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Abstract. Masking has been recognized as a sound and secure countermeasure for
cryptographic implementations, protecting against physical side-channel attacks.
Even though many different masking schemes have been presented over time, design
and implementation of protected cryptographic Integrated Circuits (ICs) remains
a challenging task. More specifically, correct and efficient implementation usually
requires manual interactions accompanied by longstanding experience in hardware
design and physical security. To this end, design and implementation of masked
hardware often proves to be an error-prone task for engineers and practitioners.
As a result, our novel tool for automated generation of masked hardware (AGEMA)
allows even inexperienced engineers and hardware designers to create secure and
efficient masked cryptograhic circuits originating from an unprotected design. More
precisely, exploiting the concepts of Probe-Isolating Non-Interference (PINI) for
secure composition of masked circuits, our tool provides various processing techniques
to transform an unprotected design into a secure one, eventually accelerating and
safeguarding the process of masking cryptographic hardware. Ultimately, we evaluate
our tool in several case studies, emphasizing different trade-offs for the transformation
techniques with respect to common performance metrics, such as latency, area, and
randomness.
Keywords: Side-Channel Analysis · Masking · Hardware · Composable Gadget

1 Introduction
Side-Channel Analysis (SCA) has not lost any of its topicality and remains a major
threat to security-critical implementations, even after more than two decades of intensive
research since its seminal description. In the wake of this lasting discovery [Koc96,
KJJ99], it has been admittedly recognized that secure implementation of cryptographic
algorithms is a challenging tasks, given that an adversary can observe and measure physical
effects, such as timing [Koc96], power consumption [Koc96, KJJ99], electromagnetic
(EM) radiations [GMO01], or temperature and heat dissipation [HS13], in order to infer
sensitive information during execution. However, in the course of time, different classes
of counteractive measures have emerged amongst which masking [CJRR99], based on
concepts of secret sharing, prevails due to its formal and sound security foundation.

Over the last years, many different hardware masking variants and schemes have been
proposed [ISW03, NRR06, RBN+15, GMK17, GM18], constantly improving efficiency
and security. Unfortunately, experience has shown that new schemes often have a short
retention time, mostly due to inaccuracies and design flaws [MMSS19]. However, even
for schemes that stand the test of time, correct and secure implementation remains an
enormous engineering challenge. As a matter of fact, even with longstanding experience
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and expertise in hardware security and design of masked hardware, correct physical
instantiation of masking schemes is a delicate and error-prone task. Evidently, unconsidered
and unintentional physical effects, e.g., glitches [MPG05], transitions [CGP+12, BGG+14],
or coupling [CBG+17], and implementation defects due to architectural conditions, e.g.,
parallelism [BDF+17] or pipelining [CGD18], can render a theoretically secure scheme
practically insecure.

As a consequence, a new line of research emerged, investigating the masking of atomic
and reusable components, often considered as gadgets in literature, to limit the engineering
complexity and error susceptibility. In this regard, a great deal of attention has been
devoted to the construction of secure gadgets for basic non-linear operations (e.g., AND),
allowing to efficiently mask any digital logic circuit given its AND-XOR representation.
However, the continuous progress in this domain is inevitably associated with fundamental
research and advancements in the realm of formal security definitions and adversary
models. More specifically, the formal and abstract Ishai-Sahai-Wagner (ISW) d-probing
model [ISW03] is consulted prevalently to reason about security of masked circuits in the
presence of side-channel adversaries.

Unfortunately, research has shown that security in this simple model does not imply
secure composition of gadgets [CPRR13]. As a consequence, advanced security notions
and properties are essential to reason about the composability of masked gadgets. In a first
attempt, Barthe et al. [BBD+15] introduced the notion of Non-Interference (NI), allowing
to verify the composability of gadgets based on the concept of perfect simulation of joint
probability distributions. However, due to disregarded effects which later became know
as probe propagation [CS20], the notion of NI is deficient and has been complemented
by the notion of Strong Non-Interference (SNI) shortly afterwards [BBD+16]. Most
recently, Cassiers and Standaert [CS20] introduced the notion of Probe-Isolating Non-
Interference (PINI) enabling more efficient compositions with respect to multi-input,
multi-output gadgets and trivially secure linear operations.

Now, provided with such sound and formal security and composability notions, hardware
designers are able to construct secure circuits more easily. However, transforming an entirely
unprotected design into a secure circuits remains a complicated and mostly manual process,
even when endowed with an adequate set of secure and composable gadgets.

Contribution. In this work, we present our novel, and open-source, software tool for
automated generation of masked hardware (AGEMA), enabling engineers and hardware
designers of any level of expertise to easily generate masked hardware circuits starting
from a simple but unprotected design. Utilizing different methods for processing the given
netlist of a design and supporting arbitrary masked gadgets, AGEMA offers high flexibility
with respect to the security level, required randomness, latency, and area overhead and
consequently gives designers the ability to configure AGEMA to their particular needs.
Exploiting the essential security notions for secure composability, the final designs are
provably secure and assuredly free of any heuristics, implementation defects, and design
mistakes. As a consequence, our tool facilitates and accelerates the process of masking
digital logic circuits while in the same vein, the quality and security of the resulting designs
are increased.

We should highlight that, up to now, various tools have been developed to automatically
generate masked software implementations. The examples include [BRB+11, BRN+15]
and the recently-introduced ones Tornado [BDM+20] and Rosita [SSB+21]. To the best of
our knowledge AGEMA is the only one which is dedicated to hardware implementations
and the security of its generated circuits are based on the PINI security notion which
guarantees to maintain the security through composition.
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Outline. We start by summarizing our notations and all necessary theoretical concepts
in Section 2, before elaborating the fundamental methodology of AGEMA in Section 3.
This includes a brief summary of existing types of Hardware Private Circuit (HPC) and
a detailed explanation for the supported processing and transformation methods of the
original netlist. In Section 4, we examine AGEMA with an extensive list of case studies
on a broad variety of hardware implementations of different block ciphers and compare
the results, i.e., the protected designs, with respect to common performance metrics
such as required fresh randomness, latency degradation, and area overhead. Before we
conclude our work, we provide reasoning behind the security of HPC circuits constructed
by AGEMA in Section 5, and give result of experimental analyses, i.e., Test Vector Leakage
Assessment (TVLA), on some exemplary designs as the outcome of application of AGEMA.

2 Basics

2.1 Notations

Let us denote functions using sans-serif fonts, e.g., f for Boolean functions and F for
vectorial Boolean functions. Next, we denote single-bit random variables in F2 by lower
case letters like x, and vectors by uppercase letters X while sets of random variables are
given in bold X. Further, we use subscripts like xi to indicate elements within a vector or
a set while superscripts are used to denote (randomized) shares of random variables, e.g.,
Xj . As a special case, the set of all shares of each random variable in X is denoted as
Sh(X).

2.2 Boolean Masking

Masking is based on secret sharing and has proven to be well suited for hardware implemen-
tations as a countermeasure against side-channel attacks. In Boolean masking, a sensitive
variable X ∈ Fn is split into s ≥ 2 randomized shares (X0, X1, . . . , Xs−1) ∈ Fs

n, such that
X =

⊕s−1
i=0 X

i. Usually this sharing is initially achieved by sampling Xi $← Fn for all
0 ≤ i < s− 1 and calculating Xs−1 =

(⊕s−2
i=0 X

i
)
⊕X. Eventually, instead of performing

logic operations on the sensitive value X, they will be performed on the (randomized)
shared representation of X, i.e., X0, X1, . . . , Xs−1.

2.3 Probing Security

In order to abstract and formalize the behavior of a masked circuit and the adversarial
capabilities to extract information from the underlying circuit, several models have been
introduced over time, aiming to achieve different trade-offs between simplicity and accuracy.
In the d-probing model, firstly introduced by Ishai et. al in [ISW03], an adversary is
granted the ability to observe the distribution over up to d wires of a given circuit. To
achieve d-probing security for a masked circuit, any adversary in conformity with this
model should not be able to learn anything about the processed sensitive value X.

Definition 1. A masked circuit C is said to achieve d-probing security iff every (joint)
distribution over up to d wires is statistically independent of any sensitive value X.

Definition 1 directly implies that splitting any sensitive variable into at least d + 1
shares is necessary to achieve d-probing security. In the context of masking, d is also
referred to as the security order of a given masked circuit.
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Robust Probing Model and Glitch-Extended Probes Since the traditional probing model
is limited to software implementations due to its inability to capture physical defaults
occurring in hardware implementations, e.g., transitions (memory recombinations), glitches
(combinational recombinations), or coupling (routing recombinations), the robust probing
model was introduced in [FGP+18], aiming to consider and model these defaults accurately
while being sufficiently simple in order to enable efficient verification of masked designs. In
contrast to the traditional probing model, where the value of a wire is always assumed stable
during evaluation and where no dedicated synchronization elements, i.e., registers, exist,
the robust probing model loosens this assumption by introducing registers and so-called
extended probes. Here, a single probe can be extended to additionally capture leakage
caused by physical defaults like data transitions at registers, glitches in combinational
logic, and coupling of adjacent wires.

In particular, glitches are switching activities of wires caused by different delays of
signals contributing to their intended values. These glitches enable a probe on a single
wire to observe not only the field element of its driving gate, but possibly a recombination
of signals contributing to its combinatorial value. Hence, in order to capture these effects,
glitch-extended probes were introduced. Here, a single probe on a wire is assumed to
capture the leakage of the joint distribution over every stable signal contributing to the
calculation of the probed wire. As a result, given the glitch-extended probing model, every
probe on a wire is replaced by the set of probes placed on the register outputs and primary
inputs that contribute to the observed wire, i.e., there exists a path from a stable source
to the current probe position.

2.4 Composable Masking Schemes
Especially for higher security orders d and more complex functions, it is hard to find
efficient masked representations for circuits to become provably d-probing secure, as the
number of possible probe combinations increases with the security order and the complexity
of a circuit.

Following a divide-and-conquer approach, composable gadgets were introduced as a
remedy to directly derive masked representations of large functions. Composable gadgets
are masked circuits realizing small and atomic logic functions, like a simple AND or OR gate.
Fundamentally, these gadgets fulfill certain properties that imply probing security when
composed to a larger circuit. This way, the problem of finding secure masked realizations
of large functions is reduced to the task of finding gadgets realizing small functions with
certain properties.

