
Prio+: Privacy Preserving Aggregate Statistics via Boolean
Shares

Surya Addanki 1, Kevin Garbe 2, Eli Jaffe 3, Rafail Ostrovsky 4, and Antigoni
Polychroniadou 5

1,2,3,4UCLA
{surya7, kgarbe, jaffe, rafail}@cs.ucla.edu

5J.P. Morgan AI Research
antigoni.poly@jpmorgan.com

Abstract

This paper introduces Prio+, a privacy-preserving system for the collection of aggregate statis-
tics, with the same model and goals in mind as the original and highly influential Prio paper
by Henry Corrigan-Gibbs and Dan Boneh (USENIX 2017). As in the original Prio, each client
holds a private data value (e.g. number of visits to a particular website) and a small set of
servers privately compute statistical functions over the set of client values (e.g. the average
number of visits). To achieve security against faulty or malicious clients, Prio+ clients use
Boolean secret-sharing instead of zero-knowledge proofs to convince servers that their data is of
the correct form and Prio+ servers execute a share conversion protocols as needed in order to
properly compute over client data. This allows us to ensure that clients’ data is properly format-
ted essentially for free, and the work shifts to novel share-conversion protocols between servers,
where some care is needed to make it efficient. While our overall approach is a fairly simple
observation in retrospect, it turns out that Prio+ strategy reduces the client’s computational
burden by up to two orders of magnitude (or more depending on the statistic) while keeping
servers costs comparable to Prio. Prio+ permits computation of exactly the same wide range
of complex statistics as the original Prio protocol, including high-dimensional linear regression
over private values held by clients.

We report detailed benchmarks of our Prio+ implementation and compare these to both the
original Go implementation of Prio and the Mozilla implementation of Prio. Our Prio+ software
is open-source and released with the same license as Prio.

1

1 Introduction

In recent decades, modern society has exploded with a wave of internet-enabled devices. Smart-
watches, cell-phones, cars, and ATMs are constantly collecting data on their surroundings to im-
prove performance. For many cloud services controlling such devices, collecting and computing
statistics over such a large pool of data has become a hugely profitable endeavor. Navigation apps
detect congestion with user location data [24], fitness trackers collect average data for user compari-
son [22]. Aggregate statistics are one of the principle currencies in the modern data-driven economy.

Although these services only wish to compute aggregate statistics, not collect individual data, their
methods often involve storing users’ personal data in the clear on their servers and then comput-
ing statistics directly on that data. Such a centralized cache of sensitive user data presents clear
security risks. As described in [8], a motivated attacker may simply steal and disclose this sensitive
information [26, 35], cloud services could misuse or sell this information for profit [34], and intelli-
gence agencies may acquire the data for targeting or mass surveillance purposes [20].

The specific problem to be solved is as follows: each of n clients Pi holds a private value xi ∈ {0, 1},
and they wish to learn the sum

∑
i xi. As described in the original Prio paper [8], some previous

systems have also attempted to solve this problem of privately computing aggregate statistics. One
such attempt involves using a randomized response system to provide differential privacy [17, 19].
That is, some user data is replaced with random data according to some fixed probability p < 0.5.
By aggregating this “noisy” data, data collectors can get a somewhat accurate estimate of overall
statistics. This technique scales well and provides robustness (each malicious client can at most
affect the sum by ±1), but the privacy guarantees are relatively weak. There is an inherent trade-
off between the privacy guarantee to the client and the accuracy of the overall statistic. Another
option is to have clients submit encryptions of their data to servers. Then, servers can sum up the
ciphertexts and only decrypt the final sum [13, 15, 25, 27, 1, 28]. This achieves stronger privacy
guarantees but sacrifices robustness: a malicious client can affect the final sum arbitrarily because
servers cannot tell the difference between an encryption of 0/1 and an encryption of some large
integer. Such attacks are often incentivized: if used for a voting scheme, this would allow any
client to submit as many votes as they like. These attacks can be mitigated using zero-knowledge
proofs [16], but such approaches heavily impact scalability. Servers require expensive public-key
operations to verify these proofs, and clients are burdened with the computationally difficult task
of generating the proofs.

Prio is a brilliant and highly influential private aggregation system which successfully resolves
this discrepancy between privacy, robustness, and scalability. Prio works within the client-server
model in which the n clients rely on a small number of computationally powerful servers in order
to compute aggregate statistics. Prio provides relatively strong privacy guarantees: it guarantees
privacy so long as at least one of the computation servers is honest. It also provides robustness:
any malicious client can affect the protocol no more than misreporting their private data value
as another valid value. That is, if the client is supposed to submit a value in the range [0, 64],
Prio servers can syntactically reject submissions of any value outside that range, but clients can of
course choose to submit a different value in that range besides their true private value. To achieve
this, Prio utilizes a new technique called SNIPs (secret-shared non-interactive proofs), which allows
servers to collaboratively check a shared proof of correctness at a low communicational cost. In

2

particular, the bandwidth used by servers during verification remains constant as the size of user
inputs increases. The Prio protocol has been widely adopted, and has even been re-implemented
by Mozilla for use in privately collecting web usage statistics. It is being run as a service for other
web-based organizations by the Internet Services Research Group (ISRG), a non-profit focused on
reducing barriers to secure communication over the internet. Google has also begun using it to
perform analytics in their exposure notifications express (ENX) system for measuring health data.

Prio achieves highly desirable security guarantees, and their solution achieves significant efficiency
gains over other comparably secure data-collection systems. However, the client-side computation
and client-to-server communication of their solution, though better than other comparable sys-
tems, increases linearly with the size of user data. In the client-server model, client computation
and communication costs are most often the bottlenecks for overall efficiency, since clients are on
low-power devices and high-latency connections whereas servers are usually collocated high-power
machines. For example, clients usually run on either web browsers or cell phones when using the
Mozilla Firefox browser. It is somewhat inefficient then to require clients on such devices to use
SNIPs to verify simple properties like the size of a user’s input, as it places an unnecessarily large
computational burden on these weak devices.

In this paper, we present Prio+, a new and improved version of Prio which is optimized to reduce
overall burden on the client, not the servers. Prio+ utilizes a Boolean secret-sharing scheme so that
clients can prove their data falls within the correct range at essentially zero computational cost.
Then, servers simply execute a Boolean-to-arithmetic share conversion protocol (if necessary) to
continue computing statistics as in the original Prio protocol. In some cases we utilize an existing
share conversion protocol, but we also develop a novel share conversion protocol using extended
doubly authenticated bits (edaBits) [18] for use in situations where existing protocols do not suffice.
For some of our protocols on particular statistics, Prio+ still uses SNIPs, as they are particularly
well-suited for verifying certain multiplicative relationships. We do not, however, use them to verify
everything about client inputs as is done in Prio. We implemented Prio+ in C++ and our code is
publicly available at https://github.com/KuraTheDog/Prio-plus.

Our strategy significantly reduces both client computation and client-to-server communication, the
two most expensive computational resources in our efficiency model. Even for the few statistics
where SNIPs are still necessary (variance and linear regression), the size of the SNIPs and the work
necessary for clients to create them decreases dramatically. The result is a system which computes
the same set of complex statistics as Prio with identical privacy and robustness guarantees but with
reduced client computation and client-to-server communication. For example, when collecting the
distribution of tens of thousands of client responses to a simple true/false question, Prio+ clients
can encode their data over 350x faster than Prio clients, and the client’s message size is nearly 5x
smaller. In many cases, Prio+ also improves server efficiency: For the example given above, once
servers have received all client inputs, Prio+ servers are able to process client submissions 85x faster
with essentially the same server-to-server communication. As the size of inputs increases, Prio+
sees an increase in server communication whereas Prio’s server communication stays constant. But,
for practically sized inputs, Prio+ servers still communicate only a few hundred bytes per client
submission.

3

https://github.com/KuraTheDog/Prio-plus

Client Mults Proof Size Server Mults Serv Sym Key Serv Comm.
Prio M logM M (M logM)n None n

Linear PCPs [5] M logM logM (M logM)n None n
Πsum None None L L n+ L2

Πand/or/max/min None None None None n
Πvar/linReg M ′ logM ′ M ′ (M ′ logM ′ + L)n L n+ L2

Πfrq None None nL L (n+ L) log n

Table 1: Table of asymptotic comparisons between Prio and the protocols comprising Prio+. M is the number of

multiplication gates required to check if an input is properly encoded for the relevant statistic. L is the bit-length

of each client’s input, M ′ := M − L is the number of multiplication gates not used for checking bit-length, and n is

the total number of clients. ‘Serv Sym Key’ refers to the symmetric-key operations necessary for servers to perform

Boolean-to-arithmetic share conversion via the methods of [14]. ‘Serv Comm.’ is the communication between servers

in bits. Θ(·) notation suppressed to improve readability.

Both Prio and Prio+ support computation of more complex statistics in addition to just summa-
tion. While Prio applies a general SNIP-based solution across the board, Prio+ applies a specialized
approach for each complex statistic and uses SNIPs for a lighter relations as needed. For exam-
ple, the Prio+ summation protocol, the protocol which is most heavily used by Mozilla, does not
require SNIPs at all. This specialized approach means the efficiency of Prio+ varies depending on
the statistic being computed. For some such statistics, Prio+ not only improves client performance
and server computation, but additionally achieves extremely low and constant server communica-
tion. As an example, when computing the maximum of client data in the range [0, 128], Prio+
servers communicate a constant 16 bytes per client, compared to a constant 740 bytes for Prio
servers. This is in addition to a nearly 750x faster client encode time, 5x smaller client message
size, and a 43x improvement in server computation time. Even for the few statistics where Prio+
still utilizes SNIPs, we see significant improvements in client encode time, client message size, and
server compute time at little-to-no server bandwidth cost.

Contributions: In what follows we summarize our contributions:

• Provide a detailed edaBit-based semi-honest Boolean-to-arithmetic share conversion protocol
whose output shares lie in a field Zp, which was not explicit in [18],

• demonstrate how to use Boolean-to-arithmetic share conversion in conjunction with Boolean
secret-sharing and smaller-scope SNIPs for particular relations in order to provide robustness
and privacy in a large-scale data collection system, and

• demonstrate that client usage of Boolean representation avoids expensive Zero-Knowledge
proofs which leads to dramatic speed-ups of the system overall, and

• exhibit the effectiveness of our protocols with a full-scale and publicly available implementa-
tion allowing private and robust computation of a wide range of complex statistics.

We now give an informal theorem of our results for a single protocol (Πsum). We establish similar
results for the remaining protocols according to the asymptotics given in Table 1.

Theorem 1. (Informal) Suppose n players P1, . . . , Pn each hold a private L-bit integer xi, and they
wish to rely on two servers SL and SR to compute the sum f(x1, . . . , xn) =

∑
i xi. There exists a

4

protocol Πsum, returning the sum f(·) to each client and returning no output to either server, which
is both private and robust against a coalition of up to n malicious clients and one semi-honest server
and requires zero client multiplications, no zero-knowledge proofs, O(L) multiplications per server,
O(L) symmetric key operations per server, and O(n) bits of communication between servers.

With Prio+, we hope to provide the same benefits as Prio to systems and organizations whose
clients cannot withstand the burden of generating and sending expensive zero-knowledge proofs.

2 Technical Overview

In this section we briefly overview the remaining sections of the paper.

Arithmetic vs. Boolean Secret-Sharing: Secret-sharing (specifically, threshold secret-sharing)
is a cryptographic tool which allows a user to “share” a private value x into a vector of values
[x] = ([x]1, . . . , [x]n) in such a way that any strict subset of these values reveals nothing about x,
but all values together can be used to reconstruct x completely. Prio is primarily built around
arithmetic secret-sharing: [x]i are random values in a ring ZM (often this is a field and M = p)
subject to the constraint

∑
i[x]i = x (mod M). Clients share their private inputs and send one

share to each server. Servers then sum them up locally and then return those local aggregations to
clients. Clients them combine the local aggregations to learn the total sum. Servers force clients
to submit private values within a particular range by requiring clients to also submit specialized
zero-knowledge proofs attesting to that fact.

Another possible secret-sharing scheme is called Boolean secret-sharing. Here, the client holds a
private L-bit integer x and secret-shares it as ([x]1, . . . , [x]n), where each [x]i is a random L-bit
integer subject to the constraint

⊕
i[x]i = x, where the direct sum is done component-wise with

each bit of the binary representation. This scheme obeys many of the same properties as arithmetic
secret-sharing, particularly that each share appears random except when combined with all other
shares. The crucial difference is the following: if each share [x]i is an L-bit integer, it is guaranteed
that the private value x is also an L-bit integer. This allows servers to verify the bit-length of a
client’s submitted private value via simple local checks on the shares themselves, without need-
ing expensive zero-knowledge proofs. Note: to distinguish Boolean shares from arithmetic shares,
arithmetic shares will be denoted [x]A, and Boolean shares will be denoted [x]B.

Boolean-to-Arithmetic Share Conversion: Replacing arithmetic secret-sharing with Boolean
secret-sharing presents one important issue: how do servers sum up the clients’ private values
if they only have Boolean shares of those values? The original idea of summing shares locally
and then returning those aggregated values to clients only works due to associativity of addition:
([x]A1 + [y]A1) + ([x]A2 + [y]A2) = ([x]A1 + [x]A2) + ([y]A1 + [y]A2) = x+ y. Since Boolean shares need to be
reconstructed via componentwise-XOR, not standard addition, no such associativity trick applies.
Instead, Prio+ servers will utilize a Boolean-to-arithmetic share conversion protocol, which takes
as input Boolean shares ([x]B1 , . . . , [x]Bk) and outputs a random arithmetic sharing ([x]A1 , . . . , [x]Ak)
of the same underlying value x. Such protocols have been studied extensively in the past [14, 18, 9],
and the most efficient method based on oblivious transfer (OT) is due to [14]. The resulting arith-
metic shares are in the ring Z2l for some integer l. This is sufficient for computing the sum since
there is no reason for the arithmetic shares to necessarily lie in a field. However, when we compute

5

some specific complex statistics using Prio+, we will rely on some properties of a field when using
arithmetic shares, which will require a different Boolean-to-arithmetic share conversion protocol.
This particular problem of outputting arithmetic shares in a field Zp has not been studied explicitly
to our knowledge, and thus we devise our own protocol based on extended double-authenticated
bits (edaBits) [18]. Other approaches to this problem seem feasible: for example, recent results in
function secret-sharing (FSS) allowing secure comparison of secret-shared values may suffice. These
alternative methods, however, seem to impose more overhead than the edaBit-based approach in
order to achieve the desired functionality.

Semi-Honest Boolean-to-arithmetic Share Conversion into Zp via edaBits: edaBits are
a newly studied cryptographic primitive based on double-authenticated bits (daBits) [18]. A daBit
is a secret-shared vector ([b]A, [b]B) where b ∈ {0, 1} is a random bit unknown to all parties.
It is well-known how to use daBits for Boolean-to-arithmetic share conversion. Converting an
L-bit integer requires L daBits in total, which is relatively expensive and motivated the construc-
tion of extended double-authenticated bits (edaBits). An L-bit edaBit is a secret-shared vector
([r]A, [r0]

B, . . . , [rL]B) where r is a random L-bit integer and r =
∑

i 2iri. It was discussed in [18]
that one can use an L-bit edaBit for Boolean-to-arithmetic share conversion similarly to how one
uses L individual daBits, but that construction was not made explicit. Particularly relevant to our
applications, if [r]A is shared in the field Zp, then the shares outputted by the share conversion
protocol will also lie in Zp. We reiterate the process of generating edaBits and also detail the steps
of using edaBits for Boolean-to-arithmetic share conversion in the semi-honest model in Section 9.

Multiplication Triples: There are a few points within the protocol which require servers to
multiply secret-shared values. It is well-known that this can be achieved by consuming multi-
plication triples, which are secret-shared vectors of the form ([a], [b], [ab]) where a, b are random
values. In the original Prio protocol, such multiplication triples are used during SNIP verifica-
tion. Normally, multiplication triple generation is expensive, although this fact is offset by the
fact that they are independent of user data and can thus be generated offline during low-traffic
times. Prio’s multiplication triples are particularly cheap to generate because the client is allowed
to generate them. Amazingly, even if a malicious client supplies an incorrect triple, this will not
trick the servers into approving an invalid SNIP. This is due to a beautiful argument regarding the
polynomial testing procedure, which is discussed in detail in [8]. In Prio+, generating edaBits for
the Boolean-to-arithmetic share conversion protocol also requires multiplication of secret-shared
values. The vast majority of these values are single bits. Multiplying single bits does not require
multiplication triples: we can simply use oblivious transfer (OT). We utilize silent OT extension
[6] so as to minimize server-to-server communication. However, to ensure that the edaBits are the
correct bit-length, a single double-authenticated bit (daBit) is necessary for each edaBit generated,
and generating a daBit requires multiplying large secret-shared values. This is the one step in
which our protocol uses multiplication triples, and it requires one multiplication triple in the field
Zp. To generate these few multiplication triples we utilize a semi-honest version of the method
from [11] which is based on homomorphic encryption. Servers randomly generate their shares of
a and b and then use the multiplicative property of the encryption scheme to compute shares of
the product ab. This method has the added benefit of allowing servers to pack many shares into
the same ciphertext, which enables generation of many multiplication triples at once with a sin-
gle round of communication. This is not necessarily the most efficient method: recent advances

6

in pseudorandom-correlation generators (PCGs) suggest the possibility of producing these triples
more cheaply [7]. Since we require so few of them, however, we chose to use standard homomorphic
encryption-based methods to enable easier implementation of the resulting protocol.

