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Abstract. At SODA 2017 Lokshtanov et al. presented the first worst-
case algorithms with exponential speedup over exhaustive search for solv-
ing polynomial equation systems of degree d in n variables over finite
fields. These algorithms were based on the polynomial method in circuit
complexity which is a technique for proving circuit lower bounds that
has recently been applied in algorithm design. Subsequent works further
improved the asymptotic complexity of polynomial method-based algo-
rithms for solving equations over the field F2. However, the asymptotic
complexity formulas of these algorithms hide significant low-order terms,
and hence they outperform exhaustive search only for very large values
of n.
In this paper, we devise a concretely efficient polynomial method-based
algorithm for solving multivariate equation systems over F2. We analyze
our algorithm’s performance for solving random equation systems, and
bound its complexity by about n2 · 20.815n bit operations for d = 2 and
n2 · 2(1−1/2.7d)n for any d ≥ 2.
We apply our algorithm in cryptanalysis of recently proposed instances
of the Picnic signature scheme (an alternate third-round candidate in
NIST’s post-quantum standardization project) that are based on the se-
curity of the LowMC block cipher. Consequently, we show that 2 out of 3
new instances do not achieve their claimed security level. As a secondary
application, we also improve the best-known preimage attacks on several
round-reduced variants of the Keccak hash function.
Our algorithm combines various techniques used in previous polynomial
method-based algorithms with new optimizations, some of which exploit
randomness assumptions about the system of equations. In its cryptan-
alytic application to Picnic, we demonstrate how to further optimize the
algorithm for solving structured equation systems that are constructed
from specific cryptosystems.

1 Introduction

The security of many cryptographic schemes is based on the conjectured hardness
of solving systems of polynomial equations over a finite field. This problem is
known to be NP-hard even for systems of quadratic equations over F2.

The input to the problem consists of m polynomials in n variables over a finite
field F, denoted by E = {Pj(x1, . . . , xn)}mj=1, where each polynomial is given



as a sum of monomials. The algebraic degree of each polynomial is bounded
by a small constant d. The goal is to find a solution to the system, namely
x̂ = (x̂1, . . . , x̂n) ∈ Fn such that Pj(x̂) = 0 for every j ∈ {1, . . . ,m}, or to
determine that a solution does not exist.1

In this paper, we will be interested in the concrete (rather than asymptotic)
complexity of algorithms for solving polynomial systems over the field F2 and in
their applications to cryptanalysis.

1.1 Previous Algorithms for Solving Polynomial Equation Systems

The problem of solving polynomial equation systems over finite fields is widely
studied. We give a brief overview of the main algorithms that were applied in
cryptanalysis.

Classical techniques developed to solve polynomial systems attempt to find
a reduced representation of the ideal generated by the polynomials in the form
of a Gröbner basis (e.g., the F4 [17] and F5 [18] algorithms). These methods
have had success in solving some very structured polynomial systems that arise
from certain cryptosystems (e.g., see [19]), but it is difficult to estimate their
complexity in solving arbitrary systems. Related methods such as XL [11] and
its variants typically work well only for largely over-defined systems in which
m� n.

In [3] Bardet et al. analyzed the problem of solving quadratic equations over
F2 and devised an algorithm that combines exhaustive search and sparse linear
algebra. The authors estimated the asymptotic complexity of their randomized
algorithm for m = n by O(20.792n), under some algebraic assumptions that
were empirically found to hold for random systems. However, due to a large
overhead hidden in the asymptotic formula, the authors expect their algorithm
to beat exhaustive search only when the number of variables is at least 200.
Another algorithm based on a different hybrid approach was published by Joux
and Vitse [23], who gave experimental evidence that it outperforms in practice
previous algorithms for a wide range of parameters. Analyzing the complexity
of the algorithm is non-trivial, but according to the recent work of Duarte [16],
the algorithm for solving quadratic systems over F2 with m = n + 1 does not
beat existing algorithms (such as the one of [3]) asymptotically.

Finally, we mention the work of Bouillaguet et al. [8], which devised an
optimized exhaustive search algorithm for solving polynomial systems of degree
d over F2 whose complexity is 2d log n · 2n bit operations.

1.2 The Polynomial Method

In [27] Lokshtanov et al. presented the first worst-case algorithms for solving
polynomial equations over finite fields that have exponential speedup over ex-
haustive search. These algorithms were based on a technique known as the poly-
nomial method. It was borrowed from circuit complexity [4] and recently applied

1 We denote an assignment to the formal variable vector x in the polynomial Pj(x)
by x̂ and the value of Pj(x) on this assignment by Pj(x̂).
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in algorithm design (see [36] for a survey). The randomized algorithm of Loksh-
tanov et al. for solving equations over F2 has runtime of O(20.8765n) for quadratic
systems and O(2(1−1/(5d))n) in general. Following [27], Björklund, Kaski and
Williams [7] reduced the complexity of this algorithm to O(20.804n) for d = 2
and O(2(1−1/2.7d)n) in general. More recently, these complexities were further
improved in [12] by the author to O(20.6943n) for d = 2 and O(2(1−1/2d)n) for
d > 2.

Although these recent algorithms have better asymptotic complexity than ex-
haustive search, a close examination reveals that their concrete (non-asymptotic)
complexity is above 2n for parameter ranges that are relevant to cryptography.

1.3 Our Results

We introduce the polynomial method for solving multivariate equation systems
over F2 as a tool in cryptanalysis. For this purpose, we devise a concretely
efficient algorithm for solving such systems.

Our algorithm is relatively simple and its analysis assumes the degree d
polynomials are selected uniformly at random. Up to small constants, we bound
the complexity of our algorithm by n2 · 20.815n bit operations for d = 2, and
n2 · 2(1−1/2.7d)n for d ≥ 2.

In a straightforward implementation of our algorithm, its memory complexity
is significant and only about n times lower than its time complexity. In fact, this
is the case for all previous polynomial method-based algorithms. We address
this issue by presenting a memory-optimized variant of the algorithm which
maintains roughly the same time complexity, but whose memory complexity is
reduced to about n2 · 20.63n bits for d = 2 and n2 · 2(1−1/1.35d)n in general.2

Potential fast implementation. Even after the reduction in memory com-
plexity, it remains high and would present a major challenge for obtaining a
fast practical implementation of the algorithm. On the other hand, the memory
access patterns of the algorithm are fixed and independent of the data, which is
an advantage. Moreover, future works may be able to further reduce the memory
complexity or utilize time-memory tradeoffs. Taking this optimistic viewpoint,
our work may be viewed as a step towards a practically efficient implementa-
tion of a polynomial method-based algorithm for solving multivariate equation
systems over F2.

We stress, however, that the main goal of the paper is to give a good ana-
lytical concrete estimate of the complexity of polynomial method algorithms for
problem sizes that are too large to be solved in practice. Consequently, they can
be used in the security analysis of cryptosystems and serve as a starting point
for additional optimizations.

2 Asymptotically, the polynomial factor in the memory complexity formula is between
n2 and n3, but it is close to n2 for relevant parameters.
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Asymptotic and concrete complexity. Our algorithm can actually be viewed
as a concretely efficient variant of the algorithm of [12]. The only reason that [12]
seems to have better asymptotic complexity is that it uses a self-reduction to
a smaller multivariate system. Essentially, each recursive call reduces the expo-
nent in the complexity formula, where the gain diminishes with the number of
recursive calls. On the other hand, each such call increases the lower order terms.

An estimated calculation suggests that a self-reduction is profitable for d = 2
starting from about n = 100. Beyond n = 200 for d = 2 the advantage in concrete
complexity is made substantial using several recursive calls. On the other hand,
for d = 4 the reduction seems profitable only beyond n = 200. We chose not
to augment our algorithm with any self-reduction and simply replace it with
exhaustive search for two reasons. First, as described below, the applications we
present in this paper require solving multivariate systems with d > 2, for which
the benefit of the self-reduction seems marginal for relevant parameters. Second,
this self-reduction significantly complicates the concrete analysis, whereas we
aim for simplicity. Yet, this estimation suggests that the full potential of the
algorithm is still to be discovered.

Cryptanalytic applications. We estimate the concrete complexities of our
algorithm for solving quadratic systems in 80, 128 and 256 variables by 277, 2117

and 2223 bit operations, respectively. In terms of cryptanalysis, the main targets
of our algorithm for d = 2 are multivariate public-key cryptosystems (e.g., HFE
by Patarin [30] and UOV by Kipnis, Patarin and Goubin [25]), whose security
is directly based on the hardness of solving quadratic systems. However, recent
multivariate cryptosystems such as GeMSS [9] (an alternate third-round can-
didate signature scheme in NIST’s post-quantum standardization project [29])
were designed with a sufficiently large security margin and resist our attack.
Nevertheless, the security margin for some of these cryptosystems seems to be
reduced by our algorithm.

Interestingly, the main application of our algorithm is for solving multivariate
systems of degree d > 2 which have generally received less attention in the liter-
ature compared to quadratic systems. In particular, we apply it to cryptanalyze
recently proposed instances [24] of the Picnic signature scheme [10] (an alternate
third-round candidate in NIST’s post-quantum standardization project) that is
based on the security of the LowMC block cipher [1].

We focus on the three Picnic instances where the LowMC block cipher has a
full Sbox layer and 4 internal rounds. These instances have claimed security lev-
els of S ∈ {128, 192, 255} bits. The best-known attacks on these instances were
recently published by Banik et al. [2], but they are only applicable to weakened
variants where the number of LowMC rounds is reduced from 4 to 2. On the
other hand, our attacks on the full 4-round instances with S ∈ {128, 192, 255}
have complexities of 2130, 2188 and 2245 bit operations, respectively. These at-
tacks are far from being practical, but show that 2 out of the 3 instances do
not achieve their claimed security level, while the security of the instance with
S = 128 is somewhat marginal. When optimized for time complexity, the attacks
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for S ∈ {128, 192, 255} require about 2112, 2164 and 2219 bits of memory, respec-
tively. However, there is no consensus among researchers on a model that takes
memory complexity into account and the formal security claims of the Picnic
(and LowMC) designers only involve time complexity.3

The authors of [24] also proposed conservative instantiations where the num-
ber of LowMC rounds is increased by 1. The attack complexities for these in-
stances with S ∈ {128, 192, 255} bits become 2133, 2192 and 2251, respectively.
Hence the instance with S = 255 still does not achieve the desired security level,
while security remains very marginal for the strengthened instance with S = 192.

