
High-Speed NTT-based Polynomial
Multiplication Accelerator for

CRYSTALS-Kyber Post-Quantum Cryptography

Mojtaba Bisheh-Niasar1, Reza Azarderakhsh1,2, and Mehran
Mozaffari-Kermani3

1 Department of Computer and Electrical Engineering and Computer Science,
Florida Atlantic University, FL, USA

{mbishehniasa2019,razarderakhsh}@fau.edu
2 PQSecure Technologies, LLC, Boca Raton, FL , USA

3 Department of Computer Science and Engineering, University of South Florida,
FL, USA

mehran2@usf.edu

Abstract. This paper demonstrates an architecture for accelerating the
polynomial multiplication using number theoretic transform (NTT). Ky-
ber is one of the finalists in the third round of the NIST post-quantum
cryptography standardization process. Simultaneously, the performance
of NTT execution is its main challenge, requiring large memory and com-
plex memory access pattern. In this paper, an efficient NTT architecture
is presented to improve the respective computation time. We propose
several optimization strategies for efficiency improvement targeting dif-
ferent performance requirements for various applications. Our NTT ar-
chitecture, including four butterfly cores, occupies only 798 LUTs and
715 FFs on a small Artix-7 FPGA, showing more than 44% improvement
compared to the best previous work. We also implement a coprocessor
architecture for Kyber KEM benefiting from our high-speed NTT core
to accomplish three phases of the key exchange in 9, 12, and 19 µs,
respectively, operating at 200 MHz.
Keywords: FPGA, hardware architecture, Kyber, lattice-based cryp-
tography, NTT, post-quantum cryptography.

1 Introduction

The security of classical public-key cryptosystems relies on the underlying NP-
hard problems like integer factorization, discrete logarithm, and elliptic curve
discrete logarithm. However, these problems can be solved when a large-scale
quantum computer is build using quantum algorithms such as Shor’s algorithm
[1]. Hence, the National Institute of Standards and Technology (NIST) started
a post-quantum cryptography standardization process in 2016, noting that in
round-3 of this competition, the four key encapsulation mechanisms (KEM) fi-
nalists, i.e., Classic-McEliece, Kyber, NTRU, and Saber, were announced in July

2020. Among all promising candidates, lattice-based cryptography is a very at-
tractive alternative, mainly because of offering a good trade-off between security
and efficiency.

Kyber KEM [2] is part of the Cryptographic Suite for Algebraic Lattices
(CRYSTALS) and shares a common framework with the Dilithium signature
scheme [3]. Kyber bases its security on the hardness assumptions over module
learning with errors (Module-LWE) and is believed to be quantum-resistant.
The main characteristic of Kyber is polynomial multiplication over a polyno-
mial ring as Z3329[X]/

〈
X256 + 1

〉
, providing a significant increase in efficiency.

Hence, the most computationally intensive operation, i.e., matrix-vector and
vector-vector multiplication, can be optimized with the fast number-theoretic
transform (NTT), which can reduce computational complexity from O(n2) to
roughly O(nlogn). Since the implementation of NTT-based multiplication is
still a performance bottleneck in lattice-based cryptography, improving NTT
efficiency has recently received significant attention.

Reducing the computational complexity of polynomial multiplication is es-
sential for faster key encapsulation and optimization of the resource utilization
of the entire cryptosystem. This acceleration of polynomial multiplication would
be challenging for various applications due to their resource constraints, strict
performance, and flexibility requirements. However, for a widely-deployed cryp-
tosystem, the overall complexity consisting of the utilized resource and the re-
quired latency will have to be minimal to be standardized by NIST [4]. To address
these challenges, hardware implementation of the cryptosystem will be critical
since it accelerates the core arithmetic operation occupying limited resources.

Overall, there are two possible strategies to deploy hardware accelerators: (i)
hardware/software co-design approaches and (ii) pure hardware architectures.
Although hardware/software co-design approaches are more flexible and easier
to develop compared to pure hardware architectures, they may not lead to the
best performance. Most hardware accelerators focus on the FPGA platform to
take advantage of its reconfigurability. FPGA can provide an appropriate balance
between flexibility and performance, which is especially important for a rapidly
evolving field like PQC.

1.1 Related Work

There are prominent works to accelerate polynomial multiplication in the lit-
erature. The work of [5] proposed the negative wrapped convolution (NWC)
to eliminate the overhead of zero padding in the polynomial multiplication
over Zq[X]/ 〈Xn + 1〉. The authors in [6] introduced low-complexity NTT by
merging the pre-processing of NTT into butterfly operations. Furthermore, low-
complexity INTT is proposed in [7] to avoid post-processing overhead. Longa et
al. in [8] proposed the KRED and KRED-2X reduction algorithms to speed up
the NTT computation. This work also reduces post-processing computation of
INTT at the cost of more memory utilization. Furthermore, employing Cooley-
Tukey (CT) and Gentleman-Sande (GS) butterfly configurations reduces bit-
reverse operation, which was implemented in [9]. The authors in [10] presented

2

a processor benefiting from polynomial vector structure in the Kyber algorithm
to reduce memory access overhead.

A flexible and scalable NTT architecture was presented in [11,12]. Further-
more, the work of [13] implemented a scalable NTT architecture on RISC-V. In
[14], a low-power NTT was proposed to reduce the required latency.

Although a compact design of NTT employing only one butterfly core re-
quires few hardware resources, it is too slow to provide high throughput require-
ments of high-performance applications. The work of [15] employed four but-
terfly cores for NewHope implementation. However, increasing the number of
butterfly cores in unmerged implementations increases memory access overhead.
Hence, merging NTT layers was studied in [16] using 2 × 2 butterfly structure.
This design was customized in [17] for NewHope using KRED and KRED-2X
reductions in their proposed architecture. The authors in [18,19] used the same
architecture for Kyber KEM, employing the high-level synthesis (HLS) approach.
Implementing KRED and KRED-2X modular reductions increases the perfor-
mance in software platforms, while it doubles the occupied resources in hardware.
Furthermore, the required memory for the precomputed values is increased to
store two sets of constants. Additionally, the authors in [20] implemented 3-
layer merged NTT for NewHope by RISC-V ISA features, while they claimed
using this method for Kyber cannot improve efficiency. The prior hardware NTT
designs have so far been fixed in throughput. Furthermore, since the same but-
terfly configurations are used for both NTT and INTT, a bit-reverse function is
required.

Implementing Ring-LWE has been increased since it offers high-performance
and compact architecture compared to both PQC schemes [21,22,23] and even
pre-quantum cryptosystems [24,25]. Although many efforts towards the HLS [26]
and the hardware/software co-design implementation of PQC accelerators have
been made [9,20,27,28], there are merely a few developed pure hardware architec-
tures for Kyber KEM. The first hardware implementation of Kyber is reported
in [29], employing an RTL-based methodology providing good performance and
smaller area consumption compared to the HLS-based approach. Furthermore,
the authors in [30] proposed an architecture of Kyber, which heavily relies on
BlockRAM primitives between components. Recently, the work of [31] imple-
mented a compact FPGA-based architecture occupying only 3 BRAMs.