Complex Statistics: Prio+ supports computation of the exact same statistics as Prio. In partic-
ular, in addition to SUM, clients can compute Boolean AND / OR (where each client holds a single
bit), MAX / MIN and frequency count FRQ (where each client holds a value in some small range
[0,K]), integer variance VAR and standard deviation STDDEV (where each client holds an L-bit
integer), and linear regression linReg (where each client holds a degree d feature vector of L-bit
integers).

Many of these statistics (AND, OR, MAX, MIN) are even simpler than SUM, requiring no share con-
version, no zero-knowledge proofs, and virtually no communication between servers. FRQ, similar
to SUM, requires share conversion to allow summation on the server side, but does not require any
zero-knowledge proofs. Instead, servers use some simple logical mechanisms to detect improperly
encoded inputs, which we will discuss in the next section.

The only statistics which do require some zero-knowledge proofs are VAR, STDDEV, and linReg.
In these cases, clients encode their private values in such a way that the most efficient method
for verifying that encoding is to use secret-shared non-interactive proofs (SNIPs) similarly to Prio.
The key difference is that the SNIPs in this case are only being used to verify a very specific part
of the encoding, whereas in Prio they are used to verify every property of the encoded value. For
example, when computing VAR, clients should submit values of the form ~x = (x, x2) where x is an
L-bit integer. Prio would use one large SNIP to verify both of those facts at once. By contrast,
Prio+ first uses Boolean secret-sharing to ensure that ~x1 is an L-bit integer and ~x2 is a 2L-bit
integer. Then, we use SNIPs to verify the relation ~x21 = ~x2. Because the construction of SNIPs is
centered around verifying the output of multiplication gates, they are particularly well-suited to
verifying multiplicative relations of this sort which require relatively few multiplications. Because
SNIPs operate on arithmetic shares of the input, we first apply edaBit-based Boolean-to-arithmetic
share conversion on the clients’ submitted Boolean shares. The reason OT-based share conversion
from [14] does not suffice is that SNIP verification is based on a batched polynomial identity test
[8] which is only valid if the underlying polynomial is defined over a field.

Frequency Count: To compute FRQ, Pi is required to submit shares of an impulse vector δxi with
value 1 at index xi and value 0 at all other locations. Servers then sum up these impulse vectors
component-wise to output a histogram ~h of the distribution of client values. Verifying that no client
submitted a non-impulse vector is somewhat non-trivial: it requires more than simply verifying the
length of individual shares, but checking the relation via SNIPs requires many multiplication gates
since it is not an inherently multiplicative relation. However, servers can accomplish this task at
relatively low cost using some simple logic. First, servers use the Boolean shares of client inputs
to check the parity of the number of 1’s in each client’s submitted vector. This requires passing
a single bit per client and reveals nothing about any honest client’s input, since an honest input
will always be an impulse and thus have an odd number of 1’s. This step ensures that no client
submitted a zero vector, since that would have an even number of 1’s. Next, servers check whether
the total number of 1’s is equal to the total number of players. If so, this (in combination with the

7

fact that no player submitted a zero vector) implies that all players submitted a single impulse.
If not, they can locate the misbehaving player by repeating this check a logarithmic number of
times on smaller subsets of the players, honing in on the misbehaving player via binary search. To
check whether the total number of 1’s is equal to the total number of players, servers simply apply
Boolean-to-arithmetic share conversion on each component of each shared vector, locally sum all
components of all shared vectors, recombine the total sum and check this against the total num-
ber of players. After this check identifies all misbehaving players and those inputs are discarded,
servers sum the arithmetic shares of all well-behaving clients and return these summed vectors to
the clients who sum them together to get the histogram ~h.

Practical Comparison: We compared Prio+ to both the original Go implementation of Prio as
well as another implementation by Mozilla which only computes SUM, no complex statistics. We
did not compare to the updated construction given in [5] because it has not yet been implemented
and is focused on the case of extremely long inputs. In the case of practically-sized inputs, large
constant terms overshadow the asymptotically smaller client message sizes.

First, we compared all three implementations in evaluating the SUM(x1, . . . , xn) where n = 10, 000,
n = 50, 000, and n = 100, 000. We recorded the encode time (milliseconds per client), client mes-
sage size (bytes per client per server), server compute time (milliseconds per server per client), and
server communication (bytes per server per client) and averaged the results from each value of n.
We ran four separate experiments in which xi was 1-bit, 8-bits, 16-bits, and 32-bits respectively.
Prio+ clients were able to encode their data up to 540x faster than in the Go implementation of
Prio, and up to 3000x faster than in the Mozilla implementation. Client messages in Prio+ were
over 3x smaller than in the Mozilla implementation, and up to 23x smaller than in the Go imple-
mentation. Although reducing server computation time was not the primary goal of this project,
Prio+ servers processed client submissions up to 116x faster than the Go implementation and up to
615x faster than the Mozilla implementation. The expected drawback of these savings was server
communication, since conserving server bandwidth was the primary motivation for Prio’s SNIPs.
Prio+ does see increased server bandwidth in some cases, particularly as the size of user inputs
increases. However, the practical bandwidth usage for 1-bit integers is essentially the same as in
the Mozilla implementation and 18x less than the Go implementation. By comparison, for 32-bit
inputs, Prio+ server communication is still 3x less than the Go implementation, and just 7x more
than the Mozilla implementation. This tells us that for practically-sized user inputs, Prio+ achieves
monumental improvements in client computation, client communication, and server computation
with minimal impact to server communication.

We also ran similar experiments between Prio+ and the Go implementation of Prio for MAX and
linReg. Since MAX requires no SNIPs and no share conversion, we saw improvements across the
board: when client values lied in the range [0, 128], Prio+ client encode time was 750x less, client
message size was 5x smaller, server compute time was 43x less, and server communication was 46x
less. Even though linReg still requires some SNIPs (with reduced scope), we saw up to 30x lower
client encode time, up to 4x smaller client message size, up to 3x less server compute time, and
server communication varying between 5x less (for degree 2 inputs) and 1.5x more (for degree 8
inputs). Prio+ is clearly more efficient across the board when computing MAX and low-degree
linReg. For higher-degree linReg, we see significant gains in encode time, client message size, and

8

server compute time for a slight increase in server communication.

3 Preliminaries

In this section we will describe our computational model. This includes a description of our ideal
functionality, the client/server setup, our efficiency model, the set of adversaries we defend against,
and the assumptions we rely upon to build our protocol.

“Two-Party” Setting: In this work we construct protocols for secure computation of a wide
range of aggregate statistics in the client-server model. That is, a set of n clients with private
data wish to compute statistics on that data with the help of two honest-but-curious servers. The
basis of our system is a secure two-party protocol between these servers. That is to say that each
client with an input, secret-shares his/her input between the two computation servers (which are
assumed to not collude). Then, the two computation servers run the secure two-party computa-
tion protocol on the input shares which does not reveal to either server any information about
client inputs. Finally, they send the output shares back to the clients who then reconstruct the
output. This technique of using secure two-party computation in the client-server setting was first
described in the ABY framework of [14] and has been used in many applications since, including [8].

Just as in the ABY framework of [14], this also allows for reactive computations in which the two
computation servers maintain some secure state information between multiple executions. This
could be used in the case where client data is being collected over time and the data is sent to the
servers one point at a time.

Formally, our deployment consists of n clients {P1, . . . , Pn} and 2 servers SL and SR. Each client
Pi holds some private input xi. Each client can communicate with each server and servers can
communicate with clients and each other via private channels, but clients do not communicate
with each other. Side note: although Prio+ is described as a two-server protocol, it can be easily
generalized to a 2s server protocol for any positive integer s by simply running Prio+ s times in
parallel with each pair of servers collecting data from their designated area.

Efficiency Model: The complexity measures we consider are computation and communication of
each type of party (or pair of parties). In particular:

• Computation per client, τc

• Computation per server, τs

• Client-to-server communication, ρc

• Server-to-server communication, ρs

Instead of optimizing for low communication or computation overall, we assume clients have low
computational power and servers have high computational power. Similarly, we assume a low-
bandwidth connection from clients to servers, and a high-bandwidth connection between servers.
Thus we seek to minimize τc and ρc as our highest priority, and τs and ρs as an afterthought. In
general, we assume network latency is the greatest bottleneck in computation, so for both clients

9

and servers we are concerned more with optimizing their communication than their computation.

Security Against Semi-Honest Servers, Malicious Clients: Our deployment protects client
privacy as long as at most one server is passively corrupted (regardless of malicious client misbe-
havior). Our system cannot tolerate malicious, misbehaving servers as this comes at a direct cost
of functionality, as discussed in [8]. Our deployment always provides robustness (correctness) so
long as neither server maliciously misbehaves. We summarize our security definitions here, please
refer to Appendix A for details.

Privacy: Intuitively, our deployment provides f -privacy for an aggregation function (statistic) f if
an adversary controlling any number of clients and all but one server learns nothing about the hon-
est clients’ inputs besides what is revealed by the output of f . More formally, any such adversary
can simulate its view of the protocol run given the output of f . For some aggregation functions, we
weaken our protocol to provide f̂ -privacy where f̂ leaks slightly more information than the statistic
itself (for example, servers may leak the number of clients who provided invalid inputs).

Robustness: A protocol is t-robust if a coalition of t malicious clients cannot affect the output of the
protocol beyond misreporting their private data values. This is the strictest notion of correctness
in the malicious security model, since a client’s private input is known to nobody but themselves,
meaning we cannot prevent them from misreporting it. If this data value is meant to come from a
specific domain, however, malicious clients should not be able to submit data from outside of that
domain. This is particularly relevant in our setting, where client data must be encoded correctly
to permit efficient computation of the aggregate statistic. Clients should absolutely not be able
to submit improperly encoded data, as this allows a single client to affect the output arbitrarily
without detection. Our deployment is robust against malicious clients, but not against malicious
servers. Though robustness against malicious servers may seem desirable, it comes at a direct cost
to performance, as argued in [8]. Since the number of clients is much larger than the number of
servers, it is much more reasonable to prevent and/or replace faulty servers than faulty clients.

Analogously to [8], we assume cryptographic primitives for the establishment of pairwise authenti-
cated channels (CCA-secure public key encryption [10], digital signatures [32, 33], etc.). We make
no synchrony assumptions about our network and do not rely on external systems to provide users
anonymity.

Notation: We write x⊕ y to denote the XOR operation (addition modulo 2), x+l y for addition
within the ring Z2l , and x +p y for addition in the field Zp. When ~x, ~y ∈ Z2m are vectors of bits,
we will write ~z = ~x ⊕ ~y to denote the bitwise-XOR operation. That is, (~z)i = (~x)i ⊕ (~y)i for each
0 ≤ i < m. We assume a maximum bit-length l on all integer data and thus treat all integer-valued
data as elements of the ring Z2l , except in the case where we perform share conversion on client
data. In that case, the resulting shares will lie within the field Zp, as this is required for our
polynomial identity testing procedure. This of course requires that p > 2l, which will always be
the case. We denote an arithmetically secret-shared variable x by [x]A. A variable x shared in the
Boolean secret-sharing scheme is denoted [x]B. We will exclusively use two-party secret-sharing,
and thus shares held by server SL will be written [x]tL, t ∈ {A,B}. Shares held by server SR will
similarly be written [x]tR. For an integer x, we refer to the i’th least significant bit of the binary

10

representation of x as (x)i. We will say that a function f : N −→ R is negligible if for every
positive polynomial poly there exists an integer Npoly such that for x > Npoly, |f(x)| < 1

poly(x) .

4 Necessary Primitives

In this section we describe the necessary building blocks for our construction. We outline the de-
tails of the Arithmetic and Boolean secret-sharing schemes and we also give a short description of
Beaver’s private multiplication procedure for arithmetically secret-shared values, first detailed in
[3], which plays a crucial role in our system.

First, we review the general concept of secret-sharing. We are motivated by a client holding secret
value x who wishes to “share” this secret value between N different servers. A general N -party
t-threshold secret-sharing scheme consists of two algorithms:

Share(x) takes a secret x and returns shares [x]1, . . . , [x]N

Rec({[x]i}) returns x if and only if {[x]i} consists of at least t different shares produced by
Share(x).

Here we give a general definition in terms of t and N , but our protocols will all adopt the values
t = N = 2.

A secret-sharing scheme must have two properties: privacy and correctness. Privacy in this setting
means any set of less than t shares of x reveals nothing about x. Correctness means that the
function Rec succeeds on every valid set of t or more shares. Each of these conditions must hold
except with negligible probability

We now describe the Arithmetic and Boolean secret-sharing schemes, which are central to our con-
struction. These schemes are described in [14], please refer there for further details.

Definition 4.1. Arithmetic Secret-Sharing: Given an integer x ∈ ZM , an arithmetic secret-
sharing of x is a random pair a, b ∈ ZM subject to the condition a+ b = x (mod M). We will first
formally describe the sharing semantics. Then we will describe the process of adding shared values
as well as multiplying shared values via the use of arithmetic multiplication triples, a.k.a Beaver
triples [3].

Semantics: The two-party arithmetic secret-sharing scheme consists of the following pair of func-
tions:

• Share+,M : ZM −→ (ZM)2, Share+,M (x) = ([x]AL , [x]AR), which are random elements of ZM
subject to the constraint [x]AL + [x]AR = x.

• Rec+,M : (ZM)2 −→ ZM , Rec+,M ([x]AL , [x]AR) = [x]AL + [x]AR (mod M).

Operations: Every efficiently computable function can be represented as a circuit of multiplication
and addition gates, which can each be performed over arithmetically secret-shared values as follows:

11

Addition/Scalar Multiplication: [z]A = [x]A + [y]A. Each server i ∈ {L,R} locally computes
[z]Ai = [x]Ai + [y]Ai . Similarly, to compute scalar multiplication [w]A = c · [x]A for c ∈ ZM , each
server locally computes [z]Ai = c · [x]Ai .

Multiplication: [z]A = [x]A · [y]A. Servers use a pre-computed Arithmetic multiplication triple
(a.k.a Beaver triple) [3] of the form ([a]A, [b]A, [c]A), where c = ab and a, b, c ∈ ZM . This triple
is consumed in order to perform the multiplication according to the following protocol MultA. In
general, this protocol works for an arbitrary number of players, but we present it as a two-party
protocol between SL and SR so as not to cause confusion.

Definition 4.2. The protocol MultA takes as input ([x]A, [y]A, [a]A, [b]A, [c]A). That is, it begins
with each server i ∈ {L,R} holding an arithmetic share [x]Ai of some secret x and an arithmetic
share [y]Ai of some secret y, and also holding arithmetic shares ([a]Ai , [b]

A
i , [c]

A
i), where c = ab

(mod M). It computes arithmetic shares [z]A of z = xy (mod M) as follows:

• Each Si broadcasts [x]Ai − [a]Ai so that every party can compute x − a in the clear. They
similarly broadcast [y]Ai − [b]Ai so that each party learns y − b in the clear.

• An arbitrary party (say SL) outputs z1 = c1 + (x− a)b1 + (y − b)a1 + (x− a)(y − b)

• SR outputs zi = ci + (x− a)bi + (y − b)ai.

It is proven in [3] that MultA(·) correctly outputs [z]A, an arithmetic secret-sharing of the product
z = xy (mod M).

Definition 4.3. Boolean Secret-Sharing Given an integer x ∈ Z2l , a Boolean secret-sharing of
x is a random pair c, d ∈ Z2l subject to the condition c⊕ d = x.

Semantics: The two-party l-bit Boolean secret-sharing scheme consists of the following pair of
functions:

• Share⊕,l : Z2l −→ (Z2l)
2, Share⊕,l(x) = ([x]BL , [x]BR), which are random elements of Z2l subject

to the constraint [x]AL ⊕ [x]AR = x.

• Rec⊕,l : (Z2l)
2 −→ Z2l , Rec⊕,l([x]AL , [x]AR) = [x]AL ⊕ [x]AR.

Operations: Any efficiently computable function can be represented as a circuit of XOR and AND
gates, which can be computed over Boolean secret-shares as follows:

XOR: [z]B = [x]B ⊕ [y]B. Each server i ∈ {L,R} locally computes [z]Bi = [x]Bi ⊕ [y]Bi .

AND: [z]B = [x]B ∧ [y]B. This is computed using two instances of OT, details can be found in
Section 9 (ΠedaBitGen step 3(a)(iii)).

12

These two secret-sharing schemes have different strengths and weaknesses. When client data is
shared under the Boolean scheme, servers can locally extend l′-bit shares of some secret value to
l-bit shares (l > l′) of the same secret value without sacrificing privacy. They do this by simply
appending l− l′ leading zeroes to their personal shares. This means that servers can require client
inputs to be at most l′ bits, verify that each share they received has length l′, and then lift those
shares into equivalent shares in a larger domain to compute on them without overflowing the modu-
lus. In contrast, lifting arithmetic shares into a larger domain is non-trivial and quite expensive [14].
On the other hand, if client data is arithmetically secret-shared under a large modulus M , servers
can efficiently compute the sum of shared values by locally summing their shares modulo M and
sending these aggregated shares back to the client for reconstruction, as utilized in many previous
works, including Prio [8]. We will soon show how our system leverages both of these advantages
in order to allow clients to more efficiently and privately compute complex aggregate statistics. In
particular, Prio+ clients will submit their data in the Boolean scheme (so that servers can verify
the bit-length efficiently) and then servers will convert these shares back to the arithmetic scheme
in order to sum the data together and compute the given statistic.