Probe Propagation and Composability Notions To understand favorable properties
for gadgets in order to achieve secure composability, we explain the concept of probe
propagation, which was firstly introduced in [CS20] and defines the information a probe can
access and how this access to information is propagated throughout the circuit. Generally,
a (glitch-extended) probe is said to propagate into a wire if this wire is needed to perfectly
simulate each observation of the probe, i.e., in order to compute the underlying probability
distribution. Now, to achieve composability of a gadget, propagation of internal probes
and output probes needs to be restricted to a subset of the input wires of the gadgets.
These constraints on gadget level have to guarantee that all possible probes in a composed
circuit only propagate in a subset of the initial sharing of an input value and not into all
of them. After Non-Interference (NI) was proven to be insufficient to offer composability,
Strong Non-Interference (SNI) was proposed which further restricts probe propagation
and was originally restricted to single-output gadgets. In [CS20], Cassier and Standaert
showed that the scope of the original definition can be extended to cover multiple-output
gadgets as well, but at the same time unveiled issues of SNI with respect to the extent of
required entropy and circuit area. Eventually, Probe-Isolating Non-Interference (PINI) was



D. Knichel, A. Moradi, N. Müller, P. Sasdrich 5

Combinational
Ciruit

R
eg

ist
er

St
ag

e

O

clk

I

Figure 1: General schematic of a sequential circuit.

introduced in the same work as an elegant way to guarantee composability at any security
order. Similar to Domain Oriented Masking (DOM), share domains were introduced and
any probe was restricted to only propagate within its own share domain, enabling trivial
implementation of linear functions on the one hand and direct composition of gadgets on
the other.

2.5 Formal Verification
Several tools have been published for the purpose of formally verifying the security and
composability characteristics of masked hardware circuits [BGI+18a, BGI+18b, CGLS21,
BBC+19, KSM20]. They all support different varieties of security and composability
notions while working on different abstraction levels. We choose SILVER [KSM20] for
performing all verification in this work, due to its unique support of checking composability
under the PINI notion in the glitch-extended probing model.

2.6 Combinational and Sequential Circuits
Combinational circuits are digital circuits where the output is a pure function of the
primary inputs and where no synchronization elements and clock signal exist. In contrast,
in a sequential circuit, a sequence of data, synchronized by a clock signal, is processed. A
sequential circuit may contain a feedback loop through registers, such that the output
at any given time is not only a function of the primary input but of previous outputs as
well. A schematic overview is depicted in Figure 1. We want to stress that this structure
offers a unique representation of any given logical circuit without combinational loops that
possibly contains multiple register stages. More precisely, every given circuit without a
combinational loop can be represented as a sequential circuit that follows the structure
shown in Figure 1, where all synchronization elements are packed into the main register
stage, the combinational circuit receives the primary input and the outputs of the main
register, and the primary output is taken from the combinational circuit. Note that, this
illustrates a Mealy machine, which covers Moore machines as well [Mea55].

3 Technique
In this section, we gradually present the technical details of the procedure which AGEMA
follows to generate a secure masked implementation from the given unprotected implemen-
tation. To this end, we first review the masking schemes which are currently supported by
AGEMA.
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Figure 2: The GHPC concept of transforming any vectorial Boolean function into a first-
order secure and composable gadget.

3.1 PINI Hardware Gadgets

As PINI offers trivial composition of hardware gadgets in the robust probing model, we
restrict our examples to known gadgets fulfilling this security notion. However, we like
to stress that AGEMA offers a generic framework to dynamically substitute circuit parts
with masked gadgets and is not restricted to any specific type of gadgets. Recently, several
gadgets have been proposed that fullfill the PINI notion in the robust probing model.
As they differ with respect to the logic function they realize, the fresh randomness they
require and their latency, we will describe and compare them in the following, where the
number of required fresh randomness is denoted by r and the number of added register
stages (i.e., the latency) by l.

3.1.1 HPC1

HPCs – proposed by Cassier et al. in [CGLS21] – realize 2-input AND gadgets composable
under the PINI notion in the robust probing model and are generic for arbitrary security
orders. The authors introduced HPC1, which simply consists of a DOM-AND where the
sharing of one input is refreshed. Hence, the added number of register stages is l = 2. The
DOM-AND needs d(d+ 1)/2 bits of fresh masks for any given security order d. However,
since the mask refreshing is expected to be SNI, the required number of additional fresh
masks is identified through the table [1, 2, 4, 5, 7, 9, 11, 12, 15, 17] for security order d ≤ 10.

3.1.2 HPC2

Cassier et al. further proposed another construction for an AND gadget, HPC2, requiring
r = d(d+ 1)/2 fresh randomness and l = 2 added register stages for any security order d.

3.1.3 GHPC

Generic Hardware Private Circuits (GHPCs), introduced in [KSM21], allow the construction
of gadgets realizing any (vectorial) Boolean function but are currently limited to first-order
security. Here, l = 2 is the number of added register stages, and the required number of
fresh masks is r = 1 per output bit, regardless of the Boolean function the gadget realizes.

The concept of GHPC is depicted in Figure 2. Every input is split into two shares while
the result of the gadget is simply the coordinate function fi blinded by fresh randomness
ri for every 0 ≤ i < n.
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Figure 3: First-order GHPCLL-AND realizing o = ab, dashed registers are optional for a
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3.1.4 GHPCLL

In [KSM21], the authors further introduced GHPCLL, a low-latency variant of GHPC which
requires only one register stage to compute any vectorial Boolean function but requires 2n

fresh random bits per output for a Boolean function with n inputs.
A simple 2-input AND gadget realized as a GHPCLL is shown in Figure 3. This is the

only known composable AND gadget with a latency of a single clock cycle.

3.1.5 HPC-MUX

Designing an efficient shared version of a 2-input multiplexer offering security under the
PINI notion is straightforward as it can be directly derived by using a single HPC gadget
realizing a 2-input AND. The Boolean function f, describing a multiplexer, where one of
two inputs a ∈ F2, b ∈ F2 is selected by s ∈ F2 can be rewritten as f = sa⊕sb = s(a⊕b)⊕b.
Realizing a composable, shared multiplexer for arbitrary security orders is hence possible
by using two trivial XOR operations and a single HPC-AND gadget. As a result, the
randomness requirements and the latency is inherited from the HPC-AND gadget initiation,
i.e., whether an HPC1, HPC2, GHPC, or GHPCLL- AND is instantiated, where the two
latter cases are restricted to constructing first-order secure designs only.

3.2 Procedure
As the main goal is the conversion of an unprotected implementation to a masked one,
we first have to analyze the netlist of the unprotected implementation. In other words,
the unprotected implementation should be first synthesized by a synthesizer, e.g., Design
Compiler [Inc] or Yosys [Wol]. The resulting Verilog netlist1 is then given to AGEMA.
Note that AGEMA has a custom library file, where the user should specify the details of
each cell, e.g., their input and output ports. Therefore, the synthesizer should also be

1This can be set in a script executed by the synthesizer to generate a Verilog netlist as the result of the
synthesis.
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Figure 4: Exemplary circuit after the propagation of secure signals. i1 is the only primary
input marked as secure. The red signals and cells indicate the parts which should be
masked.

set to just use a resisted list of cells to generate the Verilog netlist, typically only NOT,
2-input AND, NAND, OR, NOR, XOR, XNOR, MUX, and D flip-flops.

Then, as a first step, AGEMA builds a graph based on the given Verilog netlist, and
represents the circuit following the concept given in Section 2.6, i.e., a combinational circuit
and a single main register stage. Naturally, not necessarily all parts of the given design
should be masked, e.g., the control logic should be excluded. Further, the designer may
desire to not mask the key and the key schedule, for example if protection against profiling
attacks targeting the key schedule is excluded (for such cases, see [MS16, PMK+11, UHA17,
SM20], where no key masking is applied). In AGEMA, this is supported by setting the
attribute of the primary input signals. If a signal is annotated as secure, in the resulting
masked circuit, it should be provided in a masked form with d+ 1 shares, while d is also
defined by the user. This also helps to identify the control and handshaking signals which
should not be masked.

Hence, the next step of the process is to identify which parts of the given circuit should
be masked. If an input of a cell is marked as secure, its output should also be marked
secure. Therefore, in a recursive manner, we propagate the secure signals through all cells
of the circuit until no new signal is marked as secure. Note that this includes the main
registers and their role as the input to the combinational circuit. Afterwards, we split
the circuit into two parts: the secure zone and the normal zone. Figure 4 shows a simple
example.

3.3 Processing Methods

The next step is to construct the masked variant of the secure zone. Apart from the
fact that different masking schemes are supported (see Section 3.1), we can process the
secure zone and build a more optimized netlist in favor of the selected masking scheme.
To this end, AGEMA supports five different processing methods explained below with
an example for each method in Figure 5 which is based on the secure zone identified in
Figure 4. As a side note, all processing methods can be freely combined with all supported
masking schemes, except ANF which is dedicated to GHPC and GHPCLL. An overview of
the possible combinations is given in Table 1.
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Figure 5: Different processing methods for the secure zone of the exemplary circuit in
Figure 4.

Table 1: Supported masking schemes and processing methods.

Processing Method
Masking Scheme

HPC1/HPC2 GHPC GHPCLL
(d ≥ 1) (d = 1) (d = 1)

Naive 3 3 3

AIG 3 3 3

BDDSYLVAN 3 3 3

BDDCUDD 3 3 3

ANF 3 3
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3.3.1 Naive

Every cell in the netlist of the secure zone can be naturally exchanged with its masked
variant depending on the selected masking scheme. Since this is just a translation of one
netlist into another while keeping the original structure (i.e., the number of cells and
how they are connected), the efficiency of the resulting masked circuit depends on how
the original circuit has been synthesized. For example, the non-linear gadgets need fresh
randomness and introduce register stages into the gates (see Section 3.1). Therefore, the
number of non-linear gates and how they are composed (i.e., the logical depth of the
circuit) has a direct effect on the number of required fresh masks and latency overhead of
the resulting masked circuit.