Fig. 1 shows a performance and resource utilization comparison between soft-
ware, hardware/software, and pure hardware implementations of Kyber. Soft-
ware benchmarking [32,33,34] reports 60-80% of the overall required cycle for
hashing and sampling while hardware/software accelerators can reduce it. How-
ever, Keccak latency can be hidden by pure hardware design when it works in
a parallel fashion with the NTT core. A wide range of NTT computation (25-
90%) has been reported in the literature for the hardware/software approach
since different optimization perspectives have been targeted. Based on the afore-
mentioned discussions, implementation gaps are identified in accelerating and
compacting the NTT core in pure hardware architecture to reduce the total
time and required resources.

3

10-5 10-4 10-3 10-2 10-1

HW

HW/SW

SW

T
im

e(
s)

0 5k 10k 15k 20k

HW
HW/SW

A
re

a
(#

L
U

T
)

Keccak NTT Control

Fig. 1. Performance (in log10) and resource utilization comparison in three different
Kyber implementation approaches: software (SW), hardware/software (HW/SW), and
hardware (HW). Kyber architecture is breakdown into three main cores, including Kec-
cak (hashing and sampling), NTT (polynomial multiplication), and Control (controller
and all other required functions).

1.2 Contributions

Polynomial multiplication computations take a significant portion of Kyber
KEM latency on hardware implementation. Therefore, to improve the efficiency
of Kyber, one should increase efficiency on the NTT core, providing higher
throughput using fewer hardware resources. This paper proposes algorithmic
optimizations and hardware optimizations to design an efficient pure hardware
architecture of high-speed polynomial multiplication core (PMC) on FPGA to
accelerate Kyber KEM. Algorithmic optimizations include modular reduction
and efficient NTT computation. The hardware optimizations are achieved by
designing a reconfigurable butterfly core (BF), judicious rearrangement of the
sequence of the operations to leverage pipelining and parallelism at multiple
layers within each unit’s implementation.

The contributions and novelties of this paper are as follows:

1. We propose a hardware-friendly modular reduction algorithm, which requires
few resources without the additional cost of memory utilization. Reductions
are only carried out after multiplications to avoid occupying other resources.

2. We propose an improved reconfigurable hardware architecture for NTT and
INTT with highly efficient modular reduction. This reconfigurability sup-
porting both decimation-in-frequency (DIF) and decimation-in-time (DIT)
NTT algorithm avoids utilizing additional resources for the same computa-
tions while reduces the pre-processing cost of NTT and post-processing cost
of INTT. The proposed architecture significantly reduces the overall area
and memory consumption with no impact on performance.

3. We implement a parameterized design of the NTT module using VHDL
and prototype it on an Artix-7 FPGA. Our NTT core shows an efficiency

4

improvement by 44% with at least 25% and 80% fewer Slice and BRAM
resource utilization.

4. We propose a high-performance coprocessor architecture for lattice-based
public-key cryptography with Kyber KEM as a case study. Our result uti-
lizes the proposed high-speed NTT core and outperforms all reported imple-
mentations by reducing the total time.

The rest of the paper is organized as follows. In Section 2, we discuss the prelim-
inaries of lattice-based cryptography and the relevant mathematical background
based on the Kyber algorithm. In Section 3, our proposed algorithms and ar-
chitectures are discussed. Furthermore, the details of FPGA implementations of
Kyber KEM are provided in Section 4. We discuss our results and compare to
the counterparts in Section 5. Finally, we conclude the paper in Section 6.

2 Preliminaries

In this section, Kyber protocols and relevant mathematical background are
briefly described.

2.1 The Kyber Protocol

Kyber is an IND-CCA secure KEM [35], including three algorithms, i.e., key
generation, encryption, and decryption. In key generation, a matrix A and a
secret key s are sampled from a uniform and binomial distribution, respectively.
Then a public key is computed by multiplication between A and s in the NTT
domain and adding noise to the product. In encryption, a message m should be
added to the product of the public key and a sampled random r in the normal
domain to generate a vector v. Additionally, another polynomial multiplication
is performed between r and uniform distribution to compute matrix u. The
encryption output, called ciphertext ct, is composed of compression of u and v,
while the message can then be decrypted by recovering an approximation of v
by computing the product of secret key and u.

All polynomials in the Kyber scheme have 256 coefficients over k-dimensional
vectors, where k = 2, 3, 4 indicates the three different post-quantum security lev-
els. Kyber uses these functions to construct a Chosen Plaintext Attack (CPA)
secure public-key encryption scheme. Moreover, a CCA-secure Kyber KEM can
be constructed using an adapted Fujisaki-Okamoto transformation [36]. For de-
tails, we refer interested readers to [2].

2.2 Polynomial Multiplication

Polynomial multiplication is the bottleneck of lattice-based cryptography, which
can either be done using NTT or schoolbook polynomial multiplication algo-
rithm. The former can be exploited to compute polynomial multiplication ef-
ficiently over a polynomial ring Zq[X]/ 〈Xn + 1〉. The NTT is a generalization

5

+++

---×××

u

v

ω

(u+ωv) mod q

(u-ωv) mod q

+

-×

u

v

ω

(u+ωv) mod q

(u-ωv) mod q

CT Butterfly

+

-×

u

v

ω

(u+ωv) mod q

(u-ωv) mod q

CT Butterfly

+++

u

v ×××
ω

(u+v) mod q

(u-v)ω mod q

+

-

u

v ×
ω

(u+v) mod q

(u-v)ω mod q

GS Butterfly

+

-

u

v ×
ω

(u+v) mod q

(u-v)ω mod q

GS Butterfly

ωn
0

ωn
0

ωn
2

ωn
2

ωn
0

ωn
1

ωn
2

ωn
3

ωn
0

Stage 0 Stage 1 Stage 2

NTTCT

ωn
0

ωn
0

ωn
0

s(0)

s(1)

s(2)

s(3)

s(4)

s(6)

s(7)

s(5)

s(0)

s(1)

s(2)

s(3)

s(4)

s(6)

s(7)

s(5)

â(0)

â(4)

â(2)

â(6)

â(1)

â(3)

â(7)

â(5)

â(0)

â(4)

â(2)

â(6)

â(1)

â(3)

â(7)

â(5)

× ×

× ×

× ×

× ×

× ×

× ×

× ×

× ×

ωn
-0

ωn
-1

ωn
-2

ωn
-3

ωn
-0

ωn
-2

ωn
-0

ωn
-2

ωn
-0

ωn
-0

ωn
-0

ωn
-0

Stage 0 Stage 1 Stage 2

INTTGS

t(0)

t(1)

t(2)

t(3)

t(4)

t(6)

t(7)

t(5)

t(0)

t(1)

t(2)

t(3)

t(4)

t(6)

t(7)

t(5)

Fig. 2. An 8-point NTT-based polynomial multiplication: (Left) Dataflow graph in-
cluding CT butterfly-based NTT, point-wise multiplication, and GS butterfly-based
INTT. Polynomial â is in NTT domain and s and t are in normal domain. (Right) CT
and GS butterfly configurations.

of a fast Fourier transform (FFT) defined in a finite field. Let f be a polyno-
mial of degree n, where f =

∑n−1
i=0 fiX

i and fi ∈ Zq, and ωn be n-th prim-
itive root of unity such that ωn

n = 1 mod q. The forward NTT is defined by
f̂ = NTT (f), such that f̂i =

∑n−1
j=0 fjω

ij
n mod q. Furthermore, the inverse NTT

is shown by f = INTT (f̂), such that fi = n−1∑n−1
j=0 f̂jω

−ij
n mod q. An NTT-

based polynomial multiplication between f and g can be performed such that
f.g = INTT(NTT(f) ◦NTT(g)).

