz) and 4 of Tempest (@1.54 GHz) based.
Performance results are taken by using Vortex processor on Apple operating system
(iPadOS 14.3).

The code is originally taken from Kyber Round 3 submission [BDK+]. Then, cycle
count function is changed as how is written in Microsoft’s SIDH code [Mic]. The clock is
set as CLOCK_MONOTONIC which gives more accurate results than CLOCK_REALTIME. Results
shown in the Tables 3, 4, and 5 are median values for 1,000 tests.

The Table 3 shows reference and optimized implementation performance results for the
arithmetic functions in Kyber. Notice that these results are same for all Kyber variants,
because each Kyber variant has the same number of polynomial coefficients (e.g. n = 256).
The overall performance results of key generation (K), encapsulation (E) and decapsulation
(D) for all Kyber variants (including Kyber-90s) are presented in Tables 4 and 5. They
show that the optimized implementation is ∼2x faster than reference implementation even
though the arithmetic functions are optimized ∼5x faster. The main reason here is that
the hashing operations mainly in the matrix generation part and in other various sums
up to a big portion of the timing results as it is also indicated in the paper [ABCG20].
Detailed percentages of these functions are illustrated in the Figure 2.

KeyGen Encaps Decaps

Gen Matrix

Sampling

NTT Operations

Arithmetic

Conversion

Others&Hashing

R
E
F

A
S
M

21.9%

1.6%

24.7% 29.1%

1.2%

21.7% 15.6%1.2%

33.5%
24.5%

2.8%

22.5%
12.8%

1%

41.6%
27.9%

4%12.8%

37%

3.3%9.2%
12.4%

1.3%

36.8%
28.4%

2.4%
11.8%

11.5%
4.8%

41.2%
28%

2.4%
17.8% 15.6%

8.2%

28.1%

Figure 2: Percentages of used functions in Keypair, Encapsulation and Decapsulation

14
Kyber on ARM64: Compact Implementations of Kyber on 64-bit ARM Cortex-A

Processors

Table 3: Comparison of clock cycles for functions of Kyber schemes on 64-bit ARM
Cortex-A75@2.8 GHz.

Functions Timing [cc] Ref [KRS+]/OptRef [KRS+] Opt
Reduction
poly_tomont (Montgomery Red) 1,896 582 3.26
poly_reduce (Barrett Red) 2,187 437 5.00
NTT
poly_ntt (NTT+Barrett Red) 11,228 2,332 4.81
poly_invntt_tomont (InvNTT) 17,500 3,209 5.45
poly_basemul_montgomery 5,396 1,313 4.11

Table 4: Comparison of clock cycles for Kyber schemes on 64-bit ARM Cortex-
A75@2.8 GHz w/o AES accelerator.

Schemes Timing [cc] Ref [KRS+]/OptRef [KRS+] Opt

Kyber512
K 145,687 84,728 1.72
E 206,209 109,668 1.88
D 249,082 108,646 2.29

Kyber768
K 247,769 143,791 1.72
E 326,810 180,687 1.81
D 381,794 179,085 2.13

Kyber1024
K 385,148 228,082 1.69
E 475,563 272,418 1.75
D 545,126 270,668 2.01

Kyber512-90s
K 270,522 208,541 1.30
E 334,541 238,148 1.40
D 375,082 234,354 1.60

Kyber768-90s
K 491,750 384,272 1.28
E 581,437 432,541 1.34
D 632,918 426,269 1.48

Kyber1024-90s
K 790,269 633,794 1.25
E 897,313 687,898 1.30
D 959,582 680,313 1.41

Pakize Sanal, Emrah Karagoz, Hwajeong Seo, Reza Azarderakhsh and Mehran
Mozaffari-Kermani 15

Table 5: Comparison of clock cycles for Kyber schemes on 64-bit Apple A12@2.49 GHz
w/ AES accelerator.

Schemes Timing [cc] Ref [KRS+]/OptRef [KRS+] Opt

Kyber512
K 60,370 34,932 1.78
E 77,684 37,673 2.06
D 94,623 37,259 2.53

Kyber768
K 106,028 62,206 1.70
E 131,897 60,844 2.16
D 146,694 59,996 2.44

Kyber1024
K 171,238 95,296 1.79
E 182,220 93,004 1.95
D 209,122 91,025 2.29

Kyber512-90s
K 279,751 32,640 8.57
E 292,742 42,158 6.94
D 305,511 36,982 8.26

Kyber768-90s
K 554,264 56,425 9.82
E 576,012 64,560 8.92
D 590,746 57,033 10.35

Kyber1024-90s
K 941,916 87,146 10.80
E 964,815 93,820 10.28
D 983,081 83,568 11.76

