Sine Series Approximation of the Mod Function for
Bootstrapping of Approximate HE

Charanjit S. Jutla Nathan Manohar
IBM T. J. Watson Research Center UCLA
Abstract

While it is well known that the sawtooth function has a point-wise convergent Fourier
series, the rate of convergence is not the best possible for the application of approximating
the mod function in small intervals around multiples of the modulus. We show a different
sine series, such that the sine series of order n has error O(e?"*1) for approximating the
mod function in e-sized intervals around multiples of the modulus. Moreover, the resulting
polynomial, after Taylor series approximation of the sine function, has small coefficients,
and the whole polynomial can be computed at a precision that is only slightly larger than
—(2n 4+ 1)loge, the precision of approximation being sought. This polynomial can then
be used to approximate the mod function to almost arbitrary precision, and hence allows
practical CKKS-HE bootstrapping with arbitrary precision. We validate our approach by
an implementation and obtain 94 bit precision bootstrapping as well as improvements over
prior work even at lower precision.

1 Introduction

The work of [8, [7] presented a new homomorphic encryption (HE) scheme for approximate
arithmetic (called the CKKS-HE scheme) over real/complex numbers. The CKKS-HE scheme
was considerably more efficient than other schemes for evaluating arithmetic circuits and lever-
aged properties of approximate arithmetic to achieve these efficiency gains. It has found many
applications, among them privacy-preserving machine learning and secure genome analysis
(see [13, 17, 4, 15] 19, 14] for some examples). However, the initial CKKS-HE scheme lacked a
bootstrapping procedure, and, thus, it was not a fully homomorphic encryption (FHE) scheme.
This was remedied when [6] introduced the first bootstrapping procedure for the CKKS-HE
scheme, which followed the general template introduced by Gentry [9] of evaluating the de-
cryption circuit homomorphically. The challenge here is that the decryption procedure for

CKKS requires computing the mod function, which is not easily representable via an arith-
metic circuit. In fact, the mod function modulo ¢ on the interval [—K¢q, Kq| for some integer
K is not even a continuous function. However, [6] made the clever observation that in the
CKKS-HE scheme, we have an upper bound m on the size of the message, which can be made
much smaller than ¢. In this situation, we actually only need to be able to compute the mod
function on points in [—Kgq, Kq] that are a distance at most m from a multiple of ¢. In this
case, the mod function is periodic with period ¢ and is linear on each of the small intervals
around a multiple of ¢q. Figure [1| shows the mod function along with the small intervals for
approximation.

Figure 1: The mod function with modulus ¢ = 10. The solid red lines represent the small
intervals on which we need to approximate.

The work of [6] observed that the mod function [t], on these intervals can be approximated

via a scaled sine function S(t) = 5L sin (%) This approximation introduces an inherent error
that depends on the message upper bound m. Let € denote the ratio %. Then, it can be shown
that)
2
[tlg = S@)| < ?qﬁg-

If € is small enough, then this error can be sufficiently small for use in bootstrapping
provided that S(¢) can be well-approximated by a low degree polynomial. The work of [6]
along with several followup works [5], [IT], [16] proceeded to provide methods of approximating
this scaled sine function (or scaled cosine function in the case of [I1] and scaled sine/cosine and
inverse sine in the case of [16]) by a low-degree polynomial, which can then be plugged into the

bootstrapping procedure of [6]. However, due to the inherent error between the mod function
[t]; and the scaled sine function S(t), this approach has a “fundamental error” that will occur
regardless of how S(t) is approximated. One of the problems with this is that in order for the
error to be O(1) (and, therefore, not destroy the message), m must be O(¢%/). This means
that we must begin bootstrapping while the size of the encrypted message is considerably
smaller than ¢, which is a source of inefficiency in the bootstrapping procedure, particularly
in applications that require high precision. Compounding this problem is the fact that for
large ¢, the size of the coefficients of the approximation of S(¢) grow. This requires the basis
polynomials to be computed to higher precision and affects the stability of the computation,
where the errors introduced by the approximate arithmetic are amplified due to the large
coefficients.

The reason obtaining high-precision bootstrapping for CKKS-HE is important is that one
of the main applications for CKKS-HE is privacy-preserving machine learning. However, many
ML algorithms require high precision computation in order to converge. This may be especially
true during the learning phase of neural networks, which involves back propagation and integer
division by private integers. Additional nonlinear steps involve pooling functions, threshold
functions, etc. Moreover, due to their high depth, computing these ML algorithms homomor-
phically without bootstrapping is infeasible. Thus, for privacy-preserving ML applications,
high-precision bootstrapping is required.

Recently, the work of [12] was able to obtain high-precision bootstrapping by finding direct
polynomial approximations of the mod function on small intervals around the modulus via
a new technique called modular Lagrange interpolation. This avoided the fundamental error
inherent in prior works that occurred due to first approximating the mod function by a scaled
sine function. The coefficients of these polynomials were small enough to enable high-precision
bootstrapping. However, the coefficients were still large enough that in order to evaluate the
polynomial approximations, one would need to operate at a higher precision than the input
ciphertext. Ultimately, this fact corresponded to the bootstrapping procedure losing additional
levels, since the computations during bootstrapping were operating at a higher precision.

1.1 This Work

In this work, we show how to obtain arbitrary precision bootstrapping via a different method
from that of [I2] and more in line with the original sine function approach of [6]. Instead of
approximating the mod function directly, we first approximate the mod function by a sine series
and then approximate the sine function by its Taylor series (more precisely, the Taylor series of
e'®). This is then followed by a series of squarings to approximate the other terms in the sine
series. We show that the sine series converges to the mod function in small intervals around

2n+1)

the modulus. In particular, our sine series of order n has error O(e for approximating the

mod function in e-sized intervals around multiples of the modulus.

Thus, we avoid the fundamental error of the scaled sine approach and are able to obtain an
approximation with arbitrarily small error in the desired intervals. Furthermore, the coefficients
of the sine series are small (in fact, they have norm < 2). This, combined with the fact that the
Taylor series expansion of sinx has small coefficients, leads to a polynomial approximation of
the mod function with small coefficients. Due to these small coefficients, the whole polynomial
can be computed at a precision only slightly larger than (—2n + 1) loge, the precision of the
approximation being sought. This means that during bootstrapping, we can operate at a
precision level that is approximately the same as that of the input ciphertext and do not lose
additional levels due to having to operate at a higher precision during bootstrapping. We
validate our approach by an implementation and obtain 94 bit precision bootstrapping as well
as improvements over prior work even at lower precision.