To avoid applying the NTT of length 2n with n zero padding of inputs,
NWC [5] is proposed at the cost of pre-processing of NTT and post-processing
of INTT. Let ψ = √ωn be a primitive 2n-th root of unity. Pre-processing of NTT
includes multiplication between the coefficients of the input polynomials and ψi,
while the post-processing of INTT is multiplication between the coefficients of
the output polynomial and ψ−i.

NTT computation can be implemented by CT or GS butterfly. Algorithm 1
presents the NTT computation. The bit-reverse function in line 1 is the bit-wise
reversal of the binary representation of the coefficient index. The CT butterfly
computation is shown in lines 8-11. Furthermore, performing CT butterfly for
NTT and GS for INTT can avoid the bit-reverse permutation [8]. Fig. 2 illus-
trates an 8-point NTT-based multiplication employing both CT and GS butterfly
operations

In order to perform point-wise multiplication in Kyber, we have to com-
pute 128 degree-2 polynomial multiplications such that (âj,2i + âj,2i+1X) · (ŝ2i +
ŝ2i+1X) = (âj,2iŝ2i + âj,2i+1ŝ2i+1ω

2br7(i)+1
n) + (âj,2iŝ2i+1 + âj,2i+1ŝ2i)X, where

br7 is the bit reversal function.

2.3 Modular Reduction

Different modular reductions can be implemented in butterfly core, including
Barrett reduction and Montgomery reduction. A variant of Montgomery reduc-
tion was introduced by [8], benefiting from a special form of prime q = k ·2m +1.

6

Algorithm 1 Iterative In-Place NTT Algorithm Based on Cooley-Tukey But-
terfly [37]
Input: a polynomial a(x) ∈ Zq[X]/(Xn + 1), n-th primitive root of unity ωn ∈ Zq,
n = 2l

Output: â(x) = NTTωn (a) ∈ Zq[X]/(Xn + 1)
1: â← bit-reverse(a)
2: for (i = 1; i < l; i+ +) do
3: m = 2l−i

4: ωm ← ω
n/m
n

5: for (j = 0; j < n; j = j +m) do
6: ω ← 1
7: for (k = 0; k < m/2; k + +) do
8: T ← ω · â[k + j +m/2] mod q
9: U ← â[k + j]
10: â[k + j] = U + T mod q
11: â[k + j +m/2] = U − T mod q
12: ω ← ω · ωm mod q
13: end for
14: end for
15: end for
16: return â(x)

This method includes two functions, i.e., KRED and KRED-2X, which take
any integer C and return an integer D such that D ≡ k · C mod q and D ≡
k2 ·C mod q, respectively. However, we can eliminate the extra factor of ks with
s ∈ {1, 2} by replacing k−s ·ωij

n instead of ωij
n in line 8 of Algorithm 1. Although

these functions do not compute the exact value of C mod q, they can close the
output range to the exact value. In Kyber with q = 3329, we have k = 13 and
m = 8. These functions do not need any multiplications in hardware and can be
achieved by shifter and adder.

3 Proposed Architecture for High-speed Polynomial
Multiplier

3.1 Modular Reduction

Implementing KRED and KRED-2X requires to store k−1 · ωij
n and k−2 · ωij

n in
ROM. Furthermore, the KRED-2X returns k2 · C0 − k · C1 + C2 where C0, C1,
and C2 are the m-bit chunks of input C. Thus, for k = 13 it needs 5 shifting
and 7 additions to output a 16-bit data. However, it allows output to grow
up to 32 bits. Hence, we propose K2-RED reduction, a modified version of the
KRED algorithm, presented in Algorithm 2. It includes two steps of performing
KRED, so its output is k2 ·C mod q. This reduction needs 4 shift and 6 addition
operations and keeps output width to 12 bits. Furthermore, we do not need to
implement another reduction unit in the butterfly core by implementing this
reduction after multiplication, and the required memory is halved. Fig. 3 shows

7

Algorithm 2 Proposed K2-RED Reduction Algorithm
Input: A binary number C = (c23, . . . , c0)2, k = 13, m = 8, q = 3329 = k · 2m + 1
Output: C

′′
= k2C mod q

Step 1:
1: Cl = (c7, . . . , c0)2
2: Ch = (c23, . . . , c8)2

3: C
′
← k · Cl − Ch

Step 2:
4: C

′
l = (c

′
7, . . . , c

′
0)2

5: C
′
h = (c

′
15, . . . , c

′
8)2

6: C
′′
← k · C

′
l − C

′
h

7: return C
′′

the reduction architecture of a 24-bit input using Algorithm 2 to compute a
12-bit output.

3.2 Reconfigurable Butterfly Core

To avoid the bit-reverse cost in polynomial multiplication, two different butterfly
configurations, i.e., CT and GS, are required for NTT and INTT, respectively.
Hence, a reconfigurable butterfly core is proposed to support both CT and GS
operations and reduce required hardware resources. Furthermore, we implement
a 2 × 2 butterfly core to merge two layers of NTT/INTT and perform two
butterfly operations in each layer.

The proposed architecture for PMC is depicted in Fig. 3 employing four but-
terfly cores. Each butterfly core includes a multiplication, a modular reduction,
an addition, and a subtraction, while there are also some registers to balance
the pipeline latency in different configurations. The signalmode chooses between
NTT and INTT operations. It also supports point-wise multiplication, polyno-
mial addition, and polynomial subtraction employing an additional control logic
which is not shown in Fig. 3 for brevity. When mode is set to 0, the butterfly
works in CT configuration in the NTT computation and computes u + vω and
u − vω. The butterfly cores are reconfigured when mode = 1 for GS in INTT
operation, while its output is manipulated compared to standard GS to reduce
required memory. The proposed architecture supports both even or odd numbers
of layers employing pipeline stages. Hence, to support an odd number of layers,
mode is set to 2 for the first butterfly row in the last layer of computation to only
pass the data. The proposed algorithm to perform NTT is shown in Algorithm
3 for even layers.