We should also highlight that every signal in the secure zone is transformed into a
masked form with d+ 1 shares. However, the signals which are not marked as secure but
involved in the secure zone are padded with 0 to form d + 1 shares. For example, the
primary input i0 and the internal signal y in the example shown in Figure 4. Note that it
should be carefully examined to make sure that this does not pose any security issue in
the used gadgets. We have verified this in HPC1, HPC2, GHPC, and GHPCLL gadgets.

3.3.2 AIG

Generally, AND-Inverter Graphs (AIGs) are promising candidates for a unified representa-
tion of Boolean functions suitable for logic synthesis, simulation, and verification.

Representation. An AIG is a Directed Acyclic Graph (DAG) G = (V, E) with nodes
in V and edges in E . More precisely, any Boolean function Fn

2 7→ Fm
2 , over inputs

X = {xi|1 ≤ i ≤ n} and outputs Y = {yi|1 ≤ i ≤ m}, can be modeled as AIG which is
syntactically and semantically defined as follows.

Definition 2 (Syntax of AIGs). Given a finite DAG G = (V, E) with vertices V and edges
E , the syntax of an m-rooted AIG is defined as follows:

(1) There are exactly n terminal nodes vt, each labeled with a unique xi ∈ X .
(2) There are exactly m root nodes vr, each labeled with a unique yi ∈ Y.
(3) Each non-terminal, non-root node v ∈ V has exactly two incoming edges while each

edge e ∈ E is either labeled as regular or complement edge.

Given the syntactical, graph-based representation of an AIG, the semantic definition
of AIGs, based on DeMorgan’s theorem, can be provided as follows.

Definition 3 (Semantic of AIGs). The representation of a Boolean function f : Fn
2 7→ Fm

2
in terms of AIGs is given according to the following specification:

(1) Each non-terminal, non-root node represents a Boolean conjunction ∧ (AND) of the
two nodes represented by the incoming edges.

(2) Each regular edge represents the original function of the source node, whereas each
complement edge represents the inverted function of the source node.

Transformation. As an alternative to Naive, for the AIG processing method, the netlist
of the secure zone is converted into an AIG based on DeMorgan’s rules. In particular, any
standard Boolean gate and operation (e.g., OR, XOR, etc.) is replaced by a representation
purely relying on AND and inverter gates only. More precisely, the converted netlist of
the secure zone eventually consist of only 2-input AND and single-input NOT gates while
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keeping the same functionality as the original netlist (see an example in Figure 5(b)). In
a final step, the AND and NOT gates of the AIG-netlist are replaced with their masked
counterparts, based on the selected masking scheme.

However, in order to process the original secure zone netlist and construct the corre-
sponding AIG, our tool heavily relies on the public-domain ABC system and library for
synthesis and formal verification of digital logic circuits.

ABC2 is a system for digital logic synthesis and verification, particularly focusing on
synchronous binary logic circuits. Internally, the system combines logic representa-
tions and optimizations based on AIG. In the context of this work, we particularly
leverage the innovative AIG functionalities provided in terms of a C-library that was
included and integrated into our tool flow.

Limitations. In contrast to the Naive processing method, the AIG method only requires a
single (optimized) masked non-linear gadget (AND) while the inversion generally is for
free (in case of Boolean masking). However, since such a reduced representation, purely
based on conjunction and inversion operations, is not unique, the AIG method leaves room
for optimizations and improvements with respect to logical depth and latency. However,
as the creation of the masked secure zone originates from the synthesized netlist while all
non-linear gates are represented in terms of conjunction and inversion gates (based on
De Morgan’s laws), we do not expect to reduce the number of non-linear gates and their
associated number of random bits.

3.3.3 BDD

Besides AIGs, in discrete mathematics and computer science, Binary Decision Diagrams
(BDDs) are often used as basic data structure to represent and manipulate Boolean
functions. The seminal concept of BDDs has been introduced by Akers [Ake78] and
refined by Bryant [Bry86], improving efficiency and conciseness through variable ordering.
Nowadays, many applications in logic synthesis and formal verification of digital Integrated
Circuits (ICs) rely on (reduced and ordered) BDDs3. This also holds for SILVER [KSM20]
introduced in Section 2.5.

Representation. Multi-root BDDs provide a unique, concise, and canonical representation
of Boolean functions Fn

2 7→ Fm
2 . In particular, any multi-root BDD can be represented as

a DAG with m root nodes and two terminal nodes {0,1}. More precisely, BDDs can be
defined syntactically and semantically as follows.

Definition 4 (Syntax of BDDs). Given a pair (π,G), where π denotes a variable ordering
and G = (V, E) is a finite DAG with vertices V and edges E , the syntax of an m-rooted
Reduced Ordered Binary Decision Diagram is defined as follows:

(1) There are exactly m root nodes and each node v ∈ V is either a non-terminal or one
of the two terminal nodes {0,1}.

(2) Each non-terminal node v ∈ V is labeled with a variable, denoted as var(v) and has
exactly two distinct child nodes in V , which are denoted as then(v) and else(v). More
precisely, there is no non-terminal node v such that then(v) = else(v).

(3) There are no duplicate nodes, i.e., for each pair of nodes {v, v′} ∈ V2 at least one of
the following conditions holds:

(i) The variable label is different, i.e., var(v) 6= var(v′).
2https://github.com/berkeley-abc/abc
3For the sake of simplicity, we refer to Reduced Ordered Binary Decision Diagrams as BDDs.

https://github.com/berkeley-abc/abc
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(ii) The child nodes are different, i.e., then(v) 6= then(v′) or else(v) 6= else(v′).

(4) For each path from root nodes to terminal nodes, the variable labels are encountered
at most once and in the same order, defined by the variable ordering π.

Using the principle of Shannon decompositions, each multi-rooted BDD recursively
defines a Boolean function Fn

2 7→ Fm
2 and arbitrary Boolean operations.

Definition 5 (Semantic of BDDs). The representation of a Boolean function f : Fn
2 7→ Fm

2 ,
defined over the input variables X = {xi|1 ≤ i ≤ n}, is defined recursively according to
the following specification:

(1) Given a terminal node v, then fv|x = 0 if v is the terminal node 0, and fv|x = 1
otherwise.

(2) Given a non-terminal node v and var(v) = xi, then fv is defined recursively by the
Shannon decomposition: fv = xi · fthen(v)|xi=1 + xi · felse(v)|xi=0.

(3) Given two root nodes vr1 and vr2 and any binary Boolean operation ◦, such that
f = fvr1

◦ fvr2
, then f can be derived recursively as:

f = xi · f|xi=1 + xi · f|xi=0

= xi · (fvr1
◦ fvr2

)|xi=1 + xi · (fvr1
◦ fvr2

)|xi=0

= xi · (fvr1
|xi=1 ◦ fvr2

|xi=1) + xi · (fvr1
|xi=0 ◦ fvr2

|xi=0)

Transformation. In contrast to the AIG processing method, the BDD processing method
attempts to create BDD for the secure zone netlist. More precisely, the Boolean function
of the secure zone netlist is transformed into a multi-root BDD, whereas each node in the
BDD corresponds to a multiplexer (MUX). Note, however, that in the context of BDDs,
each select signal is connected to a primary input, while the data signals are connected to
the constants 0 or 1 or any other multiplexer corresponding to a BDD node. Therefore, our
tool extracts an equivalent netlist of the secure zone, purely based on 2-to-1 multiplexers,
which afterwards are exchanged and replaced by their masked counterpart (see an example
in Figure 5(c) and Figure 5(d)).

Similar to the application of an external library for creation of AIGs, our tool also
employs two different C/C++ libraries for the construction and manipulation of BDDs.

SYLVAN4 is a state-of-the-art BDD high-performance, multi-core decision diagram pack-
age implemented in C/C++. In particular, manipulation and processing of BDDs
and binary operations has been extensively optimized and implemented for multi-core
support, outperforming existing, but single-core BDD packages.

CUDD5 (Colorado University Decision Diagram) is a package for manipulation and
processing of BDDs, Algebraic Decision Diagrams (ADDs), and Zero-suppressed
Binary Decision Diagrams (ZDDs) implemented in C. In contrast to SYLVAN, CUDD
provides an extensive set of features and operations that can be performed on BDDs,
including automatic and dynamic reordering of the variables. Hence, although CUDD
has been mostly designed for single-core processors, it can outperfom SYLVAN in
certain applications, mostly due to reduced memory requirements and BDD sizes
(due to more optimal variable orderings).

4https://github.com/utwente-fmt/sylvan.git
5https://github.com/ivmai/cudd.git

https://github.com/utwente-fmt/sylvan.git
https://github.com/ivmai/cudd.git
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Limitations. In contrast to the Naive and AIG processing techniques, the BDD transforma-
tion results in a unique representation (under a given variable ordering). As a result, the
BDD representation is independent of the original netlist representation but solely depends
on the underlying Boolean function, hence reducing the effort of optimizing the original and
unprotected design. Further, since each BDD can be represented as multiplexer-cascade in
digital logic, creation and optimization of a single masked multiplexer-gadget is sufficient
to convert unprotected designs into protected designs. However, in contrast to common
approaches, the primary inputs of the secure zone serve as selection signals of the multi-
plexers (instead of being connected to the multiplexer data inputs). As a consequence, the
logical depth of the multiplexer-cascade is solely limited by the number of primary inputs
of the secure zone, hence, determining the resulting latency of the masked circuit.

Besides, since BDDs are only canonical under a given variable ordering, we employ
two different state-of-the-art BDD libraries. While SYLVAN is a high-performance library
captivating through multi-core algorithms and operations, in particular with respect to
BDD generation and recombination, CUDD also supports automated and dynamic variable
re-ordering. In fact, using some pre-defined and global thresholds, the library automatically
performs variable re-orderings once the thresholds are exceeded, in order to find better
(i.e., smaller) BDD representations through changing the ordering of the variables (i.e.,
primary inputs). As a smaller BDD directly translates to smaller masked circuits using
fewer multiplexers, we decided to support and evaluate both BDD libraries for their various
benefits and limitations.

3.3.4 ANF

As stated in Section 3.1, GHPC and its low-latency variant GHPCLL allow to construct
first-order secure composable gadgets from arbitrary functions. More specifically, Boolean
functions in arbitrary number of variables can be translated into single gadgets. However,
with increasing variable dependencies, area overhead of the gadgets gradually becomes
more obstructive. To this end, the ANF processing method tries to find trade-offs between
single gadget size and overall circuit size.