1.2 Problem Overview

Here, we provide a brief overview of the challenges of approximating the mod function for use
in CKKS-HE bootstrapping. We provide a thorough overview of the bootstrapping procedure
in Section [3] The goal of CKKS-HE bootstrapping is to take a ciphertext ct at the lowest level
and bring it up to the highest level so that homomorphic computation can continue. In other
words, we wish to obtain a ciphertext ct’ such that

(ct,sk) mod ¢ = (ct’, sk) mod gy,

where ¢ is the lowest level modulus and gy represents a higher level modulus. Since errors
accumulated during homomorphic computation are not eliminated by decryption in CKKS-
HE, the goal is not to reduce the error in the ciphertext, but, rather, to increase the modulus so
that more computations can be performed. If one simply views the ciphertext ct as operating
at the highest level g, then it follows that (ct,sk) mod q;, = ¢I +m. The magnitude of I can
be upper bounded and m << ¢ and, thus, the challenge then becomes to compute mod ¢ on
small intervals near multiples of ¢ (we defer additional complications such as computing on
slots vs. coefficients to Section . Since CKKS-HE can compute homomorphic additions and
multiplications, we need a polynomial approximation to the mod function. However, there are
three crucial criteria that are relevant to the bootstrapping application.

e Error: The error of the approximation contributes additional error to the message m,
which, if large, will cause a loss in plaintext precision.

o Degree: The degree of the polynomial approximation determines the multiplicative
depth required to evaluate it. A larger multiplicative depth corresponds to losing more
modulus levels and, thus, if too large, the polynomial will not be able to be evaluated
homomorphically.

e Coefficient Magnitude: The size of the coefficients of the polynomial approximation
determine the “evaluation precision” at which one must operate during bootstrapping.
Larger coefficients correspond to a larger “evaluation precision” in order to maintain
numerical stability, which, in turn, corresponds to losing more modulus bits per level.

Thus, it is critical that we obtain good low-degree polynomial approximations to the mod
function in small intervals around multiples of the modulus that additionally have small coef-
ficients.

1.3 Sine Series Intuition

As mentioned previously, prior approaches to CKKS-HE bootstrapping approximated the mod
function via a scaled sine function. For simplicity, we will ignore the scaling for the moment
and try to obtain a good approximation to the mod 27 function. Thus, prior works used sin x
as the approximation and noted that, for || < €, the error of approximation is O(e3). It is well-
known that the Fourier series of the mod function (or sawtooth function) converges everywhere
except the discontinuities. Unfortunately, the rate of convergence is too slow, and the Fourier
series does not give a good approximation when the number of terms is small. Instead, we
will approximate the mod function by a different sine series such that it converges to the mod
function near multiples of the modulus very quickly. As a warmup, suppose we added a sin 2x
term to our approximation of the mod function. If we can determine coefficients 81 and fBs
such that the Taylor series expansion of 31 sinx + B2 sin 2z is + 2°p(x) for some polynomial
p(z), then for |z| < €, the error of approximation will be O(€®), an improvement on sin x.
Thus, looking at the = and 3 terms in the Taylor series expansions of sin # and sin 2z, we wish
to determine (1, B2 such that 81 + 282 = 1 (so that the coefficient of x is 1) and B + 2385 = 0
(so that the coefficient of z® is 0). This can be solved to yield 31 = 4/3,32 = —1/6. This
intuition can then be extended to give an m-term sine series with error O(€2"*1). We will
show that the (5;’s are small and, thus, the resulting low-degree polynomial approximation has
small coefficients. Moreover, we will show that the constants hiding in the big-O notation are
reasonable, and the dependence on n is minor.

1.4 Organization

In Section [2| we formalize the above intuition and prove explicit error bounds for the sine series
approximation of the mod function. In Section [3| we overview the bootstrapping procedure
for CKKS-HE. In Section [d] we explain how to approximate the sine series by a low-degree
polynomial for bootstrapping. In Section [5] we implement bootstrapping using our sine series
approximation and give performance metrics and comparisons with prior approaches.

2 Sine Series Approximation

In this section, we will show the following theorem and corollaries, giving a sine series ap-
proximation to the mod function in small intervals around the modulus that can be used for
CKKS-HE bootstrapping.

Theorem 1 For every n > 1, there exists a sequence of rational numbers By, ...0, such that
for every e, 0 < e < 2/\/n, for every |z| <,

T — Zﬁk sin(kz)| < e (n+ 1) # (¢/2)2

k=1

Using the periodicity of the sine function, we immediately arrive at the following corollary.

Corollary 2 For every n > 1, there exists a sequence of rational numbers 31, ...8, such that
for every e, 0 < e < 2/\/n, for every integer m, for every x such that |x — 2mm| <,

(x mod 2m) — Z Brsin(kz)| < €2 % (n+1) x (¢/2)%" !

k=1

A further simple manipulation leads to the following scaled version of the corollary.

Corollary 3 For every n > 1, there exists a sequence of rational numbers By, ...B, such that
for every e, 0 < e < ﬁ, for every integer q > 1, for every integer m, for every x such that
|z —mx*q| <exq,

244

<e
2

s (n+1) % (er)? !

(x mod q) — % * ; B sin(2mk * x/q)

Determining the §;’s: To prove Theorem [l for each n, we will determine the rational
numbers {f;}ici,- In particular, these are not the same as the Fourier coefficients of the
sawtooth function, as we are focused on x that is potentially much smaller than the period
of the sawtooth function. Recall that we wish to determine {/3;};c[, such that the resulting
sine series has a Taylor series expansion of the form z + x2"*!p(x) for some polynomial p(z).
In particular, there are no terms of degree < 2n 4 1 (except for). These constraints give a
system of equations that can be solved to determine the j3;’s.

We begin by formalizing this intuition. For every n > 0, for every sequence of n distinct
integers a = (ay, ..., an), let V(" (a) denote the Vandermonde matrix of a, i.e. it is the n x n
matrix with the (4, j)-th element a‘g_l (for i, € [1..n]). Define S (a) to be the n x n matrix
with the (i, j)-th element a? !

i
the first column of this matrix is just a. Also, define a related matrix S (a) to be the n x n
matrix which is same as S (a) except that the first column (i.e. a) is replaced by (2n + 1)-th
(2n+1)

i

,i.e. each row is the odd powers of the elements of a. Note that

powers of a. In other words, the (7, 1)-th element of this matrix is a

Let E = (1, B2, .., Bn) be an n-vector of rational numbers. For the sine series approxima-
tion, we would like to determine E so that the transpose of the matrix S (a) multiplied by 5
is a vector with all entries zero except the first, which is one. Since f; refers to the coefficient
of the sin(a;z) term in the sine series, the above requirement ensures that when we Taylor
expand each sine term in the sine series about the origin (or a multiple of 27) and sum the
terms, the resulting polynomial will be z + 22"*1p(z) for some polynomial p(z). Thus, the

23,2°, ..., 2?1 terms in the Taylor series expansions of the sin(iz)’s cancel out. We note
that since our sine series will include sin z,sin 2x, sin 3z, . .. terms, we will later instantiate a
with (1,2,...,n). The required condition is drawn below.
aq a9 Qp, 51 1
3 3 3
ay as .. ay B2 0
: ’ : - : (1)
2n—1 2n—1 2n—1
aj a; eea? Bn 0