In each cycle, four coefficients are read from NTT RAM to fed cores, and their
outputs are buffered in four serial-in, parallel-out shift registers with different
lengths. The results are written back to the NTT RAM sequentially. The address
and data flow of NTT RAM for read and write operation in every clock cycle are
given in Fig. 4 for n = 128. After 4 cycles, the first buffer is full, and 4 coefficients
can be stored in the RAM. The same scenario is performed after one cycle for the

8

--

× ×

0

1

0

1

0

1

0

1

01

0

1

2

0

1

2

K2-REDK2-RED

u

v

ω

u

u+v

u+vω

v

u-vω

(v-u)ω

u00u01 v00v01

ω00ω00

u11 v10v11

u20u21 v20v21

ω11 ω10

BF data out 4(logq+1)

4(logq+1)

data in

data out

ω00

ω10

ω11

ROMROM

ω00

ω10

ω11

ROM

u10

c8 c7 c0......

ClCh

Cl«2 ClCl«3Ch

c′
15 c′

8 c′
7 c′

0......

C′
lC′

h

C′
l«2 C′

lC′
l«3C′

h

c′′
11 ...

++

c′′
0

c23

+++
--- +++

+++
+++

mode

NTT

RAM

n/4
addr_aaddr_a

addr_baddr_b

writewrite

n/4

BF
data out

B
u

ff
e

r
(7

)

B
u

ff
e
r

(6
)

B
u

ff
e
r

(5
)

B
u
ff

e
r

(4
)

Fig. 3. Proposed polynomial multiplication architecture employing 2×2 reconfigurable
butterfly cores and K2-RED reduction

second and then for the third and fourth buffer, and its first 4-coefficients will be
stored. Each round of NTT includes n

4 reading and storing while there are fully
pipelined to increase throughput. The pipeline latency between read and write
sequences consists of 2 cycles for reading from RAM, 8 cycles for two butterfly
operations, and 4 cycles for buffering the results in registers. Furthermore, to
avoid any memory conflict, we consider 6 idle cycles between each round.

The required twiddle factors for NTT are stored in a ROM. Based on the
symmetry property of twiddle factors in NTT and INTT, i.e., ωi

n and ω−i
n respec-

tively, we have ω−i
n = −ωn−i

n . Hence, to reduce the required memory, we can use
NTT twiddle factors for INTT by (i) reversing the order of reading ROM, and
(ii) computing v−u instead of u−v in GS configuration. Our proposed architec-
ture can perform NTT and INTT operations in around n

8 logn and n
8 (logn+ 1)

cycles for even and odd number of layers, respectively.

9

Algorithm 3 Proposed NTT Algorithm Based on Cooley-Tukey Butterfly
Input: a polynomial a(x) ∈ Zq[X]/ 〈Xn + 1〉, n-th primitive root of unity ωn ∈ Zq,
n = 2l

Output: a(x) = NTTωn (a) ∈ Zq[X]/ 〈Xn + 1〉
1: for (s = 0, s < log(n), s = s+ 2) do
2: m = 2s

3: t = t� 2
4: for (i = 0, to i < m, i+ +) do
5: for (j = 4i · t, j < 4i · t+ t, j + +) do
6: u00 ← aj , v00 ← aj+t, u01 ← aj+2t, v01 ← aj+3t

7: ω00 ← ψk−2 [m+ i]
8: (u10, u11)← BF_CT (u00, v00, ω00)
9: (v10, v11)← BF_CT (u01, v01, ω00)
10: ω10 ← ψk−2 [2× (m+ i)], ω11 ← ψk−2 [2× (m+ i) + 1]
11: (u20, u21)← BF_CT (u10, v10, ω10)
12: (v20, v21)← BF_CT (u11, v11, ω11)
13: aj ← u20, aj+t ← v20,aj+2t ← u21, aj+3t ← v21
14: end for
15: end for
16: end for
17: return a(x)

6

...0 2 4 6 10 8 16 24 1 9

0 8 16 24

27 4 12 ...312315Read

#1

Write

...

Cycle #2 #3 #4 #5 #6 #16 #17 #18

20 ...

...

#32#31#30 #39 #40 #41 #42 #43

19

a96 a64 a32 a0a96 a64 a32 a0

Addr.0 in Round 1 a24 a16 a8 a0a24 a16 a8 a0

Addr.0 in Round 2

27 4 ... 29 14 22 30 ...

Memory configuration at

the beginning of Round 2

0

1

8

31

...
...

0

1

8

31

...
...

a24 a16 a8 a0

a25 a17 a9 a1

...

a57 a49 a41 a33

a103

...

a111a119a127

a24 a16 a8 a0

a25 a17 a9 a1

...

a57 a49 a41 a33

a103

...

a111a119a127

0

1

8

31

...
...

a24 a16 a8 a0

a25 a17 a9 a1

...

a57 a49 a41 a33

a103

...

a111a119a127

Memory configuration at

the beginning of Round 2

0

1

8

31

...
...

a24 a16 a8 a0

a25 a17 a9 a1

...

a57 a49 a41 a33

a103

...

a111a119a127

Memory configuration at

the beginning of Round 1

...

a0a32a64a96

a1a33a65a95

a8a40a72a104

a31a63a95a127

...

0

1

8

31

...
...

0

1

8

31

...
...

Round 1: Performing Stage 1 & 2

Fig. 4. Memory Address and Data flow when NTT operation is performed.

3.3 Area/Performance Trade-offs

The main goal of the proposed architecture is to achieve high-speed compu-
tation employing small area requirements. However, we can target different
area/performance trade-offs by increasing the number of PMC, taking advantage
of polynomial vector structure in the Kyber algorithm. Since NTT/INTT can be
computed for odd and even coefficients of each polynomial in Kyber separately,
two PMC can be implemented for each polynomial vector. Hence, for Kyber-512
having 2 polynomial vectors, increasing the number of implemented PMC from
1 to 2 or 4 can drastically reduce to a half or a quarter of NTT/INTT latency.

Nevertheless, implementing more PMC needs more bandwidth for feeding
the butterfly cores and storing their results. On the other hand, due to the data
width limitation for BRAM, one BRAM cannot support two PMCs. Thus, the
number of utilized BRAM should be matched with PMC to provide the required
bandwidth by implementing more BRAMs in parallel.

10

Table 1. Implementation results for different modular reduction algorithms

Reduction CPD Area Output
Algorithm [ns] #LUTs #FFs #Slices #DSPs Width

Barrett Reduction 1.34 59 31 26 2 12
Montgomery [19] 2.10 391 382 91 1 121

KRED [19] 1.99 80 47 31 0 161

K2-RED 0.91 54 30 18 0 12
1Our estimation by re-implementing this work.

4 Architecture of CRYSTAL-Kyber

The proposed highly optimized architecture for Kyber coprosessor can compute
all the operations described in the Kyber protocol. It includes a PMC, Kec-
cak, binomial sampler, rejection sampler, and compress/decompress units. The
architecture of Kyber is designed to perform in constant time.