Representation. In general, any Boolean function can be expressed canonically using
several normal forms, such as Conjunctive Normal Form (CNF), Disjunctive Normal
Form (DNF), or Algebraic Normal Form (ANF). In particular, the ANF representation is
often considered for masking purposes due to the trivial masking of exclusive-or operations.

Definition 6 (Algebraic Normal Form). For any Boolean function f : Fn
2 7→ F2 there

exists a unique AND-XOR representation, called the ANF of f:

f(x) =
⊕

u∈Fn
2

aux
u with au ∈ F2

The summands of f are called monomials. Each monomial forms a conjunction of a
unique subset of x defined by its corresponding index u. The degree of a monomial is
defined as the size of its input set. Furthermore, the algebraic degree of f is defined as the
highest degree of all functions monomials.

Tranformation. We first construct the ANF of the secure zone. The construction mecha-
nism represents each gate (e.g., AND, OR, XOR) of the original netlist with its correspond-
ing ANF. More precisely, our tool computes the ANF of any gate based on the primary
inputs of the secure zone. To this end, the inputs of each gate are expressed in terms of an
ANF given in the primary inputs.

However, for the construction of gadgets, we are only interested in the ANF of the
outputs of the entire secure zone. Unfortunately, as stated above, constructing an individual
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gadget per secure zone output may lead to a very large circuit if the corresponding ANF
depends on a very large number of primary inputs. As a consequence, to reduce the
circuit size, we apply two optimization techniques introduced in the following. For the
sake of simplicity and better understanding, we analyze an exemplary Boolean function
f : F4

2 7→ F2 represented by the following ANF.

f = x0x2 ⊕ x0x3 ⊕ x0x2x3 ⊕ x1x2 ⊕ x1x3 ⊕ x1x2x3 (1)

Now, the trivial approach is to construct the entire function as a single gadget. As f
depends on four different input values, the corresponding gadget also requires four inputs.
Nevertheless, f can be rewritten in a way that the linear combination x0 ⊕ x1 is processed
instead of x0 and x1, i.e.:

f = (x0 ⊕ x1)(x2 ⊕ x3 ⊕ x2x3) (2)

Note that finding suited linear combinations is not trivial. We explain our methodology
in the following. Providing the linear combination (x0 ⊕ x1) to the gadget instead of x0
and x1 reduces the input size of the gadget by one. In practice, such linear combinations
occur in many modern block ciphers including a key addition operation. Hence, detection
of such operations and extraction of linear combinations often allows to typically halve
the number of inputs per gadget. However, the minimization of gadgets due to finding
linear combinations is not only restricted to the gadgets inputs. For instance, considering
h : F4

2 7→ F2 as
h = x0 ⊕ x1 ⊕ x0x1 ⊕ x2 ⊕ x3 ⊕ x2x3,

Again, computing the entire function in a single gadget is inefficient since the algebraic
degree of h is smaller than the number of inputs. In particular, only x0 and x1 as well as x2
and x3 are combined non-linearly. In addition, only two different monomials of degree two
(x0x1 and x2x3) occur, i.e., not all inputs are combined in conjunctions. Hence, splitting h
into two functions h = h0 ⊕ h1 such that h0 = x0 ⊕ x1 ⊕ x0x1 and h1 = x2 ⊕ x3 ⊕ x2x3
results in two gadgets with only two inputs each. Compared to a single gadget with four
inputs the area footprint is reduced. Again, linear output combinations, as described here,
occur in many modern block ciphers where linear diffusion layers permute the outputs of
multiple non-linear S-boxes which typically operate on a small set of inputs (e.g., 4 or 8
bits).

Now, given an arbitrary Boolean function representing a secure zone output in ANF,
similar to the examples shown above, we can split the entire ANF into multiple sub-
functions of independent inputs. For instance, considering a full round of a block cipher,
this step is beneficial as different S-boxes are usually computed on non-colliding sets of
input variables. Therefore, we should be able to construct gadgets that operate only on a
small set of input values (depending on the S-box input size). More precisely, in order to
find suitable sub-functions, we first extract all monomials with maximal algebraic degree
and place them into sub-functions. Specifically, all monomials that share no input are
placed in different sub-functions, while monomials sharing at least one input are placed in
the same sub-function. In the next step, we extract all smaller monomials of the ANF and
place them in one of the existing sub-functions such that each monomial is placed in a
sub-function if it shares inputs with the largest monomial of this sub-function. Eventually,
we repeat this procedure for every output ANF while adding new outputs to the gadgets.
Hence, each gadget may be used to compute sub-funtions of multiple output ANFs if they
depend on the same inputs. As a result, each output ANF can be computed as the sum of
different sub-functions while each sub-function receives a different set of inputs. At this
point, the gadgets are independent of each other and we can optimize them individually.

For some lightweight block ciphers, such as PRINCE [BCG+12], PRESENT [BKL+07],
Midori [BBI+15], Skinny [BJK+16], and CRAFT [BLMR19], the diffusion layer only
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combines the output of different S-boxes. In other words, the diffusion layer never
combines different outputs of the same S-box. As the gadgets will be optimized at most
up to the S-box sizes, the sub-functions and the outputs of the S-boxes become equivalent.
Prominent exceptions of this rule are the AES [DR02] and LED [GPPR11], where the
MixColumns also linearly combines the outputs computed by the same S-box (through
Galois-field multiplication with constants in the MixColumns matrix). Note that since
we are analyzing the netlist of the secure zone, such a linear combination is not trivially
visible in the output ANFs. This translates to gadgets with a large number of outputs as
the gadgets compute all linear combined outputs separately and not the small set of S-box
outputs resulting in a high area and fresh-randomness overhead.

In order to detect such linear combinations and reduce the number of gadget outputs
(ideally) up to the number of S-box outputs, we search for a minimal set of different
functions whose linear combinations compute all required sub-functions. We perform
such a search with simulated annealing [KGV83], a discrete optimization technique that
searches for a minimal solution by evaluating solutions that are similar to the current
solution (so-called neighbors). The advantages of simulated annealing compared to other
optimization techniques such as constraint programming [Apt03] are the great performance
and the ability to escape local minima. This is achieved since the acceptance of a neighbor
is partially probabilistic. Hence, sometimes also bad neighbors are accepted to escape
local minima. We start with an input solution A (a set of functions) that computes all
sub-functions separately. Therefore, each sub-function is given as a single output and with
a single summand, what translates to a list with a single element. During the simulated
annealing, we split our initial solution into multiple summands that compute the outputs
with a minimal number of different summands. We show our method in Algorithm 1. For
the neighboring function Neighbor(C), we randomly modify input solution C by selecting
one summand from a random sub-function (at the beginning, each function is given as
a single summand), XOR it to every occurrence of another randomly-chosen summand,
and insert it to every modified sub-function. Moreover, we define our objective costs
Cost(C) of the solution C as the number of different summands required to compute all
sub-functions. It turns out that a very small number of iterations and a very low cooling
factor are enough to recover the minimal set of gadget outputs. In our experiments, we
used a cooling factor cool of 0.9 and start with n = 100 iterations per cooling step which
increases by 100 after every cooling step. The initial temperature is T = 1 and cooled
down until it reaches Tmin = 0.5. Note that the set of gadget outputs not necessarily
encompasses the outputs of the underlying S-boxes but linear combinations which also
result in a minimal number of gadget outputs.

After optimizing the gadgets outputs we investigate each gadgets inputs. As shown
above in Equation (2), a gadget can depend on a linear combination of its inputs. In order
to detect such cases for a given gadget, for each input (e.g., x0) we first make a set Lf,x0 of
all monomials that occur in output function f and include x0. As only monomials including
x0 are in Lf,x0 , we erase x0 from the monomial before storing it. Then, we search for
input combinations by iterating over all pairs of inputs, e.g., (x0, x1), and examining the
corresponding sets Lf,x0 and Lf,x1 . Since we erase x0 from all monomials in Lf,x0 and x1
from all monomials in Lf,x1 both sets are exactly equivalent iff they differ only in (x0, x1).
Hence, equivalence shows that we can replace (x0, x1) by its linear combination. Naturally,
two inputs xi and xj , such that i 6= j, can be replaced by their linear combination xi⊕xj in
an ANF, if both xi and xj are similarly combined with other inputs in all monomials. This
is given if both sets of monomials are equal and non-empty for every output function of the
gadget. If both conditions are met, xi and xj can be replaced with their linear combination
xi ⊕ xj in the entire gadget. As a short example, we verify the linear combination in f
(cf. Equation 1 and 2). For the input pair (x0, x1) it holds that Lf,x0 = {x2, x3, x2x3}
and Lf,x1 = {x2, x3, x2x3}. Since it hold that Lf,x0 = Lf,x1 , the linear input combination
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Algorithm 1 Search for optimal gadget outputs
Input: T, Tmin, cool, n,A
Output: C . Outputs an optimized solution

1: C ← A
2: while T > Tmin do
3: for i = 0, 1, ..., n− 1 do
4: D ← Neighbor(C)
5: δ ← Cost(D)− Cost(C)
6: r ← rand() . Random value in range [0,1]
7: if δ ≤ 0 or exp(−(δ/T )) > r then
8: C ← D
9: end if

10: i← i+ 1
11: end for
12: T ← T · cool
13: end while

(x0, x1) can be applied. This reduces the number of inputs of the gadget and the complexity
of the computed function. We formalize our technique in Algorithm 2. Internally, we
represent each monomial as a set of its inputs and each function as a set of monomials.
Hence, we can represent a gadget (LGi

and LGo
in the algorithm) as a set of its output

functions.
Finally, the result of the ANF processing method is a combination of gadgets and linear

layers. A general structure is depicted in 6. Initially, input layer Lin computes all linear
input combinations which are fed to the gadgets computing all non-linear components.
The different outputs of the i-th gadget are then linearly combined (through Li). Finally,
the output layer Lout linearly combines different gadgets outputs.