Let d; denote the (i,1)-th minor of S (a). In other words, the list {d;}; is the list of
minors of the first column of S (a).
Lemma 4
d;

fi = (1) det(S™ (a))’

Proof: From the above equation, § is just the first column of the inverse of (S (a))T. Note
that the (i, 1)-th element of the inverse of the transpose of S (a) is (—1)"*! % d; divided by
the determinant of S (a). O

We now give an explicit formula for the determinant of S (") (a). We will also give an explicit
formula for the determinant of S (a), which will be of use later. We will use the well-known
fact that the determinant of the Vandermonde matrix is given by the following formula.

aet (V@) = [I[(@

1=11<5<1

Lemma 5 The determinant of the matriz S (a) is

(I[laZ) *H H (a? —a?)

i=11<5<i

The determinant of the matriz 5™ (a) is

n

(=)™ % det(S™(a)) * Ha?.

i=1

Proof: We will first focus on the matrix S (a). For computing the determinant, for each
row ¢, we get a contribution of a factor a; towards the determinant, and the remaining matrix
is then just a Vandermonde matrix with all powers of af. Thus,

det(S (H al> « det(VM(a')),

where a’ = (a?,...,a2). The result then follows from the well-known determinant of Vander-
monde matrices.

As for the claim for the matrix S (a), first consider a modified matrix that is obtained
by moving the first column to the last. Since this can be accomplished by (n — 1) column
exchanges, the determinant of the modified matrix is (—1)"~! times the determinant of S (a).
Furthermore, the determinant of the modified matrix is easily related to determinant of S (a)
by noting that i-th row in the modified matrix is a? times the i-th row in S (a). O

We observe from the formula for the determinant of S (a) that if the sequence of integers
a are in increasing order and lower bounded by one, then the determinant of S() (a) is positive.
We now show the following lemma, characterizing the S;’s.

Lemma 6 For the matrix S(")(a) with a set to the sequence of integers from one to n,

2n

and, fori>2
Bi| < 1.

Moreover, the 8;’s alternate in sign and decrease in magnitude as i increases. That is,
|Bit1] < |8i

for alli € [n], B2j+1 >0, and B2; < 0.

Proof: We will show this using the formula for 3; from Lemma[d] By definition,

o) O L
a3 ay .. ad"!
di=det | a}, a2, .. a"!
3 5 2n—1
iy Qg1 - Gig
al ad a’n-1
Thus,
n
di=| J[o} *det(s" (@),
=L

where a’ is a with a; removed. Thus,

(H?:l,j;éi ajz) '
a; * (H;;ll (a? — af-)) * (H;L:H-l(a? - a?)>

Bi=(—1)""«

We observe that every term in the above expression is positive except for (—1)'*! and, thus,
the f3;’s alternate sign with 8241 > 0 and B2; < 0. It follows that

2(n!)? 2n

o e 3 T e

L1 2(n!)? 2n
Bil = % o * (n—i—z)

2.

Moreover, for i > 2,

Observe that |B;11| < |5;|. Moreover, since (nZL) < (") for i > 2, it follows that

2
|Bi‘<€§1

for 7 > 2. O

Bounding the Error: A First Attempt Having characterized the §;’s, we now turn our
focus to bounding the error between f(z) = > "}_, S sin(kz) and x for |x| < e. We note that
f(x) is an analytic function since it is the sum of analytic functions and, therefore, its Taylor
series converges to f(z). Thus, taking the Taylor series expansion of f(z) around 0,

We can bound |z — f(z)| for |z| < € using the Lagrange remainder term of the 2n-th Taylor
polynomial of f(x). Thus,

f(2n+1)(£) x2n+1

== f@)l = | 2+ 1)!

for some real number & between 0 and z. We have that
FEHD (1) = + Z Bkt cos(kx).
k=1
Upper bounding "1 (¢) gives
1|

. k2n+1 |=T

By Lemma@ Br. < 2/k, which gives

2 n
|z — f(2)] < |z | * Gn 1) *kEZI)

. . 2n
This then gives an upper bound of €2"+! x 2(2”:"1), , and no better than €21 % (3211)!' However,

we will now show that a more sophisticated yet elementary approach that improves upon this
bound by a factor of 2"

10

A Better Bound via the Alternating Series Test: To obtain a better error bound, we
will show that the Taylor series expansion of our sine series satisfies Leibniz’s alternating series
test. This will enable us to bound the error of the sine series f(x) from the mod function by
the 2n+ 1th term in the Taylor series expansion (the first nonzero term after). We can write
the Taylor series expansion of f(z) as x4+ >_ . (=1)" * by, where

(ix)Qm_l

To bound the error, we will show, for any = in the domain of approximation, that the series
Y omeni1(=1)™ % by, satisfies the alternating series test. The alternating series test requires
that the b, satisfy the following three conditions.

2. All by, are positive (or all b, are negative)

3. |bm| > |bmy1] for all natural numbers m > n + 1.

Theorem 7 Alternating Series Test [Leibniz]. If the series above satisfies the alternating
series test then Y > (=1)" % by, converges. Moreover, for all k >0,

00 n+l+k—1
DD wbm = > (1) b < Jbpgasl.
m=n+1 m=n+1

We will show the following lemma.

Lemma 8 For every |z| < 2/v/n, the above series given by by, satisfies the Leibniz alternating
series test.

A Naive Proof Attempt: We briefly explain why the following naive approach to proving
this lemma fails. For simplicity, assume that n is odd, so that 3, is positive and (,_1 is
negative by Lemma [6] Then, the naive approach would be to prove that

)2m—1 ((n _ 1) * x)Qm—l

(2m — 1)!

(nxx

(2m — 1)!

Bn * +/8n—1 *

(and similarly paired other terms) decreases as m increases, starting from m = n + 1. Since
powers of n * x are larger than powers of (n — 1) *x x, this would eventually be true for some

11

m > n + 1. However, since |5,| < |fn—1] and B,—1 is negative (see Lemma @, this is not
necessarily true at m = n + 1. In fact, calculations show that this indeed fails for a few terms
beyond m = n+ 1. Thus, a more advanced approach is required to prove that the Leibniz test
holds starting at m = n + 1. We will show that the test holds for |z| < 2//n.

Preparing for the Proof: We prove Lemma [§] in the next subsection, but first we show
several additional lemmas which will assist us in the proof of Lemma [§]

Define V("¥)(a) to be an n x n matrix, which is same as the Vandermonde matrix V() (a)
except the last column is replaced by the (n — 1 + k)-th powers (instead of the (n — 1)-th
powers).

Lemma 9 For k > 1, the determinant of the matriz V(F)(a) is
det (V™ (a)) * sp(a),

where si(a) is a (symmetric) polynomial in a given by

sk(a) = Z Qjy %ok Q.