The Keccak used in SHA3 standard is Keccak-f [1600], which performs four
functions, including SHA3-256, SHA3-512, SHAKE-128, and SHAKE-256 during
KEM. To design a high-performance architecture, we modify the high-speed core
implementation of the Keccak provided by [38]. It requires 24 clock cycles to
execute 24 rounds of the Keccak sponge function computation. We also develop
a dedicated SIPO and PISO for interfacing with this core in its input and output,
respectively. The SIPO takes data in 64-bit width and delivers 1344-bit data to
the Keccak core, while the PISO takes 1344-bit data from the core and divides
it into 21 chunks of 64-bit width.

Since CT configuration is used in NTT, we assume that the input polynomi-
als are in normal order, while the public and secret keys are in bit-reverse order.
Hence, the point-wise multiplication works in bit-reverse order in the NTT do-
main, and the results are transformed back to the normal domain with normal
order employing GS configuration.

In order to reduce the total cycle, operations are performed in a parallel
fashion. Hence, the latency of samplers can be entirely absorbed by the Keccak
core. To accelerate the KEM computation, we duplicate PMC to maximize the
polynomial multiplication speed, while NTT/INTT is independently performed
for odd and even coefficients.

5 Implementation Results And Comparisons

Our proposed architecture is synthesized with Xilinx Vivado 2019.2 and imple-
mented on a Xilinx Artix XC7A100T-3 FPGA device which is recommended by
NIST.

5.1 Implementation Results of NTT Core

Table 1 reports implementation results for different alternative reduction algo-
rithms for q = 3, 329. As one can see, our proposed K2-RED algorithm is more

11

Table 2. Implementation results for different NTT implementation on FPGA

Work Butterfly NTT/INTT Freq Time Area Speedup A×C A×T[CCs] [MHz] [µs] #LUTs #FFs #DSPs #BRAM Ratio
n = 1, 024, q = 12, 289

[7]A 2 2,8251/2,8251 244 11.58 847 375 2 6 1.70 2.4 (45.8%) 9.8 (44.9%)
[15]Z 4 2,6882/2,6882 153 5.52 4823 2901 8 0 2.58 13.0 (90.0%) 84.7 (93.6%)
[12]V 32 200/- 125 1.60 17,188 - 96 48 0.24 3.4 (61.8%) 27.5 (80.4%)
[17]Z 2×2 2,616/- 150 17.44 2832 1381 8 10 2.57 7.4 (82.4%) 49.4 (89.1%)
[18]Z 2×2 2,032/- 188 10.81 898 1117 4 10 1.59 1.8 (27.8%) 9.7 (44.3%)

This WorkA 2×2 1,591/1,591 234 6.80 798 715 4 2 1.00 1.3 5.4
n = 256, q = 3, 329

[27]Z 2 1,935/1,930 - - 2908 170 9 0 5.97 5.6 (94.6%) 25.3 (95.3%)
[13]V 1 43,756/- - - 417 462 0 0 135.05 18.2 (98.4%) 82.2 (98.5%)
[20]A 1 6,868/6,367 59 116.41 - - - - 79.73 - -
[30]A 2 1,834/- 155 11.83 - - - - 8.10 - -
[31]A 2 512/576 161 3.18 1,737 1,167 2 3 2.18 0.9 (66.7%) 5.5 (78.2%)

This WorkA 2×2 324/324 222 1.46 801 717 4 2 1.00 0.3 1.2
AImplemented on Artix-7 Platform.
VImplemented on Virtex-7 Platform.
ZImplemented on Zynq-7000 Platform.
1This number is obtained by adding the reported cycles for the butterfly operations (i.e., 2569 cycles)
with n/4 = 256 cycles for the scramble function.
2This number is obtained by adding the reported butterfly cycles (i.e., 1280 cycles) with 1280 and
128 cycles for the scramble function and pre/post-processing.

compact compared to other algorithms and maintains the output of 12 bits to
reduce required memory. It also requires half of precomputed twiddle factors
compared with KRED since the latter needs storing k−1 · ωij

n and k−2 · ωij
n in

ROM for reduction.
Table 2 reports area and time specifications for our PMC core in NTT and

INTT mode. Other state-of-the-art NTT designs with the merged-layer NTT
structure are also listed. Additionally, we report the results for both Kyber with
q = 3, 329, n = 256, and NewHope with q = 12, 289, n = 1024 to show the
superiority of the proposed architecture in different schemes. For comparison, A×
T are reported, where A and T are the utilized LUT and time in µs, respectively.
It should be noted that we assume the same operating frequency in computing
A × T as our architecture for the works which do not report frequency. An
operating frequency in a limited range is mostly considered to reduce the required
power. Thus, A × C can be computed for a fair comparison, where C is the
required clock cycles.

The results show our proposed architecture is the fastest and smallest archi-
tecture for n = 1024. Although the work of [17] and [18] implemented 2×2 butter-
fly structure, they use the KRED algorithm over a fixed butterfly configuration.
Nonetheless, our proposed reduction algorithm reduces required resources, espe-
cially in terms of occupied BRAM, and increases the maximum operating fre-
quency. Furthermore, employing reconfigurable PMC eliminates the bit-reverse
function and the pre-processing and post-processing cost. For instance, [17] and
[18] need 1,330 and 1,324 cycles for only butterfly operations, respectively, while
ours requires 1,320 cycles. In [17], the reduction unit is implemented by DSP
block, which results in increasing the number of utilized DSP two times that of
ours. Our architecture approximately improves 90% A × T and reduces 2.57×

12

the total time for NTT computation comapred to [17]. Although [18] implements
the reduction unit without DSP block, this design needs larger area and more
cycles. Hence, our proposed design achieves 44% A×T improvement and 1.59×
speedup compared to [18].

The work of [7] occupies two butterfly cores and a highly optimized reduction
hardware tailored only for the special value. However, this approach requires
more BRAM and LUT to implement a low-complexity NTT utilizing 2 DSPs.
As a result, our architecture achieves a speedup factor of 1.70× and improves
A× T by almost 45%.

Our results for Kyber parameters show a significant improvement requiring
only 1.46 µs. Since Kyber parameters have been changed during round 2 of
the NIST competition, we only list previous works implementing Kyber v-3
parameters for a fair comparison. The work in [27] optimized an NTT core
based on hardware/software approach over RISC-V architecture, while it works
at 45 MHz on the ASIC platform. If this design runs at the same frequency as
ours, its A × T and total time are 21× and 5.97× greater than our proposed
design. The works in [13] and [20] also presented an NTT architecture over RISC-
V, which requires considerably greater cycle count, while our optimized design
achieves 135.05× and 79.73× speedup, respectively. The FPGA-based design
was proposed in [30] employing Montgomery reduction. The required hardware
resources for the NTT core were not reported; however, our design reduces the
required cycles achieving a speedup factor of 8.1. In [31], two butterfly cores
for even and odd coefficients are used employing 2 DSPs at the cost of utilizing
2.17× and 1.63× more LUT and FF. Our result shows 2.18× faster computing
and 78.2% A× T improvement compared to [31].