Limitations. As already stated, although the other previously discussed processing
methods can be combined with different masking schemes, ANF is purely dedicated to
GHPC and GHPCLL. Hence, ANF can only generate first-order secure circuits. Similar to
BDD, ANF generates a unique ANF of each output independent of the underlying netlist.
Nevertheless, the optimizations are not unique due to the probabilistic characteristic of
simulated annealing. Hence, improvements in terms of area are possible. In particular, the
optimization generates ineffective gadgets if the complexity of the secure zone grows. The
given parameters for simulated annealing are suited for the optimization of typical S-boxes
(up to eight-bit input and output). Adjusting the parameters of simulated annealing could
be helpful for more complex secure zones but also increases the runtime. Up to now, all
gadgets are instantiated in parallel leading to a fixed latency of two clock cycles for GHPC.
On the other hand, the largest gadget can not be smaller than the algebraic degree of the
largest output function.

3.4 Optimization
Up to this point, we have explained how the secure zone is extracted from the netlist and
how it can be translated to a masked circuit. Depending on the chosen processing method
and the masking scheme and more importantly the initial netlist of the secure zone, the
resulting masked circuit might introduce additional latency (more clock cycles) to the
circuit and demand for a high or low number of fresh masks, depending on the architecture
of the selected gadgets. An important part, which heavily affects the performance of the
resulting circuit, are the multiplexers of the secure zone. We have already given an efficient
way to realize an HPC-MUX in Section 3.1.5. However, it is commonly seen that the secure
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Algorithm 2 Search for linear input combinations
Input: LGi

, Lx . List of the gadgets output functions and inputs
Output: LGo . List of the gadgets substituted output functions

1: LGo ← LGi

2: for ∀(x0, x1) ∈ Lx × Lx do
3: if x0 6= x1 then . Get two different inputs of the gadget
4: for ∀f ∈ LGo

do
5: Lf,x0 ← ∅
6: Lf,x1 ← ∅
7: for ∀m ∈ f do . Get the monomials of the output function
8: if x0 ∈ m then Lf,x0 ← Lf,x0 ∪ ({m\{x0}})
9: end if

10: if x1 ∈ m then Lf,x1 ← Lf,x1 ∪ ({m\{x1}})
11: end if
12: end for
13: end for
14: if Lf,x0 = Lf,x1∀f ∈ LGo

then
15: n← {x0, x1} . Create the new linear combination
16: Lx ← (Lx\{x0}, {x1}) ∪ n . Update the gadgets inputs
17: for ∀f ∈ LGo do
18: for ∀m ∈ f do . Substitute the inputs with their linear combination
19: if x0 ∈ m then m← (m\{x0}) ∪ n
20: end if
21: if x1 ∈ m then f ← (f\{m})
22: end if
23: end for
24: end for
25: end if
26: end if
27: end for

zone additionally contains multiplexers whose select signal is not marked as secure. For
example, a plaintext which is given as the primary input is loaded under certain conditions,
e.g., when the reset signal is high (or low). As another example, different computations
are performed in different clock cycles, e.g., last round of the cipher is different to the
other rounds (e.g., MixColumns is missing in the last round of AES), or in a serialized
architecture during some clock cycles the output of the Sbox is taken, and in some other
clock cycles that of the diffusion layer. In such cases, these is no need to mask and
translate the multiplexer with an HPC-MUX. Similar to the XOR, which is secure under
PINI notion, such a multiplexer can be straightforwardly instantiated d + 1 times (for
security order d). Note that security under the PINI notion requires every signal to have
an independent sharing [CS20]. Hence, connecting corresponding shares of two masked
signal to an ordinary multiplexer controlled by an insecure signal would not violate any
security requirements. This would greatly improve the efficiency of the resulting masked
circuit. As a side note, the synthesize should be directed to make use of multiplexers
in such cases. If the same functionality is realized by Boolean gates (AND, OR, XOR,
etc.) and the secure zone is optimized (e.g., for area, latency, or power), it would not be
straightforward to detect the multiplexers in the secure zone, and most likely the resulting
circuit would suffer from a high number of added register stages and a high demand for
fresh randomness.
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Figure 6: Generic structure of a masked circuit after the ANF processing.

3.5 Control Logic
Since masked gadgets often have internal register stage(s), the combinational circuit of
the secure zone, after applying the selected masking scheme, is not fully combinational
anymore. Therefore, the circuit (control logic, etc.) would not necessarily work properly.
Hence, the circuit should be adjusted to keep its correct functionality. We achieve this by
two different techniques explained below.

Pipelining. We can add extra registers to synchronize all inputs of every gadget as well as
all inputs of the main register stage. An example is shown in Figure 7(a), which is based on
the circuit depicted in Figure 4. Each HPC2 gadget introduces two register stages. Hence,
in order to synchronize the inputs of the HPC2 OR gate in Figure 7(a) we need to place
two cascaded registers at its first input. This procedure is done by synchronizing all inputs
of each gadget processed in order of their logic depth. At the end, all inputs of the main
register stage are also synchronized. For the example shown in Figure 7(a), four registers
are placed in the normal zone to synchronize it with the output of the secure zone. This
way, the circuit keeps its correct functionality while realizing a pipelined design with p+ 1
stages if p register stages are added to the circuit (in the shown example, p = 4). Hence,
the circuit can process p + 1 consecutive and independent inputs. We should highlight
that the area overhead of the resulting circuit is relatively high, but it constructs a circuit
with a high throughput due to its underlying pipeline architecture.

Clock Gating. In order to mitigate the area overhead of the former technique, we can
make use of clock gating. More precisely, we need to make sure that the main register
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Figure 7: Different architectures: pipeline versus clock gating for the secure zone of the
exemplary circuit in Figure 4 processed by the Naive method using HPC2 masking scheme.

stage keeps its value until the computation of the secure zone is terminated. The same
holds for the primary inputs. Hence, we do not add any extra registers to the circuit, but
change the clock of the main register stage. Hence, all internal registers of the gadgets are
controlled by the main clock, but the main register stage by an added gated clock enabled
once per evaluation of the secure zone. The circuit equivalent to the former example is
shown in Figure 7(b). In order to keep the generality, a clock gating module is added to
the design which can be adjusted based on the latency of the masked secure zone, i.e., p.
To this end, the clock gating module instantiates a rotating shift register with p+ 1 bits
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Table 2: Full cipher implementation case studies.

Cipher Implementation Reference
Skinny64 Round-based encryption with 64-bit key [BJK+16]
AES-128 Byte-serial and round-based encryption [DR02]
CRAFT Round-based encryption without tweak [BLMR19]
PRESENT-80 Nibble-serial encryption [BKL+07]
LED-64 Round-based encryption [GPPR11]
Midori-64 Round-based encryption/decryption [BBI+15]

initialized by 1{0}p using an added control signal rst. Hence, every p+ 1 cycles the main
register stage is clocked to proceed with the next round of the calculation of the secure
zone. As a result, the latency of the clock-gated circuit is the same as the pipeline one,
but it has a lower throughput as well as lower area overhead. Note that since the primary
inputs as well as the fresh masks (used by the gadgets) are only allowed to change once
per evaluation cycle right after the main register stage is clocked, the clock gating module
generates an additional output signal synch to let the outer modules synchronize. More
princely, a positive edge is seen on the synch signal which can be used to trigger the clock
of a random-number generator to update the fresh masks.

4 Case Studies
In order to examine the efficiency and performance of circuits constructed by AGEMA, we
evaluated several designs including different S-boxes and full cipher implementations under
different settings, i.e., various processing methods and different masking schemes. We start
with the 4-bit S-box of Skinny [BJK+16] and provide two different representations. In the
first one, we straightforwardly implemented the S-box by a lookup table. The synthesizer
translates such a behavior representation to a netlist, which is then given to AGEMA for
further processing. For the second one, we followed the optimized representation provided
in [CGLS21]. The corresponding results are given in Table 3 and Table 4 respectively. As
the results are extensive and many tables are presented, all performance results are given
in Appendix A. Note that all syntheses have been done using Synopsis Design Compiler
and a NanGate 45 nm standard cell library. For these analyses, we covered all processing
methods Naive, AIG, BDDSYLVAN, and BDDCUDD for masking scheme HPC2 at different
security orders. For the sake of comparison, we covered HPC1 only for Naive method.
ANF is also covered as a preprocessing step where transformation into a secure design
is only possible in combination with GHPC or GHPCLL (see Table 1). The effect of the
given netlist on the performance of the masked circuit can be easily seen in Naive and AIG
processing methods. The (HPC2, Naive)-approach for the lookup table based S-box adds
10 clock cycles to the latency compared to 4 clock cycles for the optimized S-box. ANF
and BDD methods are actually not affected by the optimality of the given netlist as they
reconstruct the netlist. Further, it can be seen that HPC1 leads to a lower area overhead
while it certainly demands for more fresh randomness.

We repeated this procedure for the AES S-box. In addition to a lookup table based
representation, we took the Canright version [Can05] and the optimized design presented
in [BP12], which – in addition to the linear layers (isomorphisms) – has at most 4 cascaded
2-input AND gates, making it suitable for a masked design. Performance results are given
in Table 5, Table 6 and Table 7. The effect of the optimality of the given netlist on the
performance (area and latency) is even clearer compared to the former case study.

For the full cipher implementations, we cover the list given in Table 2. The performance
results are shown in tables in Appendix A. For all such case studies, we considered the
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following facts.

• For all designs, we marked the plaintext/cipheretxt and the key as secure for AGEMA.
In other words, the resulting masked circuit receives all inputs (except the control
signals) in a masked form with d+ 1 shares and provide the output also with d+ 1.

• If possible and available, we provided an optimized representation of the S-box.
Above, we have given the source of such optimized designs for the the Skinny and
AES S-boxes. For PRESENT and LED, which share the same S-box, we took the
optimized S-box representation from [CGLS21]. However, for Midori and CRAFT,
which also share the same S-box, such representations are not available. Therefore,
we represented the S-box by a lookup table. It can be seen in the performance results
of CRAFT and Midori that the added latency (for Naive method) is higher compared
to the other ciphers with an optimized 4-bit S-box.

• We hard-coded the multiplexers (controlled by Finite State Machine (FSM) or
primary input control signals like rst) and directed the synthesizer to not optimize
them (see Section 3.4). The same holds for XORs. If the XORs are also merged in
other combinational circuits, the synthesizer may optimize in other directions leading
to a netlist with more (cascaded) non-linear gates.