We also analyze round-reduced variants of the Keccak hash function [5],
which was selected by NIST in 2015 as the SHA-3 standard. In particular, we
describe the best-known preimage attacks in terms of time complexity on 4
rounds of Keccak-384 and Keccack-512. These have complexities of 2374 and
2502 bit operations, respectively. We further describe the first collision attack
on 4-round Keccak-512 that is (slightly) faster than the birthday bound. We
consider the cryptanalysis of round-reduced Keccak as a secondary application
since our attacks do not substantially improve upon previous attacks and they
are very far from threatening Keccak’s security. On the other hand, the attacks
only exploit basic properties of Keccak’s internal structure and it is likely that
they can be improved by using more dedicated techniques.

Complexity evaluation. It is important to emphasize that the complexities
of our attacks are measured in bit operations. On the other hand, the complexity
of exhaustive search for the cryptanalytic problems we consider on a space of
size 2n is larger than 2n bit operations. Hence the improvement we obtain over
exhaustive search is more significant than it may first appear.

In particular, the encryption algorithms of the LowMC instances we crypt-
analyze (that are used in Picnic) have complexities of at least 217 bit operations.
However, evaluating an attack in terms of the complexity of the LowMC en-
cryption algorithm is misleading, as naive exhaustive search is not the most
efficient generic attack on the 4-round LowMC instances. Indeed, breaking these
instances is easily reduced to solving a multivariate system in (about) n vari-
ables with d = 4, for which the best-known generic attack is the optimized
exhaustive search algorithm of Bouillaguet et al. [8], whose complexity is about
2d log n · 2n = 8 log n · 2n bit operations (also see [15] for an alternative algo-
rithm). Overall, in terms of bit operations, our algorithm is more efficient than
the one of [8] by a factor which is between 32 and 216 = 65536 (depending on
the LowMC instance considered).

1.4 Comparison to Previous Works

The analysis of our algorithm for random equation systems over F2 is simple. In
contrast, the analysis of previous cryptanalytic algorithms that beat brute force

3 The Picnic designers have confirmed our findings and plan to update the parameter
sets accordingly.
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for random equation systems over F2 (such as the one by Bardet et al. [3]) is
based on heuristic algebraic assumptions that are difficult to analyze.

The algorithm of [3] (applied to systems with m = n) may seem to have a
slightly better asymptotic complexity than ours, but this is a misleading com-
parison, since (as noted above) our algorithm can be extended to have better
asymptotic complexity. In terms of concrete complexity for relevant parame-
ters, [3] only beats exhaustive search for d = 2 beyond n = 200, whereas the
complexity of our algorithm for d = 2, n = 200 is about 2177.

Unlike our algorithm, the algorithm of Joux and Vitse [23] was shown to
perform well in practice. However, its concrete complexity has not been estab-
lished analytically and it is not clear how to use it in the security analysis of
cryptosystems. On the other hand, the complexity of hybrid algorithms (such
as [3,23]) for over-defined systems (in which m � n) is reduced as a function
of m, whereas achieving such optimizations for our algorithm is left as an open
problem.

Finally, previous polynomial method-based algorithms were only analyzed
asymptotically. While it is difficult to calculate their exact concrete complexity,
our optimizations reduce complexity by many orders of magnitude for relevant
parameters.

1.5 Technical Contribution

Let E = {Pj(x1, . . . , xn)}mj=1 be a polynomial system of degree d over F2. Algo-
rithms based on the polynomial method consider the polynomial

F (x) = (1 + P1(x))(1 + P2(x)) . . . (1 + Pm(x))

(operations are over F2). Note that F (x̂) = 1 if and only if x̂ is a solution
to E. However, the degree of F (x) can be as high as d · m and it generally
contains too many monomials to manipulate efficiently. It is thus replaced by a
probabilistic polynomial F̃ (x) with a lower degree that agrees with F (x) on most
assignments. Taking advantage of the low degree of F̃ (x) by using fast polynomial
interpolation and evaluation algorithms allows to solve E faster than brute force.

Our main algorithm includes various concrete optimizations and simplifica-
tions to previous polynomial method-based algorithms. These are described in
detail in Section 3. For example, we reduce the number of polynomials which
need to be interpolated and evaluated and show how to jointly interpolate several
polynomials with improved amortized complexity.

Then, we show how to reduce the memory complexity of the algorithm by
an exponential factor with essentially no penalty in time complexity. The opti-
mization is based on a memory-reduced variant of the Möbius transform over F2

which is a fast polynomial interpolation and evaluation algorithm. This variant
allows to evaluate a low-degree polynomial on its entire domain with memory
complexity proportional to the memory required to store the input polynomial it-
self (and time complexity proportional to the domain size). Although the Möbius
transform is widely used and the variant we describe is simple, it seems not to be
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well-known. The way this variant is used in our algorithm is, however, slightly
more involved.

As an additional technical contribution, we show how to optimize our al-
gorithm for solving structured equation systems that are constructed from spe-
cific cryptosystems. In particular, we observe that in cryptographic settings, a
probabilistic polynomial can be replaced with a deterministic construction of a
polynomial that preserves the structure of the polynomials of E. We show that
in some cases (e.g., in the analysis of Picnic in Section 5.2) this alternative poly-
nomial has reduced degree, optimizing the attack. We view this optimization as
one of the main contributions of this paper, as it may serve as a starting point
for future works in cryptanalysis.

Paper structure. Next, we describe some preliminaries. We overview our al-
gorithm in Section 3 and give its details in Section 4. Applications are described
in Section 5.

2 Preliminaries

2.1 Boolean Algebra

Given a finite ordered set S, denote by |S| its size and by S[i] its i’th element.
For a positive integer n, let [n] = {1, 2, . . . , n}.

It is well-known that any Boolean function F : Fn2 → F2 can be uniquely
described as a multilinear polynomial, whose algebraic normal form (ANF) is
given by F (x1, . . . , xn) =

∑
u∈{0,1}n αu(F )Mu(x), where αu(F ) ∈ {0, 1} is the

coefficient of the monomial Mu(x) =
∏n
i=1 x

ui
i (operations are over F2).

We denote by HW(x) the Hamming weight of a vector x ∈ {0, 1}n. The
algebraic degree of a function F is defined as max{HW(u) | αu(F ) 6= 0}. Let
Wn
w be the set {x ∈ {0, 1}n | HW(x) ≤ w}. Thus, a function F of degree d ≤ n

can be described using |Wn
d | =

∑d
i=0

(
n
i

)
coefficients. We simplify notation by

denoting
(
n
↓w
)

=
∑w
i=0

(
n
i

)
.

For i ∈ {1, . . . , n} and b ∈ {0, 1}, define the function Fxi←b : Fn−12 → F2 by

Fxi←b(x1, . . . , xi−1, xi+1, . . . , xn) = F (x1, . . . , xi−1, b, xi+1, . . . , xn).

Interpolation. Any ANF coefficient αu(F ) can be interpolated by summing
(over F2) over 2HW(u) evaluations of F : for u ∈ {0, 1}n, define Iu = {i ∈
{1, . . . , n} | ui = 1} and let Su = {x ∈ {0, 1}n | Ix ⊆ Iu}. Then,

αu(F ) =
∑
x̂∈Su

F (x̂). (1)

Indeed, among all monomials only Mu(x̂) attains a value of 1 an odd number of
times in the expression

∑
x̂∈Su

F (x̂) =
∑
x̂∈Su

∑
v∈{0,1}n αv(F )Mv(x̂).
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Proposition 2.1. Let F : Fn2 → F2 be a Boolean function. For some 1 ≤ n1 ≤
n, partition its n variables into two sets y1, . . . , yn−n1

, z1, . . . , zn1
. Given the

ANF of F , write it as F (y, z) = (z1 . . . zn1)F1(y)+F2(y, z) by factoring out all the
monomials that are multiplied with z1 . . . zn1 . Then, F1(y) =

∑
ẑ∈{0,1}n1 F (y, ẑ).

The proposition follows from (1) by considering the polynomial F1(y) as the
symbolic coefficient of the monomial z1 . . . zn1 . Observe that if F (y, z) is of degree
d then F1(y) is of degree at most max(d− n1, 0).

Remark 2.1. Proposition 2.1 is also at the basis of cube attacks [14]. However,
in cube attacks, the z variables are public bits controlled by the attacker (e.g.,
plaintext bits) while the y variables are secret key bits. In our case, we will apply
Proposition 2.1 in a setting where all variables are secret key bits.

2.2 Model of Computation

We estimate the complexity of a straight-line implementation of our algorithm
by counting the number of bit operations (e.g., AND, OR, XOR) on pairs of bits.
This ignores bookkeeping operations such as moving a bit from one position to
another (which merely requires renaming of variables in straight-line programs).

2.3 Basic Algorithms

We describe the basic algorithms that our main algorithm uses as sub-procedures.

Möbius transform. Given the truth table of an arbitrary function F (as a
bit vector of 2n entries), the ANF of F can be represented as a bit vector of
2n entries, corresponding to its 2n coefficients. This ANF representation can be
computed from the truth table of F via the Möbius transform over Fn2 .

A fast algorithm for computing this transform is based on the decomposition

F (x1, . . . , xn) = x1 · F1(x2, . . . , xn) + F2(x2, . . . , xn). (2)

Thus, one recursively computes the ANF of F1(x2, . . . , xn) and F2(x2, . . . , xn).
Given the evaluations of F , for every (x̂2, . . . , x̂n) ∈ {0, 1}n−1,

F2(x̂2, . . . , x̂n) = F (0, x̂2, . . . , x̂n)

and
F1(x̂2, . . . , x̂n) = F (0, x̂2, . . . , x̂n) + F (1, x̂2, . . . , x̂n).

Therefore, computing the evaluations of F1 requires 2n−1 bit operations. Denot-
ing the time complexity by T (n), we have T (n) = 2T (n− 1) + 2n−1, and hence
T (n) ≤ n · 2n−1 < n · 2n.

By (1), a function F of degree bounded by d ≤ n can be interpolated from its
evaluations on the set Wn

d . Adapting the Möbius transform for such a function
F using the decomposition above gives an algorithm with complexity T (n, d) ≤
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T (n − 1, d) + T (n − 1, d − 1) +
(
n−1
↓d
)

and T (n, n) ≤ n · 2n. It can be shown by

induction that T (n, d) ≤ n ·
(
n
↓d
)

bit operations.