5.2 Implementation Results of CRYSTAL-Kyber

Table 3 lists the detailed resource consumption, performance results (frequency,
required cycles, and execution time), and hardware efficiency of Kyber copro-
cessor designs in terms of A × T for all NIST security levels. The total time is
the required time for a key encapsulation and a key decapsulation (Encaps +
Decaps), as the key generation can be done offline. We utilize 2, 3, and 4 PMCs
in our proposed architecture for security levels 1, 3, and 5, respectively. As one
can see, our design requires 10,502 LUTs, 9,859 FFs, 8 DSPs, and 13 BRAMs for
NIST security level 1. It also runs at 200 MHz and performs the whole Kyber
protocol in almost 31 µs.

There are several hardware/software implementations targeting Kyber KEM
in the literature. However, a direct comparison is not possible between the listed
hardware implementations due to the varying techniques of different FPGA
generations, targeting different optimization goals, and using different design
methodologies. The work in [9] implemented a configurable coprocessor based
on a RISC-V architecture that can be used for multiple lattice-based schemes
including Kyber. Its architecture performs almost 91 KEM per second for Kyber-
512, which is 353× slower than our design. Our proposed design also achieves

13

Table 3. FPGA Implementation results and comparison with state-of-the-art

Work Area KeyGen/Encaps/Decaps Freq Total Time A× T
#LUTs #FFs #Slices #DSPs #BRAMs [CCs] [MHz] [µs]

Kyber-512
[26]V,1 1,977,896 194,126 NA 0 0 -/31,669/43,018 67 1,115 2,214.2 (99.9%)
[9]A 14,975 2,539 4,173 11 14 74,519/131,698/142,309 25 10,960 164.4 (99.8%)
[27]Z 23,947 10,847 NA 21 32 150,106/193,076/204,843 - - 47.6 (99.3%)
[20]A 1,842 1,634 NA 5 34 710,000/971,000/870,000 59 31,203 57.5 (99.4%)
[30]A,1 88,901 NA 141,825 354 202 -/49,015/68,815 155 760 67.8 (99.5%)
[31]A 7,412 4,644 2,126 2 3 3,768/5,079/6,668 161 73 0.54 (34.0%)
[29]A 11,864 10,348 3,989 8 15 -/3,025/4,395 210 35 0.42 (21.4%)

This workA 10,502 9,859 3,547 8 13 1,882/2,446/3,754 200 31 0.33
Kyber-768

[9]A 14,975 2,539 4,173 11 14 111,525/177,540/190,579 25 14,725 220.5 (99.8%)
[27]Z 23,947 10,847 NA 21 32 273,370/325,888/340,418 - - 79.8 (99.4%)
[30]A,1 110,260 NA 167,293 292 202 -/77,481/102,113 155 1,159 127.7 (99.6%)
[31]A 7,412 4,644 2,126 2 3 6,316/7,925/10,049 161 112 0.83 (43.4%)
[29]A 11,884 10,380 3,984 8 15 -/4,065/5,555 210 46 0.54 (13.0%)

This workA 11,783 10,424 3,952 12 14 2,667/3,251/4,805 200 40 0.47
Kyber-1024

[9]A 14,975 2,539 4,173 11 14 148,547/223,469/240,977 25 18,578 278.2 (99.7%)
[27]Z 23,947 10,847 NA 21 32 349,673/405,477/424,682 - - 99.4 (99.2%)
[20]A 1,842 1,634 NA 5 34 2,203,000/2,619,000/2,429,000 59 85,559 157.6 (99.5%)
[30]V,1 132,918 NA 172,489 548 202 -/107,054/135,553 192 1,264 167.9 (99.6%)
[31]A 7,412 4,644 2,126 2 3 9,380/11,321/13,908 161 157 1.16 (35.3%)
[29]A 12,183 12,441 4,511 8 15 -/5,785/7,395 210 63 0.76 (1.3%)

This workA 13,347 11,639 4,585 16 16 3,459/4,122/6,257 185 56 0.75
AImplemented on Artix-7 Platform.
VImplemented on Virtex-7 Platform.
ZImplemented on Zynq-7000 Platform.
1Different architectures for Encaps and Decaps are used.

99.8% improvements in terms of A × T . In [27], another RISC-V-based archi-
tecture was proposed to accelerate NTT-based schemes. This design requires
64× more cycles for encapsulation and decapsulation while consuming 2.3×,
1.1×, 2.6×, and 2.1× more LUTs, FFs, DSPs, and BRAMs, respectively. Ad-
ditionally, [20] proposed a RISC-V design to accelerate Kyber KEM employing
customized instructions. Although the design of [20] is lightweight, its required
latency is significantly greater than ours. Thus, our hardware implementation
of Kyber is around 1,000 times faster and 180 times more efficient than their
hardware/software implementation. An HLS evaluation was proposed in [26] for
Kyber-512 employing different implementations for encapsulation and decapsu-
lation. However, this approach comes at a considerably far larger area consump-
tion. Hence, our design achieves almost 7,000 times better A × T compared to
HLS-based implementation.

In [30], a pure hardware architecture was proposed to reuse the resources.
In this design, several BRAMs are implemented between modules to facilitate
their interface, which requires 202 BRAMs. Nevertheless, our design achieves
24.5× faster KEM and improves 99.5% A×T while occupying 8.4×, 44.2×, and
13.5× fewer LUTs, DSPs, and BRAMs compared to [30], respectively. The high-
speed implementation of Kyber was reported in [29] for two different platforms,
i.e., Artix-7 and Virtex-7. In security level 1, our proposed architecture reduces
11.4% of total time and improves 21.4% A × T on the same platform. Besides,

14

Table 4. Comparison with other PQC schemes in NIST security level 1.

Protocol Platform Area Freq Time
#LUTs #FFs #Slices #DSPs #BRAMs [MHz] [us]

SIKEp434 [22] Virtex-7 12,818 18,271 5,527 195 32 249.6 8,800
Frodo-640 [39] Artix-7 6,881 5,081 1,947 16 12.5 149 2,621
LightSaber [40] UltraScale+ 23,686 9,805 NA 0 2 150 60

Kyber-512 [This work] Artix-7 10,502 6,859 3,547 8 15 200 31

our design reduces required cycles by 16% and 21% in security levels 3 and 5
by implementing parallel PMCs to accelerate NTT computation. Moreover, our
design has 2.35× and 34% better time and A × T , respectively, compared to
compact design in [31] in security level 1, while ours utilizes 1.4×, 2.1×, 4×,
4.3× more LUTs, FFs, DSPs, and BRAMs, respectively.