Boolean to arithmetic share conversion is a well-studied technique. The current most efficient pro-
tocol in the semi-honest two-party setting is due to [14] and is based on Oblivious Transfer (OT).
In particular, to convert a pair of l-bit Boolean shares, they use l independent instances of OT
where each OT transfers on average a string of length (l + 1)/2. The total communication cost
is l(κ + (l + 1)/2) = O(l2) [14]. The resulting arithmetic shares lie in the ring Z2l . The most
efficient method for computing OTs in our model, and the method which we will utilize, is silent
OT-extension [6] which minimizes communication between servers.

While this OT-based share conversion protocol suffices for some of our applications, computing
more advanced statistics requires that the resulting arithmetic shares lie in a field. This is due
to specific requirements of the zero-knowledge proofs we will use to prove inputs are well-formed.
We describe these proofs in more detail in the following paragraph. To circumvent this issue, we
develop and utilize a share conversion protocol whose output shares lie in the field Zp. Our protocol
is based on a recently discovered primitive called extended doubly-authenticated bits, or edaBits
[18]. Although this primitive has mostly been utilized in the setting of malicious security, we use
them to construct an efficient share conversion protocol in the semi-honest setting. Our protocol is
based on existing techniques but, as far as we know, has not yet been detailed explicitly. Our full
protocol can be found in Section 8.

The final piece which some of our protocols utilize is the secret-shared non-interactive zero-knowledge
proof (SNIP) which underpins the Prio protocol of [8], which we described briefly in the introduc-
tion. Although our position is that their system overuses SNIPs in situations where they are
unnecessary, in the right circumstances SNIPs are an incredibly efficient method for verifying mul-
tiplicative relationships on secret-shared inputs in the client-server setting. We review here the
method of using SNIPs to allow servers to efficiently verify that Valid(x) = 1 for some client input
x without learning any additional information. The following description comes directly from [8].

A secret-shared non-interactive proof (SNIP) protocol consists of an interaction between a client
(the prover) and multiple servers (the verifiers). At the start of the protocol:

13

• Each server i holds a share [x]i ∈ FL

• The client holds the secret input (vector) x =
∑

i[x]i ∈ FL.

• All parties hold an arithmetic circuit representing Valid : FL −→ F.

The client’s goal is to convince the servers that Valid(x) = 1 without revealing any additional in-
formation about x. To do so, the client sends a proof string to each server. After receiving these
proof strings, the servers gossip amongst themselves and then conclude either that Valid(x) = 1
(accept x) or Valid(x) 6= 1 (reject x).

A valid SNIP must satisfy correctness, soundness, and zero-knowledge.

Correctness. If all parties are honest, the servers will accept x.

Soundness. If all servers are honest, and if Valid(x) 6= 1, then for all malicious clients,
even ones running in super-polynomial time, the servers will reject x with overwhelming
probability. In other words, no matter how the client cheats, the servers will almost always
reject.

Zero-knowledge. If the client and at least one server are honest, then the servers learn
nothing about x, except that Valid(x) = 1. More precisely, there exists a simulator (that does
not take x as input) that accurately reproduces the view of any proper subset of malicious
servers executing the SNIP protocol.

The construction in [8], based on a generalized version of the polynomial-based batched multipli-
cation verification technique of Ben-Sasson et al. [4], satisfies each of these properties as proven
in their Appendix D. We omit the details of their construction due to space limitations, but we
emphasize that multiplication verification is central to their construction and thus it is well suited
for verifying multiplicative relationships among inputs, as these can be verified using relatively few
multiplication gates in the Valid circuit. This number of multiplication gates, which we denote
µ, is the bottleneck efficiency parameter for their construction. Client-to-server communication is
proportional to µ, and client computation is proportional to µ logµ. For this reason, we restrict
ourselves to using SNIPs only for verifying naturally multiplicative relations, as opposed to Prio
which uses them universally for all types of input verification. For example: suppose a client is
meant to submit shares of ~x = (x, x2) where x is a b-bit integer. Prio’s solution is to use one large
SNIP to verify at once both the fact that ~x1 is a b-bit integer as well as the fact that ~x21 = ~x2.
Prio+, on the other hand, would verify the bit-length of x using Boolean secret-sharing, and use a
smaller SNIP to verify the naturally multiplicative relation ~x21 = ~x2.

5 The Simple Scheme

Our protocols are all based on the following simple scheme for computing the sum of clients’ private
bits. This is also the basis of Prio’s solution and is described in [8]. We reiterate that scheme here
for convenience.

Each client Pi, i ∈ {1, . . . , n}, holds a private bit xi ∈ {0, 1}. They wish to learn the sum
f(x1, . . . , xn) =

∑n
i=1 xi. Even this basic functionality has wide-ranging applications for data

14

collectors, since it allows one to survey clients on any yes/no question and learn the distribution of
responses. Consider the following protocol for computing the sum.

1. Upload: Each Pi computes Share+,M (xi) = ([xi]
A
L , [xi]

A
R). The client then sends one additive

share to each server over secure pairwise-authenticated channels. Note: although xi is a single
bit, we treat it here as an element of ZM for M > n.

2. Aggregate: SL and SR hold accumulator values AL, AR ∈ Zp respectively, initially set to
zero. For each i, when SL receives [xi]

A
L from Pi, computes AL ← AL + [xi]

A
L (mod M). SR

does the same with its accumulator AR upon receiving [xi]
A
R from Pi.

3. Publish: Once data is collected, servers publish their accumulator values AL, AR to every
client.

4. Client Computation: Clients compute the sum of the accumulator valuesAL+AR (mod M).

Note that if all players behave, each client’s output is

AL +AR (mod M) =
∑
i

[xi]
A
L +p

∑
i

[xi]
A
R (mod M) =

∑
i

xi (mod M)

Since each xi is at most 1, requiring M > n ensures that
∑

i xi never overflows the modulus 2l.
This means that the output, interpreted as an integer, is indeed the sum

∑
i xi.

The authors of [8] make two crucial observations about this simple scheme. First, it provides pri-
vacy as long as one server is honest. The adversary’s view only includes a single share, say [x]AL , of
an honest client’s input x, which appears totally random without [x]AR. Second, the scheme does
not provide robustness against malicious clients. A single malicious client can completely corrupt
the protocol output by submitting (for example) arithmetic shares of a random integer r ∈ ZM to
each server.

The authors of Prio [8] solve the client robustness issue by forcing clients to construct and submit
SNIPs (secret-shared non-interactive proofs), a novel type of zero-knowledge proof which allows the
servers to non-interactively verify the form of client inputs. This is effective, but requires some-
what expensive computation and communication on the clients’ part to construct and send these
SNIPs to the servers. Since clients are presumed to be computationally weak compared to servers
in our model, latency between clients and servers is high, this is not ideal. We would rather invoke
some extra communication and computation among the servers if it would allow us to reduce the
communication and computation on the client side.

We observe that clients can solve the robustness issue by instead submitting their data using the
1-bit Boolean secret-sharing scheme. This allows servers to verify that x ∈ {0, 1} by simply con-
firming that each share is a single bit, forcing the client to sharing a value which is only a single
bit in length. Then, servers can execute a share conversion protocol to privately convert these into
arithmetic shares of the same secret values in the larger ring ZM and sum them up as before. This

15

observation is the intellectual core of our deployment.

In the next section, we give further details of how we protect against malicious clients using share
conversion. In particular, we show how to apply our observation described above to prevent clients
from submitting data outside the range {0, 1}. This can be trivially generalized to verifying that
client data falls within the range [0, 2l−1]. In future sections, we show how servers can verify other
aspects of user inputs besides the bit-length. These tools will be necessary for computing more
complex statistics. In that case, clients will encode their inputs before sharing with the servers,
and servers will need tools to verify that submitted data is properly encoded. The authors of Prio
[8] once again accomplish this via SNIPs, but we will show that such machinery is, in most cases,
wasteful and unnecessary for computing the desired statistics.

6 Protecting Correctness via Share Conversion

In this section we give further details about share conversion and how we use it to make Prio+
robust against malicious clients.

The reason a malicious client can cheat and submit xi 6∈ {0, 1} is that when xi is shared arith-
metically in ZM , a single share reveals nothing about the size of xi. From the servers’ perspective,
the underlying data xi could be any element of ZM . Thus, server SL holding a single share [xi]

A
L

cannot tell whether xi ∈ {0, 1}.

Imagine, however, that Pi shares xi via the 1-bit Boolean scheme as xi = [xi]
B
L ⊕ [xi]

B
R. If [xi]

B
L ∈

{0, 1} and [xi]
B
R ∈ {0, 1}, then it is guaranteed that xi ∈ {0, 1}. Using Boolean to arithmetic share

conversion, servers can then compute arithmetic shares [xi]
A of the value xi in the extended ring ZM

and continue computation according to the simple scheme. If this conversion is done securely, these
shares will have the same amount of entropy as the original 1-bit Boolean shares, effectively hiding
the underlying secret value. Thus, all we need in order to make the simple scheme robust against
malicious clients is a Boolean to arithmetic share conversion protocol achieving the following ideal
functionality FB2A described below.

Definition 6.1. The two-player l-bit ideal functionality FB2A (with output in ZM) behaves as
follows:

• FB2A receives [x]BL , [x]BR ∈ Z2l as inputs from SL, SR respectively.

• FB2A computes x = [x]BL ⊕ [x]BR

• FB2A computes Share+,M (x) = ([x]AL , [x]AR) satisfying [x]AL + [x]AR = x (mod M).

• FB2A returns [x]AL , [x]AR to SL, SR respectively as outputs.

Share conversion has been well-studied, both in its theoretical limitations [9] and its practical per-
formance [14]. For this simple scheme, we will utilize the OT-based Boolean to Arithmetic share
conversion protocol described in [14], as it has been shown to have the best practical performance
given recent advancements in OT extension ([23], [29]). Their protocol utilizes l independent in-
stances of correlated-OT, where each OT transfers an (l + 1)/2-bit string on average. This uses

16

l(κ + (l + 1)/2) total bits of communication. This is the most efficient technique due to modern
advances in OT extension [23].

Later, when computing more advanced statistics, we will need the output of the share conversion to
lie in a field Zp, which this OT-based share conversion cannot support. We will then use a simple
but novel share conversion scheme based on extended doubly authenticated bits, or edaBits, which
were first defined in [18]. It is known that edaBits can be utilized for share conversion, and this is
quite common and well-studied, but they have been primarily used in the malicious setting, whereas
we will use them to do share conversion with only semi-honest security. This can, of course, be
done much more efficiently than in the malicious setting. For further details on edaBits and our
share conversion protocol into Zp, please see Section 8.

From now on, we will use the notation B2Al,M ([x]BL , [x]BR) to represent an evaluation of a Boolean
to arithmetic share conversion protocol with l-bit inputs and whose output lies in ZM . When
the bitlength of the input shares and the output range are clear by context, we may simply write
B2A([x]BL , [x]BR)

With B2A in our toolbox, we can now strengthen the simple scheme from the previous section
to prevent malicious clients from corrupting the output. In particular, we force clients to submit
single bits by making them submit data under the 1-bit Boolean secret-sharing scheme. Then,
servers convert the Boolean shares into the arithmetic scheme using B2A. Servers then compute
the sum of the shared data according to the simple scheme. Servers only accept shares consisting
of a single bit, which means that if both servers accept shares [xi]

B
L , [xi]

B
R from Pi, we are guaran-

teed that [xi]
B
L ⊕ [xi]

B
R ∈ {0, 1}. This precisely guarantees robustness in the sense that a malicious

client cannot affect the output of the protocol beyond misreporting their private data. A detailed
description of this strengthened protocol can be found below. Detailed proofs of its privacy and
robustness can be found in Appendix C.

17

ΠbitSum

Inputs: xi ∈ {0, 1} for i ∈ [n]
Output :

∑n
i=1 xi.

1. Upload:

(a) Each client Pi computes Share⊕,1(xi) −→ [xi]
B
L , [xi]

B
R via Definition 4.3

(b) Each Pi sends [xi]L, [xi]R to SL, SR respectively.

2. Verify Bit-Length: Initially, n′ = n. If a server receives a share which is not 1 bit in length
from Pi (assume SL w.l.o.g.):

(a) SL sends the index i to SR.

(b) Both servers discard [xi]
B.

(c) Both servers set n′ ← n′ − 1

3. Convert Shares: SL and SR jointly evaluate B2A1,2l({[xi]BL , [xi]BR}) (as described in [14]) on

each of the n′ valid pairs of Boolean shares. SL receives as output {[xi]AL}i and SR receives
as output {[xi]AR}i.

4. Aggregate: SL locally adds all arithmetic shares into an accumulator AL, initially zero.
That is: AL ←− AL +

∑
i[xi]

A
L . SR analogously accumulates its arithmetic shares into

AR ←− AR +
∑

i[xi]
A
R.

5. Publish: Once all n′ shares have been accumulated, SL and SR publish AL and AR to every
client.

6. Client Computation: Clients output AL +AR.

18

As we can see, this minor modification of the simple scheme guarantees both privacy and robust-
ness without any heavy client-side computation. It also easily generalizes to compute the sum of
l-bit integers for l > 1 by simply sharing data in the l-bit Boolean scheme and then using Boolean
to arithmetic share conversion. If servers intentionally leak the number of honest clients n′, then
this protocol for computing the sum is sufficient for computing the arithmetic mean as well. The
authors of Prio [8] extend their scheme beyond just computing the sum and arithmetic mean. Prio
supports computation of a wide array of aggregation functions including: variance (VAR), standard
deviation (STDDEV), Boolean OR and AND, integer MIN and MAX, frequency count (FRQ), and
linear regression (linReg). They accomplish this by having users encode their input in particular
ways such that the sum of the encoded inputs reveals the desired statistic. These are discussed
in the literature as affine aggregatable encodings (AFEs), and we refer the reader to [8] for more
information regarding these encodings.

The only obstacle in computing these statistics analogously using our system is to design a way
for servers to successfully verify that clients’ inputs are properly encoded. If this can be done,
our Prio+ servers can verify that client data is properly encoded (and is within the proper range),
perform share conversion, sum the resulting arithmetic shares and return the sum of the properly
encoded inputs using the exact same technique as our ΠbitSum protocol. This sum of encoded in-
puts will be precisely the desired statistic according to the underlying AFE. Instead of universally
relying on SNIPs for verifying client encodings, as Prio does [8], we use SNIPs sparingly. We use
them exclusively for verifying multiplicative relationships within the encoding, and all other prop-
erties of the encoded inputs are verified via alternative, novel methods. We believe that this is a
more appropriate application of SNIPs since they are, at their core, designed around verifying the
outputs of multiplication gates within a validity circuit.

In the following section, we outline each of the more complex statistics that our scheme computes.
For each statistic we describe the corresponding encoding for which summing the encoded inputs
produces the desired statistic.

7 Complex Statistics

In this section, we describe each of the statistics our deployment computes. For each statistic, we
describe the corresponding encoding which we use to enable computation. That is, how can we
compute an encoding of xi (written en(xi)) so that the statistic f we wish to compute is given
by f(x1, . . . , xn) =

∑
i en(xi) (or some locally computable function of this sum). These encodings

are referred to as “affine aggregatable encodings,” or AFEs. As most of the machinery of AFEs
is irrelevant to our applications, we omit a detailed discussion and instead refer readers to [8] for
more information.

As a reminder, each client Pi holds input xi from some secret-space D which will be encoded as
en(xi). They wish to compute f(x1, . . . , xn) using servers SL, SR. The servers are responsible for
verifying that en(xi) is a proper encoding of some xi ∈ D, as well as for summing these encodings
and returning them to clients so they can reconstruct the value f(x1, . . . , xn). For each statistic f ,
we give the domain D of the input xi (also referred to as the “secret-space”) as well as the encoding

19

we will use for computing f . We will also give a brief intuition of why this encoding is sufficient
and how the servers will use it to compute the statistic.

SUM, MEAN:

SUM(x1, . . . , xn) =
∑n

i=1 xi

MEAN(x1, . . . , xn) = 1
n · SUM(x1, . . . , xn)

Secret-Space: D = Z2l

Encoding : enint(xi) = xi

Intuition: Clients submit their data secret-shared via the l-bit Boolean scheme. Servers use B2A
to convert valid l-bit Boolean shares to arithmetic shares of the same secret xi in ZM for M > n
and then locally sum the resulting arithmetic shares. In order to compute the mean, we allow
the servers to modestly leak the number of players n − c whose valid shares are included in the
aggregate. Then clients can locally compute the mean. Note: this means our integer mean protocol
achieves only f̂ -privacy, where f̂ leaks n− c.

AND, OR:

AND(x1, . . . , xn) = 1 ⇐⇒ ∀i, xi = 1

OR(x1, . . . , xn) = 0 ⇐⇒ ∀i, xi = 0

Secret Space: D = {0, 1}
Encoding : enand(xi) = (1− xi)~r ∈ Fλ

2 for some security parameter λ and random ~r ∈ Fλ
2 . That is,

if xi = 1, enand(xi) = ~0, and if xi = 0, enand(xi) = ~r.

enor(xi) = xi · ~r ∈ Fλ
2 for some security parameter λ and random ~r ∈ Fλ

2 . That is, if xi =
0, enor(xi) = ~0, and if xi = 1, enor(xi) = ~r.