The Möbius transform over Fn2 coincides with its inverse which corresponds
to evaluating the ANF representation of F (i.e., computing its truth table). More
details about the Möbius transform over Fn2 and its applications in crypography
can be found in [22, p.285].

Memory complexity. A standard in-place implementation of the Möbius trans-
form performs n iterations on its input vector, where in each iteration, half of
the array entries are XORed to the other half. This requires 2n bits of memory.

Fast exhaustive search for polynomial systems over F2 [8]. At CHES
2010 Bouillaguet et al. presented an optimized exhaustive search algorithm for
enumerating over all solutions to a polynomial system over F2. For a polynomial
system of degree d with n variables, the complexity of their algorithm is 2d·log n·
2n. The algorithm also requires a preprocessing phase that has complexity of n2d,
which is negligible when d is much smaller than n. We note that the analysis
of the algorithm makes some randomness assumptions about the polynomial
system, and requires that the expected number of solutions to a system with m
equations over n variables is about 2n−m.

In this paper we will use this algorithm to find solutions inside sets of the
special form Wn−n1

w × {0, 1}n1 for some values of w and n1 in time

2d · log n · |Wn−n1
w × {0, 1}n1 | = 2d · log n · 2n1 ·

(
n−n1

↓w
)
.

For an arbitrary value of n1, obtaining this complexity may not be trivial because
the algorithm of [8] iterates over the search space using a Gray code, and hence
it cannot be implemented on the set of low Hamming weight vectors Wn−n1

w

(for w < n − n1) in a straightforward manner. We note that there are known
monotone Gray codes that traverse the binary vectors (almost) in increasing
Hamming weight order [32]. It would be interesting to adapt the algorithm of [8]
to use them.

On the other hand, the least significant bits of the vectors in the set Wn−n1
w ×

{0, 1}n1 can be traversed using a standard Gray code, paying a penalty only ev-
ery 2n1 iterations. Since we can naively enumerate any set of n-bit vectors by
flipping at most n bits at a time, we can conservatively estimate the multiplica-
tive penalty by about n. Thus, the amortized penalty over [8] is about 2−n1 · n.
In our setting, 2n1 � n, and the overhead is negligible.

Remark 2.2. Asymptotically, we will set n1 = Θ(n), hence 2n1 = ω(n). Con-
cretely, the advantage of the algorithm over exhaustive search will be roughly
2n1

n2 . Thus, we may assume that 2n1 � n holds without loss of generality, as oth-
erwise, the algorithm would not obtain any advantage over exhaustive search.
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2.4 Probabilistic Polynomials

Previous algorithms for solving multivariate equation systems based on the poly-
nomial method (starting with [27]) make use of probabilistic polynomials. In
particular, these works use the following construction (credited to Razborov [31]
and Smolensky [33]). Given m polynomial equations of degree d in the n Boolean
variables x1, . . . , xn, E = {Pj(x)}mj=1, consider the polynomial

F (x) = (1 + P1(x))(1 + P2(x)) . . . (1 + Pm(x)).

Note that x̂ is a solution to E if and only if F (x̂) = 1. Thus, we call the
polynomial F the identifying polynomial of E.

The degree of F (x) is generally too high and we work with a probabilistic
polynomial with a lower degree, defined as follows. Let ` < m be a parameter.
Pick a uniformly random matrix of full rank `, A ∈ F`×m2 and define ` degree d
polynomials as

Ri(x) =

m∑
j=1

Ai,j · Pj(x). (3)

We note that previous works [7,12,27] did not restrict the rank of A. In our case,
this restriction will slightly simplify the analysis of the algorithm. Let

F̃ (x) = (1 +R1(x))(1 +R2(x)) . . . (1 +R`(x)) (4)

be the identifying polynomial of the system Ẽ = {Ri(x)}`i=1. Note that the
degree of F̃ (x) (denoted by dF̃ ) is at most d · `.

Proposition 2.2. For any x̂ ∈ {0, 1}n, if F (x̂) = 1, then F̃ (x̂) = 1. Otherwise,
F (x̂) = 0 and then Pr[F̃ (x̂) = 0] ≥ 1− 2−`.

Proof. If F (x̂) = 1, then Pj(x̂) = 0 for all j ∈ [m] and therefore Ri(x̂) = 0 for

all i ∈ [`]. Hence, F̃ (x̂) = 1.
Otherwise, F (x̂) = 0. Let v ∈ Fm2 be a vector such that vj = Pj(x̂) and

u ∈ F`2, a vector such that ui = Ri(x̂). Note that u = A · v. Since F (x̂) = 0,
there exists j ∈ [m] such that Pj(x̂) = 1 and thus v 6= 0. On the other hand,

if F̃ (x̂) = 1, then Ri(x̂) = 0 for all i ∈ [`], implying that u = 0. Therefore, v
is a non-zero vector in the kernel of A. Since A is a uniform matrix of full rank
`, any fixed non-zero vector (including v) belongs to its kernel with probability
2−` − 2−m < 2−`. �

2.5 Previous Polynomial Method Algorithms for Solving Equation
Systems over F2

In this section we give a short description of the previous polynomial method-
based algorithms of [7,12]. We focus on the parts which are most relevant to this
work.
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The Björklund et al. algorithm [7]. In the algorithm of [7], the search
problem of finding a solution to the system E is reduced to the parity-counting
problem, where the goal is to compute the parity of the number of solutions.

The first step reduces the search problem to the problem of deciding whether
a solution exists. The reduction iteratively fixes one variable of the solution at
a time using Θ(n) calls to the decision algorithm. Then, the decision problem is
reduced to the parity-counting problem. This reduction uses the Valiant-Vazirani
affine hashing [35], adding random linear equations to the system with the goal
of isolating some solution to E (assuming a solution exists), such that it is the
only solution to the new system. In this case, the output of the parity-counting
algorithm is 1. The number of linear equations to add that ensures isolation
with high probability depends on the logarithm of the number of solutions to E,
which is unknown. Hence, the algorithm exhausts all its possible n values.

We now overview the Björklund et al. parity-counting algorithm. Algebraically,
the parity of solutions to E = {Pj(x)}mj=1 is computed by

∑
x̂∈{0,1}n F (x̂), where

F (x) = (1 + P1(x)) . . . (1 + Pm(x)). This sum (parity) is computed in parts by
partitioning the n variables into 2 sets y = y1, . . . , yn−n1

and z = z1, . . . zn1
,

where n1 < n is a parameter. Thus,∑
x̂∈{0,1}n

F (x̂) =
∑

ŷ∈{0,1}n−n1

∑
ẑ∈{0,1}n1

F (ŷ, ẑ).

Replace the polynomial F (y, z) with the probabilistic polynomial F̃ (y, z) =
(1+R1(y, z)) . . . (1+R`(y, z)) for ` = n1 +2, similarly to (4). By Proposition 2.2
and a union bound over all ẑ ∈ {0, 1}n1 , for each ŷ ∈ {0, 1}n−n1 ,

Pr

 ∑
ẑ∈{0,1}n1

F̃ (ŷ, ẑ) =
∑

ẑ∈{0,1}n1

F (ŷ, ẑ)

 ≥ 1− 2n1−` = 3
4 .

In order to compute the sum for each ŷ ∈ {0, 1}n−n1 efficiently, let

G(y) =
∑

ẑ∈{0,1}n1

F̃ (y, ẑ).

It follows from Proposition 2.1 that the degree of G(y) is at most dG = d ·
` − n1. Proceed by interpolating G(y) by first computing its values in the set
Wn−n1

dG
. For this purpose, find all solutions to the equation system {Ri(y, z)}`i=1

in Wn−n1

dG
×{0, 1}n1 via brute force, giving F̃ (ŷ, ẑ) for (ŷ, ẑ) ∈Wn−n1

dG
×{0, 1}n1 .

Then, compute G(ŷ) =
∑
ẑ∈{0,1}n1 F̃ (ŷ, ẑ) for all ŷ ∈Wn−n1

dG
. Given these values

of G(y), interpolate it using the Möbius transform.
Next, evaluate G(y) on all ŷ ∈ {0, 1}n−n1 (using the Möbius transform) to

obtain the partial parity of each part
∑
ẑ∈{0,1}n1 F̃ (ŷ, ẑ). However, each partial

parity is correct only with probability 3
4 . Thus, repeat the above steps with

t = 48n + 1 independent probabilistic polynomials. Obtain t suggestions for
each part and take their majority to obtain the true partial parity, except with
exponentially small probability. Assuming that all partial parities are computed
correctly, return

∑
x̂∈{0,1}n F (x̂) =

∑
ŷ∈{0,1}n−n1

∑
ẑ∈{0,1}n1 F (ŷ, ẑ).

11



Complexity evaluation and optimization by self-reduction. Ignoring low-order
(but concretely substantial) terms, the complexity of the above algorithm is
dominated by brute force searches on Wn−n1

dG
×{0, 1}n1 and polynomial evalua-

tions on {0, 1}n−n1 . The complexity is thus

O∗(
(
n−n1

↓dG

)
· 2n1 + 2n−n1) = O∗(

(
n−n1

↓d·(n1+2)−n1

)
· 2n1 + 2n−n1). (5)

(O∗ hides polynomial factors in n). The parameter n1 can be set to balance these
terms and optimize complexity.

In [7], the asymptotic complexity is optimized. Instead of brute force, for each
ŷ ∈Wn−n1

dG
, compute G(ŷ) by a self-reduction to a parity-counting problem with

input {Ri(ŷ, z)}`i=1, which is a polynomial system of degree d with n1 variables
z1, . . . , zn1

.

The author’s algorithm for enumerating solutions [12]. The main result
of the followup paper [12] is an asymptotically more efficient algorithm. Essen-
tially, it defines a multiple parity-counting problem (which computes many par-
ities at once), and shows that all the

(
n−n1

↓dG

)
parities returned by recursive calls

in [7] can be computed more efficiently by a single recursive call to a multiple
parity-counting problem. As noted in Section 1.3, we do not use this reduction.