Table 4 lists other PQC scheme results implemented on the FPGA platform
for NIST security level 1. Elkhatib et al. in [22] implemented a supersingular
isogeny-based KEM performed in 8.8 ms. Howe et al. [39] presented a flexible
FrodoKEM architecture that performs 825 and 710 encapsulations and decapsu-
lation. The work of [40] proposed an instruction-set coprocessor for Saber, which
can be extended for LightSaber and FireSaber.

The experimental result shows that taking advantage of the proposed PMC
to implement lattice-based KEM schemes as full-hardware architecture results
in high-speed and efficient design. For Kyber KEM, our coprocessor architecture
outperforms all the reported implementations in the literature. The efficiency of
our proposed implementation already has performance levels comparable to or
even significantly better than pre-quantum algorithms [41,42].

6 Conclusion

This paper proposed a high-performance and efficient architecture for NTT-
based polynomial multiplication and lattice-based public-key cryptography co-
processor with Kyber KEM as a case study. We optimize the implementation of
the NTT core by merging the layers and an efficient reduction unit by creating a
configurable butterfly core. Besides, we propose a coprocessor architecture that
can perform all KEM operations for Kyber. Overall, our NTT core shows more
than 44% improvement in terms of A× T . The proposed Kyber coprocessor ar-
chitecture also performs key generation, encapsulation, and decapsulation in 9,
12, and 19 µs for a security level comparable to AES-128, respectively, on an
Artix-7 FPGA.

Acknowledgment

The authors would like to thank the reviewers for their comments. This work is
supported in parts by a grant from NSF-1801341.

15

References

1. P. W. Shor, “Algorithms for quantum computation: Discrete logarithms and fac-
toring,” in 35th Annual Symposium on Foundations of Computer Science, Santa
Fe, New Mexico, USA, 20-22 November 1994, pp. 124–134, 1994.

2. R. Avanzi, J. Bos, L. Ducas, E. Kiltz, T. Lepoint, V. Lyubashevsky, J. M. Schanck,
P. Schwabe, G. Seiler, and D. Stehle, “CRYSTALS-Kyber: Algorithm specification
and supporting documentation (version 3.0). submission to the NIST post-quantum
cryptography standardization project,” 2020.

3. NISTIR 8309, “Status report on the second round of the NIST post-quantum cryp-
tography standardization process,” National Institute of Standards and Technology,
2020.

4. NIST, “Submission requirements and evaluation criteria for the post-quantum
cryptography standardization process,” National Institute of Standards and Tech-
nology, 2016.

5. T. Pöppelmann and T. Güneysu, “Towards efficient arithmetic for lattice-based
cryptography on reconfigurable hardware,” in Progress in Cryptology - LATIN-
CRYPT 2012 - 2nd International Conference on Cryptology and Information Se-
curity in Latin America, Santiago, Chile, October 7-10, 2012. Proceedings, pp. 139–
158, 2012.

6. S. S. Roy, F. Vercauteren, N. Mentens, D. D. Chen, and I. Verbauwhede, “Compact
Ring-LWE cryptoprocessor,” in Cryptographic Hardware and Embedded Systems -
CHES 2014 - 16th International Workshop, Busan, South Korea, September 23-26,
2014. Proceedings, pp. 371–391, 2014.

7. N. Zhang, B. Yang, C. Chen, S. Yin, S. Wei, and L. Liu, “Highly efficient archi-
tecture of NewHope-NIST on FPGA using low-complexity NTT/INTT,” IACR
Trans. Cryptogr. Hardw. Embed. Syst., vol. 2020, no. 2, pp. 49–72, 2020.

8. P. Longa and M. Naehrig, “Speeding up the number theoretic transform for faster
ideal lattice-based cryptography,” in Cryptology and Network Security - 15th In-
ternational Conference, CANS 2016, Milan, Italy, November 14-16, 2016, Proceed-
ings, pp. 124–139, 2016.

9. U. Banerjee, T. S. Ukyab, and A. P. Chandrakasan, “Sapphire: A configurable
crypto-processor for post-quantum lattice-based protocols (extended version),”
IACR Cryptol. ePrint Arch., vol. 2019, p. 1140, 2019.

10. Z. Chen, Y. Ma, T. Chen, J. Lin, and J. Jing, “Towards efficient Kyber on FPGAs:
A processor for vector of polynomials,” in 25th Asia and South Pacific Design
Automation Conference, ASP-DAC 2020, Beijing, China, January 13-16, 2020,
pp. 247–252, 2020.

11. A. C. Mert, E. Karabulut, E. Öztürk, E. Savas, M. Becchi, and A. Aysu, “A flexible
and scalable NTT hardware: Applications from homomorphically encrypted deep
learning to post-quantum cryptography,” in 2020 Design, Automation & Test in
Europe Conference & Exhibition, DATE 2020, Grenoble, France, March 9-13, 2020,
pp. 346–351, 2020.

12. A. C. Mert, E. Karabulut, E. Öztürk, E. Savas, and A. Aysu, “An extensive study
of flexible design methods for the number theoretic transform,” IEEE Transactions
on Computers, pp. 1–1, 2020.

13. E. Karabulut and A. Aysu, “RANTT: A RISC-V architecture extension for the
number theoretic transform,” in 2020 30th International Conference on Field-
Programmable Logic and Applications (FPL), pp. 26–32, 2020.

16

14. T. Fritzmann and J. Sepúlveda, “Efficient and flexible low-power NTT for lattice-
based cryptography,” in IEEE International Symposium on Hardware Oriented
Security and Trust, HOST 2019, McLean, VA, USA, May 5-10, 2019, pp. 141–
150, 2019.

15. Y. Xing and S. Li, “An efficient implementation of the NewHope key exchange on
FPGAs,” IEEE Trans. Circuits Syst. I Regul. Pap., vol. 67-I, no. 3, pp. 866–878,
2020.

16. C. Du, G. Bai, and X. Wu, “High-speed polynomial multiplier architecture for
Ring-LWE based public key cryptosystems,” in Proceedings of the 26th edition on
Great Lakes Symposium on VLSI, GLVLSI 2016, Boston, MA, USA, May 18-20,
2016, pp. 9–14, 2016.

17. P.-C. Kuo, W.-D. Li, Y.-W. Chen, Y.-C. Hsu, B.-Y. Peng, C.-M. Cheng, and
B.-Y. Yang, “High performance post-quantum key exchange on FPGAs,” IACR
Cryptology ePrint Archive, p. 690, 2017.

18. D. T. Nguyen, V. B. Dang, and K. Gaj, “A high-level synthesis approach to the soft-
ware/hardware codesign of NTT-based post-quantum cryptography algorithms,”
in International Conference on Field-Programmable Technology, FPT 2019, Tian-
jin, China, December 9-13, 2019, pp. 371–374, 2019.