Intuition: Here, share conversion is unnecessary because the aggregation operator and the recon-
struction operator for the Boolean secret-sharing scheme are both XOR. Thus, servers can simply
locally XOR their valid shares and publish these aggregated values to clients, who will then XOR
the aggregated values together to produce the output. When computing AND, if every client has
xi = 1, then every en(xi) = ~0, and so the XOR of these encodings will certainly be ~0. In this case,
clients can conclude AND(x1, . . . , xn) = 1. Otherwise, if some client has xi = 0, then en(xi) = ~r
and the XOR of the encodings will be non-zero with probability 1− 1

2λ
. In this case, they conclude

that AND(x1, . . . , xn) = 0. The argument is analogous in the case of OR.

MAX, MIN:

MAX(x1, . . . , xn) = maxi xi

MIN(x1, . . . , xn) = mini xi

20

Secret Space: D = {0, . . . ,M} for small M ∈ Z

Encoding : enmax(xi) = (~r1, . . . , ~ri,~0, . . . ,~0) ∈ Fλ×M
2 , where each ~rj ∈ Fλ

2 is independently random.
This is equivalent to applying the enor() function to each component of the vector (1, . . . , 1, 0, . . . , 0) ∈
FM
2 where the first i components are 1.

Intuition: To compute the maximum, servers run the OR protocol M times in parallel on each
component of the encoded input. That is, they analogously XOR their shares locally, and return
them to clients to XOR and reconstruct the output. The clients parse this (λ ×M)-bit string in
λ-bit chunks, reading each chunk as a 0 if and only if every bit of that chunk is 0. The clients
compute the largest index k for which the corresponding OR protocol gave output 1, and conclude
the maximum is k. That is, they compute the largest value k such that the k’th substring of λ
consecutive bits contains a 1. This is certainly bounded above by the maximum, and the probability
that it undershoots the maximum by ∆ is 1

2λ×∆ , which is negligible in the security parameter λ.

To compute the minimum, clients first represent their input xi as χi = M − xi, and compute
the maximum of these χi values, yi = MAX(χ1, . . . , χn), as above. The desired minimum will be
precisely MIN(x1, . . . , xn) = M − yi, with the same error bounds as the MAX protocol.

VAR, STDDEV:

VAR(x1, . . . , xn) = 1
n

∑n
i=1(xi −MEAN(x1, . . . , xn))2

STDDEV(x1, . . . , xn) =
√

VAR(x1, . . . , xn)

Secret Space: D = Z2l

Encoding : envar(xi) = (xi, x
2
i)

Intuition: Servers parse the encoded input into its two parts and compute shares of (
∑

i xi,
∑

i x
2
i)

using two parallel instances of our protocol for SUM, which they return to clients. The clients
divide these values by n, which is a public parameter, to compute E[X] and E[X2], where X is
a random variable taking on each value xi with equal probability. From this, clients can locally
compute VAR(x1, . . . , xn) = E[X2]− (E[X])2. Note: in the case where clients may misbehave, this
protocol is only f̂ -private, where f̂ leaks E[X] and the remaining number of behaving players n′

in addition to the output. Clients who wish to compute the standard deviation simply add a local
square root operation to the end of the protocol.

linReg:

linReg((x1, y1), . . . , (xn, yn)) = (c0, c1), where ŷ(x) = c0 + c1x is the unique line which minimizes
the sum of squares loss

∑
i(yi − ŷ(xi))

2.

Secret Space: D = Z2l × Z2l

Encoding : enreg(xi, yi) = (xi, x
2
i , yi, xiyi)

Intuition: Analogously to the variance computation, servers compute the sum of the various parts of
the encoding in parallel via our protocol for SUM and return shares of (

∑
i xi,

∑
i x

2
i ,
∑

i yi,
∑

i xiyi)
to all clients. The clients can solve for the desired real regression coefficients c0 and c1 locally using
the following linear system:

21

(
n

∑
xi∑

xi
∑
x2i

)
·
(
c0
c1

)
=

(∑
yi∑
xiyi

)
(1)

Note that again, in the case of misbehaving clients, this implies servers must also reveal the value
n − c of remaining players in the protocol, introducing a modest leakage. Thus this protocol will
also be f̂ -private, where f̂ leaks n − c in addition to the output. This technique also trivially
generalizes to d-dimensional client inputs (x(0), x(1), . . . , x(d)) for d > 2 as described by [8].

FRQ:

FRQ(x1, . . . , xn) = ~h = (f1, . . . , fk) ∈ Zkn+1, where fj = |{xi : xi = j}| ≤ n is the frequency of
input j ∈ Zk

Secret Space: D = {0, . . . , k − 1} for small k ∈ Z

Encoding : enfrq(xi) = (δxi) ∈ Z2k , where the xi’th component of (δxi) is 1 and all other components
are 0. That is, (δxi) is an impulse at xi.

Intuition: If all players behave, taking the sum of these encodings yields the desired vector ~h. Thus,
servers evaluate k independent instances of B2A on each vector (one for each component) and then
locally sum the resulting vectors of arithmetic shares. They then publish these aggregated vectors
to clients who add them together to get ~h in the same manner as our SUM protocol.

We have now intuitively argued that, conditioned on the fact that all inputs are properly encoded,
servers can efficiently and privately compute each of these desired statistics. All that remains is to
describe the method by which servers can privately verify that shares [xi]L, [xi]R reconstruct proper
encoding of an element xi ∈ D for each of the encodings described above.

In the case of SUM, MEAN, AND, OR, MAX, and MIN, we simply observe that any Boolean vector
of the correct length is a valid encoding of some input in the relevant secret space. This makes our
job simple, since servers can trivially verify the bit-length of the input by checking the bit-length
of its shares.

For VAR,STDDEV, and linReg, servers must verify multiplicative relationships among different
parts of the secret-shared encoded inputs. We accomplish this using SNIPs analogously to the
methods of [8] described in Section 2. For a more detailed description of SNIPs construction and
usage, see [8].

The trickiest encoding to verify is enfrq. Here, servers are given Boolean shares of v and they must
verify that

∑
i(v)i = 1. That is, v has exactly one component equal to 1. In other words, v is

an impulse. This is a difficult encoding to verify because the number of valid encodings is quite
small compared to the total number of proper-length Boolean vectors. This principle applies to all
of our constructions: verifying an encoding is easiest when the set of proper encodings is “dense”
within the set of all Boolean vectors of proper length. That is, if most or all Boolean vectors are
proper encodings, little to no verification is necessary. In hindsight, this justifies the fact that
verifying enVAR (and similarly linReg) requires so much additional machinery, since the density of

22

valid encodings in that case is 2l

23l = 1
2l

.

In the case of FRQ, the proportion of valid encodings is very low, l
2l

. Furthermore, there does not
seem to be any straightforward way to verify that a shared vector is a single impulse using only
addition and multiplication of shares. Thus, our servers will have a bit more verification work to
do. It would be desirable to construct some alternative encoding for computing frequency count
which still permits computation but whose density of proper encodings in the set of Boolean vectors
is higher. Despite these challenges, we give a novel and practically efficient technique for verifying
this encoding in the next section.

8 Resolving Frequency Count

In this section we give a unique method for servers SL, SR, given [x]B ∈ Z2l , to verify that x is an
impulse. In particular, we detail how to do this efficiently in parallel for [x1]

B, . . . , [xn]B. When we
say x is an impulse, we mean (x)j = 1 ⇐⇒ j = j∗ for some unique j∗ ∈ {0, . . . , k − 1}. Crucially,
they must do this without leaking anything about honest players’ input xi besides whether or not
it is an impulse.

Intuitively, we break this process down into two parts:

1. Make sure no player submitted a zero vector.

2. Make sure no player submitted multiple impulses by verifying that the sum of components in
the final histogram equals n′, the number of valid shares received.

We can perform the first check on all n inputs using just 2n bits of communication and n · l XOR
operations. This is accomplished by checking the parity of the number of ones in each vector and
throwing out any vector with an even number of ones. Servers can perform this parity check in
the clear since it will never reveal any information about an honest player’s input besides the fact
that there are an odd number of ones, which is already implied by the fact that they submitted
an honest impulse vector. Thus, each server simply computes the parity of their share and they
combine these parities in the clear to get the parity of the client’s encoded input. This uses exactly
two bits of communication and l XOR operations per server for a single parity check. More precisely:

• SL, SR initially hold [x]BL , [x]BR respectively.

• SL computes bL =
⊕

j([x]BL)j and sends bL to SR.

• SR computes bR =
⊕

j([x]BR)j and sends bR to SL.

• Both servers compute b = bL ⊕ bR.

• If b = 0, both servers discard [x]B.

Now, assume the first condition holds. Since no player submitted a zero vector, we must now detect
players who submitted “bad” vectors with multiple ones in them. We know from the first condition
that if the sum of the components in the final histogram, which we call sum(~h), is precisely n′, the

23

number of players who submitted non-zero vectors, we can conclude that no player submitted a
bad vector of multiple ones.

We would ideally like to allow servers to simply sum the components of their local shares, produc-
ing a single arithmetic share of sum(~h). Then, they could reconstruct this value and compare it
to n′. This would leak no information about honest players’ inputs, since it is already known that
honest players submitted a single impulse, and this sum reveals nothing about the location of any
particular impulse, only the total number of such impulses. Since components of the input vectors
are originally shared using the Boolean scheme, however, we must first convert each component
into the arithmetic secret-sharing scheme using B2A. Once we make this conversion, servers can
sum these vectors of Arithmetic shares locally to produce arithmetic shares of sum(~h), reconstruct
this in the clear, and compare it to n′, as detailed above.

In the best case, if this check succeeds the first time we attempt it, we know with certainty that
no player submitted a non-impulse vector (conditioned on the fact that no player submitted a zero
vector, as confirmed by the initial verification step). If it fails, we split the set of behaving players in
half and recursively repeat this check on each half, locating misbehaving players via binary search.
In the worst case, this brings the total communication to 2nl · log(n) bits of communication and
O(n log n) local additions/multiplications.

As we mentioned, the rest of the verification is simple: servers compute sL =
∑

i([x]∗L)i and

sR =
∑

i([x]∗R)i. We will then have that sL + sR = sum(~h). To compare this value to n′, SL sends
sL to SR and SR computes sL+sR−n′. If this value is zero, then all inputs are single impulses and
SR replies with the bit 1. If not, SR replies with the bit 0, indicating that some input has failed,
and they continue the recursive search for misbehaving clients.

Once both verification steps succeed, we know that every player submitted a valid impulse except
with negligible probability. From this point, servers proceed to compute the frequency count by
locally summing their valid vectors of arithmetic shares into local accumulators AL, AR ∈ Zk

2l
. If

each such vector is valid, then AL +AR = ~h, the desired histogram. Servers then return AL, AR to
clients who reconstruct ~h in precisely this manner.

9 Share Conversion

In this section, we detail our Boolean-to-arithmetic share conversion protocol based on edaBits
[18]. As opposed to the OT-based protocol from [14], the arithmetic shares output by our proto-
col lie in the field Zp. This is necessary for our protocols which utilize SNIPs (variance, linReg)
because the arithmetic shares must be used within a polynomial identity testing procedure. Such
a procedure is not valid in a ring, where a polynomial of degree d may have arbitrarily many zeroes.

First, we review the definition and construction of edaBits. An l-bit edaBit consists of the following:
([r]A, [r0]

B, . . . , [rl]
B) where ri ∈ {0, 1} and r =

∑l
i=1 ri · 2i is an l-bit integer and [r]A is shared

in Zp for some p > 2l. This is a refinement of the daBit primitive, originally introduced by [31].
A daBit is simply a random bit b shared in both the arithmetic and Boolean schemes. That is,
([b]A, [b]B) for b ∈ {0, 1}. Their paper, as well as other followup papers including [2], show how to

24

use l daBits to convert Boolean shares of an l-bit integer into a random arithmetic sharing of the
same integer. In [18], the fact that these daBits can be replaced by a single edaBit is discussed but
the resulting protocol is not made explicit.

Our edaBit generation protocol is identical to the edaBit generation protocol from [18]. Recall,
the goal of edaBit generation is for k players, each with access to their own independent random-
ness, to compute a shared vector ([r]A, [r0]

B, . . . , [rb]
B) where r is a b-bit random value unknown

to all players and r =
∑

i 2iri. In the semi-honest setting, the procedure for generating “faulty”
edaBits (edaBits which may or may not be properly formed) given in [18] always results in proper
edaBits since our servers follow the protocol honestly. The basic idea is that each party gener-
ates their own private edaBit, with underlying values r, r′, and sends one half of the shares to the
other party. Then, they combine the private edaBits into a public edaBit whose underlying value
r + r′ is unknown to both parties. This can be done trivially for the arithmetic shares by simply
computing [r]A + [r′]A = [r + r′]A. For the Boolean shares, players pass the bits ri, r

′
i through an

l-bit binary adder circuit composed of AND gates and XOR gates. All gates of the form x ⊕ y
can be trivially evaluated by locally computing [x⊕ y]B = [x]B ⊕ [y]B. Since AND is equivalent to
single-bit multiplication, each AND gate can each be evaluated at the cost of two oblivious transfers
(OTs). The naive l-bit binary adder circuit consists of l+ 1 AND gates. Thus, to generate an l-bit
edaBit requires 2(l+ 1) OTs. To ensure that the value r+ r′ is an l-bit integer, servers use a single
daBit to convert their Boolean shares of the final carry bit c from the binary adder circuit into
arithmetic shares [c]A. The final result of edaBit generation is the arithmetic shares [r+ r′− 2n · c],
which is an l-bit integer unknown to both parties, and Boolean shares of those l bits [r0]

B, . . . , [rl]
B

representing r + r′ − 2n · c. More details can be found in [18].

Our method of using edaBits for share conversion is strikingly similar to the generation procedure.
Given ([x0]

B, . . . , [xl]
B) and ([r]A, [r0]

B, . . . , [rl]
B), we wish to compute [x]A, where x =

∑l
i=0 xi ·2i.

Note that if we are able to compute [x+ r]A, we can then trivially compute [x]A = [x+ r]A − [r]A.
To compute [x + r]A, we again utilize the binary adder circuit strategy detailed above, this time
with inputs ([x0]

B, . . . , [xl]
B), ([r0]

B, . . . , [rl]
B). The key difference is that our output should be

arithmetic shares [x+r]A in Zp, rather than a list ([s0]
B, . . . , [sl]

B) of l Boolean shares representing
the bits si of the sum s = x + r. Since x and r are both unknown to both parties, x + r can be
revealed in the clear without compromising privacy. Thus parties simply reconstruct x + r in the
clear, recompute an arithmetic sharing [x + r]A, and compute [x]A = [x + r]A − [r]A as desired.
Formal descriptions of both the edaBit generation protocol and the edaBit-based share conversion
protocol follow.

25

edaBitGen

Inputs: One daBit ([d]A, [d]B) for random d ∈ {0, 1}
Output : An l-bit edaBit ([r]A, [r0]

B, . . . , [rl]
B)

1. Sample Private edaBits:

(a) SL samples random r ∈ Z2l and computes ([r]A, [r0]
B, . . . , [rl]

B), where r =
∑

2i · ri.
Similarly, SR samples random r′ ∈ Z2l and computes ([r′]A, [r′0]

B, . . . , [r′l]
B), where r′ =∑

2i · r′i.
(b) SL sends ([r]AR, [r0]

B
R, . . . , [rl]

B
R) to SR, and SR sends ([r′]AL , [r

′
0]
B
L , . . . , [r

′
l]
B
L) to SL.

2. Combine Arithmetic Shares:

(a) SL locally computes [r + r′]AL = [r]AL + [r′]AL .

(b) SR locally computes [r + r′]AR = [r]AR + [r′]AR.

3. Combine Boolean Shares:

(a) Using an l-bit binary adder circuit over secret-shared values composed of AND gates
and XOR gates, compute ([(r + r′)0]

B, . . . , [(r + r′)l]
B), where (r + r′)i is the i’th bit of

r + r′, as well as [c]B, a Boolean share of the carry bit c ∈ {0, 1}.
i. The first l-bit input to the circuit will be r0, . . . , rl and the second will be r′0, . . . , r

′
l.

ii. To compute an XOR gate bi ⊕ bj given [bi]
B and [bj]

B, players locally compute
[bi ⊕ bj]B = [bi]

B ⊕ [bj]
B.

iii. To compute an AND gate bi · bj given [bi]
B and [bj]

B, players use two instances of
1-2-OT. Suppose P1 holds [bi]1 and [bj]1, P2 holds [bi]2, [bj]2. bi · bj = ([bi]1 ⊕ [bi]2) ·
([bj]1]⊕ [bj]2) = [bi]1 · [bj]1⊕ [bi]1 · [bj]2⊕ [bi]2 · [bj]1⊕ [bi]2 · [bj]2. P1’s share of bi ·bj will
be ([bi]1 · [bj]1)⊕ ([bi]1 · [bj]2). The first part is computed locally. For the cross-term,
P1 acts as the receiver in a 1-2-OT with choice bit [bi]1. P2 acts as the sender with
messages m0 = 0 · [bj]2 = 0 and m1 = 1 · [bj]2 = [bj]2. Thus P1 receives [bi]1 · [bj]2.
P2’s share [bi]2 · [bj]1 ⊕ [bi]2 · [bj]2 is computed symmetrically, using another 1-2-OT
instance.

iv. Output: ([(r + r′)0]
B, . . . , [(r + r′)l]

B) and [c]B

(b) To account for the carry operation, servers evaluate B2A from [18] on [c]B to get [c]A

(cost: one daBit). They then locally compute [r+ r′−2n · c]A ← [r+ r′]A−2n · [c]A. The
resulting value r + r′ − 2n · c is the l-bit integer represented by (r + r′)0, . . . , (r + r′)l.