I<ii<...<ig<n

Note that the polynomials si(a) differ from the well-known elementary symmetric polynomials
er(a) since in the latter, the summation is taken over 1 < i < ... < i < n.

Proof:

Fix any k > 1. Consider an n x n matrix M which is same as V("¥)(a) except that the
last row is powers of an indeterminate x. Let a’ stand for the (n — 1) length truncation of a.
Treating the elements of a’ as scalars, the determinant of the matrix M is a polynomial in x
of degree n — 1 + k. Call this polynomial f(z). Since the determinant of a matrix with two
equal (or even scaled by a constant) rows is zero, the polynomial f(x) has roots a’. Thus,

(z — ai), (3)

*
. 3
Il : |
= —_

where g(z) is a polynomial (to be determined) of degree k . However, f(x), the degree n—1+k
polynomial, has zero coefficients for all monomials 7 with j in [n — 1.n — 1 + &k — 1]. If we
introduce a new formal variable t = 1/, then the above equation can be written as

0= g(0) ﬁl—mz (1)

12

where f (resp. §) is the polynomial f (resp. g) with coefficients reversed. Note, all the zero
coefficients of f(z) described above implies that f(t) = f,,—14x mod t*T1, where f,,_1,; denotes
the coefficient of z"~1** in f(z). Thus,

n—1

Foeaak * [J (1 —tai)™" = g(t) mod ¥, (5)
=1

Hence,
n—1 k

Facrwn * J] D20+ (ta))) = () mod 541, (6)

i=1 j=0

Since g(x) is of degree k, g(t) has degree at most k as well. Denote by g, the coefficient of ¢
in g,, which is same as gr_,. Then, by comparing coefficients of ¢* on both sides we get, that
for each z € [0..k],

Jk—z = gz = fn—l—l—k * Sz(a/)7
where sg(a’) is defined to be 1.
Thus, having determined g(z), we also have f(x) by . Letting = = a,, then we get

det (V) (a)) = f

—

an)

i
L

(an —a;) * g(an)

<.
I
—_

3

I
—

k
. k—z /
n— E
(an —ai) * fo11k * a, “s.(a’)
z2=0

3 -
P
[

I
—

(an _ai) * fan»k * Sk(a)

Il
—

I
D_‘ =,
=+

et(V™(a)) x sp(a),

where the last equality follows by noting that the top coefficient of f(z), i.e. f,_14 is the
(n,n)-minor of V{"*)(a), which is same as the (n,n)-minor of Vandermonde matrix V() (a),
which, in turn, is (—1)"t" % det V=1 (a’). O

Lemma 10 For a = (12,22,32,...,n?), for all k > 0,

sp41(a)

< n3.
si(a)

13

Proof: First note that s1(a) = > a; * sp(a()), where a; is a restricted to first 7 entries.
Since a; are monotonically increasing, it follows that sii1(a) < n* a, * sg(a), from which the
claim follows. O

Lemma 11 For the matriz S(”)(a) with a set to the sequence of integers from one to n, let 5;
be given by the formula in Lemmal[f Then,

n

26’ 2L = (1)1« (n)2,

=1

Proof: Y7, f; #i?"*1 is the inner product of the first column of $((a) and 3. By Lemma
we have

BT (5™ (@) = ((S™(@)")" - (5™ ()

3

where we have used Lemma [f] in the second-to-last equality. O

2.1 Alternating Series Test

Having shown Lemmas [9] [10} and [I1], we are now ready to show Lemma
Proof: (of Lemma [§]) In this proof, we will fix a to be the sequence of integers from 1 to n.

Note, each b, can be written as b,, = ¢, * (xzm_l where ¢, = (1)1 % o Bix i2m—1,

2m—1)1"

1. Since n is fixed and all §; are bounded by Lemma [6], we just need to show that for every

c\2m—1
x in the domain of approximation, for every i € [n], ((Z;T)ni—l)' goes to zero as m goes

to infinity. Since the domain of approximation is bounded, |z| itself is bounded. Since,
k! > e(k/e)*, the above is upper bounded by e~! x (iex/(2m — 1))?*™~!, which goes to
zero as m goes to infinity.

14

2. To show that all by, are positive (or all are negative), it suffices to show that all ¢, are
positive (or all ¢, are negative, resp.). We first show that ¢, is positive (i.e. m set to
n +1). By Lemma 11} this quantity is simply (—1)2~ x (n!)? and hence is positive.

Let S(™*)(a) be the matrix that is the same as SE") (a) except that the first column is
replaced by the (2n — 1 + 2k) powers of a. Thus, S (a) is same as 5 (a). As in the
proof of Lemma

n
(_1)n71 * Cpgl = Zﬁl % Z-2n71+2k

Note that det(g("vk) (a)) is a Schur polynomial in a. It is an alternating polynomial, i.e.
its sign changes if any two entries of a are exchanged. All alternating polynomials are
divisible by the Vandermonde polynomial, i.e. det(S((a)); this is clear by noting that
every (a; — aj) is also a factor of det(S(™*)(a)), as this determinant is zero if a; = a;.
Regardless, we will not pursue this approach here, and directly use Lemma[5] From that
lemma, it follows (after some maneuvering) that det(S*)(a)) is

where a is the sequence a, but with each entry squared. Thus, all Cp}; are positive, for
k> 1.

15

3. We now show that |by,| > |bm1] for all m > n + 1. We have,

n— n I2m+1
|bmt1] (=)™ !k s (n+1) (D)+ I 1H1<]<z(i —%2') « [Ty af * @m+1)!
|bm| (1)1« 3m—(n+1)(a(2)) [T H1§j<i(az2 - G?) « [[y af = (52872::11)!

Sm+1—(n+1)(a(2)) * %

Sm—(nt1) (@) * 2m—1)!
Sm+1—(n+1)(a(2)) z?

*
@) 2mEm 1)

3 x
—— (by L 10
e 2m(2m +1) (by Lemma [10)

<1 (for |z| < 2/y/n).

IN

O
We are now ready to show Theorem

Proof: (of Theorem (1)) Let S, for k € [1..n], be defined as in equation with a set to the
sequence of numbers from 1 to n. From the Taylor series expansion of the sine series, which
converges since the sine series is analytic, it follows that

Zﬂksm (kx) =2+ Z

m=n+1

where b, are defined in equation . Thus, by Lemma |8 and Leibniz’s alternating series test
(Theorem [7)), we have for |z| < 2//n,

n k‘l‘ 2n+1
_ in(kx)
x Z B sin(kx) 2n+ 1)
k=1
E2ntl g2l
(2 +1)!
2n+1|
2n+1
2n + 1

(n)?
R ‘“fz"“‘

where we used Lemma [11]in the last equality.