Instead, we focus on the secondary result of [12], which is an algorithm for
enumerating all solutions to a polynomial system. In our context, we will use
a related technique to eliminate the initial reduction of [7] from solving E to
parity-counting (which has a high concrete overhead) and replace it with a more
direct way of recovering solutions from parity computations.

Isolating solutions. The first observation is that we can isolate many solutions
to E at once using a variable partition x = (y, z) = (y1, . . . , yn−n1

, z1, . . . , zn1
).

Definition 2.1 (Isolated solutions). A solution x̂ = (ŷ, ẑ) to E = {Pj(y, z)}mj=1

is called isolated (with respect to the variable partition (y, z)), if for all ẑ′ 6= ẑ,
(ŷ, ẑ′) is not a solution to E.

The goal is to “evenly spread” solutions across the different ŷ values. Thus,
for many solutions (ŷ, ẑ), there is no additional solution that shares the same
ŷ value (namely, (ŷ, ẑ) is isolated). This is made possible by a random linear
change of variables applied to the polynomials of E and a careful choice of n1.

Enumerating isolated solutions. The second observation is that all solutions
isolated by the variable partition (y, z) can be recovered bit-by-bit by computing
n1 + 1 sums (parities) for each ŷ ∈ {0, 1}n−n1 . Let

V0(y) =
∑

ẑ∈{0,1}n1

F (y, ẑ), and let Vi(y) =
∑

ẑ∈{0,1}n1−1

Fzi←0(y, ẑ)

for i ∈ {1, . . . , n1}, where F (y, z) = (1 + P1(y, z)) . . . (1 + Pm(y, z)).
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Proposition 2.3. Assume that (ŷ, ẑ) is an isolated solution to E with respect
to (y, z). Then, V0(ŷ) = 1 and Vi(ŷ) = ẑi + 1 for all i ∈ {1, . . . , n1}.

As a result, given ŷ, in order to recover the n1 least significant bits ẑ of
the isolated solution (ŷ, ẑ) (for which V0(ŷ) = 1), it is sufficient to compute
Vi(ŷ) for each i ∈ {1, . . . , n1}. The formal polynomials Vi(y) cannot be directly
interpolated since they are derived from F and hence of high-degree. However,
for each i ∈ {0, . . . , n1}, the sums Vi(ŷ) for ŷ ∈ {0, 1}n−n1 can be computed
(with negligible error probability) using probabilistic polynomials, similarly to
the way that the partial sums

∑
ẑ∈{0,1}n1 F (ŷ, ẑ) are computed in [7] (yet with

a more efficient recursive multiple parity-counting algorithm). These sums allow
to recover all isolated solutions.
Proof. First, since F is the identifying polynomial of E, then V0(ŷ) counts the
parity of solutions to the system {Pj(ŷ, z)}mi=1 (in which y is fixed to ŷ). There-
fore, if (ŷ, ẑ) is an isolated solution to E with respect to (y, z), then V0(ŷ) = 1.

Next, if ẑi = 0, then the assignment (ŷ, ẑ) continues to be an isolated solution
to E with respect to (y, z) after setting zi = 0 and hence Vi(ŷ) = 1. Otherwise,
ẑi = 1, and E has no solutions after setting y = ŷ and zi = 0, implying that
Vi(ŷ) = 0. In both cases, Vi(ŷ) = ẑi + 1 for all i ∈ {1, . . . , n1} as required. �

Testing solutions. For each ŷ ∈ {0, 1}n−n1 , the algorithm computes n1 +1 sums.
Those with V0(ŷ) = 1 suggest some solution (ŷ, ẑ). The suggestion is correct if
(ŷ, ẑ) is an isolated solution. Otherwise, the suggestion may be a “false alarm”.
Consequently, all suggested solutions are tested on E.

3 Overview of the New Algorithm

The starting point of our algorithm is the solution enumeration algorithm of [12].
We first notice that in order to find a solution to E, it is, in fact, sufficient to
enumerate isolated solutions to Ẽ (as they form a superset of the solution set of
E), and test each one on E. This has a significant advantage in terms of concrete
complexity, as detailed below.

We now describe how we isolate solutions to Ẽ with respect to a variable
partition x = (y, z) according to a parameter n1 and then overview our algorithm
that outputs all isolated solutions to Ẽ and tests them.

Isolating solutions. We use the following proposition.

Proposition 3.1. Let E and Ẽ be polynomials systems with identifying poly-
nomials F (x) and F̃ (x), respectively. For n1 = `− 1, define a variable partition
x = (y, z) = (y1, . . . , yn−n1

, z1, . . . , zn1
). Assume that (ŷ, ẑ) is an isolated solu-

tion to E. Then, Pr[(ŷ, ẑ) is an isolated solution to Ẽ] ≥ 1− 2n1−` = 1
2 .

Proof. The proposition follows from Proposition 2.2 by a union bound over the
set {(ŷ, ẑ′) | ẑ′ 6= ẑ}, whose size is 2n1 − 1. �
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Hence, assuming that E has an isolated solution, setting ` = n1 + 1 ensures
that this solution is also isolated in Ẽ with probability at least 1

2 . Consequently,
the algorithm has to be repeated a few times (with independent probabilistic
polynomials) until it is output.

We also need to argue that E has an isolated solution with high probability.
The (y, z) variable partition groups a solution to E together with 2n1 − 1 dif-
ferent assignments. In a cryptographic setting, we may assume that each such
assignment satisfies E (containing m equations) with probability 2−m. Thus, a
solution to E is isolated with probability at least 1− 2n1−m, which is typically
very close to 1, as in our case we set n1 < n/5 (to optimize complexity) and we
usually have m� n/5.

Enumerating isolated solutions. Similarly to [12], isolated solutions are re-
covered bit-by-bit by computing n1 sums, but we enumerate isolated solutions
of Ẽ rather than E. Define the polynomials

U0(y) =
∑

ẑ∈{0,1}n1

F̃ (y, ẑ), and Ui(y) =
∑

ẑ∈{0,1}n1−1

F̃zi←0(y, ẑ)

for i ∈ {1, . . . , n1}.

Proposition 3.2. Assume that (ŷ, ẑ) is an isolated solution to Ẽ with respect
to (y, z). Then, U0(ŷ) = 1 and Ui(ŷ) = ẑi + 1 for all i ∈ {1, . . . , n1}.

Proof. The proposition follows from Proposition 2.3, applied with Ẽ and F̃ ,
instead of E and F . �

Exploiting the low degree of F̃ , our algorithm interpolates all n1 + 1 polyno-
mials Ui(y) for i ∈ {0, . . . , n1} and then evaluates each one on all ŷ ∈ {0, 1}n−n1

to recover isolated solutions.4 We optimize the interpolation of the polynomials
Ui(y), exploiting the following proposition.

Proposition 3.3. Let Ẽ = {Ri(y, z)}`i=1 and let F̃ by its identifying polyno-
mial. Denote by dF̃ the degree of F̃ and let w = dF̃ − n1. The polynomial U0(y)

can be interpolated from the solutions to Ẽ in the set Wn−n1
w × {0, 1}n1 , while

Ui(y) for i ∈ {1, . . . , n1} can be interpolated from the solutions to Ẽ in the set
Wn−n1
w+1 × {0, 1}i−1 × {0} × {0, 1}n1−i. Hence, all the n1 + 1 polynomials can be

interpolated from the solutions to Ẽ in the set Wn−n1
w+1 × {0, 1}n1 .

Proposition 3.3 shows that the domains of the system Ẽ solved for interpo-
lating Ui(y) for i ∈ {1, . . . , n1} overlap. Instead of naively solving Ẽ on n1 + 1
overlapping domains, we solve Ẽ on one (slightly bigger) domain. Specifically,
we use the exhaustive search algorithm of [8] for this purpose. We note that the
analysis of [8] requires randomness assumptions about the input system, yet the
other optimizations described here for enumerating isolation solutions do not.

4 As in the previous algorithms [7,12], we never explicitly interpolate the probabilistic
polynomial F̃ itself, but only the polynomials Ui(y) derived from it.
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Proof. By Proposition 2.1, the algebraic degree of U0(y) =
∑
ẑ∈{0,1}n1 F̃ (y, ẑ) is

at most dF̃ −n1 = w, while the algebraic degree of each Ui(y) for i ∈ {1, . . . , n1}
is at most dF̃ − n1 + 1 = w + 1.

Therefore, U0(y) can be interpolated from its values in the set Wn−n1
w , where

the computation of each such value requires 2n1 evaluations of F̃ (y, z). Thus,
U0(y) can be interpolated from the values of F̃ (y, z) in the set Wn−n1

w ×{0, 1}n1 .
Similarly, Ui(y) for i ∈ {1, . . . , n1} can be interpolated given the values of F̃ (y, z)
in the set Wn−n1

w+1 ×{0, 1}i−1×{0}×{0, 1}n1−i. The proposition follows since F̃

is the identifying polynomial of Ẽ, and hence F̃ (ŷ, ẑ) = 1 if and only if (ŷ, ẑ) is
a solution to Ẽ. �

Testing solutions. Similarly to [12], for each ŷ ∈ {0, 1}n−n1 , the algorithm
computes n1 + 1 sums. In our case, those with U0(ŷ) = 1 suggest some solution
(ŷ, ẑ) to Ẽ (and hence to E), and we need to test each one. However, these tests
make expensive evaluations of polynomials, which generally require about

(
n
↓d
)

bit operations. This may lead to a large overhead, particularly for d > 2. In
order to reduce this overhead, we repeat the algorithm a small number of times
(using independent probabilistic polynomials) and test only candidate solutions
that are output more than once. This is an additional concrete optimization over
the second algorithm of [12], and makes use of randomness assumptions about
the input system to argue that it is unlikely for an incorrect candidate solution
to be suggested more than once.

Comparison to the previous works [7,12]. Our algorithm differs from pre-
vious works in each of the three elements mentioned above.

First, unlike the worst-case setting of [7,12], isolating solutions in a crypto-
graphic setting is essentially trivial. In particular, there is no need for a random
change of variables, and the parameter n1 will simply be chosen to optimize the
complexity. In addition, the procedure of testing solutions is more efficient than
the one of [12] as explained above.