4. Output: ([r + r′ − 2n · c]A, [(r + r′)0]
B, . . . , [(r + r′)l]

B)

26

B2Al,p

Inputs: [x]BL , [x]BR ∈ Zl2, ([r]A, [r0]
B, . . . , [rl]

B) from edaBitGen, l + 1 Boolean multiplication triples
{[ai], [bi], [aibi]} for i ∈ [l + 1]
Output : [x]AL , [x]AR ∈ Zp.

1. Add Boolean Shares via Binary Adder Circuit:

(a) Using an l-bit binary adder circuit over secret-shared values composed of AND gates
and XOR gates, compute ([s0]

B, . . . , [sl]
B), where si is the i’th bit of s = x+ r.

i. The first l-bit input to the circuit will be r0, . . . , rl and the second will be x0, . . . , xl.

ii. To compute an XOR gate bi ⊕ bj given [bi]
B and [bj]

B, players locally compute
[bi ⊕ bj]B = [bi]

B ⊕ [bj]
B.

iii. To compute an AND gate bi · bj given [bi]
B and [bj]

B, players use two instances of
1-2-OT as described in edaBitGen.

2. Compute [x]A:

(a) Send all shares [si]
B to a single participant P to reconstruct the value x+ r =

∑
i 2i · si.

(b) P computes a random Arithmetic sharing [x + r]A and shares this with the other par-
ticipant(s).

(c) All parties compute [x]A = [x+ r]A − [r]A.

3. Output: [x]A

Communication Complexity: Both the generation and share conversion procedure have a com-
munication complexity of O(l + log p).

10 Security

In this section we briefly describe the security properties of the protocols in our system. For formal
statements and proofs, see Appendix C.

Let 0 ≤ c∗ ≤ n be the number of corrupted clients who submit invalid input shares. For every
protocol, up to n malicious players colluding with one semi-honest server learn nothing but the
output except with negligible probability, as well as some modest leakage in some cases based on
the specific statistic and/or AFE construction. In particular, to compute MEAN servers must leak
the number of players n− c∗ whose inputs were included in the aggregate. Servers must also give
this value when computing linReg. Due to the specific AFE construction for VAR, the output nec-
essarily leaks E[X] in addition to the variance. All of these modest leakages are analogous to the
results of [8].

In terms of robustness, all protocols provably prevent any coalition of up to n malicious players from
corrupting the output beyond misreporting their private values, except with negligible probability.
All statements given above are true, as proven in Appendix C, except with negligible probability.

27

11 Practical Evaluation

In this section we describe the practical performance of our implementation of this data-collection
scheme.

We implemented our scheme in 7,000 lines of C/C++. We utilized the libOTe toolkit [30] for OT
and silent OT-extension. Our scheme uses semi-honest OTs, since our servers are assumed to be
semi-honest. Similar to Prio, clients use NaCl’s “box” primitive to encrypt and sign messages. This
means that TLS is not required to secure client-server communication.

Our implementation supports secure computation of SUM,AND,OR,MAX, MIN, VAR, FRQ and
linReg. Two implementations of the original Prio protocol exist: the original implementation,
written in Go, supports secure computation of SUM,AND,OR,MAX, MIN, and linReg. Since the
original paper’s publication, another implementation was written by Mozilla in C. The Mozilla
implementation only supports SUM.

We provide comparison data for three statistics: SUM,MAX, and linReg. These represent our three
categories of protocols: SUM requires share conversion but no SNIPs, MAX requires neither share
conversion nor SNIPs, and linReg requires both share conversion and SNIPs.

We collected four types of data for comparison: client encode time (milliseconds per client), client
message size (bytes per client per server), server compute time (milliseconds per server per client),
and server communication (bytes per server per client). Most data we collected shows a direct
linear relationship with the total number of clients, and so we ran multiple trials with 10k, 50k,
and 100k clients and then averaged the result. The only exception to this is server compute time for
VAR and linReg. Since they utilize SNIPs which are easily batched, server compute time increases
sublinearly with number of clients. In that case only, we performed trials with 50k clients and
averaged those results. In our end-to-end implementation we used the exact same servers as the
original Prio paper, two c4.2x large AWS servers. All protocols were implemented using just two
servers. Both servers are located in the us-east-1f zone as to mimic a low-latency, high bandwidth
connection. The client code was run from a separate instance of the same c4.2x large AWS server,
and all client data was randomly generated. All three implementations (Go, Mozilla, Prio+) use
this same 2-server setup.

11.1 Data: SUM

For SUM, we compared Prio+ to both the original Go implementation and the Mozilla implementa-
tion. We ran four separate experiments with clients holding 1-bit, 8-bit, 16-bit, and 32-bit integers.
Our results can be found in Figures 1, 2, 3, and 4. We also measured end-to-end runtime of our
system. In total, our Prio+ implementation computes the sum of 100,000 16-bit integers in 0.47
seconds. This excludes offline pre-computation time but includes client encode time, communica-
tion time, and server compute time.

28

1-bit 8-bit 16-bit 32-bit

0

200

400

600

800

1,000

1,200

1,400

1,600

1,800

2,000

249
324 322 341

421

672

1,071

1,965

0.66 0.65 0.63 0.63

SUM: Encode Time (ms per client)

Prio (Go)

Prio (Mozilla)
Prio+

Figure 1: This chart shows the time necessary for a single client Pi holding private value xi to encode
that value, compute any necessary additional proofs, and secret-share both the encoding and the
proof(s) when executing a protocol to compute SUM(x1, . . . , xn). Results are in milliseconds and
data is arranged according to the number of bits in xi.

29

1-bit 8-bit 16-bit 32-bit

0

100

200

300

400

500

600

700

800

900

1,000

418

524

635

912

146 146 146 146

33 40 40 40

SUM: Client Message Size (bytes per client per server)

Prio (Go)

Prio (Mozilla)
Prio+

Figure 2: This chart shows the size of the message Pi (holding private value xi) sends to each server
when executing a protocol to compute SUM(x1, . . . , xn). Results are in bytes and data is arranged
according to the number of bits in xi.

30

1-bit 8-bit 16-bit 32-bit

0

200

400

600

800

1,000

1,200

1,400

163 163
217

266

173

409

701

1,407

0.96 1.21 1.57 2.29

SUM: Server Compute Time (microseconds per server per client)

Prio (Go)

Prio (Mozilla)
Prio+

Figure 3: This chart shows the average computation time per server when executing a protocol
to compute SUM(x1, . . . , xn). Results are in milliseconds and data is arranged according to the
number of bits in xi, the private values held by each client.

31

1-bit 8-bit 16-bit 32-bit

0

100

200

300

400

500

600

700
702 712 716 722

39 39 39 39
24

80

144

274

SUM: Server Communication (bytes per server per client)

Prio (Go)

Prio (Mozilla)
Prio+

Figure 4: This chart shows the average bytes communicated by each server when executing a
protocol to compute SUM(x1, . . . , xn). Results are in bytes and data is arranged according to the
number of bits in xi, the private values held by each client.

32

Analysis: As expected, our implementation of Prio+ overwhelmingly outperforms both imple-
mentations of Prio in terms of client encode time and client message size. An additional pleasant
result is that Prio+ heavily outperforms the Prio implementations in terms of server compute time
as well. We expected to see performance drawbacks in server communication, since our server
communication is no longer constant with respect to input size. Prio+ has comparable server com-
munication to the Mozilla implementation for summing single-bit integers, but as the size of the
integers increases, so does the communication. The Go implementation has high, but still constant,
server communication. This is due to it being designed for a larger number of servers, whereas our
experiments were run on a two-server implementation. Prio+ servers still communicate less than
those in the original Go implementation except in the 32-bit case. The Mozilla implementation
achieves lower server communication than Prio+, and this is the expected drawback of using share
conversion as a replacement for SNIPs, which were designed to minimize server communication
only.

33

11.2 Data: MAX

Since the Mozilla implementation does not support MAX, we compared Prio+ to the original
Go implementation only. In our experiment, clients held integers in the range [0, x] for x ∈
{16, 32, 64, 128}. In total, our Prio+ implementation computes the maximum of 100,000 4-bit
integers in 5.25 seconds. This excludes offline pre-computation time but includes client encode
time, communication time, and server compute time.

[0-16] [0-32] [0-64] [0-128]
0

100

200

300

400

500

600

700

800

900

1,000

1,100

1,200

1,300

228

403

668

1,187

0.99 1.19 1.58 2.3

MAX: Encode Time (ms per client)

Prio (Go)
Prio+

Figure 5: This chart shows the time necessary for a single client Pi holding private value xi in
the range [0, x] for x ∈ {16, 32, 64, 128} to encode that value, compute any necessary additional
proofs, and secret-share both the encoding and the proof(s) when executing a protocol to compute
MAX(x1, . . . , xn). Results are in milliseconds.

34

[0-16] [0-32] [0-64] [0-128]

0

200

400

600

800

1,000

1,200

1,400

1,600

1,800

2,000

2,200

2,400

2,600

662

925

1,436

2,467

168

296

552

1,064

MAX: Client Message Size (bytes per client per server)

Prio (Go)
Prio+

Figure 6: This chart shows the size of the message Pi (holding private value xi in the range [0, x] for
x ∈ {16, 32, 64, 128}) sends to each server when executing a protocol to compute MAX(x1, . . . , xn).
Results are in bytes.

35

[0-16] [0-32] [0-64] [0-128]

0

50

100

150

200

250

300

350

400

160
173

233

380

2.1 3.2 5.1 8.9

MAX: Server Compute Time (microseconds per server per client)

Prio (Go)
Prio+

Figure 7: This chart shows the average computation time per server when executing a protocol to
compute MAX(x1, . . . , xn), where each xi held by Pi lies in the range [0, x] for x ∈ {16, 32, 64, 128}.
Results are in milliseconds.

36

[0-16] [0-32] [0-64] [0-128]

0

100

200

300

400

500

600

700

800 790

722 733 737

16.1 16.1 16.1 16.1

MAX: Server Communication (bytes per server per client)

Prio (Go)
Prio+

Figure 8: This chart shows the average bytes communicated by each server when executing a
protocol to compute MAX(x1, . . . , xn), where each xi held by Pi is in the range [0, x] for x ∈
{16, 32, 64, 128}. Results are in bytes.

Analysis: In the case of MAX, Prio+ requires no share conversion and no SNIPs, resulting in dra-
matic performance benefits for both clients and servers. Particularly relevant is the nearly 1,000x
decrease in client encode time. Since servers do not have to perform share conversion, we get an
added benefit of sharply decreased server communication.

37

11.3 Data: linReg

Similar to MAX, linReg is only supported by Prio+ and the original Go implementation. We per-
formed four separate experiments in which the feature vectors held by clients are of degree 2, 4, 6,
and 8 respectively. All results are averaged between experiments with 10k, 50k and 100k clients
except for server compute time where all experiments were performed with 50k clients. In total,
our Prio+ implementation computes a line-of-best-fit over 100,000 degree-2 vectors of 8-bit inte-
gers in 7.41 seconds. This excludes offline pre-computation time but includes client encode time,
communication time, and server compute time.

38

deg 2 deg 4 deg 6 deg 8

0

100

200

300

400

500

600

700

800

236

327

722
736

7
30

66

146

linReg: Encode Time (ms per client)

Prio (Go)
Prio+

Figure 9: This chart shows the time necessary for a single client Pi holding private value ~xi =

(x
(0)
i , . . . , x

(d)
i) to encode that value, compute any necessary additional proofs, and secret-share

both the encoding and the proof(s) when executing a protocol to compute linReg(~x1, . . . , ~xn). Each

x
(k)
i is an 8-bit integer. Results are in milliseconds and data is arranged according to the degree d

of each ~xi.

39

deg 2 deg 4 deg 6 deg 8
0

200

400

600

800

1,000

1,200

1,400

1,600

1,800

678

992

1,464

1,717

160

384

704

1,216

linReg: Client Message Size (bytes per client per server)

Prio (Go)
Prio+

Figure 10: This chart shows the size of the message sent by client Pi (holding private value ~xi =

(x
(0)
i , . . . , x

(d)
i)) to each server when executing a protocol to compute linReg(~x1, . . . , ~xn). Each x

(k)
i

is an 8-bit integer. Results are in milliseconds and data is arranged according to the degree d of
each ~xi.

40

deg 2 deg 4 deg 6 deg 8
0

2

4

6

8

10

12

14

9

10

13

14

0.63

1.54

2.72

4.2

linReg: Server Compute Time (seconds)

Prio (Go)
Prio+

Figure 11: This chart shows the total server time to compute linReg(~x1, . . . , ~xn), where each of the

50,000 clients Pi holds private value ~xi = (x
(0)
i , . . . , x

(d)
i) and each x

(k)
i is an 8-bit integer. Results

are in seconds and data is arranged according to the degree d of each ~xi.

41

deg 2 deg 4 deg 6 deg 8
0

100

200

300

400

500

600

700

800

900

1,000

1,100

717 727 730 733

128

336

640

1,040

linReg: Server Communication (bytes per server per client)

Prio (Go)
Prio+

Figure 12: This chart shows the average bytes communicated by each server when executing a

protocol to compute linReg(~x1, . . . , ~xn), where client Pi holds private value ~xi = (x
(0)
i , . . . , x

(d)
i) and

each x
(k)
i is an 8-bit integer. Results are in bytes and data is arranged according to the degree d of

each ~xi.

42

Analysis: Prio+ provides significant benefits to the client in computing linReg at a minimal server-
side cost. Client encode time and message size are dramatically decreased, although the difference
in client message size decreases as the degree increases. This is because as the degree increases, bit-
length verification represents a smaller proportion of the multiplication gates in the VALID circuit.
Once again we have an added benefit of decreased server computation, particularly for lower degree
regression. Based on this trend, we expect the server computation in Prio+ to exceed that of Prio
beyond degree 8 linear regression. We see a similar trend in terms of server communication, where
Prio+ servers communicate less for lower degree computation, but that communication grows with
the degree whereas Prio’s server communication remains constant.

11.4 Data: Offline Pre-computation

In order to enable efficient share conversion, Prio+ requires some pre-computed data which is in-
dependent of client data. In particular, our novel edaBit-based share conversion protocol requires
a b-bit edaBit for each b-bit integer to be converted. Thus, to evaluate b-bit SUM for 50,000 client
submissions, we require 50,000 b-bit edaBits. The main cost in generating these edaBits lies in gen-
erating multiplication triples and OT correlations, which are used for combining the servers’ private
edaBits into public edaBits whose underlying value is unknown to both servers. The most efficient
method for generating multiplication triples in the semi-honest model is based on homomorphic
encryption. We use a semi-honest version of the methods described in [12] to generate multiplica-
tion triples. We implemented our protocol in PALISADE v1.10.4 (https://palisade-crypto.org/).
We generated silent OT correlations using silent OT extension according to [6] using libOTe [30].
We measured how long the resulting edaBit generation procedure takes to generate 100,000 8-bit
edaBits for with arithmetic shares in Zp where p is a 48-bit prime, the largest prime which can be
supported by PALISADE. The result was that our two large AWS servers were able to generate
100,000 8-bit edaBits in an average of 12.53 seconds.

We also measured how long Prio+ servers require to compute complex statistics if its pre-computed
data cache is depleted and it must compute everything on the fly. This only affects two statistics
(VAR and linReg) since they require edaBit-based share conversion into a field.

Prio+ can compute VAR for 10,000, 50,000, and 100,000 clients holding 8-bit inputs with no cache
of pre-computed data in 0.78, 2.50, and 5.01 seconds respectively. We cannot compare these to
Prio because it does not currently support VAR.

We compare Prio+ without pre-computation to Prio when computing linReg for 50,000 clients
holding degree d vectors of 8-bit inputs for d = 2, 4, 6, 8. Our conclusion is that even without
access to pre-computed data, Prio+ outperforms Prio for degree d = 2 computations, but for larger
degrees d = 4, 6, 8 that savings is drowned out by the time to compute edaBits on the fly. This is
understandable, as the larger d becomes, the more edaBits are necessary, and edaBits are the most
expensive resource in Prio+. However, Prio+ is still on the same order of magnitude (at worst 4x
slower) as Prio for all measured cases. Prio+ can thus be expected to perform comparably to Prio
even in the rare situation where caches of pre-computed data are completely depleted. The full
comparison data can be found below.

43

deg 2 deg 4 deg 6 deg 8
0

5

10

15

20

25

30

35

40

45

50

55

60

65

9
10

13
14

5.04

17.12

35.66

59.52

linReg: Cache-less Server Compute Time (seconds)

Prio (Go)
Prio+

Figure 13: This chart shows the total time for both servers, without access to pre-computed
data, to compute linReg(~x1, . . . , ~xn), n = 50, 000, where each client Pi holds private value ~xi =

(x
(0)
i , . . . , x

(d)
i) and each x

(k)
i is an 8-bit integer. Results are in seconds and data is arranged

according to the degree d of each ~xi.