16

Restricting |z| < €, Theorem [1] follows from the fact that

(n})? 2t ((n+1)/e)**2e? 2+l
(2n +1)! ((2n+1)/e)?n+1

n 1\ 2t ,
— 1 n+1
ex(n+)*(2n+1) x €

2n + 2 2n+1*<e)2n+1
2n+1 2

2n+1
<62*(n+1)*(§> "

:e*(n—i—l)*(

where we have used the fact that

n\" n4+1\"!
(—) <n!<() e
e e

for all n > 1 and that (14 1/n)" < e for all n > 1. O

3 Application to Bootstrapping for Approximate HE

In Section [I} we explained that approximating the mod function on small intervals around
the modulus is a necessary step in bootstrapping for approximate homomorphic encryption
(CKKS). In this section, we will briefly overview the bootstrapping procedure for the CKKS-
HE scheme introduced in [6].

Notation and Necessary Preliminaries: Let M be a power of 2 and ®3,(X) = XV + 1
be the Mth cyclotomic polynomial of degree N = M/2. Let R = Z[X]|/®ym(X). For an
integer ¢, let Ry = Zy[X]/®p(X). Using the canonical embedding o, it is possible to map an
element m(X) € R into CV by evaluating m(X) at the Mth primitive roots of unity. Using the
same canonical embedding, it is also possible to define an isometric ring isomorphism between
S = R[X]/®;(X) and CN/2, where for an element m(X) € S, it has the canonical embedding
norm ||m||Z" = [|o(m)]|oo-

Overview of the CKKS-HE Scheme: The CKKS-HE scheme [§] is an HE scheme for
approximate arithmetic over real/complex numbers. Its security is based on the ring-LWE
(RLWE) assumption. The message space of the scheme is polynomials m(X) in R with
[|m||2" < ¢/2 for a prime g. Using the canonical embedding and appropriate scaling, one

17

can map a vector in CV/2 of fixed precision into R. The fact that canonical embedding induces
an isometric ring isomorphism between S and CN/2 implies that operations on the message
space R map to the same operations performed coordinate-wise on CV/2. Thus, the CKKS-
HE scheme supports packing N/2 complex numbers into a single plaintext and operating on
them in single instruction multiple data (SIMD) manner. Please refer to [8] for more details
on this encoding procedure. We will refer to m(X) € R as the plaintext/message and the
corresponding vector in CV/2 as the plaintext “slots.”

A ciphertext ct encrypting a message m € R is an element of Rg , for some £ € {0,...,L}.
¢ refers to the “level” of the ciphertext. In [8], ¢ = p’ * ¢ for primes p and q. However,
g¢ can be set in other ways (such as via an RNS basis [7]). The decryption structure is
(ct,sk) mod gy = m + e for some small error e € R. Observe that there is no way to remove e
and some of the least significant bits of m are unrecoverable. A fresh ciphertext is generated
at the highest level L. Homomorphic operations increase the magnitude of the error and the
message and one must apply a rescaling procedure or modular reduction to bring a ciphertext
to a lower level to continue homomorphic computation. Eventually, a ciphertext is at the
lowest level (an element of Rg), and no further operations can be performed.

Bootstrapping Procedure for CKKS-HE: [6] introduced the first bootstrapping pro-
cedure for the CKKS-HE scheme. Subsequent works [5l [10, [11] improved various aspects of
bootstrapping, but the overall procedure remains the same. The goal is to take a ciphertext
at the lowest level and bring it up to a higher level so that homomorphic computation can
continue. Thus, given a ciphertext ct at the lowest level, we want to obtain another ciphertext
ct’ such that
(ct,sk) mod ¢ = (ct’, sk) mod ¢y

for some ¢ > 1. For simplicity in the following, we will include the starting decryption error in
the message m. That is, we will assume that (ct,sk) mod ¢ = m.

Bootstrapping is done via the following sequence of steps:

1. Modulus Raising: By simply considering ct as a ciphertext at the highest level, it
follows that (ct,sk) mod q;, = ¢/ + m for some I € R.

2. Coefficients to Slots: We need to perform the modular reduction on the polynomial
coefficients of t = qI + m. However, recall that homomorphic computations evaluate
coordinate-wise on the plaintext “slots,” not the polynomial coefficients. Thus, we need
to transform our ciphertext so that the polynomial coefficients are in the “slots.” This
can be done by evaluating a linear transformation homomorphically.

18

3. Compute the Mod Function: We need a procedure to compute/approximate the
mod function homomorphically. This is a significant challenge since we can only com-
pute arithmetic operations homomorphically.

4. Slots to Coefficients: Finally, we need to undo the coefficients to slots step. This can
be done by homomorphically evaluating the inverse of the previous linear transform.

Observe that if we can approximate the mod function, then the above procedure will give
us a ct’ at some higher level ¢ that decrypts to m + e for some small error e. Since we are
dealing with approximate arithmetic, this error from bootstrapping can be absorbed into the
other errors that occur during approximate arithmetic and homomorphic evaluation. We can
upper bound || < K for some integer K so that we only need to approximate the mod function
on the interval [—-Kq — m, Kq + m], where we have overloaded notation to make m an upper
bound on the size of the message.

4 Evaluating the Sine Series Approximation of the Mod Func-
tion

In order to use the sine series approximation of the mod function given by Corollary [3| for
bootstrapping, we must approximate the sine series by a low-degree polynomial, since the
CKKS-HE scheme cannot compute sine directly. In this section, using our sine series approxi-
mation of the mod function and the well-known Taylor series expansion of the sine function, we
will give explicit low-degree polynomial approximations of the mod function on small intervals
around multiples of the modulus to (almost) arbitrary precision. The resulting polynomials
have small coefficients, as the Taylor series of the sine function has small coefficients, and the
sine series itself has small coefficients by Lemma [6] Recall that small coefficients are beneficial
in contrast to large coefficients, as in the latter case one is forced to compute the different
power monomials to much higher precision in order to obtain an accurate polynomial eval-
uation. This, in turn, causes the computational precision that we must operate at during
bootstrapping to be higher, which causes each “level” to consume more bits of the modulus.
We next explain how we evaluate the sine series and then determine the degree and evaluation
precision required for the Taylor series approximation of sine.

Evaluating the Sine Series: To evaluate the sine series, we first compute a Taylor series
approximation of e (recall that CKKS-HE allows us to compute over complex numbers).