Technically, a more interesting modification is that we enumerate isolated
solutions to Ẽ instead of E as in [12]. As a result, we only need to compute sums
of the form

∑
ẑ∈{0,1}n1 F̃ (ŷ, ẑ). This is a significant concrete optimization, as

accurate sums of the form
∑
ẑ∈{0,1}n1 F (ŷ, ẑ) are too expensive to compute di-

rectly due to the high degree of F . In previous algorithms of [7,12], such sums are
computed by majority voting across 48·n+1 evaluations of different polynomials
derived from E, which had to be interpolated and evaluated. Consequently, the
complexity of our algorithm is reduced by a factor of Ω(n) while additional sav-
ings are obtained via Proposition 3.3. Thus, our algorithm eliminates majority
voting altogether and uses probabilistic polynomials in a different and a more
direct way to solve E.

The asymptotic complexity of the algorithm is determined by two terms,
similarly to (5). It could be improved using the techniques of [12], essentially
by recursively solving the multiple parity-counting problem on Ẽ for sets of the
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form Wn−n1
w × {0, 1}n1 (rather than applying brute force). Yet, these recursive

calls have a significant concrete overhead (they require working with many more
probabilistic polynomials) and we do not use them, as noted in Section 1.3.

4 Details and Analysis of the New Algorithm

The pseudo-code of our main algorithm in given in Algorithm 1. It uses proce-
dures 1 and 2. We now describe it in detail and then analyze its complexity.

Details of Algorithm 1. The main loop of Algorithm 1 runs until we find a
solution to E. In each iteration, we define a new probabilistic set of equations Ẽ
from E and call Procedure 1 to output all candidate solutions to Ẽ. The output
of Procedure 1 is a 2-dimensional 2n−n1 × (n1 + 1) array that contains for each
ŷ ∈ {0, 1}n−n1 , the evaluations U0(ŷ) and Ui(ŷ)+1 for i ∈ {1, . . . , n1}. Hence, by
Proposition 3.2, assuming that (ŷ, ẑ) is an isolated solution to Ẽ, then U0(ŷ) = 1
and Ui(ŷ) + 1 = ẑi for i ∈ {1, . . . , n1}.

We store candidate solutions to Ẽ in an array and check whether a potential
solution has been output before (for a previous probabilistic set of equations).
Such a potential solution is tested against the full system E.

Details of procedures 1 and 2. Procedures 1 and 2 output the potential
solutions to a given system Ẽ by interpolating the polynomials Ui(y) for i ∈
{0, . . . , n1} and evaluating them on all ŷ ∈ {0, 1}n−n1 .

Recall from Proposition 3.3 that Ui(y) for i ∈ {0, . . . , n1} can be interpolated
by solving Ẽ in the set Wn−n1

w+1 × {0, 1}n1 , where w = dF̃ − n1 and dF̃ is the

degree of F̃ . In Procedure 2, these solutions are output by the fast exhaustive
search algorithm of [8].

We denote by L the number of solutions and store them in memory. Next, we
need to compute the values of each Ui(y) in the sets described in Proposition 3.3
(with the aim of interpolating it).5 These values are computed by summing the
evaluations of F̃ (y, z) on the corresponding subset of ẑ ∈ {0, 1}n1 . The values of
all the polynomials Ui(y) for i ∈ {0, . . . , n1} are computed in parallel by iterating
over the solutions to the system. For each solution, we calculate its contribution
to each of the relevant polynomials. Having calculated the required values of
each of the polynomials, we return them.

Then, in Procedure 1, we interpolate Ui(y) for i ∈ {0, . . . , n1} using the
Möbius transform. Finally, we evaluate all the n1+1 polynomials on the full range
ŷ ∈ {0, 1}n−n1 using the Möbius transform and output the potential solutions.

5 In practice, we do not need to store all the L solutions in memory at once, but we
can interleave the exhaustive search with the computation of the Ui(y) values.
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Parameters: n1, dF̃
Initialization: `← n1 + 1, w ← dF̃ − n1

1: PotentialSolutionsList[0 . . .]← NewList()
2: for all k = 0, 1, . . . do
3: Pick a uniformly random matrix of full rank `, A(k) ∈ F`×m

2 . Compute Ẽ(k) =

{R(k)
i (x)}`i=1 = {

∑m
j=1 A

(k)
i,j · Pj(x)}`i=1

4: CurrPotentialSolutions← OutputPotentialSolutions({R(k)
i (x)}`i=1, n1, w)

5: PotentialSolutionsList[k]← CurrPotentialSolutions
6: for all ŷ ∈ {0, 1}n−n1 do
7: if CurrPotentialSolutions[ŷ][0] = 1

Btest whether U0(ŷ) = 1, i.e., entry is valid
then

8: for all k1 ∈ {0, . . . , k − 1} do
9: if CurrPotentialSolutions[ŷ] = PotentialSolutionsList[k1][ŷ]

Bcheck whether solution appears twice
then

10: sol← ŷ‖CurrPotentialSolutions[ŷ][1 . . . n1]
Bconcatenate n1 least significant bits

11: if TestSolution({Pj(x)}mj=1, sol) = TRUE then
12: return sol
13: break Bcontinue with next ŷ

Algorithm 1: Solve({Pj(x)}mj=1)

4.1 Time Complexity Analysis

We now analyze the expected time complexity of the algorithm, denoted by
T = Tn1,dF̃

(n,m, d), in terms of bit operations. For this purpose we define the
following notation:

– Nk is the expected number main loop iterations of Algorithm 1.
– T1 is the expected complexity of an iteration of Algorithm 1, not including

the complexity of testing solutions.
– Ns is the expected total number of solutions tested by Algorithm 1.
– Ts is the average complexity of testing a solution.

We consider all of these variables (except Ts) as random variables that depend on
the randomness of the algorithm and the random choice of E, whose distribution
will be defined next. We do not consider Ts as a random variable and will analyze
the overall complexity of testing solutions separately.

Throughout the analysis we use the symbol / that suppressed factors which
are negligible both asymptotically and concretely for relevant concrete parameter
choices. Specifically, several terms will be neglected based on assumptions that
n1 is sufficiently large (such as 2n1 � n). We have already used and justified
such assumptions (see Remark 2.2).
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1: (V,ZV [1 . . . n1])← ComputeUValues({Ri(y, z)}`i=1, n1, w)

Bobtain values for interpolating each Ui(y)

2: Interpolate U0(y): apply Möbius transform to V [1 . . . |Wn−n1
w |]

3: for all i ∈ {1, . . . , n1} do
4: Interpolate Ui(y): apply Möbius transform to ZV [i][1 . . . |Wn−n1

w+1 |]
5: Evals[0 . . . n1][0 . . . 2n−n1 − 1]← ~0 Binit evaluation array
6: for all i ∈ {0, 1, . . . , n1} do
7: Evaluate Ui(y) on {0, 1}n−n1 by Möbius transform. Store result in

Evals[i][0 . . . 2n−n1 − 1]
8: Out[0 . . . 2n−n1 − 1][0 . . . n1]← ~0 Binit output
9: for all ŷ ∈ {0, 1}n−n1 do

10: if Evals[0][ŷ] = 1 then
11: Out[ŷ][0]← 1 Bindicate U0(ŷ) = 1, i.e., entry is valid
12: for all i ∈ {1, . . . , n1} do
13: Out[ŷ][i]← Evals[i][ŷ] + 1

Bcopy potential solution by flipping evaluation bit
14: return Out

Procedure 1: OutputPotentialSolutions({Ri(x)}`i=1, n1, w)

Probabilistic setting. We assume that the polynomials of E are chosen inde-
pendently and uniformly at random from all degree d polynomials, conditioned
on having a pre-fixed solution (e.g., a cryptographic key) chosen initially indepen-
dently of E. The goal is to find the pre-fixed solution, rather than an arbitrary
solution, which could be much easier to find (e.g., if E is under-determined,
namely m � n). Thus, the analysis is also relevant in case there are additional
(application dependent) constraints on solutions that are not modeled by the
equation system, but are enforced when testing solutions.

A formal analysis of Algorithm 1 is given in Appendix A. Below, we give a
simple heuristical analysis, assuming each assignment x̂ that is not the pre-fixed
solution satisfies any polynomial equation in E with probability 1/2 indepen-
dently of the other assignments and equations.

Theorem 4.1 (Heuristic). For a random equation system, the success prob-
ability of Algorithm 1 is at least 1− 2n1−m. Given that m ≥ 2 · (n1 + 1) + 2 and
Ts � n1 · n · 2n1 , its expected running time satisfies

T / 4
(

2d · log n · 2n1 ·
(

n−n1

↓dF̃−n1+1

)
+ n1 · n · 2n−n1

)
≤ (6)

4
(

2d · log n · 2n1 ·
(

n−n1

↓n1·(d−1)+d+1

)
+ n1 · n · 2n−n1

)
. (7)

In Appendix A (Theorem A.1) we prove a similar result formally for a slightly
modified variant of Algorithm 1. The main difference is that we lower bound its
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1: Sols[1 . . . L]← BruteForceSystem({Ri(y, z)}`i=1, n− n1, w + 1)

Bbrute force on space Wn−n1
w+1 × {0, 1}n1

2: V [1 . . . |Wn−n1
w |]← ~0, ZV [1 . . . n1][1 . . . |Wn−n1

w+1 |]← ~0 Binit values for each Ui(y)
3: for all (ŷ, ẑ) ∈ Sols[1 . . . L] do
4: if HW(ŷ) ≤ w

Bvalues of HW more than w do not contribute to U0(y)
then

5: index← IndexOf(ŷ, n− n1, w) Bget index of ŷ in Wn−n1
w

6: V [index] = V [index] + 1 Bsum is over F2

7: for all i ∈ {1, . . . , n1} do
8: if ẑi = 0

Bonly values with zi = 0 contribute to Ui(y) for i > 1
then

9: index← IndexOf(ŷ, n− n1, w + 1)
10: ZV [i][index] = ZV [i][index] + 1
11: return V,ZV [1 . . . n1]

Procedure 2: ComputeUValues({Ri(y, z)}`i=1, n1, w)

success probability by 5
8 for the sake of simplifying the proof. Regardless, the

difference between the heuristic and formal results is small.