44

12 Conclusions and Future Work

By leveraging properties of Boolean secret-sharing, Prio+ effectively restructures the original Prio
protocol to privately compute aggregate statistics with minimal burden on the client. Often the
computational burden on the servers is also reduced, occasionally at the cost of increased server
communication. The scale of these performance improvements depends heavily on the statistic
being computed. For some statistics (AND,OR,MAX,MIN), Prio+ significantly reduces the burden
on both clients and servers across the board. For others, particularly linear regression, the im-
provements in client performance and server computation come with a moderate increase in server
bandwidth usage. These costs are only apparent, however, as the size of client inputs becomes
large. For small and often practical client values, Prio+ still outperforms Prio across all examined
metrics. Prio+ does require an additional offline pre-computation phase which enables efficient
share conversion. However, this computation is relatively inexpensive and can be done during
times when data is not being collected and servers are otherwise idle.

In the future, we wish to expand Prio+ to compute additional aggregate statistics. We would
particularly like to identify statistics similar to AND,OR,MAX, and MIN for which neither SNIPs
nor share conversion are required. We are also interested in optimizing our offline pre-computation
phase to generate edaBits more efficiently, as these are a new primitive which are relatively unex-
plored in the semi-honest setting and we believe they can be generated at a cheaper cost.

Acknowledgments

Supported in part by DARPA under Cooperative Agreement No: HR0011-20-2-0025, NSF Grant
CNS-2001096, US-Israel BSF grant 2015782, Google Faculty Award, JP Morgan Faculty Award,
IBM Faculty Research Award, Xerox Faculty Research Award, OKAWA Foundation Research
Award, B. John Garrick Foundation Award, Teradata Research Award, Lockheed-Martin Corpo-
ration Research Award, NSF NRT HDR Grant NSF DGE-1829071, UCLA Connection Lab and
Sunday Group, Inc. The views and conclusions contained herein are those of the authors and should
not be interpreted as necessarily representing the official policies, either expressed or implied, of
DARPA, the Department of Defense, or the U.S. Government. The U.S. Government is authorized
to reproduce and distribute reprints for governmental purposes not withstanding any copyright
annotation therein. This paper was prepared in part for information purposes by the Artificial
Intelligence Research group of JPMorgan Chase & Co and its affiliates (“JP Morgan”), and is not
a product of the Research Department of JP Morgan. JP Morgan makes no representation and
warranty whatsoever and disclaims all liability, for the completeness, accuracy or reliability of the
information contained herein. This document is not intended as investment research or investment
advice, or a recommendation, offer or solicitation for the purchase or sale of any security, financial
instrument, financial product or service, or to be used in any way for evaluating the merits of
participating in any transaction, and shall not constitute a solicitation under any jurisdiction or to
any person, if such solicitation under such jurisdiction or to such person would be unlawful. 2021
JPMorgan Chase & Co. All rights reserved.

45

References

[1] Vpriv: Protecting privacy in location-based vehicular services. In 18th USENIX Security
Symposium (USENIX Security 09), Montreal, Quebec, August 2009. USENIX Association.

[2] Abdelrahaman Aly, Emmanuela Orsini, Dragos Rotaru, Nigel P. Smart, and Tim Wood. Za-
phod: Efficiently combining lsss and garbled circuits in scale. In Proceedings of the 7th ACM
Workshop on Encrypted Computing & Applied Homomorphic Cryptography, WAHC’19, page
33–44, New York, NY, USA, 2019. Association for Computing Machinery.

[3] Donald Beaver. Efficient multiparty protocols using circuit randomization. In Annual Inter-
national Cryptology Conference, pages 420–432. Springer, 1991.

[4] Eli Ben-Sasson, Serge Fehr, and Rafail Ostrovsky. Near-linear unconditionally-secure multi-
party computation with a dishonest minority. In Annual Cryptology Conference, pages 663–680.
Springer, 2012.

[5] Dan Boneh, Elette Boyle, Henry Corrigan-Gibbs, Niv Gilboa, and Yuval Ishai. Zero-knowledge
proofs on secret-shared data via fully linear pcps. Cryptology ePrint Archive, Report 2019/188,
2019. https://eprint.iacr.org/2019/188.

[6] Elette Boyle, Geoffroy Couteau, Niv Gilboa, Yuval Ishai, Lisa Kohl, Peter Rindal, and Pe-
ter Scholl. Efficient two-round ot extension and silent non-interactive secure computation.
Cryptology ePrint Archive, Report 2019/1159, 2019. https://eprint.iacr.org/2019/1159.

[7] Elette Boyle, Geoffroy Couteau, Niv Gilboa, Yuval Ishai, Lisa Kohl, and Peter Scholl. Effi-
cient pseudorandom correlation generators from ring-lpn. In Daniele Micciancio and Thomas
Ristenpart, editors, Advances in Cryptology – CRYPTO 2020, pages 387–416, Cham, 2020.
Springer International Publishing.

[8] Henry Corrigan-Gibbs and Dan Boneh. Prio: Private, robust, and scalable computation of ag-
gregate statistics. In 14th {USENIX} Symposium on Networked Systems Design and Implemen-
tation ({NSDI} 17), pages 259–282, 2017. https://crypto.stanford.edu/prio/paper.pdf.

[9] Ronald Cramer, Ivan Damg̊ard, and Yuval Ishai. Share conversion, pseudorandom secret-
sharing and applications to secure computation. In Joe Kilian, editor, Theory of Cryp-
tography, pages 342–362, Berlin, Heidelberg, 2005. Springer Berlin Heidelberg. https:

//link.springer.com/content/pdf/10.1007%2F978-3-540-30576-7_19.pdf.

[10] Ronald Cramer and Victor Shoup. A practical public key cryptosystem provably secure against
adaptive chosen ciphertext attack. In Hugo Krawczyk, editor, Advances in Cryptology —
CRYPTO ’98, pages 13–25, Berlin, Heidelberg, 1998. Springer Berlin Heidelberg.

[11] Ivan Damgard, Marcel Keller, Enrique Larraia, Valerio Pastro, Peter Scholl, and Nigel P.
Smart. Practical covertly secure mpc for dishonest majority – or: Breaking the spdz limits.
Cryptology ePrint Archive, Report 2012/642, 2012. https://eprint.iacr.org/2012/642.

[12] Ivan Damg̊ard, Valerio Pastro, Nigel Smart, and Sarah Zakarias. Multiparty computation
from somewhat homomorphic encryption. In Reihaneh Safavi-Naini and Ran Canetti, editors,
Advances in Cryptology – CRYPTO 2012, pages 643–662, Berlin, Heidelberg, 2012. Springer
Berlin Heidelberg.

46

https://eprint.iacr.org/2019/188
https://eprint.iacr.org/2019/1159
https://crypto.stanford.edu/prio/paper.pdf
https://link.springer.com/content/pdf/10.1007%2F978-3-540-3 0576-7_19.pdf
https://link.springer.com/content/pdf/10.1007%2F978-3-540-3 0576-7_19.pdf
https://eprint.iacr.org/2012/642

[13] George Danezis, Cédric Fournet, Markulf Kohlweiss, and Santiago Zanella-Béguelin. Smart
meter aggregation via secret-sharing. In Proceedings of the First ACM Workshop on Smart
Energy Grid Security, SEGS ’13, page 75–80, New York, NY, USA, 2013. Association for
Computing Machinery.

[14] Daniel Demmler, Thomas Schneider, and Michael Zohner. Aby-a framework for efficient mixed-
protocol secure two-party computation. In NDSS, 2015.

[15] Tariq Elahi, George Danezis, and Ian Goldberg. Privex: Private collection of traffic statistics
for anonymous communication networks. In Proceedings of the 2014 ACM SIGSAC Conference
on Computer and Communications Security, CCS ’14, page 1068–1079, New York, NY, USA,
2014. Association for Computing Machinery.

[16] K. Emura, H. Kimura, T. Ohigashi, T. Suzuki, and L. Chen. Privacy-preserving aggregation
of time-series data with public verifiability from simple assumptions and its implementations.
The Computer Journal, 62(4):614–630, 2019.

[17] Úlfar Erlingsson, Aleksandra Korolova, and Vasyl Pihur. RAPPOR: randomized aggregatable
privacy-preserving ordinal response. CoRR, abs/1407.6981, 2014.

[18] Daniel Escudero, Satrajit Ghosh, Marcel Keller, Rahul Rachuri, and Peter Scholl. Improved
primitives for mpc over mixed arithmetic-binary circuits. Springer-Verlag, 2020.

[19] Giulia C. Fanti, Vasyl Pihur, and Úlfar Erlingsson. Building a RAPPOR with the unknown:
Privacy-preserving learning of associations and data dictionaries. CoRR, abs/1503.01214, 2015.

[20] James Glanz, Jeff Larson, and ANDREW W Lehren. Spy agencies tap data streaming from
phone apps. New York Times, 2014.

[21] Oded Goldreich. Foundations of Cryptography: Volume 1. Cambridge University Press, USA,
2006.

[22] Andrew Hilts, Christopher Parsons, and Jeffrey Knockel. Every step you fake: A comparative
analysis of fitness tracker privacy and security. Open Effect Report, 76(24):31–33, 2016.

[23] Yuval Ishai, Joe Kilian, Kobbi Nissim, and Erez Petrank. Extending oblivious transfers effi-
ciently. In Dan Boneh, editor, Advances in Cryptology - CRYPTO 2003, pages 145–161, Berlin,
Heidelberg, 2003. Springer Berlin Heidelberg.

[24] Tobias Jeske. Floating car data from smartphones: What google and waze know about you
and how hackers can control traffic. Proc. of the BlackHat Europe, pages 1–12, 2013.

[25] Marc Joye and Benôıt Libert. A scalable scheme for privacy-preserving aggregation of time-
series data. In Ahmad-Reza Sadeghi, editor, Financial Cryptography and Data Security, pages
111–125, Berlin, Heidelberg, 2013. Springer Berlin Heidelberg.

[26] Josh Keller, KR Lai, and Nicole Perlroth. How many times has your personal information
been exposed to hackers. New York Times (July 29, 2015), 2015.

[27] Luca Melis, George Danezis, and Emiliano De Cristofaro. Efficient private statistics with
succinct sketches. CoRR, abs/1508.06110, 2015.

47

[28] Raluca Ada Popa, Andrew J. Blumberg, Hari Balakrishnan, and Frank H. Li. Privacy and
accountability for location-based aggregate statistics. In Proceedings of the 18th ACM Con-
ference on Computer and Communications Security, CCS ’11, page 653–666, New York, NY,
USA, 2011. Association for Computing Machinery.

[29] Deevashwer Rathee, Thomas Schneider, and K. K. Shukla. Improved multiplication triple
generation over rings via rlwe-based ahe. Cryptology ePrint Archive, Report 2019/577, 2019.
https://eprint.iacr.org/2019/577.

[30] Peter Rindal. libOTe: an efficient, portable, and easy to use Oblivious Transfer Library.
https://github.com/osu-crypto/libOTe.

[31] Dragos Rotaru and Tim Wood. Marbled circuits: Mixing arithmetic and boolean circuits with
active security. Cryptology ePrint Archive, Report 2019/207, 2019. https://eprint.iacr.

org/2019/207.

[32] Victor Shoup. Oaep reconsidered. In Joe Kilian, editor, Advances in Cryptology — CRYPTO
2001, pages 239–259, Berlin, Heidelberg, 2001. Springer Berlin Heidelberg.

[33] Victor Shoup. A proposal for an iso standard for public key encryption. IACR Cryptology
ePrint Archive, 2001:112, 01 2001.

[34] Ben Smith. Uber executive suggests digging up dirt on journalists. BuzzFeed News, 18, 2014.

[35] Gang Wang, Bolun Wang, Tianyi Wang, Ana Nika, Haitao Zheng, and Ben Y Zhao. Defending
against sybil devices in crowdsourced mapping services. In Proceedings of the 14th Annual
International Conference on Mobile Systems, Applications, and Services, pages 179–191, 2016.

48

https://eprint.iacr.org/2019/577
https://github.com/osu-crypto/libOTe
https://eprint.iacr.org/2019/207
https://eprint.iacr.org/2019/207

A Full Protocol Descriptions

In this section we give detailed descriptions of the protocols which up until now have been described
at a more informal level. We omit the protocol for MIN as it consists of a single call to MAX plus a
single pre-processing step and a single post-processing step. We also omit the protocols for integer
mean and standard deviation, as these too require a single post-processing step on top of the integer
sum and variance protocols respectively.

Πsum

Inputs: xi ∈ Z2l′ for i ∈ [n].
Output :

∑
i xi.

1. Upload:

(a) Each client Pi computes Share⊕,l′(xi) −→ [xi]
B
L , [xi]

B
R via Definition 4.3

(b) Each Pi sends [xi]L, [xi]R to SL, SR respectively.

2. Verify Bit-Length: Initially, n′ = n. If a server receives a share which is not l bits in length
from Pi (assume SL w.l.o.g.):

(a) SL sends the index i to SR.

(b) Both servers discard [xi]
B.

(c) Both servers set n′ ← n′ − 1

3. Convert Shares: SL and SR jointly evaluate B2Al′,2l({[xi]BL , [xi]BR}) on each of the n′ valid

pairs of Boolean shares as described in [14]. SL receives as output {[xi]AL}i and SR receives
as output {[xi]AR}i.

4. Aggregate: SL locally adds all arithmetic shares into an accumulator AL, initially zero.
That is: AL ←− AL +

∑
i[xi]

A
L . SR analogously accumulates its arithmetic shares into

AR ←− AR +
∑

i[xi]
A
R.

5. Publish: Once all n′ shares have been accumulated, SL and SR publish AL and AR to every
client.

6. Client Computation: Clients output AL +AR.

49

Πand

Inputs: xi ∈ {0, 1} for i ∈ [n].
Output : 1 if and only if xi = 1 for all i ∈ {1, . . . , n}.

1. Upload: Each Pi encodes their as input as:

x̂i = 0 ∈ Z2λ if xi = 1

x̂i = r ∈ Z2λ if xi = 0, where r is uniformly random

Pi then computes Share⊕,λ(x̂i) = ([x̂i]
B
L,λ, x̂i]

B
R,λ) as in Definition 4.3 and sends one share to

each server.

2. Verify Bit-Length: Initially, n′ = n. If some server, say SL, receives from Pi [xi]
B
L,λ which

is an m-bit integer, m 6= λ:

(a) SL sends the index i to SR.

(b) Both servers discard [xi]
B
λ (removing from accumulator if necessary).

(c) Both servers set n′ ← n′ − 1

3. Aggregate: SL and SR hold accumulator values AL, AR ∈ Z2λ , initially set to 0. Once a
λ-bit share is sent to SL by Pi, SL immediately XORs it with AL: AL ← AL⊕ [x̂i]L. SR does
the same with its accumulator AR upon receiving a valid share. If either server learns that a
share already accumulated should be discarded, they simply XOR it with their accumulator
again.

4. Publish: SL publishes AL to all clients, SR publishes AR to all clients.

5. Client Computation: Clients compute A = AL ⊕ AR ∈ Z2λ . If A = 0, clients output 1.
Otherwise, they output 0.

50

Πor

Inputs: xi ∈ {0, 1} for i ∈ [n].
Output : 0 if and only if xi = 0 for all i ∈ {1, . . . , n}.

1. Upload: Each Pi encodes their as input as:

x̂i = 0 ∈ Z2λ if xi = 0

x̂i = r ∈ Z2λ if xi = 1, where r is uniformly random.

Pi then computes Share⊕,λ(x̂i) = ([x̂i]
B
L,λ, x̂i]

B
R,λ) as in Definition 4.3 and sends one share to

each server.

2. Verify Bit-Length: Initially, n′ = n. If some server, say SL, receives from Pi [xi]
B
L,λ which

is an m-bit integer, m 6= λ:

(a) SL sends the index i to SR.

(b) Both servers discard [xi]
B
λ (removing from accumulator if necessary).

(c) Both servers set n′ ← n′ − 1

3. Aggregate: SL and SR hold accumulator values AL, AR ∈ Z2λ , initially set to 0. Once a
λ-bit share is sent to SL by Pi, SL immediately XORs it with AL: AL ← AL⊕ [x̂i]L. SR does
the same with its accumulator AR upon receiving a valid share. If either server learns that a
share already accumulated should be discarded, they simply XOR it with their accumulator
again.

4. Publish: SL publishes AL to all clients, SR publishes AR to all clients.

5. Client Computation: Clients compute A = AL ⊕ AR ∈ Z2λ . If A = 0, clients output 0.
Otherwise, clients output 1.

51

Πmax

Inputs: xi ∈ {0, . . . ,K − 1} for i ∈ [n].
Output : maxixi

1. Upload: Each Pi encodes their private xi as x̂i ∈ Zλ
2K

, where:

• (x̂i)j = rj ∈ Z2λ for 0 ≤ j ≤ xi, where rj is a uniformly random λ-bit integer.

• (x̂i)j = 0 ∈ Z2λ for xi < j ≤ K − 1

We will use (x̂i)j,k to refer to the k’th component of (x̂i)j,k). Each Pi then computes
Share⊕,λK(x̂i) = [x̂i]

B
L,λK , [x̂i]

B
R,λK ∈ ZK

2λ
as described in [14] and sends one share of x̂i to

each server.

2. Verify Bit-Length: Initially, n′ = n. If some server, say SL, receives from Pi [xi]
B
L,λK which

is an m-bit integer, m 6= λK:

(a) SL sends the index i to SR.

(b) Both servers discard [xi]
B
λK (removing from accumulator if necessary).

(c) Both servers set n′ ← n′ − 1

3. Aggregate: SL computes AL =
⊕

i[x̂i]
B
L,λK and SR computes AR =

⊕
i[x̂i]

B
R,λK .