19

We can obtain an approximation to sinz by extracting the imaginary part. The other higher
ik from e and extracting the
imaginary part. As for computing the Taylor series approximation of the sine function, note
that the domain of approximation is small intervals around g, where ¢ € [-K..K| and ¢ is
the modulus. The bound K comes from the bound on the Hamming-weight of the secret key
and is typically 8 to 24. If our input is X = = + £q for some small offset z and ¢ € [-K..K],
our goal is to compute e!@™(#+£a)/a) This then requires a Taylor series that has powers of
27(x + £q)/q, which can be more than one. Earlier works noted that one can instead first
compute e'(27(@+0a)/(42")) yging a Taylor series expansion (for some r > 0) and then compute
¢! (?m(@+a)/9) ysing 1 squarings. For instance, by setting r = [log((K 4 1)27)], we can ensure
that 2mi(z+£q)/(¢q2")) has norm less than one, and thus, the higher powers in the Taylor series
rapidly approach zero.

order sin kx terms can be obtained conveniently by computing e

Determining the Degree of the Taylor Series Approximation: Next, we must de-
termine the degree to which we compute the Taylor series expansion of e2™(@+0a)/(a2") The
Taylor series expansion is

> @mi(z + Lq)/(q27)™ /m!.
m=0

We now determine for which range of values of (z + ¢q) the above restricted to the sine terms,
i.e. the imaginary terms or odd powers of x, satisfies the alternating series test (so that the
partial series error can be bound by the absolute value of the next missing term). Thus, we
need to determine the conditions under which

(2| (2 + £q)|/(q27) ™Y/ (2m + 1))
(27|(z + £q)|/(27)) =D/ (2m — 1)!

_ @nl(e +)]/ (a2))?
(2m +1)2m

1>

Assuming z << g and 2" > (K + 1), the above reduces to (2m + 1)2m > 2w, or m > /7/2.
Thus, if the Taylor series is computed partially up to any degree 2m — 1, m > /7 /2, then the
error in the approximation of sine is at most

(2m)2™ L J(2m + 1)! < (2me/(2m + 1))2™ L,

2m+1

which is at most 2~ if we further require that m > 2mwe (> +/7/2).

Thus, having computed sin(27(z + ¢q)/(q2")) partially up to m terms, we now investigate
the error for the higher order terms in the sine series, i.e. sin(2rk(x + £q)/q) for k > 1. If

20

the error in the approximation of the original term is small, say § << 1, then the error for
this k-th term is approximately k2" x §. Thus, the total error in the sine series due to the
Taylor series approximation of Y, B sin(27k(z + £q)/q) is upper bounded in absolute value
by Sor_; |Bel*k27|6], which is at most n?(K +1)4, which, in turn, is at most n?(K +1)272m+1L,

Finally, using Corollary (3], the total error in the mod function approximation, for an input
X =+ lqg with £ € [-K..K] and |z| < e x ¢ for any ¢ < 1/m/n is

2
(q/27) % n2(K +1)272m+1 4 £ 24

s (n+ 1) * (exm)2nTL,

Thus, it makes sense to have m about —log, (¢/2) * n (which is typically greater than 2we
for n > 1; if this value is less than 2me, then one must use an r such that 2"/(K + 1) is
correspondingly larger than one).

Determining the Evaluation Precision: We must also determine the precision to which
to evaluate the polynomials. Setting Y = 27(x + ¢q)/(q2"), we observe that the degree m
Taylor expansion of e2™(@+a)/(42") ig simply the polynomial
m
Sy
=0

=

Recall that we have chosen r so that |Y| < 1. Moreover, setting ¢; = i//;!, the polynomial
becomes 37" ¢;Y7, where |c;| < 1. We need to determine the precision to which we evaluate

the powers Y7 (we will first evaluate the Y?'’s by repeated squaring and then use these powers
to evaluate all intermediate powers). Let Y7 denote the exact values and let Y7 denote the
approximated values (to some precision to be determined). Suppose we evaluate the powers Y7
up to w bits (and simply chop off the additional bits). Then, DN/ —Y| < 27%. Computing Y2 by
squaring Y and rounding, we have that Y2 differs from Y2 by at most ~ 2 * 2~%. To see this,
note that ¥ = Y 46, where § < 27%. Then, Y2 = Y242V +0%2 < Y2+20+62 = V242277,
By an analogous argument, it follows that Y7 differs from Y7 by at most approximately j*2~.
Thus, the error of 0", ¢;Y7 is bounded by

m m 9—w
27k — = ——<ex27Y.
)3 =2 G

J=1

Thus, to obtain error 27, it suffices to compute the powers Y7 to precision w for w > d +log, e,
only slightly higher than the minimum precision d required to obtain this approximation.

21

In the above, we saw that having small coefficients ¢; (and coefficients that decrease in
magnitude as j increases) enabled the approximation of the polynomial Z;'n:o chj by evaluat-
ing the powers of Y to precision only a couple bits larger than the minimum precision required
for the desired error. This is crucial during bootstrapping as a higher evaluation precision
directly corresponds to losing more bits of the modulus during the polynomial evaluation. In
contrast, suppose that the c¢;’s were large and bounded in magnitude |¢;| < 2F for some k.
Then, if the powers of Y are evaluated to precision w, the error of the polynomial evaluation
is bounded by

Z’” PRP RIS U By
2
=0

Thus, to obtain error 27¢, the powers of ¥ would need to be evaluated to precision w >
d+ k + 2logm — 1. Note the additional dependence on both k and the number of terms m.

5 Implementation

To demonstrate the applicability of our polynomial approximation to high precision bootstrap-
ping for approximate homomorphic encryption, we updated the bootstrapping procedure of the
HEAAN library [I] to utilize our sine series during the “Compute the Mod Function” step (see
Section . Additionally, we updated HEAAN to use the quadmath library, since we wanted to
achieve bootstrapping error smaller than the precision of a double. We ran our implementation
using a PC with an Intel Xeon 2.0 GHz 12-Core CPU.

Table [1| gives our bootstrapping results for sine series of various orders. As before, €
represents the ratio p/q, where p is an upper bound on the size of the message (including any
errors associated from the approximate arithmetic and prior homomorphic operations) and ¢
is the size of the modulus prior to bootstrapping. In Table|l] € is set to 271, The key-sparsity
is set to h = 256, so that on average K is about v/h = 16. However, our implementation can
handle K as large as 31. gr, denotes the modulus of the largest level, which is the modulus of a
fresh ciphertext prior to any homomorphic operations. N denotes the ring dimension, which we
increase as ¢, increases to maintain 128-bit security |2, [3]. Results in this table were obtained
using 8 slots, and the dependence on a larger number of slots is reported below. gy denotes
the modulus of the ciphertext after bootstrapping. The reported error is the decryption error
after performing bootstrapping. In other words, if the decryption before bootstrapping would
have resulted in message slot value M, then the decryption after bootstrapping would result
in a message slot value M’ such that [M' — M| < Bps|M|. As can be seen from Table
for log, p = 80, the bootstrapping error is essentially zero. This is because the bootstrapping
procedure is performed at a precision that is ten bits more than the number of bits required

22

Table 1: High-Precision Bootstrapping Results for ¢ = 270 and degree 63
Taylor series sine approx. The secret-key sparsity is set to h = 256. The errors
reported are for K up to 31.