The total complexity of Algorithm 1. The complexity formula (7) establishes a
tradeoff between two terms. First, the term

2d · log n · 2n1 ·
(
n−n1

↓w+1

)
= 2d · log n · 2n1 ·

(
n−n1

↓dF̃−n1+1

)
(8)

accounts for the brute force on the space Wn−n1
w+1 ×{0, 1}n1 in Procedure 2 (based

on the analysis of Section 2.3 for random systems). The second term accounts
for the evaluation of the polynomials Ui(y) on {0, 1}n−n1 in Procedure 1 and is

(n1 + 1) · (n− n1) · 2n−n1 ≤ n1 · n · 2n−n1 (9)

(given that n21 + n1 ≥ n). The free parameter n1 is set to balance these terms
and optimize the complexity. Assuming the terms are equal, based on the sec-
ond term, the gain in complexity over 2n bit operations is roughly 2n1

8·n1·n . In Sec-

tion 4.2 we estimate the total complexity of Algorithm 1 by about n2 ·2(1−1/2.7d)n
bit operations (setting n1 ≈ n

2.7d ).
Next, we establish Theorem 4.1 and argue that the condition Ts � n1 ·n ·2n1

holds both asymptotically and for relevant concrete parameter choices.

Success probability analysis. The analysis is based the assumption that the
pre-fixed solution is isolated in E. Note that it is placed in a group with 2n1 − 1
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additional potential solutions that share the same y value. We thus estimate the
probability that another solution exists in this group by 2n1−m, and the pre-fixed
solution is isolated with probability at least 1− 2n1−m.

Time complexity analysis. We assume for simplicity that Nk and T1 are
independent. This gives

T ≤ Nk · T1 +Ns · Ts. (10)

The algorithm succeeds once the pre-fixed solution to E is isolated in two
tribalistic equation systems. Given that the pre-fixed solution is isolated in E,
by Proposition 3.1, every iteration isolates it with probability at least 1

2 . Hence
the expected number of iterations is at most Nk ≤ 2 · 2 = 4.

We analyze the most expensive operations of procedures 2 and 1, showing
that the terms (8) and (9) indeed dominate. We then analyze the cost of testing
solutions.

Procedure 2. As noted above, using the analysis of Section 2.3, the brute force
complexity is given by (8). In addition, we estimate

E[L] = 2−` · |Wn−n1
w+1 × {0, 1}n1 | = 1

2 ·
(
n−n1

↓w+1

)
, (11)

as the equation systems we solve by brute force have ` = n1 + 1 equations.
The complexity of computing the values of the arrays V and ZV is slightly

more6 than (n1 + 1) · E[L], which is negligible compared to (8), given that 2d ·
log n · 2n1 � 1

2 (n+ 1).

Procedure 1. The complexity of interpolating (U0(y), U1(y), . . . , Un1(y)) from
their evaluations is n ·

(
n−n1

↓w
)

+ n1 · n ·
(
n−n1

↓w+1

)
< (n1 + 1) · n ·

(
n−n1

↓w+1

)
, which is

negligible compared to (8) given that 2d · log n · 2n1 � (n1 + 1) · n.
The complexity of evaluating these polynomials on {0, 1}n−n1 is given in (9).

Estimating Ns. Fix an iteration pair 0 ≤ i < j < Nk. Given that we have at
least m ≥ 2 · (n1 + 1) + 2 = 2 · ` + 2 equations, the 2` rows of A(i) and A(j)

are linearly independent vectors over {0, 1}m with high probability7 in which
case Ẽ(i) and Ẽ(j) are independent equation systems with ` equations. Hence,
restricting these systems to a specific ŷ ∈ {0, 1}n−n1 , the pair suggests the same
n1-bit solution suffix ẑ with probability 2−n1 . Considering all ŷ ∈ {0, 1}n−n1 ,
the expected number of suggested solutions is about 2n−2n1 . As the number
of iteration pairs is small and many systems restricted to ŷ do no suggest any
solution since U0(ŷ) = 0, we estimate

Ns = 2n−2n1 . (12)

6 We note that the operations of the IndexOf functions can be implemented with small
overhead because solutions are output by the brute force algorithm in fixed order.

7 Even if the rows of A(i) and A(j) have a few linear dependencies, it does not sub-
stantially affect the analysis.
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Since (8) and (9) dominate T1, up to now we estimate

T ≤ Nk · T1 +Ns · Ts / 4 · (2d · log n · 2n1 ·
(
n−n1

↓w+1

)
+ n1 · n · 2n−n1) + 2n−2n1 · Ts.

In order to establish Theorem 4.1, we show that

Ts � n1 · n · 2n1 , (13)

so the final term that corresponds to the total complexity of testing candidate
solutions may be neglected compared to the term 4 · n1 · n · 2n−n1 .

Testing solutions. Naively testing a candidate solution requires evaluating two
polynomials in E on average, which has complexity of about 2 ·

(
n
↓d
)

bit opera-
tions. Asymptotically, for constant d, this complexity is negligible compared to
2n1 = 2Ω(n), hence (13) holds.

Concretely, for d = 2, since n � 2n1 , then n2 � n1 · n · 2n1 and (13) holds.
However, when d > 2 is relatively large compared to n, then (13) may no longer
hold for relevant parameter choices (e.g., for d = 4 and n = 128).

On the other hand, we can reduce this complexity such that it becomes
negligible for relevant parameter choices by tweaking Algorithm 1. The main idea
is to test the potential solutions in batches, reducing the amortized complexity,
as described in Appendix B.

In practice, E is constructed from a cryptosystem, and for relatively large d
one may simply test candidate solutions by directly evaluating the cryptosystem.
Alternatively, given sufficiently many equations, it is possible to run Algorithm 1
for a few more iterations and test only candidate solutions suggested at least 3
times. This mildly increases the time complexity, but reduces the number of
candidate solutions to test by another significant factor of about 2n1 .

Experimental validation. The most important probabilistic quantities ana-
lyzed are L (11) and Ns (12) (the bound on Nk is rigourous). We have experimen-
tally estimated Ns and L on small random systems with m = n polynomial equa-
tions of degree d. Each system was generated uniformly at random, conditioned
on having a single solution. For example, we ran 20 independent experiments on
systems generated with parameters n = 20, d = 2 and set n1 = 4. The expected
value and standard deviation of L were about 13192 and 58, respectively (where
we estimated L ≈ 1/2·

(
16
↓7
)

= 13166). The expected value and standard deviation
of the number of candidate solutions tested were 1322 and 1078, respectively. We
estimated this number in (12) to be about Ns = 220−8 = 4096, but the analysis
is conservative and based on union bounds. Changing some of the parameters
(e.g., to d = 4) did not have a substantial effect on the results.

4.2 Complexity Estimation of Algorithm 1

We bound the complexity of Algorithm 1 up to small constants. Although we
optimize the more precise formulas (6) and (7) for the applications, the goal of
this section is to give a closed-form expression that is a good estimation.
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Ignoring (small) constant terms, we write (7) as

O
(

log n · 2n1 ·
(

n−n1

↓n1·(d−1)+d+1

))
+O

(
n2 · 2n−n1

)
.

Since d ≥ 2, we have n1 · (d − 1) + d + 1 ≤ (n1 + 2) · (d − 1) + 1. It will be
convenient to rewrite the expression above with t = n1 + 2 and obtain

O
(

log n · 2t ·
(

n−t+2
↓t·(d−1)+1

))
+O

(
n2 · 2n−t

)
.

Focusing on the first term, we have
(

n−t+2
↓t·(d−1)+1

)
= O

(
n
√
n ·
(
n−t

t·(d−1)
))

, given

that 2(t · (d − 1)) ≤ n − t + 2. We use the fact that
(
u
v

)
≤ 2uH( vu ) (where

H(p) = −p log p − (1 − p) log(1− p) is the binary entropy function) and bound
the first term by

O

(
n log n ·

√
n · 2t · 2

(n−t)H
(
t·(d−1)
n−t

))
.

Writing t = γn for some 0 < γ < 1, we bound the total complexity of Algorithm 1
by

O

(
n log n ·

√
n · 2

(
γ+(1−γ)H

(
γ·(d−1)
1−γ

))
n

)
+O

(
n2 · 2(1−γ)n

)
=

O

(
n2

(
2

(
γ+(1−γ)H

(
γ·(d−1)
1−γ

))
n

+ 2(1−γ)n

))
.

(14)

If we choose γ such that H
(
γ·(d−1)
1−γ

)
≤ 1 − γ

1−γ , then the complexity will be

O(n2 · 2(1−γ)n). Analysis reveals that a choice of γ = 1/2.7d is sufficient for this
purpose. Therefore, the complexity is O

(
n2 · 20.815n

)
bit operations for d = 2

and O

(
n2 · 2

(
1− 1

2.7d

)
n
)

in general. Comparing against Table 1 (at the end of

this section) shows that the formula n2 · 2(1−1/2.7d)n slightly overestimates the
complexity for relevant parameters.

4.3 Optimizing Memory Complexity

The expected memory complexity of the algorithm is about 4·(n1+1)·2n−n1 bits,
dominated by storing the potential solutions output by the different executions
of Procedure 1. A simple way to obtain a time-memory tradeoff is to guess several
bits of x and repeat the algorithm for each guess. However, we can improve the
memory complexity with essentially no penalty by making use of a memory-
efficient implementation of the Möbius transform.

22



Memory-efficient Möbius transform. We deal with the problem of evaluat-
ing a polynomial F (x1, . . . , xn) of degree d on the space {0, 1}n using the Möbius
transform. Assume that d is not too large and the polynomial is represented by
a bit array of size

(
n
↓d
)
� 2n. Moreover, assume that the application does not

need to store the evaluation of the polynomial on the full space, but can work
even if the space is partitioned into smaller spaces on which the polynomial is
evaluated on the fly. Then, the memory complexity can be reduced as follows.
Instead of allocating an array of size 2n, we work directly with the recursive
formula (2), F (x1, . . . , xn) = x1 · F1(x2, . . . , xn) + F2(x2, . . . , xn), by first evalu-
ating F2(x2, . . . , xn) (i.e., F (x) for x1 = 0), and then calculating and evaluating
F1(x2, . . . , xn) + F2(x2, . . . , xn) (i.e., F (x) for x1 = 1).

This algorithm does not work in-place, but only keeps in memory the re-
cursion stack. The memory complexity is bounded by the formulas M(n, d) =
M(n − 1, d) +

(
n
↓d
)

and M(n, n) = 2n. Thus, the total memory complexity

is less than n ·
(
n
↓d
)
. The time complexity in bit operations is bounded by(

n
↓d
)

+ 2 ·
(
n−1
↓d
)

+ . . .+ 2n−d−1 ·
(
d+1
↓d
)

+ 2n−d · d · 2d.