5.1 Cryptography Extension for Kyber–90s
64-bit ARMv8 Cortex-A processor supports cryptography extension, which accelerates AES
encryption, SHA-1, SHA-224, and SHA-2561. In CT-RSA’15, compact implementations of
AES-GCM were presented [GL15]. They utilized new cryptography instructions including
64-bit polynomial multiplication (e.g. PMULL and PMULL2) and AES operations (e.g.
AESE (AddRoundKey, SubBytes, and ShiftRows) and AESMC (MixColumns)) for high-
performance. In PQCrypto’18, SPHINCS with different cryptographic hash functions on
ARMv8-A platform was presented [Köl18]. The implementation of SHA256 is optimized
with cryptography extension (SHA256H, SHA256H2, SHA256SU0, and SHA256SU1). HARAKA
implementation is optimized with AES extension. These dedicated instruction sets are
also beneficial for a variant of Kyber, namely Kyber-90s, suggested by Kyber team. This
new scheme utilizes AES-256 in counter mode and SHA2 instead of SHAKE. Kyber512-
90s can be further optimized with AES-256 accelerator. We evaluated Kyber512-90s
on 64-bit Apple A12 processors@2.49 GHz. Reference implementations require 279,751,
292,742, and 305,511 clock cycles for key generation, encryption, and decryption while
optimized implementations with ARM64 assembly and AES-256 accelerator require 32,640,
42,158, and 36,982 clock cycles for key generation, encryption, and decryption, respectively.
The implementation with accelerator shows 8.57×, 6.94×, and 8.26× faster than the
implementation without the AES accelerator.

6 Conclusion
This paper presented several optimization techniques to efficiently implement Kyber-
KEM on 64-bit ARM processors. We proposed optimizations for primitive operations
of Kyber and symmetric functions to accelerate the execution time. A combination of
these optimizations achieved 1.72×, 1.88×, and 2.29× faster than previous Kyber512

1Recent ARM architecture even supports SHA-3, SHA-512, SM3, and SM4 functions.

16
Kyber on ARM64: Compact Implementations of Kyber on 64-bit ARM Cortex-A

Processors

implementations for key generation, encapsulation, and decapsulation, which set new speed
records for Kyber-KEM on an 64-bit ARM processor.

References
[ABCG20] Erdem Alkim, Yusuf Alper Bilgin, Murat Cenk, and François Gérard. Cortex-

M4 optimizations for {R, M} LWE schemes. IACR Cryptol. ePrint Arch.,
2020:12, 2020.

[ARM] ARM. ARM architecture reference manual ARMv8, for ARMv8-A archi-
tecture profile. https://developer.arm.com/documentation/ddi0487/fc/.
Accessed: 2021-01-15.

[BDK+] Joppe Bos, Léo Ducas, Eike Kiltz, Tancrède Lepoint, Vadim Lyubashevsky,
John Schanck, Peter Schwabe, Gregor Seiler, and Damien Stehlé. Kyber project.
https://github.com/pq-crystals/kyber. Accessed: 2020-12-12.

[BDK+18] Joppe Bos, Léo Ducas, Eike Kiltz, Tancrède Lepoint, Vadim Lyubashevsky,
John M Schanck, Peter Schwabe, Gregor Seiler, and Damien Stehlé. CRYSTALS-
Kyber: a CCA-secure module-lattice-based KEM. In 2018 IEEE European
Symposium on Security and Privacy (EuroS&P), pages 353–367. IEEE, 2018.

[BKS19] Leon Botros, Matthias J Kannwischer, and Peter Schwabe. Memory-efficient
high-speed implementation of Kyber on Cortex-M4. In International Conference
on Cryptology in Africa, pages 209–228. Springer, 2019.

[GL15] Conrado PL Gouvêa and Julio López. Implementing GCM on ARMv8. In
Cryptographers’ Track at the RSA Conference, pages 167–180. Springer, 2015.

[Köl18] Stefan Kölbl. Putting wings on SPHINCS. In International Conference on
Post-Quantum Cryptography, pages 205–226. Springer, 2018.

[KRS+] MJ Kannwischer, J Rijneveld, P Schwabe, D Stebila, and T Wiggers. The
PQClean project. https://github.com/PQClean/PQClean. Accessed: 2020-
12-10.

[Mic] Microsoft. PQCrypto-SIDH project. https://github.com/microsoft/
PQCrypto-SIDH. Accessed: 2020-12-13.

[SAB+20] Peter Schwabe, Roberto Avanzi, Joppe Bos, Léo Ducas, Eike Kiltz, Tancrède
Lepoint, Vadim Lyubashevsky, John M. Schanck, Gregor Seiler, and Damien
Stehlé. CRYSTALS-KYBER. Technical report, National Institute of Stan-
dards and Technology, 2020. available at https://csrc.nist.gov/projects/
post-quantum-cryptography/round-3-submissions.

[Sho94] Peter W Shor. Algorithms for quantum computation: discrete logarithms and
factoring. In Proceedings 35th annual symposium on foundations of computer
science, pages 124–134. IEEE, 1994.

https://developer.arm.com/documentation/ddi0487/fc/
https://github.com/pq-crystals/kyber
https://github.com/PQClean/PQClean
https://github.com/microsoft/PQCrypto-SIDH
https://github.com/microsoft/PQCrypto-SIDH
https://csrc.nist.gov/projects/post-quantum-cryptography/round-3-submissions
https://csrc.nist.gov/projects/post-quantum-cryptography/round-3-submissions

	Introduction
	Kyber
	Mathematical Background
	Compression and Encoding
	Sampling
	Parameters
	Symmetric Functions
	Kyber-PKE and Kyber-KEM

	ARMv8-A Architecture
	Implementation Details
	Reduction
	NTT Operations
	Polynomial Multiplication
	Polynomial Addition and Subtraction
	Noise Sampling
	Symmetric Functions

	Performance Results
	Cryptography Extension for Kyber–90s

	Conclusion