• As explained in Section 3.3.3, BDD processing methods are not necessarily efficient
for large combinational circuits when an optimized representation is available. This
can be seen in for Midori and CRAFT, where the S-box is based on look up tables
and BDD methods have the same latency overhead, while this does not hold true for
the other cases, where an optimized representation of the S-box is given. Further, in
AES round-based implementation, the round function, including 16 S-boxes followed
by the MixColumns and 4 S-boxes of the KeySchedule, is too large to be processed
by BDD methods.

• The latency reported in the tables of Appendix A should be read as the added latency
to each clock cycle of the unprotected implementation. For example, the unprotected
AES round-based encryption needs 11 × 1 = 11 clock cycles to accomplish the
encryption, and based on Table 10, the HPC2 Naive implementation adds 8 cycles
latency. this results in the clock-gating implementation needing 11× (1 + 8) = 99
clock cycles for an encryption. The pipeline implementation has the same latency,
but processes 8 + 1 plaintexts consecutively in those 99 clock cycles. Hence, its
throughput (ignoring the delay) stays the same as the unprotected implementation,
but certainly has a considerably higher area overhead compared to the clock-gating
implementation.

The tool and all case studies are provided in the GitHub: https://github.com/Chair-
for-Security-Engineering/AGEMA.

5 Experimental Analyses
As the first analysis step, we have examined our implementations of HPC1 and HPC2 gadgets
with SILVER [KSM20] to verify if they are PINI secure under robust (glitch-extended)
probing model. The gadgets include 2-input AND, NAND, OR, NOR, XOR, XNOR and
2-to-1 MUX. We made VHDL/Verilog implementation of all gadgets parametric, i.e., the
security order and whether a pipeline design is desired are easily set when instantiating
such modules. Although constructing the circuit with PINI gadgets would result in a
PINI-secure circuit, we further verified this on some masked Skinny S-box implementations
listed in Table 3 and Table 4.

https://github.com/Chair-for-Security-Engineering/AGEMA
https://github.com/Chair-for-Security-Engineering/AGEMA
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Figure 8: FPGA-based fixed versus random t-test using 100 million traces, Skinny-64-64
round-based encryption, first-order GHPC ANF pipeline.

This however is an impossible task when considering full cipher implementations. Hence,
for the remaining options, we performed Field Programmable Gate Array (FPGA)-based
experimental analyses. Naturally, it is not possible to examine all designs reported as
case study. However, since the security of designs constructed by AGEMA is based on
composability of PINI gadgets, we contented ourselves with two exemplary designs of our
masked Skinny round-based designs. The first design is first-order GHPC ANF pipeline
and the second design is second-order HPC2 Naive pipeline. We made use of SAKURA-
G [SAK] and implemented the selected designs on the target FPGA to monitor their
power consumption by a digital sampling oscilloscope at a sampling frequency of 500MS/s.
During the measurements the target design was driven by a 6MHz stable clock. The fresh
masks have also been generated internally (inside the target FPGA). For each required
fresh mask bit we instantiated a 31-bit Linear Feedback Shift Register (LFSR) initialized
randomly6.

The conduced analyses are based on the common and well-known TVLA [GJJR11],
where the SCA leakages associated to a fixed input are compared to those associated to
random inputs, i.e., fixed versus random t-test. Conducting such analyses at first three
orders using 100 million traces led to the results shown in Figure 8 and Figure 9 for two
aforementioned design, respectively. As the first design is first order (d = 1), higher-order
detected leakage is expected, as it can also be seen in the corresponding figures. The
second design is second order (d = 2) and, as shown, no first- and no second-order leakage
is detected.

6 Conclusions
In this work we developed a comprehensive framework for automated generation of masked
hardware (AGEMA), allowing engineers and hardware designers of all levels of experience
to easily create securely masked cryptographic hardware circuits. Based on the security
and composability notion of PINI, our tool explores different processing techniques to

6We have taken the FPGA-optimized LFSR design presented in [DMW18].
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Figure 9: FPGA-based fixed versus random t-test using 100 million traces, Skinny-64-64
round-based encryption, second-order HPC2 Naive pipeline.

transform any unprotected cryptographic design into a securely masked circuit using
different masked gadgets as fundamental building blocks.

Demonstrating the benefits and limitations of our proposed tool, we provide several
case studies for well-established symmetric block ciphers, showing different performance
trade-offs in terms of area overhead, latency increase, and fresh entropy demands based
on our proposed transformation methodologies. Eventually, verifying the viability of our
tool and the security of the resulting masked circuits, we perform practical experiments
and evaluations that confirm our claims. For this, AGEMA is an important building block
towards security-aware Electronic Design Automation (EDA), assisting in the automation
process of creating secure ICs.

Apart from unique benefits and facilities that AGEMA offers, the intensive case studies,
which we have provided in this article, highlight the importance of the employed gadgets
with respect to their performance. The demands for fresh randomness and the latency of
the constructed masked circuits heavily depend on the gadget types and their requirements.
In terms of latency, GHPCLL gadgets are the only known constructions with only a single
additional register stage, but they are limited to only first-order security. In contrast,
HPC2 gadgets, which can arbitrarily be adjusted to any security order, add two register
stages to the circuit. This might be seen as just one more clock cycle, but as shown by
our case studies, the latency of the resulting masked circuit is doubled compared to that
with GHPCLL. This difference is seen more clearly when considering ciphers which employ
S-boxes with a high algebraic degree (i.e., a high depth of non-linear gadgets). Naturally,
more research in this area is required to fill the gap.
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A Performance Results

Table 3: Synthesis results, Skinny Sbox lookup-table representation.

Masking
Scheme

Processing
Method Pipeline Order Area Delay Random Latency

GE ns bits cycles
unprotected - - 0 42 0.20
GHPCLL ANF 1 962 0.39 64 1
GHPCLL ANF 3 1 1093 0.39 64 1
GHPCLL Naive 1 809 0.42 52 5
GHPCLL Naive 3 1 1172 0.41 52 5
GHPC ANF 1 1305 0.53 4 2
GHPC ANF 3 1 1270 0.53 4 2
GHPC Naive 1 1137 0.30 13 10
GHPC Naive 3 1 1870 0.29 13 10
HPC1 Naive 1 898 0.30 26 10
HPC1 Naive 2 1854 0.34 65 10
HPC1 Naive 3 3065 0.34 130 10
HPC1 Naive 4 4501 0.39 195 10
HPC1 Naive 3 1 1488 0.29 26 10
HPC1 Naive 3 2 2778 0.33 65 10
HPC1 Naive 3 3 4323 0.33 130 10
HPC1 Naive 3 4 6094 0.38 195 10
HPC2 AIG 1 1065 0.29 17 12
HPC2 AIG 2 2856 0.36 51 12
HPC2 AIG 3 5520 0.41 102 12
HPC2 AIG 4 9006 0.49 170 12
HPC2 AIG 3 1 2390 0.28 17 12
HPC2 AIG 3 2 5178 0.35 51 12
HPC2 AIG 3 3 9032 0.41 102 12
HPC2 AIG 3 4 13898 0.49 170 12
HPC2 BDDCUDD 1 1083 0.34 17 8
HPC2 BDDCUDD 2 2879 0.43 51 8
HPC2 BDDCUDD 3 5535 0.52 102 8
HPC2 BDDCUDD 4 9009 0.57 170 8
HPC2 BDDCUDD 3 1 2306 0.34 17 8
HPC2 BDDCUDD 3 2 5025 0.42 51 8
HPC2 BDDCUDD 3 3 8792 0.51 102 8
HPC2 BDDCUDD 3 4 13567 0.57 170 8
HPC2 BDDSYLVAN 1 1307 0.36 21 8
HPC2 BDDSYLVAN 2 3517 0.44 63 8
HPC2 BDDSYLVAN 3 6789 0.52 126 8
HPC2 BDDSYLVAN 4 11069 0.61 210 8
HPC2 BDDSYLVAN 3 1 2748 0.35 21 8
HPC2 BDDSYLVAN 3 2 6047 0.44 63 8
HPC2 BDDSYLVAN 3 3 10650 0.51 126 8
HPC2 BDDSYLVAN 3 4 16493 0.60 210 8
HPC2 Naive 1 847 0.35 13 10
HPC2 Naive 2 2236 0.42 39 10
HPC2 Naive 3 4287 0.47 78 10
HPC2 Naive 4 6968 0.56 130 10
HPC2 Naive 3 1 1890 0.34 13 10
HPC2 Naive 3 2 4055 0.41 39 10
HPC2 Naive 3 3 7034 0.47 78 10
HPC2 Naive 3 4 10790 0.55 130 10
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Table 4: Synthesis results, Skinny Sbox optimized representation.