Remark 4.1. A more precise evaluation reveals that the total number of bit
operations is about d ·2n. The exhaustive search algorithm of [8] for enumerating
all zeroes of a polynomial of degree d also requires d · 2n bit operations. It
would be interesting to investigate whether the recursive Möbius transform can
compete with [8] in practice. We note that it was already observed in [15] that
the Möbius transform on degree d polynomials requires d ·2n bit operations, but
the algorithm used a standard implementation with memory complexity of 2n.

In our context, we will exploit the lower complexity of the top level recursive
calls to further reduce the memory complexity (by a small factor), while keeping
the time complexity below n · 2n. Specifically, for a parameter k ≈ n− log

(
n
↓d
)
,

we perform the top k levels of the recursion independently without saving the
recursion stack (i.e., we recursively evaluate the input polynomial on all 2k values
of x1, . . . , xk independently). At the bottom levels, we switch to the in-place
implementation of the Möbius transform to evaluate the polynomial on all values
of xk+1, . . . , xn. In order to perform the independent evaluations, we only need to
allocate two additional arrays, one for the input to the recursive call and one for
its output. The roles of these arrays are interchanged on every recursive call. The
memory required for each such additional array is bounded by

(
n
↓d
)
. The memory

required for the in-place Möbius transform is 2n−k ≈
(
n
↓d
)
. Therefore, the in-place

transform does not require additional memory and the total memory complexity
is bounded by 3 ·

(
n
↓d
)
. The time complexity of the procedure is bounded by

2k ·
((

n
↓d
)

+ . . .+
(
n−k
↓d
))

+ (n− k) · 2n < n · 2n.
We note that the algorithm of [8] could also be used for the same purpose.

However, it requires a preprocessing phase of complexity n2d. On the other hand,
we will use the Möbius transform variant with relatively large d (e.g., d = n/3),
for which such preprocessing is too expensive.
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Improving the memory complexity of Algorithm 1. In order to reduce
the memory complexity we first interpolate the polynomials (U0(y), . . . , Un1

(y))
for several executions (e.g., 4 or a bit more) of Procedure 1 in advance. Using
the recursive version of the Möbius transform (as described in Section 2.3), the
additional memory required is negligible.

The main idea that allows to save memory is to interleave the tasks of eval-
uating all the polynomials (in parallel) with testing solutions that are suggested
at least twice. The parallel evaluation is performed using the memory-optimized
implementation of the Möbius transform. This reduces the memory complexity
to about 3 times the memory required to store all the polynomials. In fact, for
the purpose of testing solutions, we only need to keep the evaluations of each
such polynomial on a space proportional to its size, used by the in-place trans-
form. Thus, when sequentially calculating several transforms, we reuse one of the
two additional allocated arrays. In total, we require 2 times the memory used
for storing all the polynomials, namely

8 · (n1 + 1) ·
(

n−n1

↓dF̃−n1+1

)
. (15)

Choosing n1 that minimizes time complexity (balancing the two terms of (6)),
gives

(
n−n1

↓dF̃−n1+1

)
≈ n1·n

2d·logn · 2n−2n1 and total memory complexity of about
4·n1·(n1+1)·n

d·logn · 2n−2n1 bits. Compared to Algorithm 1, this saves a multiplica-

tive factor of about d·logn
n1·n · 2

n1 . Since n1 <
n
5 , 8·n1·(n1+1)·n

2d·logn ≈ n2 for relevant
concrete parameters.

Asymptotically, the memory complexity is O(n3 · 2n−2n1) bits. A choice
of n1 that minimizes time complexity gives O

(
n3 · 20.63n

)
bits for d = 2 and

O
(
n3 · 2(1−1/1.35d)n

)
in general.

Concrete parameters. In Table 1 we give concrete complexity estimates for
interesting parameter sets after optimizing the free parameter n1 of (7).

Variables Degree Internal parameter Complexity Memory Exhaustive search [8]

n d n1 (bit operations) (bits) (2d logn · 2n)

80 2 16 277 260 284

128
2 25 2117 291 2133

4 12 2129 2112 2134

192
2 37 2170 2132 2197

4 18 2188 2164 2198

256
2 49 2223 2173 2261

4 25 2246 2219 2262

Table 1. Concrete complexity of (the memory-optimized variant of) Algorithm 1
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5 Cryptanalytic Applications

In this section we describe cryptanalytic applications of Algorithm 1. Our main
application is in cryptanalysis of Picnic (and LowMC) variants and our secondary
application is in cryptanalysis of round-reduced Keccak. We begin by describing
the general optimization method we use in cryptanalysis of Picnic.

5.1 Deterministic Replacement of Probabilistic Polynomials

In cryptanalytic applications, E may have some properties that depend on the
underlying cryptosystem and could be ruined in Ẽ that mixes the equations of
E. We observe that in cryptographic settings, we may replace the randomized
construction of Ẽ (and F̃ ) by a deterministic construction which simply takes
subsets of equations from E, thus preserving the properties of E.

Essentially, the randomness of the probabilistic constructions is already “em-
bedded” in E itself. For example, we still (heuristically) expect a variant of
Proposition 3.1 to hold: if x̂ is a solution to E, it is also a solution to Ẽ. On the
other hand, since Ẽ is a system with ` = n1 + 1 equations in n1 variables, we
expect it not to have an additional solution with high probability.

In order for the number of tested candidate solutions to remain small, we
require the different equations systems Ẽ analyzed to be roughly independent.
Specifically, the intersections of the equations subsets taken for different “prob-
abilistic” equations systems Ẽ should be empty (or small).

5.2 Picnic and LowMC

The Picnic signature scheme [10] is an alternate third-round candidate in NIST’s
post-quantum standardization project [29]. It uses a zero-knowledge protocol in
order to non-interactively prove knowledge of a preimage x to a public value y
under a one-way function f , where y is part of the public key and x is the secret
signing key. The one-way function is implemented using a block cipher, where
the secret signing key is the block cipher’s key, while the public key consists of a
randomly chosen plaintext and the corresponding ciphertext (the encryption of
the plaintext with the secret key). Thus a key-recovery attack on Picnic reduces
to finding the block cipher’s secret key from one plaintext-ciphertext pair.

Picnic uses the LowMC block cipher family, proposed at EUROCRYPT
2015 by Albrecht et al. [1]. It is optimized for practical instantiations of multi-
party computation, fully homomorphic encryption, and zero-knowledge proofs,
in which non-linear operations are typically much more expensive than linear
ones. Consequently, LowMC uses a relatively small number of multiplications.

LowMC is an SP-network built using several rounds, where in each round, a
round-key is added to the state, followed by an application of a linear layer and
a non-linear layer (operations are over F2). Finally, an additional round-key is
added to the state. Importantly, the key schedule of LowMC is linear.
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Each non-linear layer of LowMC consists of identical Sboxes S : {0, 1}3 →
{0, 1}3 of algebraic degree 2. The algebraic normal form of an Sbox is

S(a1, a2, a3) = (a1 + a2a3, a1 + a2 + a1a3, a1 + a2 + a3 + a1a2). (16)

We note that the inverse Sbox also has algebraic degree of 2.
In this paper, we focus on LowMC instances that were recently integrated

into Picnic variants [34]. These instances have internal state and key lengths of
129, 192 and 255 bits, claiming security levels of 128, 192 and 255 bits, respec-
tively and have a full non-linear layer (as opposed to other instances of LowMC
that have a partial non-linear layer). All of these instances have 4 rounds, al-
though in a recent publication by some of the designers [24] additional instances
with 5 rounds were proposed in order to provide a larger security margin.

Attacks on LowMC instances. As noted above, we analyze LowMC instances
with a full Sbox layer given only a single plaintext-ciphertext pair. The best-
known attacks on such instances were recently published by Banik et al. [2]
where the authors analyzed instances reduced to 2 rounds. Their techniques are
based on linearization and it is not clear how to extend them beyond 2 rounds
without exceeding the complexity of (optimized) exhaustive search [8].

We focus on the full 4 and 5-round instances. For the sake of completeness,
we will also give results on round-reduced LowMC instances.

Fix an arbitrary plaintext-ciphertext pair to a LowMC instance with key and
internal state size of n bits. We denote the unknown key by x = (x1, . . . , xn).

Even round number. We begin by considering LowMC instances with an even
number of rounds r. We focus on an arbitrary state bit bi (for some i ∈ {1, . . . , n})
after r/2 rounds. Starting from the plaintext, we symbolically evaluate the en-
cryption process and express bi as a polynomial pi(x). Similarly, we symbolically
evaluate the decryption process starting from the ciphertext and express bi as a
polynomial qi(x). This standard meet-in-the-middle approach gives rise to the
equation pi(x) + qi(x) = 0. As the algebraic degree of the LowMC round and its
inverse is 2 and the key schedule is linear, the algebraic degree of both pi(x) and
qi(x) is at most 2r/2. Repeating this process n times for all intermediate state
bits, we obtain an equation systems with m = n equations. For the small values
of r we consider, the complexity of calculating the equation system is negligible.
We can now apply Algorithm 1 and solve for the secret key.

Odd round number. For an odd number of rounds r, the approach above gives
rise to equations of degree at least 2(r+1)/2, as in general, any intermediate
state bit has algebraic degree of at least 2(r+1)/2 from either the encryption or
the decryption side. If we apply Algorithm 1 in a straightforward manner, its
complexity compared to an attack on an even number of r − 1 rounds would
increase substantially. We now show that by a better choice of the equation
system and careful analysis we can reduce the algorithm’s complexity.
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Consider the first 3 intermediate state bits b1, b2, b3 that are outputs of the
first Sbox in round (r+ 1)/2. From the decryption side, we can express them as
polynomials of degree 2(r−1)/2, denoted by q1(x), q2(x), q3(x), respectively. From
the encryption side, based on (16), we can express these bits as functions of the
bits a1, a2, a3 that are inputs the first Sbox in round (r + 1)/2,

(b1, b2, b3) = S(a1, a2, a3) = (a1 + a2a3, a1 + a2 + a1a3, a1 + a2 + a3 + a1a2).