Input Sine | Modulus|Ring | Boot. | Modulus Error Runtime'T
Precision' | Series | (Fresh) |Dim. | prec. | (After) (Boot.) (secs)
logop |Order| logyqr, | N logy o | B = err/p
30 2 1200 | 2% | 55 235 272 16
50 3 1600 215 [75 220 2% 19
60 4 2400 216 [85 839 251 72
80 5 2400 | 2% | 105 | 374 <2780 73
100 6 3000 | 2% | 125 | 594 279 100
120 7 3200 | 2% | 145 | 414 279 111

T The modulus ¢ of the ciphertext prior to bootstrapping is p/e. The number of bits of g
is p — loge = p + 10, and bootstrapping (computational) precision is set to
(p — log e + log, K) + 10.

f Includes runtime of “Coefficients to Slots” and “Slots to Coefficients” steps. Number of
slots fixed to be 8 so that the “Compute the Mod Function” step dominates runtime.
Results reported are from a 2.0 GHz 12-core Intel Xeon CPU using quadmath, NTL and
GMP software libraries.

23

Table 2: Timing and Error Dependence on Number of Slots. In this table e = 2710,
log, p = 80, and the sine series order is fixed to n = 5.

Num || Input | Sine |Modulus |Ring|Boot.|Modulus Error Runtime!T
Slots || Precision | Series | (Fresh) |Dim. | prec. | (After) (Boot.) (secs)
logop |Order| logyqr, | N logsy o | B = err/p

8 80 5 2400 | 2'6 | 105 374 @ o o 73

16 80 5 2400 | 2'6 | 105 374 Pt 84

32 80 5 2400 | 216 | 105 374 PR 107

64 80 5 2400 | 2'6 [105 374 - 110
128 80 5 2400 | 2'6 [105 374 a8 152
256 80 5 2400 | 26 [105 374 o 228

" Includes runtime of “Coefficients to Slots” and “Slots to Coefficients” steps. For all rows, the
mod function evaluation time is almost the same at 52 secs.

to represent M + Kq (i.e. the value which needs to be reduced mod q).

Recall that the sine series approach begins by approximating e’ using a Taylor series
approximation, since CKKS-HE allows computation on complex numbers. In this particular
implementation e** was approximated to degree 63 using the Paterson-Stockmeyer polynomial
evaluation optimization [I8]. Below, we report results for other variants for approximating e**.

We see that our methodology is capable of achieving high precision bootstrapping, with
the resulting message precision as large as 94 bits. Prior to our work, the highest precision
bootstrapping of CKKS was the recent work of [12] which could achieve a resulting message
precision of up to 67 bits. However, that result was only for K = 12 and key sparsity h = 64,
whereas our 94 bit precision bootstrapping is for h = 256 and can handle K up to 31. Thus,
we view our result as a substantial improvement for bootstrapping in settings where high
precision is required, such as the inference step of a convolution neural network or even the
learning stage of the neural network. As mentioned earlier, since CKKS is for approximate
arithmetic, it is only possible to have unlimited computation for stable computations that do
not lose precision. However, even such stable computations lose precision in early stages prior
to convergence. Thus, it is important to begin such computations with high precision and,
later, one can switch to smaller precision during the stable regime.

5.1 Time and Error Dependence on the Number of Slots

As the number of slots is increased, the time of the mod function evaluation step during
bootstrapping remains the same. However, the linear transforms that send the coefficients

24

to slots and vice versa take a substantial hit. Since this linear transform also involves more
rotations, key-switchings, multiplications by constants, and additions, for every doubling of
the number of slots, the bootstrapping error also increases proportionately. However, since
our error is so low, the error for a high number of slots still remains low enough to be termed
high-precision. This dependence of runtime and bootstrapping error is reported in Table [2] for
one particular parameter, where the sine series is of order five.

5.2 Comparison with Basic Sine and Other Variants

While the implementation results reported in Table [I] used a Taylor series approximation of
degree 63 of €', the implementation in [I] instead used a degree 7 approximation of eix/2" (for
r = 4) followed by r squarings. We investigated if we could use a similar approach for the sine
series, as the different order sine terms are obtained by squarings of ¢ anyway. We found that
for small precision, i.e. log,p < 40, this approach can lead to a faster implementation while
yielding effectively the same error. However, for log, p > 50, this approach led to substantially
worse error. For example, at logyp = 50, the error increased from 274° to 2730, But, as
mentioned, for smaller log, p we get the following improvements. First of all, the basic sine
approach (i.e. m = 1) with »r = 4 and degree 7 Taylor series yields an error of 2719 for
logy p = 30. If the fresh modulus used is 1600 bits, then the modulus after bootstrapping has
741 bits. The time taken is 7.6 secs. Interestingly, with sine series of order two, i.e. n = 2,
using the same approach we get an error of 2726, with modulus after bootstrapping having
631 bits. Moreover, the time taken is 7.8 secs. Yet another implementation, with a degree
31 Taylor series approximation, and r = 0, also yields error 2725, but takes time 12 secs.
However, the modulus after bootstrapping has more bits at 690 bits. Regardless, it seems that
the sine series of order two with a degree 7 Taylor series and r = 4 seems to be beneficial at
low precision.

We also experimented with different values of €, in particular € set to 275, 2710, 2=15 920,
The errors at each input precision were not much different, and, in fact, € = 2710 seems to be
the best option.

5.3 Comparison with Other Earlier Works

The work [5] followed an interesting approach of obtaining Chebyshev interpolants of the
scaled sine function. In particular, using the Fourier series of sin(2wK cosz), they obtained
approximations of sin(27r K x) in terms of Chebyshev polynomials. Furthermore, this approach
also leads to an almost optimal minmax polynomial approximation, as well as yielding small
coefficients. Since the scaling K is already incorporated in the function, it removes the log K

25

Table 3: Comparison with Modular Lagrange Interpolation [12]. Note, [12] cites
results for K = 12, whereas our results are for K up to 31.

[12] This Work
Input Key Ciphertext | Error Key Ciphertext | Error
Precision || Sparsity (h)| Bits Lost |(Boot.)|| Sparsity (h)| Bits Lost | (Boot.)
30 64 935 2% 256 965 272
50 64 1725 2-16 256 1380 245
60 64 1800 254 256 1561 254
80 64 2150 203 256 2026 280
100 N/A N/A N/A 256 2406 27
120 N/A N/A N/A 256 2786 279

squarings required in [6] and in this work. However, Chebyshev interpolants do not readily
submit to the Paterson-Stockmeyer evaluation optimization and while [5] did show a variant
of this method, it leads to coefficients increasing in size. Thus, as explained in Section [3] this
then requires a larger computational precision that leads to loss of many more (ciphertext
modulus) bits per multiplication depth in the bootstrapping circuit. For a direct comparison
of our approach to [5], we take data from Tables 2-4 from that work, and note that the best
approximation they obtain has error 272! for data set IV*. A look at our Table [1| shows that
the worst error we obtain is 272 for logy p = 30. The number of ciphertext (modulus) bits
lost for that error is 1200 — 235 = 965, whereas [5] loses 1240 — 43 * 6 = 982 bits. Moreover,
our implementation can handle K up to 31, whereas [5] numbers are cited for K = 12. Thus,
our approach is clearly better at even this low precision.