4. Publish: SL and SR publish their accumulator values AL and AR to every client.

5. Client Computation: Clients compute

((s1, . . . , sλ), . . . , (s(K−1)λ+1, . . . , sKλ)) := AL ⊕AR

Clients output the largest index i ∈ {1, . . . ,K} such that the substring (s(K−i)λ+1, . . . , sK−i+1λ)
is not identically zero.

52

Πvar

Inputs: xi ∈ Z2l for i ∈ [n].
Output : VAR(x1, . . . , xn) = E[X2]− (E(X))2.

1. Upload:

(a) Each Pi encodes their input as x̂i = (xi, x
2
i) ∈ Z23l , where xi is written using l-bits and

x2i using 2l bits. We will call these two components x̂
(1)
i and x̂

(2)
i respectively.

(b) Each Pi then computes Share⊕,3l(x̂i) = [x̂i]
B
L,3l, [x̂i]

B
R,3l ∈ Z23l via 4.3. We refer to the

first l bits of these shares as [x̂i]
B,(1)
l and the last 2l bits of these shares as [x̂i]

B,(2)
2l .

(c) Each Pi computes the circuit ValidVAR(x̂i) and constructs polynomials f, g, h representing
the values on the input and output wires of each multiplication gate.

(d) Pi sends one share of [x̂i]
B
3l to each server, as well as one share of [f(0)]B, one share

of [g(0)]B, and one share of [h]B (that is, one share of each coefficient of h). Pi also
computes and sends shares of a triple ([a]B, [b]B, [ab]B) for random a, b ∈ Z23l .

2. Verify Bit-Length: Initially, n′ = n. If some server, say SL, receives from Pi [x̂i]
B
L,3l which

is an m-bit integer, m 6= 3l:

(a) SL sends the index i to SR.

(b) Both servers discard [xi]
B
3l (removing from accumulator if necessary).

(c) Both servers set n′ ← n′ − 1

3. Convert Shares: SL and SR jointly evaluate B2Al,p({[x̂i]
B,(1)
L,l , [x̂i]

B,(2)
R,l }) as well as

B2A2l,p({[x̂i]
B,(1)
L,2l , [x̂i]

B,(2)
R,2l }) on each of the n′ valid sets of Boolean shares as described in

Section 9. SL receives as output {[x̂i]A,(1)L } and {[x̂i]A,(2)L } and SR receives as output {[x̂i]A,(1)R }
and {[x̂i]A,(2)R }.

4. Verify Encoding: For each valid x̂i received, servers verify it is truly of the form (x, x2) as
follows:

(a) Servers compute values on all other wires of the ValidVAR(x̂i) circuit via affine operations
on the values they have already (input wires, input/output wires of all multiplication
gates). For input shares, servers use arithmetic shares from the output of share conver-
sion.

(b) Servers use polynomial interpolation on these shares to compute secret-shares of [f] and
[g].

(c) Servers choose a random r ∈ Z2l and each server locally computes [f(r)]B, [r · g(r)]B,
and [r · h(r)]B.

(d) Servers use the Boolean multiplication triple ([a]B, [b]B, [ab]B) to compute [r·f(r)·g(r)]B.
From this and [r ·h(r)]B, servers use affine operations to compute [r ·(f(r)·g(r)−h(r))]B.

53

(e) Servers reconstruct the value r · (f(r) · g(r) − h(r)). If this value is non-zero, servers
reject the input x̂i.

5. Aggregate: SL computes A
(1)
L =

∑
i[x̂i]

A,(1)
L and A

(2)
L =

∑
i[x̂i]

A,(2)
L , and SR computes

A
(1)
R =

∑
i[x̂i]

A,(1)
R and A

(2)
R =

∑
i[x̂i]

A,(2)
R .

6. Publish: SL and SR publish their accumulator values A
(1)
L , A

(2)
L , A

(1)
R , A

(2)
R to every client.

7. Client Computation: Pi outputs 1
n(A

(2)
L +A

(2)
R)− 1

n2 (A
(1)
L +A

(1)
R)2.

54

ΠlinReg

Inputs: (xi, yi) ∈ Z2l × Z2l for i ∈ [n].
Output : linReg((x1, y1), . . . , (xn, yn)) = (c0, c1), where ŷ(x) = c0 + c1x is the unique line which
minimizes the sum of squares loss

∑
i(yi − ŷ(xi))

2.

1. Upload:

(a) Each Pi encodes their input as x̂i = (xi, x
2
i , yi, xiyi) ∈ Z26l , where xi, yi are each written

using l bits and x2i , xiyi are written using 2l bits. We will call these four components

(from left to right) x̂
(j)
i , where j ∈ {1, 2, 3, 4}.

(b) Each Pi then computes Share⊕,6l(x̂i) = [x̂i]
B
L,6l, [x̂i]

B
R,6l ∈ Z26l via Definition 4.3. We

refer to the j’th component of these shares as [x̂i]
B,(j).

(c) Pi sends one share of [x̂i]
B
6l to each server.

2. Verify Bit-Length: Initially, n′ = n. If some server, say SL, receives from Pi [x̂i]
B
L,6l which

is an m-bit integer, m 6= 6l:

(a) SL sends the index i to SR.

(b) Both servers discard [xi]
B
6l (removing from accumulator if necessary).

(c) Both servers set n′ ← n′ − 1

3. Convert Shares: SL and SR jointly evaluate B2Al,p({[x̂i]
B,(1)
L , [x̂i]

B,(1)
R }) as described in Sec-

tion 9 on each of the n′ valid pairs of Boolean shares, which returns {[x̂i]A,(1)L } to SL and

{[x̂i]A,(1)R } to SR. They similarly compute B2A2l,p({[x̂i]
B,(2)
L , [x̂i]

B,(2)
R }), B2Al,p({[x̂i]

B,(3)
L , [x̂i]

B,(3)
R }),

and B2A2l,p({[x̂i]
B,(4)
L , [x̂i]

B,(4)
R }). SL receives as output {[x̂i]AL} and SR receives as output

{[x̂i]AR}, returning {[x̂i]A,(j)L } to SL and {[x̂i]A,(j)R } to SR for j ∈ {2, 3, 4}.

4. Verify Encoding: For each valid x̂i received, servers verify it is truly of the form (xi, x
2
i , yi, xiyi)

analogously to the VAR protocol.

5. Aggregate: For each j ∈ {1, 2, 3, 4}, SL computes A
(j)
L =

∑
i[x̂i]

A,(j)
L and SR computes

A
(j)
R =

∑
i[x̂i]

A,(j)
R .

6. Publish: SL and SR publish their accumulator values A
(j)
L , A

(j)
R for j ∈ {1, 2, 3, 4} to every

client as well as the value n′.

7. Client Computation: Pi computes A(j) = A
(j)
L + A

(j)
R for j ∈ {1, 2, 3, 4}. Pi computes

the output via Equation 1, using the values A(1) =
∑

i xi, A
(2) =

∑
i x

2
i , A

(3) =
∑

i yi,
A(4) =

∑
i xiyi, and n′ = n.

55

Πfrq

Inputs: xi ∈ {0, . . . ,K − 1} for i ∈ [n].

Output : FRQ(x1, . . . , xn) = ~h ∈ ZK

1. Upload:

(a) Each Pi encodes their input as x̂i = (δxi) ∈ Z2K , the impulse vector at xi.

(b) Pi computes Share⊕,K(x̂i) = [x̂i]
B
L,K , [x̂i]

B
R,K via Definition 4.3.

(c) Pi sends one share of [x̂i]
B
K to each server.

2. Verify Bit-Length: Initially, n′ = n. If some server, say SL, receives from Pi [x̂i]
B
L,K which

is m-bits, m 6= K:

(a) SL sends the index i to SR.

(b) Both servers discard [xi]
B
K (removing from accumulator if necessary).

(c) Both servers set n′ ← n′ − 1

3. Convert Shares: For each index 0 ≤ j < K and for each of the n′ valid pairs of K-bit
Boolean shares, SL and SR jointly evaluate B2A1,2l({([xi]BL,K)j , ([xi]

B
R,K)j}) as described in

[14]. SL receives as output {[xi]∗L}i and SR receives as output {[xi]∗R}i, length-K vectors of
Arithmetic shares satisfying [xi]

∗
L + [xi]

∗
R = xi ∈ Z2K .

4. Verify Encoding:

(a) Verify Odd Parity :

i. For each Pi, SL computes the parity bit ρi =
⊕

j([x̂i]
B
L,K)j and sends ρi to SR. SR

similarly computes its own parity bit ωi =
⊕

j([x̂i]
B
R,K)j .

ii. SR computes σi = ρi ⊕ ωi, the parity of x̂i.

iii. If σi = 1, SR does not respond and the verification passes. If σi = 0, SR responds
with the index i and both servers discard [x̂i]

B
K .

(b) Verify Total Impulse Count :

i. SL computes σL =
∑

i

∑
j([x̂j]

∗
L)i ∈ Z2K . SR similarly computes σR =

∑
i

∑
j([x̂j]

∗
R)i.

ii. SL sends σL to SR.

iii. SR computes σ = σR + σL

iv. If σ = n′, where n′ is the number of non-discarded inputs currently being considered,
the verification passes and SR does not respond.

v. If σ 6= n′, SR responds with ‘0’ indicating failure. If n′ > 1, the servers partition the
set of n′ remaining players in half lexicographically and repeat this check recursively
in parallel on inputs from players {P1, . . . , Pn′/2} and {Pn′/2+1, . . . , Pn′}. If n′ = 1,
and this one remaining player is Pi, both servers discard their shares [x̂i] once SR
responds with ‘0’ and set n′ ← n′ − 1.

56

5. Aggregate: For all n′ remaining clients, SL computes AL =
∑

i[x̂i]
∗
L and SR computes

AR =
∑

i[x̂i]
∗
R.

6. Publish: SL and SR publish their accumulator values AL and AR to every client.

7. Client Computation: Clients output A = AL +AR ∈ Z2K .

B Security Definitions

We use identical definitions of f -privacy, anonymity, and robustness as used in [8]. We give an
informal definition of f -privacy, for the sake of readability, which captures the proper security
properties. We use the standard notions of negligible functions and computational indistinguisha-
bility (see [21]). We often leave the security parameter implicit.

Definition B.1 (f -privacy). Suppose the final aggregate includes data from n different clients.
We say that the protocol is f -private if, for:

• any malicious server Si

• any number of malicious clients m ≤ n

there exists an efficient simulator that, for every choice of the honest clients’ inputs (x1, . . . , xn−m),
takes as input:

• the public parameters to the protocol run (all participants’ public keys, the description of the
aggregation function f, the cryptographic parameters, etc.),

• the indices of the adversarial clients and server,

• oracle access to the adversarial participants, and

• the value f(x1, . . . , xn−m),

and outputs a simulation of the adversarial participants’ view of the protocol run whose distribu-
tion is computationally indistinguishable from the distribution of the adversary’s view of the real
protocol run.

As discussed in [8], the adversary learns the value f(x1, . . . , xn−m) exactly. If the number of honest
players is not sufficiently large, this can leak significant information to the adversary about honest
players’ inputs. It is therefore up to the servers to ensure that sufficiently many honest players’
inputs are included in the aggregate. Our system is subject to the same denial of service and
intersection attacks as Prio for the same reasons they give. For a full description, see [8].

Definition B.2 (Anonymity). We say that a data-collection scheme provides anonymity if it
provides f -privacy (by Definition B.1) for f = SORT, where SORT is the function that takes n
inputs and outputs them in lexicographically increasing order.

57

A scheme achieving anonymity by this definition leaks the entire list of honest clients’ inputs
(x1, . . . , xn−m) to the adversary. However, the adversary still learns nothing about which client
submitted which value xi. We also have the following Lemma from [8] which tells us that providing
f -privacy for any symmetric function is necessary and sufficient for anonymity by this definition
(where a symmetric function is one that is independent of the order of its inputs).

Lemma 2. Let D be a data-collection scheme that provides f -privacy (by Definition B.1) for a
symmetric function f . That is, f(x1, . . . , xn) = f(xπ(1), . . . , xπ(n) for all permutations π on n
elements. Then D provides anonymity.

Since all aggregate statistics we compute are symmetric functions, once we prove a particular data-
collection scheme is f -private, we will have that it also provides anonymity by this result.

Before we can define robustness, recall that each client in the system holds a value xi ∈ D, where
D is some set of valid data items (single bits, m-bit integers, impulse vectors). The definition of
robustness tells us that when all servers are honest, a set of malicious clients cannot influence the
output beyond their ability to choose valid inputs.

Definition B.3 (Robustness). Fix a security parameter λ > 0. We say that a protocol in our
scheme provides robustness if, when both servers execute the protocol faithfully, for every number m
of malicious clients (with 0 ≤ m ≤ n), and for every choice of honest clients’ inputs (x1, . . . , xn−m) ∈
Dn−m, the servers, with all but negligible probability in λ, output a value in the set:{

f(x1, . . . , xn)|(xn−m+1, . . . , xn) ∈ Dm
}
.

C Proofs of Security

In this section we give proofs of privacy and robustness for each protocol described in Section 8. As
discussed in the previous section, [8] shows that privacy of any symmetric functionality also implies
anonymity. Since each statistic given here is symmetric (does not depend on order of inputs), we
get anonymity as a free corollary of privacy in each case.

C.1 Privacy

Our protocols amend the Prio protocol in a few ways. These amendments, however, do not signifi-
cantly affect the privacy proofs. In particular, our shift from Arithmetic to Boolean secret-sharing
affects nothing about the hiding property of the scheme, so any singular shares are still indis-
tinguishable from random. The introduction of the OT-based B2A share conversion reveals no
additional information besides the output based on the results of [14]. The output, from the view
of a single corrupted server, is once again a single share of a secret value but now in the arithmetic
scheme, again indistinguishable from random. Since these additional interactions between players
are all efficiently simulatable, our protocols remain secure. We do have to, however, prove that our
novel edaBit-based share conversion protocol is also private in this regard.

Our protocols fall into three categories.

58

• No share conversion, no SNIPs (Πand,Πor,Πmax,Πmin)

• Share conversion, no SNIPs (Πsum,Πfrq)

• Share conversion and SNIPs (Πvar,ΠlinReg)

Intuitively, protocols in the first category have the easiest proofs of privacy. In these protocols, in-
puts are encoded in a manner such that any Boolean vector of the proper length is a valid encoding,
meaning once client data is split into Boolean secret-shares, all validation work by servers can be
done locally by simply verifying the length of the shares. Thus the view of an adversary controlling
a single server and arbitrarily many clients contains only a single share of any honest player’s in-
put, which is indistinguishable from random according to the hiding property of our secret-sharing
scheme. The only other message that the adversary sees is the honest server’s aggregated value
AR. This value, however, can be computed deterministically from the output of the function and
AL, which are known to the adversary. Each proof in this category will follow this structure.

The second category is almost identical to the first, except that the protocol calls B2A on the set of
clients’ Boolean shares as a subroutine. The privacy of this protocol is proven in [14], and concludes
that neither server, except with negligible probability, learns anything besides the corresponding
set of arithmetic shares. This, in combination with the above argument, proves privacy of this set
of protocols.

Protocols in the third category rely on the SNIP construction of [8] due to the fact that their
encoding involves a multiplicative relationship. This is the ideal application of SNIPs and thus we
utilize them in this situation. However, we still use B2A and our bit-length verification technique
independently of the SNIP procedure. Thus, the only additional piece necessary to prove privacy
for these protocols is the proof of zero-knowledge for SNIPs given in Appendix D.2 of [8]. This
guarantees that a single semi-honest server (and any number of misbehaving clients) learn nothing
from the SNIP verification of an honest player’s input besides the fact that the multiplicative re-
lationship(s) hold. This, in combination with the above arguments, completes the proof of privacy
for this third category.

We now give formal proofs of privacy for each protocol.

Theorem 3. The protocol Πand is AND-private, where xi ∈ {0, 1} and
AND(x1, . . . , xn) = 1 ⇐⇒ ∀i xi = 1.

Proof. Suppose, without loss of generality, that the adversary A corrupts SL as well as m clients
Pn−m+1, . . . , Pn where m ≤ n. Suppose honest players P1, . . . , Pn−m hold inputs x1, . . . , xn−m ∈
{0, 1}. We must construct an efficient simulator which takes the value AND(x1, . . . , xn) and
plays the part of the honest players in the protocol to construct a simulated view V ∗ which
is computationally indistinguishable from the adversary’s real view in the protocol view(A) =
view(SL, Pn−m+1, . . . , Pn). A’s actual view (excluding adversarial inputs, which can be perfectly
simulated given oracle access to the adversarial clients) is precisely:

{[x̂1]BL , . . . , [x̂n−m]BL , AR}

59

The hiding property of the Boolean and Arithmetic secret-sharing schemes guarantees that a single
share reveals nothing about the underlying encoded secret x̂i and is thus indistinguishable from a
random ring element. Thus, we simulate the honest players’ shares seen by SL by sampling random
elements from the proper ring, in this case Zλ2 .

To simulate the value AR, we examine two possible cases. If the output is AND(·) = 1, then the
simulator chooses the simulated value ÂR to be equal to AL. This is the only possible value of AR
which would result in the proper output, AL ⊕ AR = 0. Otherwise, if AND(·) = 0 the simulator
chooses AR uniformly at random from Zλ2 , resulting in the proper output AL ⊕AR = ~r. We know
ÂR and AR come from the same distribution because they are both uniformly random subject
to the constraint of producing the correct output. In conclusion, the simulated adversarial view
is precisely V ∗ = {r1, . . . , rn−m, ÂR}, where ri ∈ Zλ2 is chosen at random and ÂR is defined as
above.