Masking
Scheme

Processing
Method Pipeline Order Area Delay Random Latency

GE ns bits cycles
unprotected - - 0 40 0.20
GHPCLL ANF 1 962 0.39 64 1
GHPCLL ANF 3 1 1093 0.39 64 1
GHPCLL Naive 1 335 0.40 16 2
GHPCLL Naive 3 1 480 0.39 16 2
GHPC ANF 1 1305 0.53 4 2
GHPC ANF 3 1 1270 0.53 4 2
GHPC Naive 1 438 0.30 4 4
GHPC Naive 3 1 739 0.29 4 4
HPC1 Naive 1 365 0.26 8 4
HPC1 Naive 2 698 0.31 20 4
HPC1 Naive 3 1110 0.30 40 4
HPC1 Naive 4 1591 0.35 60 4
HPC1 Naive 3 1 621 0.26 8 4
HPC1 Naive 3 2 1101 0.30 20 4
HPC1 Naive 3 3 1661 0.29 40 4
HPC1 Naive 3 4 2289 0.34 60 4
HPC2 AIG 1 350 0.33 4 4
HPC2 AIG 2 813 0.40 12 4
HPC2 AIG 3 1482 0.44 24 4
HPC2 AIG 4 2343 0.53 40 4
HPC2 AIG 3 1 745 0.33 4 4
HPC2 AIG 3 2 1493 0.39 12 4
HPC2 AIG 3 3 2491 0.44 24 4
HPC2 AIG 3 4 3727 0.52 40 4
HPC2 BDDCUDD 1 1072 0.36 17 8
HPC2 BDDCUDD 2 2862 0.43 51 8
HPC2 BDDCUDD 3 5515 0.51 102 8
HPC2 BDDCUDD 4 8979 0.59 170 8
HPC2 BDDCUDD 3 1 2225 0.35 17 8
HPC2 BDDCUDD 3 2 4906 0.42 51 8
HPC2 BDDCUDD 3 3 8633 0.50 102 8
HPC2 BDDCUDD 3 4 13366 0.59 170 8
HPC2 BDDSYLVAN 1 1072 0.36 17 8
HPC2 BDDSYLVAN 2 2862 0.42 51 8
HPC2 BDDSYLVAN 3 5515 0.51 102 8
HPC2 BDDSYLVAN 4 8979 0.60 170 8
HPC2 BDDSYLVAN 3 1 2225 0.35 17 8
HPC2 BDDSYLVAN 3 2 4906 0.42 51 8
HPC2 BDDSYLVAN 3 3 8633 0.50 102 8
HPC2 BDDSYLVAN 3 4 13366 0.59 170 8
HPC2 Naive 1 353 0.32 4 4
HPC2 Naive 2 818 0.39 12 4
HPC2 Naive 3 1489 0.44 24 4
HPC2 Naive 4 2351 0.52 40 4
HPC2 Naive 3 1 747 0.31 4 4
HPC2 Naive 3 2 1497 0.38 12 4
HPC2 Naive 3 3 2498 0.43 24 4
HPC2 Naive 3 4 3736 0.52 40 4
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Table 5: Synthesis results, AES Sbox lookup-table representation.

Masking
Scheme

Processing
Method Pipeline Order Area Delay Random Latency

GE ns bits cycles
unprotected - - 0 664 0.35
GHPCLL ANF 1 150409 0.57 2048 1
GHPCLL ANF 3 1 157377 1.11 2048 1
GHPCLL Naive 1 46476 0.50 3472 17
GHPCLL Naive 3 1 65708 0.49 3472 17
GHPC ANF 1 157808 0.92 8 2
GHPC ANF 3 1 135228 0.82 8 2
GHPC Naive 1 66226 0.40 868 34
GHPC Naive 3 1 104448 0.39 868 34
HPC1 Naive 1 50267 0.33 1736 34
HPC1 Naive 2 111763 0.37 4340 34
HPC1 Naive 3 190377 0.38 8680 34
HPC1 Naive 4 284043 0.42 13020 34
HPC1 Naive 3 1 79087 0.32 1736 34
HPC1 Naive 3 2 155064 0.36 4340 34
HPC1 Naive 3 3 248114 0.36 8680 34
HPC1 Naive 3 4 356210 0.41 13020 34
HPC2 AIG 1 47745 0.46 879 34
HPC2 AIG 2 139100 0.53 2637 34
HPC2 AIG 3 275707 0.55 5274 34
HPC2 AIG 4 455262 4.20 8790 34
HPC2 AIG 3 1 106178 0.45 879 34
HPC2 AIG 3 2 241813 0.52 2637 34
HPC2 AIG 3 3 432582 0.67 5274 34
HPC2 AIG 3 4 675987 0.76 8790 34
HPC2 BDDCUDD 1 24841 0.55 406 16
HPC2 BDDCUDD 2 68416 0.56 1218 16
HPC2 BDDCUDD 3 132834 2.72 2436 16
HPC2 BDDCUDD 4 216733 3.23 4060 16
HPC2 BDDCUDD 3 1 53471 0.54 406 16
HPC2 BDDCUDD 3 2 118318 0.55 1218 16
HPC2 BDDCUDD 3 3 208765 0.69 2436 16
HPC2 BDDCUDD 3 4 323122 0.78 4060 16
HPC2 BDDSYLVAN 1 25077 0.52 410 16
HPC2 BDDSYLVAN 2 69065 0.57 1230 16
HPC2 BDDSYLVAN 3 134122 2.65 2460 16
HPC2 BDDSYLVAN 4 218861 3.20 4100 16
HPC2 BDDSYLVAN 3 1 53753 0.51 410 16
HPC2 BDDSYLVAN 3 2 119134 0.55 1230 16
HPC2 BDDSYLVAN 3 3 210328 0.69 2460 16
HPC2 BDDSYLVAN 3 4 325669 0.79 4100 16
HPC2 Naive 1 46854 0.48 868 34
HPC2 Naive 2 137437 0.60 2604 34
HPC2 Naive 3 272327 0.82 5208 34
HPC2 Naive 4 449461 4.33 8680 34
HPC2 Naive 3 1 105908 0.44 868 34
HPC2 Naive 3 2 240470 0.58 2604 34
HPC2 Naive 3 3 429483 0.67 5208 34
HPC2 Naive 3 4 670365 0.76 8680 34
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Table 6: Synthesis results, AES Sbox Canright representation.

Masking
Scheme

Processing
Method Pipeline Order Area Delay Random Latency

GE ns bits cycles
unprotected - - 0 246 0.39
GHPCLL ANF 1 150409 0.57 2048 1
GHPCLL ANF 3 1 157377 1.11 2048 1
GHPCLL Naive 1 46476 0.50 3472 17
GHPCLL Naive 3 1 65708 0.49 3472 17
GHPC ANF 1 157808 0.92 8 2
GHPC ANF 3 1 135228 0.82 8 2
GHPC Naive 1 66226 0.40 868 34
GHPC Naive 3 1 104448 0.39 868 34
HPC1 Naive 1 50267 0.33 1736 34
HPC1 Naive 2 111763 0.37 4340 34
HPC1 Naive 3 190377 0.38 8680 34
HPC1 Naive 4 284043 0.42 13020 34
HPC1 Naive 3 1 79087 0.32 1736 34
HPC1 Naive 3 2 155064 0.36 4340 34
HPC1 Naive 3 3 248114 0.36 8680 34
HPC1 Naive 3 4 356210 0.41 13020 34
HPC2 AIG 1 47745 0.46 879 34
HPC2 AIG 2 139100 0.53 2637 34
HPC2 AIG 3 275707 0.55 5274 34
HPC2 AIG 4 455262 4.20 8790 34
HPC2 AIG 3 1 106178 0.45 879 34
HPC2 AIG 3 2 241813 0.52 2637 34
HPC2 AIG 3 3 432582 0.67 5274 34
HPC2 AIG 3 4 675987 .76 8790 34
HPC2 BDDCUDD 1 24841 0.55 406 16
HPC2 BDDCUDD 2 68416 0.56 1218 16
HPC2 BDDCUDD 3 132834 2.72 2436 16
HPC2 BDDCUDD 4 216733 3.23 4060 16
HPC2 BDDCUDD 3 1 53471 0.54 406 16
HPC2 BDDCUDD 3 2 118318 0.55 1218 16
HPC2 BDDCUDD 3 3 208765 0.69 2436 16
HPC2 BDDCUDD 3 4 323122 .78 4060 16
HPC2 BDDSYLVAN 1 25077 0.52 410 16
HPC2 BDDSYLVAN 2 69065 0.57 1230 16
HPC2 BDDSYLVAN 3 134122 2.65 2460 16
HPC2 BDDSYLVAN 4 218861 3.20 4100 16
HPC2 BDDSYLVAN 3 1 53753 0.51 410 16
HPC2 BDDSYLVAN 3 2 119134 0.55 1230 16
HPC2 BDDSYLVAN 3 3 210328 0.69 2460 16
HPC2 BDDSYLVAN 3 4 325669 0.79 4100 16
HPC2 Naive 1 46854 0.48 868 34
HPC2 Naive 2 137437 0.60 2604 34
HPC2 Naive 3 272327 0.82 5208 34
HPC2 Naive 4 449461 4.33 8680 34
HPC2 Naive 3 1 105908 0.44 868 34
HPC2 Naive 3 2 240470 0.58 2604 34
HPC2 Naive 3 3 429483 0.67 5208 34
HPC2 Naive 3 4 670365 0.76 8680 34
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Table 7: Synthesis results, AES Sbox optimized representation.

Masking
Scheme

Processing
Method Pipeline Order Area Delay Random Latency

GE ns bits cycles
unprotected - - 0 299 150
GHPCLL ANF 1 150409 0.57 2048 1
GHPCLL ANF 3 1 157377 1.11 2048 1
GHPCLL Naive 1 2311 1.41 136 4
GHPCLL Naive 3 1 3382 0.64 136 4
GHPC ANF 1 157808 0.92 8 2
GHPC ANF 3 1 135228 0.82 8 2
GHPC Naive 1 3074 1.09 34 8
GHPC Naive 3 1 5271 0.52 34 8
HPC1 Naive 1 2448 0.92 68 8
HPC1 Naive 2 5084 1.02 170 8
HPC1 Naive 3 8388 1.07 340 8
HPC1 Naive 4 12307 1.17 510 8
HPC1 Naive 3 1 4263 0.40 68 8
HPC1 Naive 3 2 7839 0.44 170 8
HPC1 Naive 3 3 12085 0.44 340 8
HPC1 Naive 3 4 16919 0.51 510 8
HPC2 AIG 1 2348 1.32 34 8
HPC2 AIG 2 6120 1.61 102 8
HPC2 AIG 3 11718 1.66 204 8
HPC2 AIG 4 18897 1.93 340 8
HPC2 AIG 3 1 5342 0.51 34 8
HPC2 AIG 3 2 11208 0.64 102 8
HPC2 AIG 3 3 19233 0.72 204 8
HPC2 AIG 3 4 29267 0.80 340 8
HPC2 BDDCUDD 1 25161 2.08 411 16
HPC2 BDDCUDD 2 69291 2.48 1233 16
HPC2 BDDCUDD 3 134490 2.70 2466 16
HPC2 BDDCUDD 4 219462 3.24 4110 16
HPC2 BDDCUDD 3 1 54076 0.57 411 16
HPC2 BDDCUDD 3 2 119704 0.63 1233 16
HPC2 BDDCUDD 3 3 211169 0.69 2466 16
HPC2 BDDCUDD 3 4 326936 0.77 4110 16
HPC2 BDDSYLVAN 1 25072 2.08 410 16
HPC2 BDDSYLVAN 2 69081 2.55 1230 16
HPC2 BDDSYLVAN 3 134122 2.65 2460 16
HPC2 BDDSYLVAN 4 218861 3.20 4100 16
HPC2 BDDSYLVAN 3 1 53764 0.54 410 16
HPC2 BDDSYLVAN 3 2 119135 0.63 1230 16
HPC2 BDDSYLVAN 3 3 210328 0.69 2460 16
HPC2 BDDSYLVAN 3 4 325669 0.79 4100 16
HPC2 Naive 1 2346 1.32 34 8
HPC2 Naive 2 6126 1.61 102 8
HPC2 Naive 3 11716 1.68 204 8
HPC2 Naive 4 18894 1.99 340 8
HPC2 Naive 3 1 5339 0.51 34 8
HPC2 Naive 3 2 11205 0.61 102 8
HPC2 Naive 3 3 19217 0.68 204 8
HPC2 Naive 3 4 29267 0.74 340 8
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Table 8: Synthesis results, Skinny-64-64 round-based encryption function.