19. D. T. Nguyen, V. B. Dang, and K. Gaj, “High-level synthesis in implementing and
benchmarking number theoretic transform in lattice-based post-quantum cryptog-
raphy using software/hardware codesign,” in Applied Reconfigurable Computing.
Architectures, Tools, and Applications - 16th International Symposium, ARC 2020,
Toledo, Spain, April 1-3, 2020, Proceedings [postponed], pp. 247–257, 2020.

20. E. Alkim, H. Evkan, N. Lahr, R. Niederhagen, and R. Petri, “ISA extensions for
finite field arithmetic accelerating Kyber and NewHope on RISC-V,” IACR Trans.
Cryptogr. Hardw. Embed. Syst., vol. 2020, no. 3, pp. 219–242, 2020.

21. H. Seo, M. Anastasova, A. Jalali, and R. Azarderakhsh, “Supersingular isogeny key
encapsulation (sike)round 2 on ARM Cortex-M4,” IEEE Transactions on Comput-
ers, pp. 1–1, 2020.

22. R. Elkhatib, R. Azarderakhsh, and M. Mozaffari Kermani, “Highly optimized
montgomery multiplier for SIKE primes on FPGA,” in 27th IEEE Symposium
on Computer Arithmetic, ARITH 2020, Portland, OR, USA, June 7-10, 2020,
pp. 64–71, 2020.

23. M. Anastasova, R. Azarderakhsh, and M. Mozaffari Kermani, “Fast strategies for
the implementation of SIKE round 3 on ARM Cortex-M4,” IACR Cryptol. ePrint
Arch., vol. 2021, p. 115, 2021.

24. M. Bisheh Niasar, R. E. Khatib, R. Azarderakhsh, and M. Mozaffari Ker-
mani, “Fast, small, and area-time efficient architectures for key-exchange on
Curve25519,” in 27th IEEE Symposium on Computer Arithmetic, ARITH 2020,
Portland, OR, USA, June 7-10, 2020, pp. 72–79, 2020.

25. M. Bisheh Niasar, R. Azarderakhsh, and M. Mozaffari Kermani, “Efficient hard-
ware implementations for elliptic curve cryptography over Curve448,” in Progress
in Cryptology - INDOCRYPT 2020 - 21st International Conference on Cryptology
in India, Bangalore, India, December 13-16, 2020, Proceedings, pp. 228–247, 2020.

26. K. Basu, D. Soni, M. Nabeel, and R. Karri, “NIST post-quantum cryptography-
A hardware evaluation study,” IACR Cryptol. ePrint Arch., vol. 2019, p. 47, 2019.

27. T. Fritzmann, G. Sigl, and J. Sepúlveda, “RISQ-V: Tightly coupled RISC-V accel-
erators for post-quantum cryptography,” IACR Trans. Cryptogr. Hardw. Embed.
Syst., vol. 2020, no. 4, pp. 239–280, 2020.

17

28. G. Xin, J. Han, T. Yin, Y. Zhou, J. Yang, X. Cheng, and X. Zeng, “VPQC: A
domain-specific vector processor for post-quantum cryptography based on RISC-V
architecture,” IEEE Trans. Circuits Syst. I Regul. Pap., vol. 67-I, no. 8, pp. 2672–
2684, 2020.

29. V. B. Dang, F. Farahmand, M. Andrzejczak, K. Mohajerani, D. T. Nguyen,
and K. Gaj, “Implementation and benchmarking of round 2 candidates in the
NIST post-quantum cryptography standardization process using hardware and
software/hardware co-design approaches,” IACR Cryptol. ePrint Arch., vol. 2020,
p. 795, 2020.

30. Y. Huang, M. Huang, Z. Lei, and J. Wu, “A pure hardware implementation of
CRYSTALS-Kyber PQC algorithm through resource reuse,” IEICE Electronics
Express, vol. advpub, 2020.

31. Y. Xing and S. Li, “A compact hardware implementation of CCA-secure key
exchange mechanism CRYSTALS-KYBER on FPGA,” IACR Trans. Cryptogr.
Hardw. Embed. Syst., vol. 2021, no. 2, pp. 328–356, 2021.

32. L. Botros, M. J. Kannwischer, and P. Schwabe, “Memory-efficient high-
speed implementation of Kyber on Cortex-M4,” in Progress in Cryptology -
AFRICACRYPT 2019 - 11th International Conference on Cryptology in Africa,
Rabat, Morocco, July 9-11, 2019, Proceedings, pp. 209–228, 2019.

33. E. Alkim, Y. A. Bilgin, M. Cenk, and F. Gérard, “Cortex-m4 optimizations for {R,
M} LWE schemes,” IACR Trans. Cryptogr. Hardw. Embed. Syst., vol. 2020, no. 3,
pp. 336–357, 2020.

34. M. J. Kannwischer, J. Rijneveld, P. Schwabe, and K. Stoffelen, “PQM4: post-
quantum crypto library for the ARM Cortex-M4,” 2018.

35. J. W. Bos, L. Ducas, E. Kiltz, T. Lepoint, V. Lyubashevsky, J. M. Schanck,
P. Schwabe, G. Seiler, and D. Stehlé, “CRYSTALS-Kyber: A CCA-secure module-
lattice-based KEM,” in 2018 IEEE European Symposium on Security and Privacy,
EuroS&P 2018, London, United Kingdom, April 24-26, 2018, pp. 353–367, 2018.

36. E. Fujisaki and T. Okamoto, “Secure integration of asymmetric and symmetric
encryption schemes,” in Advances in Cryptology - CRYPTO ’99, 19th Annual In-
ternational Cryptology Conference, Santa Barbara, California, USA, August 15-19,
1999, Proceedings, pp. 537–554, 1999.

37. C. Du and G. Bai, “Towards efficient polynomial multiplication for lattice-based
cryptography,” in IEEE International Symposium on Circuits and Systems, ISCAS
2016, Montréal, QC, Canada, May 22-25, 2016, pp. 1178–1181, 2016.

38. G. Bertoni, J. Daemen, S. Hoffert, M. Peeters, and G. V. Assche, “Keccak in
VHDL,” 2020.

39. J. Howe, M. Martinoli, E. Oswald, and F. Regazzoni, “Exploring parallelism to
improve the performance of frodokem in hardware.” Cryptology ePrint Archive,
Report 2021/155, 2021.

40. S. S. Roy and A. Basso, “High-speed instruction-set coprocessor for lattice-based
key encapsulation mechanism: Saber in hardware,” IACR Trans. Cryptogr. Hardw.
Embed. Syst., vol. 2020, no. 4, pp. 443–466, 2020.

41. M. Bisheh-Niasar, R. Azarderakhsh, and M. Mozaffari-Kermani, “Area-time effi-
cient hardware architecture for signature based on Ed448,” IEEE Transactions on
Circuits and Systems II: Express Briefs, pp. 1–1, 2021.

42. M. Bisheh Niasar, R. Azarderakhsh, and M. Mozaffari Kermani, “Optimized ar-
chitectures for elliptic curve cryptography over Curve448,” 2020.

18