In [11], the authors obtain better approximation error than [5] by leveraging the fact the
approximation is only needed in small intervals around multiples of the modulus. However,
their approach also uses a baby-step giant-step, or alternately the Paterson-Stockmeyer variant
applied to Chebyshev polynomials that can lead to a blowup in the size of coefficients. The
authors do not give details on the number of ciphertext (modulus) bits lost in the bootstrapping
procedure. In [16], the authors report high-precision bootstrapping using a composition of
sine/cosine and the inverse sine function. The authors report a practical implementation of up
to 40-bits precision bootstrapping.

The work [12] gives a direct approximation of the mod function, i.e. without going through
the sine function, and hence bypasses the fundamental error of the sine function approach.
Thus, they can get arbitrarily high precision, and they also show that the coefficients of their
polynomial approximation are not too large. Nevertheless, the coefficients are large enough

26

that our approach beats [12]. Moreover, they only give implementation numbers for K = 12,
and for K = 24, the number of ciphertext modulus bits lost during bootstrapping would be
higher. In Table [3, we compare their results with ours for ¢ = 270 and various plaintext

precisions.
References
[1] Heaan, https://github.com/snucrypto/HEAAN

2]

Albrecht, M.R.: On dual lattice attacks against small-secret lwe and parameter choices
in helib and seal. In: Coron, J.S., Nielsen, J.B. (eds.) Advances in Cryptology — EURO-
CRYPT 2017. pp. 103-129. Springer International Publishing, Cham (2017)

Albrecht, M.R., Player, R., Scott, S.: On the concrete hardness of learning with errors. J.
Math. Cryptol. 9(3), 169203 (2015), http://www.degruyter.com/view/j/jmc.2015.9.
issue-3/jmc-2015-0016/jmc-2015-0016.xml

Bergamaschi, F., Halevi, S., Halevi, T.T., Hunt, H.: Homomorphic training of 30,000
logistic regression models. In: Deng, R.H., Gauthier-Umana, V., Ochoa, M., Yung, M.
(eds.) Applied Cryptography and Network Security. pp. 592—-611. Springer International
Publishing, Cham (2019)

Chen, H., Chillotti, I., Song, Y.: Improved bootstrapping for approximate homomorphic
encryption. In: EUROCRYPT. pp. 34-54 (2019)

Cheon, J., Han, K., Kim, A., Kim, M., Song, Y.: Bootstrapping for approximate homo-
morphic encryption. In: EUROCRYPT. pp. 360-384 (01 2018)

Cheon, J.H., Han, K., Kim, A., Kim, M., Song, Y.: A full rns variant of approximate
homomorphic encryption. In: Selected Areas in Cryptography — SAC 2018 (2018)

Cheon, J.H., Kim, A., Kim, M., Song, Y.: Homomorphic encryption for arithmetic of
approximate numbers. In: ASTACRYPT (2017)

Gentry, C.: Fully homomorphic encryption using ideal lattices. In: STOC. pp. 169-178

(2009)

Han, K., Hhan, M., Cheon, J.H.: Improved homomorphic discrete fourier transforms and
fthe bootstrapping. IEEE Access 7, 57361-57370 (2019)

27

https://github.com/snucrypto/HEAAN
http://www.degruyter.com/view/j/jmc.2015.9.issue-3/jmc-2015-0016/jmc-2015-0016.xml
http://www.degruyter.com/view/j/jmc.2015.9.issue-3/jmc-2015-0016/jmc-2015-0016.xml

[11]

[12]

[13]

[14]

Han, K., Ki, D.: Better bootstrapping for approximate homomorphic encryption. In:
Jarecki, S. (ed.) Topics in Cryptology — CT-RSA 2020. pp. 364—390. Springer International

Publishing, Cham (2020)

Jutla, C.S., Manohar, N.: Modular lagrange interpolation of the mod function for
bootstrapping of approximate he. Cryptology ePrint Archive, Report 2020/1355 (2020),

https://eprint.iacr.org/2020/1355

Kim, A., Song, Y., Kim, M., Lee, K., Cheon, J.H.: Logistic regression model training
based on the approximate homomorphic encryption. BMC Medical Genomics 11(4), 83
(2018), https://doi.org/10.1186/512920-018-0401-7 []]

Kim, M., Harmanci, A., Bossuat, J.P., Carpov, S., Cheon, J., Chilotti, I., Cho, W.,
Froelicher, D., Gama, N., Georgieva, M., Hong, S., Hubaux, J.P., Kim, D., Lauter, K., Ma,
Y., Ohno-Machado, L., Sofia, H., Son, Y., Song, Y., Jiang, X.: Ultra-fast homomorphic
encryption models enable secure outsourcing of genotype imputation. bioRxiv (2020)

Kim, M., Song, Y., Wang, S., Xia, Y., Jiang, X.: Secure logistic regression based on
homomorphic encryption: Design and evaluation. JMIR Med Inform 6(2), e19 (Apr 2018),
http://www.ncbi.nlm.nih.gov/pubmed/29666041

Lee, J., Lee, E., Lee, Y., Kim, Y., No, J.: High-precision bootstrapping of rns-ckks
homomorphic encryption using optimal minimax polynomial approximation and inverse

sine function. IACR Cryptol. ePrint Arch. 2020, 552 (2020)

Masters, O., Hunt, H., Steffinlongo, E., Crawford, J., Bergamaschi, F., Rosa, M.E.D.,
Quini, C.C., Alves, C.T., de Souza, F., Ferreira, D.G.: Towards a homomorphic machine
learning big data pipeline for the financial services sector. In: RWC (2020)

Paterson, M.S., Stockmeyer, L.J.: On the number of nonscalar multiplications necessary
to evaluate polynomials. STAM J. Comput. 2, pp. 60-66 (1973)

Sav, S., Pyrgelis, A., Troncoso-Pastoriza, J.R., Froelicher, D., Bossuat, J.P., Sousa, J.S.,
Hubaux, J.P.: Poseidon: Privacy-preserving federated neural network learning (2020)

28

https://eprint.iacr.org/2020/1355
https://doi.org/10.1186/s12920-018-0401-7
http://www.ncbi.nlm.nih.gov/pubmed/29666041

	Introduction
	This Work
	Problem Overview
	Sine Series Intuition
	Organization

	Sine Series Approximation
	Alternating Series Test

	Application to Bootstrapping for Approximate HE
	Evaluating the Sine Series Approximation of the Mod Function
	Implementation
	Time and Error Dependence on the Number of Slots
	Comparison with Basic Sine and Other Variants
	Comparison with Other Earlier Works