Masking
Scheme

Processing
Method Pipeline Order Area Delay Random Latency

GE ns bits cycles
unprotected - - 0 1494 0.52 (33)
GHPCLL ANF 1 18705 0.85 1024 1
GHPCLL ANF 3 1 18789 0.85 1024 1
GHPCLL Naive 1 6817 0.48 256 2
GHPCLL Naive 3 1 12725 0.46 256 2
GHPC ANF 1 22850 0.80 64 2
GHPC ANF 3 1 28850 0.80 64 2
GHPC Naive 1 8260 0.46 64 4
GHPC Naive 3 1 20082 0.45 64 4
HPC2 AIG 1 6919 0.86 64 4
HPC2 AIG 3 1 20234 0.54 64 4
HPC2 BDDCUDD 1 18832 1.95 280 16
HPC2 BDDCUDD 3 1 68410 0.52 280 16
HPC2 BDDSYLVAN 1 17969 1.96 262 16
HPC2 BDDSYLVAN 3 1 66933 0.52 262 16
HPC2 Naive 1 6895 0.55 64 4
HPC2 Naive 2 15193 0.61 192 4
HPC2 Naive 3 26777 0.65 384 4
HPC2 Naive 3 1 20210 0.53 64 4
HPC2 Naive 3 2 36147 0.59 192 4
HPC2 Naive 3 3 56096 0.63 384 4

Table 9: Synthesis results, AES byte-serial encryption function.

Masking
Scheme

Processing
Method Pipeline Order Area Delay Random Latency

GE ns bits cycles
unprotected - - 0 3263 0.83 (227)
GHPCLL ANF 1 161922 2.67 2048 1
GHPCLL ANF 3 1 143778 2.67 2048 1
GHPCLL Naive 1 10056 2.34 136 4
GHPCLL Naive 3 1 25656 0.91 136 4
GHPC ANF 1 146894 2.67 8 2
GHPC ANF 3 1 176509 2.83 8 2
GHPC Naive 1 10818 1.73 34 8
GHPC Naive 3 1 42078 0.91 34 8
HPC2 AIG 1 10097 2.19 34 8
HPC2 AIG 3 1 42148 1.23 34 8
HPC2 BDDCUDD 1 33124 2.56 414 16
HPC2 BDDCUDD 3 1 120293 1.16 414 16
HPC2 BDDSYLVAN 1 34173 2.64 431 16
HPC2 BDDSYLVAN 3 1 122566 0.97 431 16
HPC2 Naive 1 10090 2.11 34 8
HPC2 Naive 2 17649 2.66 102 8
HPC2 Naive 3 27026 2.71 204 8
HPC2 Naive 3 1 42146 0.98 34 8
HPC2 Naive 3 2 65583 1.41 102 8
HPC2 Naive 3 3 91149 1.01 204 8
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Table 10: Synthesis results, AES round-based encryption function.

Masking
Scheme

Processing
Method Pipeline Order Area Delay Random Latency

GE ns bits cycles
unprotected - - 0 9906 1.85 (11)
GHPCLL Naive 1 52450 2.28 2720 4
GHPCLL Naive 3 1 98448 0.84 2720 4
GHPC Naive 1 67193 1.48 680 8
GHPC Naive 3 1 160080 0.83 680 8
HPC2 AIG 1 52726 2.07 680 8
HPC2 AIG 3 1 161538 0.87 680 8
HPC2 Naive 1 52597 2.04 680 8
HPC2 Naive 2 131631 2.39 2040 8
HPC2 Naive 3 246924 2.53 4080 8
HPC2 Naive 3 1 161440 0.82 680 8
HPC2 Naive 3 2 305274 0.89 2040 8
HPC2 Naive 3 3 492077 0.93 4080 8

Table 11: Synthesis results, CRAFT round-based encryption function.

Masking
Scheme

Processing
Method Pipeline Order Area Delay Random Latency

GE ns bits cycles
unprotected - - 0 1066 0.58 (32)
GHPC ANF 1 22106 0.75 64 2
GHPC ANF 3 1 27214 0.66 64 2
GHPC Naive 1 21365 0.63 256 8
GHPCLL ANF 1 15748 0.81 1024 1
GHPCLL ANF 3 1 17605 0.63 1024 1
GHPCLL Naive 1 15568 1.01 1024 4
GHPCLL Naive 3 1 25852 0.54 1024 4
GHPC Naive 3 1 41951 0.54 256 8
HPC2 BDDCUDD 1 14927 1.13 229 8
HPC2 BDDCUDD 3 1 42451 0.55 229 8
HPC2 BDDSYLVAN 1 17509 1.16 272 8
HPC2 BDDSYLVAN 3 1 47785 0.55 272 8
HPC2 Naive 1 15680 0.94 256 8
HPC2 Naive 2 43172 1.03 768 8
HPC2 Naive 3 84024 1.12 1536 8
HPC2 Naive 3 1 42367 0.55 256 8
HPC2 Naive 3 2 87291 0.57 768 8
HPC2 Naive 3 3 148316 0.50 1536 8
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Table 12: Synthesis results, PRESENT nibble-serial encryption function.

Masking
Scheme

Processing
Method Pipeline Order Area Delay Random Latency

GE ns bits cycles
unprotected - - 0 1613 0.59 (543)
GHPCLL ANF 1 4727 0.89 64 1
GHPCLL ANF 3 1 6734 0.68 64 1
GHPCLL Naive 1 4143 1.03 16 2
GHPCLL Naive 3 1 8061 0.59 16 2
GHPC ANF 1 5177 1.04 4 2
GHPC ANF 3 1 8945 0.70 4 2
GHPC Naive 1 4245 0.68 4 4
GHPC Naive 3 1 12095 0.59 4 4
HPC2 AIG 1 4162 0.98 4 4
HPC2 AIG 3 1 12104 0.59 4 4
HPC2 BDDCUDD 1 5180 1.26 22 8
HPC2 BDDCUDD 3 1 21966 0.59 22 8
HPC2 BDDSYLVAN 1 5245 1.30 23 8
HPC2 BDDSYLVAN 3 1 22064 0.59 23 8
HPC2 Naive 1 4160 0.99 4 4
HPC2 Naive 2 6478 1.13 12 4
HPC2 Naive 3 8977 1.18 24 4
HPC2 Naive 3 1 12103 0.59 4 4
HPC2 Naive 3 2 18270 0.55 12 4
HPC2 Naive 3 3 24692 0.67 24 4

Table 13: Synthesis results, LED-64 round-based encryption function.

Masking
Scheme

Processing
Method Pipeline Order Area Delay Random Latency

GE ns bits cycles
unprotected - - 0 2056 150 (33)
GHPCLL ANF 1 17382 150 1024 1
GHPCLL ANF 3 1 19893 150 1024 1
GHPCLL Naive 1 7611 150 256 2
GHPCLL Naive 3 1 13383 150 256 2
GHPC ANF 1 22904 150 64 2
GHPC ANF 3 1 27309 150 64 2
GHPC Naive 1 9056 150 64 4
GHPC Naive 3 1 20615 150 64 4
HPC2 AIG 1 7714 150 64 4
HPC2 AIG 3 1 20767 150 64 4
HPC2 BDDCUDD 1 31416 150 469 16
HPC2 BDDCUDD 3 1 96238 150 469 16
HPC2 BDDSYLVAN 1 38243 150 598 16
HPC2 BDDSYLVAN 3 1 110725 150 598 16
HPC2 Naive 1 7691 150 64 4
HPC2 Naive 2 16375 150 192 4
HPC2 Naive 3 28322 150 384 4
HPC2 Naive 3 1 20743 150 64 4
HPC2 Naive 3 2 36890 150 192 4
HPC2 Naive 3 3 57021 150 384 4
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Table 14: Synthesis results, Midori-64 round-based encryption/decryption function.

Masking
Scheme

Processing
Method Pipeline Order Area Delay Random Latency

GE ns bits cycles
unprotected - - 0 2035 0.97 (17)
GHPCLL ANF 1 19493 1.08 1024 1
GHPCLL ANF 3 1 21986 0.94 1024 1
GHPCLL Naive 1 17679 1.10 1024 4
GHPCLL Naive 3 1 32898 0.95 1024 4
GHPC ANF 1 23901 1.05 64 2
GHPC ANF 3 1 30539 0.85 64 2
GHPC Naive 1 23508 0.96 256 8
GHPC Naive 3 1 53893 0.95 256 8
HPC2 AIG 1 17971 1.02 256 8
HPC2 AIG 3 1 54824 0.95 256 8
HPC2 BDDCUDD 1 17162 1.29 231 8
HPC2 BDDCUDD 3 1 53478 0.95 231 8
HPC2 BDDSYLVAN 1 21123 1.27 304 8
HPC2 BDDSYLVAN 3 1 61576 0.95 304 8
HPC2 Naive 1 17801 1.10 256 8
HPC2 Naive 2 46371 1.21 768 8
HPC2 Naive 3 88246 1.27 1536 8
HPC2 Naive 3 1 54309 0.95 256 8
HPC2 Naive 3 2 105198 0.67 768 8
HPC2 Naive 3 3 172179 0.69 1536 8
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