Corollary 4. The protocol Πor is OR-private, where xi ∈ {0, 1} and OR(x1, . . . , xn) = 0 ⇐⇒ ∀i
xi = 0.

Proof. The proof is identical except for the simulation of AR. In this case, if the output is 0, the
simulator chooses ÂR = AL, and if the output is 1 it samples ÂR randomly from Zλ2 .

Theorem 5. The protocol Πmax is MAX-private, where xi ∈ {0, . . . , k−1} and MAX(x1, . . . , xn) =
max{x1, . . . , xn}.

Proof. The proof is nearly identical to the previous proof for AND, but we provide a detailed proof
regardless.

Again we suppose, without loss of generality, that the adversary A corrupts SL as well as m clients
Pn−m+1, . . . , Pn where m ≤ n. Suppose honest players P1, . . . , Pn−m hold inputs x1, . . . , xn−m ∈
{0, . . . , k−1}. We must again construct an efficient simulator which takes the value MAX(x1, . . . , xn)
and plays the part of the honest players in the protocol to construct a simulated view V ∗ which
is computationally indistinguishable from the adversary’s real view in the protocol view(A) =
view(SL, Pn−m+1, . . . , Pn). A’s actual view (excluding adversarial inputs, which can be perfectly
simulated given oracle access to the adversarial clients) is once again:

{[x̂1]BL , . . . , [x̂n−m]BL , AR}

Once again, the hiding property of our secret-sharing schemes guarantees that a single share reveals
nothing about the underlying encoded secret x̂i and is thus indistinguishable from a random ring
element, this time in the ring Zλ×k2 . Thus, we simulate the honest players’ shares seen by SL by
sampling random elements from Zλ×k2 .

To simulate the value AR, we again utilize the output of the protocol. Suppose without loss of
generality that MAX(x1, . . . , xn) = t, where t ∈ {0, . . . ,M − 1}. The adversary simply chooses
ÂR at random from Zλ×k2 subject to the following constraint: (AL ⊕ AR)j = 0 for j < tλ and
(AL ⊕ AR)k = 1 for some k ∈ {tλ, . . . , (t + 1)λ − 1}. We once again know ÂR and AR come

60

from the same distribution because they are both uniformly random subject to the constraint of
producing the correct output. In conclusion, the simulated adversarial view is precisely V ∗ =
{r1, . . . , rn−m, ÂR}, where ri ∈ Zλ×k2 is chosen at random and ÂR is defined as above.

Corollary 6. The protocol Πmin is MIN-private, where MIN(x1, . . . , xn) = min{x1, . . . , xn} and
xi ∈ {0, 1}.

Proof. The only interaction in Πmin is a single call to the Πmax protocol, whose privacy was estab-
lished via the previous theorem.

This concludes proofs of privacy for our first class of protocols which do not require share conversion.
Although the next few proofs involve share conversion, they only require OT-based share conversion,
so we simply rely on the proof of privacy from [14].

Theorem 7. The protocol Πsum is SUM-private, where xi ∈ Zl
′
2 and

SUM(x1, . . . , xn) =
∑
xi (as integers in Z).

Proof. Suppose, without loss of generality, that the adversary A corrupts SL as well as m clients
Pn−m+1, . . . , Pn where m ≤ n. Suppose honest players P1, . . . , Pn−m hold inputs x1, . . . , xn−m ∈
Z2l′ . We must construct an efficient simulator which takes the value SUM(x1, . . . , xn) =

∑
i xi ∈ Z

and plays the part of the honest players in the protocol to construct a simulated view V ∗ which
is computationally indistinguishable from the adversary’s real view in the protocol view(A) =
view(SL, Pn−m+1, . . . , Pn). The underlying B2A protocol is Fb2a-private (see [14]), so the adversary
only learns the output of B2A and nothing else. Thus A’s actual view (excluding dishonest players’
inputs) is precisely:

{[x1]BL , . . . , [xn−m]BL , [x1]
A
L , . . . , [xn−m]AL , AR}

Based on the hiding property of the Boolean and Arithmetic secret-sharing schemes, a single share
in either scheme reveals nothing about the underlying secret and is thus indistinguishable from a
random element of the corresponding ring. Thus, we simulate the honest players’ shares seen by
SL by sampling random elements of the proper length, l′ bits for the Boolean shares and l bits for
the Arithmetic shares. ÂR can be computed as SUM(x1, . . . , xn) − AL, since AL + AR = SUM(·).
Thus the simulated view is V ∗ = {r1, . . . , rn −m, r′1, . . . , r′n−m, ÂR}, where ri ∈ Z2l′ and r′i ∈ Z2l

are chosen at random.

Note that this proves privacy of our bit sum protocol as a corollary by simply substituting l′ = 1.

Corollary 8. The protocol Πmean is MEAN-private, where xi ∈ Z2l
′ and MEAN(x1, . . . , xn) =

(1
n

∑
i xi, n).

Proof. The Πmean protocol is identical to the ΠSUM protocol except that servers also release to
clients in the clear the number of players n′ who submitted valid inputs so that they can properly
compute the mean. The adversary’s view and the simulated view are identical.

Theorem 9. The protocol Πfrq(x1, . . . , xn) is FRQ-private, where xi ∈ {0, . . . , k−1} and FRQ(x1, . . . , xn =
~h− (f1, . . . , fk) ∈ Zkn+1, where fj = |{xi : xi = j} ≤ n is the frequency of input j ∈ Zk.

61

Proof. We once again assume A corrupts SL as well as the last m clients. If we ignore the two
additional verification steps ensuring that each input is an impulse vector, the adversary’s view is
once again

view(A) = {[x1]BL , . . . , [xn−m]BL , [x1]
A
L , . . . , [xn−m]AL , AR}

just as in the SUM protocol. Simulating the SL shares is once again done via random sampling in
the rings Z2l′ and Z2l for the Boolean and Arithmetic shares respectively. Simulating AR is once

again done using the output of the protocol and AL. Specifically, ÂR = ~h ⊕ AL. Thus, to prove
privacy, we need only prove the privacy of these two additional verification steps.

The first such step is a parity check on each encoded input x̂i to make sure it contains an odd
number of 1’s. This is accomplished in the clear by having each server computing the parity of
their share (call these parity bits pi,L and pi,R) and taking the direct sum pi = pi,L⊕pi,R. Note that
for any honest player Pi, we must have pi = 1. Similarly, for any corrupted player Pj , our simula-
tor knows the value pj exactly. Thus, we can simulate all pi,R exactly by computing pi,R = pi⊕pi,L.

The second check is to ensure that no player submitted multiple impulses. To do this, servers
compute B2A on each component of each secret-shared “impulse.” Based on the privacy of B2A
from [14], this does not reveal any information besides the output, the corresponding Arithmetic
shares. The servers sum all vectors together and sum the components of the final vectors to get
arithmetic shares of the total number of impulses submitted by all clients. Note that this value is
is simply n − c, where c is the number of adversarial clients who submitted invalid inputs. Since
our simulator knows the value c, this can be simulated exactly. If c = 0, we are done. Otherwise,
the process repeats recursively on smaller subsets of players. Note that no matter how small these
subsets become, the sum n′− c′ of total impulses in any subset will never reveal anything about an
honest player’s input, since it is publicly known that all honest players submitted a single impulse.
This step will only possibly reveal adversarial players’ inputs. Thus this second check is again
private.

Since every message seen by the adversary in these additional verification steps is efficiently simu-
latable, we conclude that the protocol is private.

Before we can prove the privacy of Πvar, Πstddev, and ΠlinReg, we must prove the privacy of the novel
edaBit-based share conversion protocol on which these protocols rely.

Theorem 10. B2Al,p, as described in Appendix D, is FB2A-private.

Proof. We assume without loss of generality that the adversary A corrupts SL and that SL is
the participant who reconstructs the value x + r. Since we know that the protocol MultB reveals
nothing except for its output, we know any communication during the execution of MultB can be
simulated. Since this is the only communication in Step 1 of the protocol, we need only simulate
communication in Step 2, which solely consists of the values si, which are the bits representing the
value x + r. Note that both x and r are unknown to either player and r is a uniformly random
value in Z2l . Thus, since x is also unknown, x + r appears uniformly random in Z2l . This means
that the bits si appear uniformly random and our simulator can itself choose uniformly random
bits for the simulated values. Since the view of the adversary is efficiently simulatable, we conclude
that B2Al,p is FB2A-private.

62

We now have the tools to prove that Πvar, Πstddev, and ΠlinReg are private.

Theorem 11. The protocol Πvar is ˆVAR-private, where xi ∈ Z2l and
ˆVAR(x1, . . . , xn) = (VAR{x1, . . . , xn},E{x1, . . . , xn}).

Proof. Our proof is analogous to the previous examples except for three departures. First, our
proof additionally relies on the privacy of the SNIP verification procedure. The full proof of secu-
rity can be found in Appendix D of [8]. Their conclusion is that as long as one server is honest,
an adversary controlling the remaining servers (and any coalition of clients) learns nothing from
the SNIP verification procedure. This is analogous to how we rely on the security of the OT-based
B2A protocol from [14] to conclude that the adversary’s learns nothing besides the output of the
protocol, except with negligible probability. This tells us that the view of our adversary remains
the same before and after SNIP verification.

The second departure is that this protocol relies on our novel edaBit-based share conversion proto-
col. Since we have already proven that this protocol is private, we simply use that result to ensure
that the adversary learns nothing but the output during share conversion. The adversary’s view
(not including adversarial inputs) is thus:

{{[fi(0)]L}, {[gi(0)]L}, {[hi]}, {[x̂1]BL , . . . , [x̂n−m]BL , [x̂1]
A
L , . . . , [x̂n−m]AL , AR}

To simulate the polynomial shares, we call the simulator used in the SNIPs security proof in Ap-
pendix D of [8] as a subroutine. For the rest of the shares, we simulate via random sampling once
again based on the hiding property of the secret sharing schemes.

The third departure is that the value AR, when combined with AL, reveals E[X] in addition to
VAR[X], where X is a uniform random variable over values x1, . . . , xn. This is why our functionality

ˆV AR additionally reveals E[X], meaning our simulator receives this as input. From this and the
variance, the simulator can reconstruct E[X2] using the identity VAR[X] = E[X2]−(E[X])2. Then,
since AL + AR = E[X2] − (E[X])2 with overwhelming probability, the simulator can simulate AR
by simply computing ÂR = E[X2]− (E[X])2 −AL.

Corollary 12. The protocol Πstddev is ˆSTDDEV-private, where ˆSTDDEV(X) = (
√
VAR(X),E[X]).

Proof. The protocol is identical to Πvar with an additional local operation applied on the client
side. Since there is no additional communication, the ˆVAR-privacy of Πvar implies the corollary.

Theorem 13. The protocol ΠlinReg is ˆlinReg-private, where ˆlinReg additionally outputs n′, the
number of players whose shares were counted in the aggregate.

Proof. This proof is completely analogous to the previous proof for Πvar. The only difference
between the protocols, besides the length of encoded shares, is that two multiplicative relationships
are being verified within the encoded inputs. These are both done using SNIPs, however, and so
with overwhelming probability neither server learns any additional information based on Appendix
D in [8]. Simulation of AR, once n′, c0, c1, and AL are known, can be done via simple matrix
operations on the matrix equation given in Section 6.

63

C.2 Robustness

In this section, we give proofs that each of our protocols are robust. That is, no client can affect
the output of the protocol beyond misreporting their private value as some other valid input value.
Our first and second categories of protocols (with the exception of Πfrq) will have the simplest
robustness proofs. This is because all Boolean strings of the proper length are valid encodings,
meaning the bit-length is the only property which servers must verify, and doing so is trivial when
client data is shared via the Boolean scheme. In the protocols which utilize SNIPs, our robustness
relies on the SNIPs’ soundness property, proven in Appendix D of [8]. It guarantees that a malicious
prover has only a negligible probability of successfully submitting an invalid proof to the verifiers.
This, in combination with the trivial verification of bit-length, guarantees that each input lies in
the correct range and they obey the proper multiplicative relationships. The most involved proof of
robustness is for the Πfrq protocol, since we must give an argument from scratch of the correctness
of our verification procedure.

Theorem 14. The protocol Πand(x1, . . . , xn) is robust, where xi ∈ {0, 1}.

Proof. Note that any λ-bit Boolean vector is a valid encoded input. Any player who does not
submit a λ-bit Boolean vector to each server is ignored by the protocol, which is equivalent to
having an input of zero. Any player who does submit a λ-bit Boolean vector to each server, call
them vL, vR ∈ Z2λ , has submitted an encoding of a valid input, since vL ⊕ vR is a λ-bit Boolean
vector. Thus any misbehaving client must either submit a valid encoded input or be treated as if
they submitted input 0, which satisfies the definition of robustness.

Theorem 15. The protocol Πor(x1, . . . , xn) is robust, where xi ∈ {0, 1}.

Proof. See proof of previous theorem.

Theorem 16. The protocol Πmax(x1, . . . , xn) is robust, where xi ∈ {0, . . . ,M − 1}.

Proof. Same as previous proofs, except that valid encoded inputs are M×λ-bit Boolean vectors.

Theorem 17. The protocol Πmin(x1, . . . , xn) is robust, where xi ∈ {0, . . . ,M − 1}.

Proof. Same as previous proof, valid encoded inputs are M × λ-bit Boolean vectors.

Theorem 18. The protocol Πsum(x1, . . . , xn) is robust, where xi ∈ Z2l′ , l
′ < l.

Proof. Note that once again, any l′-bit Boolean vector is a valid encoded input. Thus, as long as
each server received an l′-bit Boolean vector, the client submitted a valid input. For the client to
submit anything besides a valid input, he must send to at least one server something besides an
l′-bit Boolean vector, at which point the servers will detect it with certainty, discard that clients’
shares, and continue as if that client submitted a zero.

Corollary 19. The protocol Πmean(x1, . . . , xn) is robust, where xi ∈ Z2l′ , l
′ < l.

Proof. The protocol consists of one call to Πsum and local operations, so robustness of Πsum implies
robustness of Πsum.

This concludes our trivial robustness proofs. The following proofs rely on the soundness property
of SNIPs, for which we rely on the results of [8].

64

Theorem 20. The protocol Πvar(x1, . . . , xn) is robust, where xi ∈ Z2l.

Proof. Clients must submit shares of the proper length by the argument given in previous proofs.
The only additional factor in this protocol is that the encoded input must be of the form (x, x2).
This is accomplished via the use of SNIPs, and our robustness property relies on the soundness of
SNIPs proven in Appendix D of [8]. Their result guarantees that no client has more than 2µ+1

2l

probability of submitting an input not of the form (x, x2) for which the SNIP verification succeeds,
where µ is the number of multiplication gates in the Valid circuit. Here, µ = poly(l), so this
probability is negligible. Since any input whose SNIP verification fails will be ignored (which is
equivalent to submitting the value 0), this implies that no adversarial client can affect the output
beyond misreporting their private value except with negligible probability. Thus, Πvar is robust.

Corollary 21. The protocol Πstddev(x1, . . . , xn) is robust, where xi ∈ Z2l.

Proof. The protocol consists of one call to Πvar and local operations, so robustness of Πvar implies
robustness of Πstddev.

Theorem 22. The protocol ΠlinReg(x1, . . . , xn) is robust, where xi ∈ Z2l.

Proof. In this case, we must verify that the encoded input is of the form (x, x2, y, xy). The proof is
identical to the proof of robustness for Πvar except that the Valid circuit verifies both multiplicative
relationships at once. That is, according to the soundness of SNIPs proven in Appendix D of [8],
no client has more than a negligible probability (2µ+1

2l
) of submitting an improperly encoded input

for which the SNIP verification algorithm succeeds. Thus, by the same argument as Πvar, ΠlinReg is
robust.

Theorem 23. The protocol Πfrq(x1, . . . , xn) is robust, where xi ∈ {0, . . . , k − 1}.

Proof. If an adversarial client submits anything besides an k-bit Boolean vector to either server,
their input will be discarded. Otherwise, the only ways to submit an invalid encoding are to submit
a zero vector or to submit multiple impulses. If Pi submits a zero vector, servers will discover it
has an even parity when they compute the parity in the clear. Thus, the input will be discarded.
Since all zero vectors are detected with certainty in this step, assume from this point onwards that
the servers do not hold shares of any zero vector and that there are n′ remaining pairs of shares.
If Pi submits a vector x such that (x)i = (x)j = 1, then the sum of all the components in the
sum of all vectors will be greater than n′, since there are no zero vectors. This means the players
will be partitioned lexicographically and the check will repeat recursively. In the base case of this
recursion, Pi will be the only member of his partitioned set, and this check will reveal that the sum
of the components in his input is larger than 1, and his input will be discarded. This happens with
certainty. Thus, no client can submit an invalid input without their input being ignored, satisfying
the definition of robustness.

This concludes our proofs of security. We have shown that each protocol described in this paper is
private (with at most the same modest leakage as Prio), robust, and anonymous.

65

	Introduction
	Technical Overview
	Preliminaries
	Necessary Primitives
	The Simple Scheme
	Protecting Correctness via Share Conversion
	Complex Statistics
	Resolving Frequency Count
	Share Conversion
	Security
	Practical Evaluation
	Data: SUM
	Data: MAX
	Data: linReg
	Data: Offline Pre-computation

	Conclusions and Future Work
	Full Protocol Descriptions
	Security Definitions
	Proofs of Security
	Privacy
	Robustness