From the encryption side, we can express each of a1, a2, a3 as a polynomial of
degree 2(r−1)/2 in the key. Equating each bit to its evaluation from the decryption
side, we obtain the 3 equations

q1(x) + a1(x) + a2(x)a3(x) = 0,

q2(x) + a1(x) + a2(x) + a1(x)a3(x) = 0,

q3(x) + a1(x) + a2(x) + a3(x) + a1(x)a2(x) = 0.

Each polynomial appearing in these equations is of algebraic degree 2(r−1)/2.
Recall that the main complexity formula (6) heavily depends on the value of

dF̃ . This value is upper bounded by d · `, but it could be lower if we choose F̃
more carefully. Indeed, we will construct the “probabilistic polynomials” deter-
ministically using (non-overlapping) subsets of the original equation system E.
The probabilistic analysis is essentially unchanged, as suggested in Section 5.1.

Specifically, in this case, each equation is of degree 2(r−1)/2 + 2(r−1)/2 =
2(r+1)/2 due to the multiplication of the ai’s. However, if we multiply the 3
polynomials for the purpose of calculating F̃ (as in (4), but with Ri’s replaced
by the equations above), the term a1(x)a2(x)a3(x) can only be multiplied with
at most one of the qi(x)’s and therefore the degree of multiplication of all the
equations is at most 4 · 2(r−1)/2 = 2(r+3)/2, rather than the trivial upper bound
of 6 · 2(r−1)/2, reducing the degree by a factor of 1

3 . For example, for r = 3, we
get a bound of 8 instead of the general upper bound of 12, whereas for r = 5,
we get a bound of 16 instead of the general upper bound of 24.

We proceed to collect n equations as before. However, in Algorithm 1, for
some integer `′ we analyze equations that are computed as above using `′ triplets
that are outputs of the Sbox layer of round (r + 1)/2. We now have ` = 3`′

equations. The total degree of F̃ in (4) is upper bounded by dF̃ ≤ `′ · 2(r+3)/2 =
`/3 ·2(r+3)/2. We choose n1 = `−1 as before. Revisiting the complexity analysis
formula of (6), we obtain

4

(
2 · 2(r+1)/2 · log n · 2n1 ·

( n−n1

↓ `3 ·2
(r+3)/2−n1+1

)
+ n1 · n · 2n−n1

)
. (17)

If we take ` which is not a multiple of 3, then dF̃ increases more sharply due to
the last Sbox. Specifically, if ` mod 3 = 1, then dF̃ ≤

`−1
3 · 2

(r+3)/2 + 2(r+1)/2,

whereas if ` mod 3 = 2, then dF̃ ≤
`−2
3 · 2

(r+3)/2 + 3 · 2(r−1)/2. We note that
standard approaches to deal with the middle Sbox layer (e.g., linearization) result
in higher complexity.
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Results. Table 2 summarizes our attacks on instances of LowMC. The most
important ones have 4 rounds and are used in recent Picnic variants [24]. Attacks
on 2-round instances are inferior to those of [2] and are only given for the sake of
completeness. On the other hand, attacks on 3-round instances are of interest, as
they best demonstrate our advantage over previous works (there are no previous
attacks on these instances that are better than exhaustive search [8]).

Remark 5.1. Solutions can be tested simply by evaluating the LowMC encryp-
tion process, whose most expensive procedures are the evaluations of the linear
layers, each consisting of a multiplication of an n-bit state with an n×n matrix.
Naively, this has complexity of 2n2 bit operations. It can be checked that (13)
holds for the parameters of Table 2.

Security level Key length Rounds Internal parameters Attack complexity Memory

S n r (n1, d, dF̃ ) (bit operations) (bits)

128 129

2 (25, 2, 52) 2118 292

3 (18, 4, 52) 2125 2104

4 (12, 4, 52) 2130 2113

192 192

2 (37, 2, 72) 2170 2126

3 (27, 4, 76) 2180 2150

4 (18, 4, 76) 2188 2164

5 (14, 8, 80) 2192 2173

255 255

2 (49, 2, 100) 2222 2173

3 (36, 4, 100) 2235 2197

4 (25, 4, 104) 2245 2218

5 (18, 8, 104) 2251 2228

Table 2. Attacks on LowMC instances

5.3 Keccak

Keccak is a family of cryptographic functions, designed by Bertoni et al. in
2008 [5]. We focus on the Keccak hash function family, selected by NIST in 2015
as the SHA-3 standard. It is built using the sponge construction (cf. [6]) using a
permutation that operates on a 1600-bit state. The permutation consists of 24
rounds, where each round consists of an application of a non-linear layer, followed
by linear operations over F2. Importantly, the non-linear layer is of algebraic
degree 2. We analyze the 4 basic Keccak variants which are parameterized by
the output size of k bits and denoted by Keccak-k for k ∈ {224, 256, 384, 512}.

A short description of Keccak is given in Appendix C.
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Preimage attacks of round-reduced Keccak. We consider messages of
length that is smaller than the rate of the hash function (so that the output
is produced after a single invocation of the permutation). We start by repre-
senting the message (preimage) bits as symbolic variables. We then linearize the
first round of Keccak by setting some linear constraints on the variables, such
that each state bit in the second round of the permutation is a linear polyno-
mial in these variables. Using the linearization technique of [13,20] for Keccak-k
(that selects variables that keep the column parities constant), this leaves more
than 224 and 256 free variables for Keccak-224 and Keccak-256, respectively,
and 256 and 128 free variables for Keccak-384 and Keccak-512, respectively (for
the SHA-3 versions, the number is slightly smaller).

For Keccak-384 and Keccak-512, we can further partially invert the final non-
linear layer (applied to the first 5 × 64 Sboxes) on the target image to obtain
its input values. For Keccak-224 and Keccak-256, not all these 5 × 64 output
bits are fixed by the image. However, we obtain 192 and 256 linear relations
among the input bits of the final Sbox layer, for Keccak-224 and Keccak-256
respectively (e.g., see [20]). Having peeled off 2 out of the 4 non-linear layers, we
obtain equations of degree 22 = 4 and solve for the preimage using Algorithm 1.

Results. We begin by considering preimage attacks on 4 rounds of Keccak-224
and Keccak-256. For these instances, we have sufficiently many free variables to
obtain systems with 224 and 256 variables (respectively), which we assume to
have a solution. Consequently, our preimage attacks have complexities of 2217

and 2246 bit operations by choosing n1 = 22 and n1 = 25, respectively. On the
other hand, the recent independent work [21] obtains complexities of 2192 and
2218 for Keccak-224 and Keccak-256. The analysis of these attacks ignores the
complexity of solving (numerous) linear equation systems over F2 with hundreds
of variables, but they outperform our attacks nevertheless.

For Keccak-384, the number of free variables is only 256, so we need to
solve systems of degree 4 with 256 variables an expected number of 2384−256 =
2128 times (with different initial linear constraints on the variables) to obtain a
solution. This requires time 2246+128 = 2374 (by choosing n1 = 25). In terms of
bit operations, this improves upon the recent result of [26], which estimated the
attack complexity by 2375 evaluations of the 4-round Keccak-384 function.

For Keccak-512, we do not linearize the first round, but directly solve a
system of degree 8 in 512 variables. This requires 2502 bit operations (by choosing
n1 = 26) and improves the previous attack [28] that requires 2506 Keccak calls.

Collision attacks on round-reduced Keccak. We show how to exploit our
algorithm to mount collision attacks on (low-degree) hash functions with an
output length of k bits. We then outline a (marginal) collision attack on 4-round
Keccak-512. Yet, the main purpose of this part is to introduce the general attack
framework which uses our algorithm in a different way compared to its previous
applications to key-recovery attacks and to preimage attacks on hash functions.

The problem of finding a collision can be formulated as a non-linear equation
system (where the variables are the bits of two colliding messages). However,
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the complexity of solving such a system is unlikely to be more efficient than
a generic birthday attack on the k-bit hash function which takes time 2k/2. A
better idea is to directly speed up the generic birthday attack. In order to do
so, for a parameter `, we fix ` bits of the output to an arbitrary value v and try
to find 2(k−`)/2 messages whose output value on the ` bits is equal to v. With
high probability, these messages contain a pair whose outputs also agree of the
remaining k− ` bits that we have not fixed, and therefore constitute a colliding
pair. In order to find 2(k−`)/2 such messages, we apply Procedure 1.

Suppose we run Procedure 1 with n variables after fixing ` = n1 + 1 output
bits. We expect the output to contain about 1

2 · 2
n−n1 isolated solutions (mes-

sages) that satisfy the n1 constraints. We evaluate the hash function on each out-
put message, and test whether it is indeed a solution. We store all the true solu-
tions and sort them, trying to find a collision among them. If 1

2 ·2
n−n1 < 2(k−`)/2

(e.g., we lack degrees of freedom and are forced to choose a small value of n), we
repeat the procedure several times (with a different set of message variables),
while storing all the produced messages until a collision is found.

Since we test all outputs of Procedure 1, the complexity of this attack also
directly depends on the number of bit operations required to evaluate the hash
function on some message. We denote this number by τ .

Application to Keccak-512. We apply the framework to 4-round Keccak-512, as
there are no published attacks better than the birthday bound on this variant.
Assuming τ = 213 (hence the complexity of the birthday attack is 2256+13 = 2269

bit operations), we set d = 4 and n = 128 (unlike the preimage attack, we
linearize the first round) and choose n1 = ` − 1 = 12. Calculation reveals that
the complexity is about 2263 bit operations, which is roughly 64 times faster
than the birthday attack.8 If we assume a larger value of τ , the complexity of
the attack will increase, but also its relative advantage compared to the birthday
attack.

Further optimizations. We leave it to future work to further optimize these
attacks by better exploiting the structure of Keccak. For example, some improve-
ment can be obtained by selecting the variables z1, . . . , zn1

in a more careful
manner in order to reduce the degree of F̃ in Algorithm 1. Additionally, exhaus-
tive search over Wn−n1

w+1 ×{0, 1}n1 may be replaced by a more efficient procedure
that takes advantage of the structure of the equation system.
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of Pure and Applied Algebra 139(1-3), 61–88 (Jun 1999)

18. Faugère, J.C.: A New Efficient Algorithm for Computing Gröbner Bases without
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Cryptosystems Using Gröbner Bases. In: Boneh, D. (ed.) Advances in Cryptology -
CRYPTO 2003, 23rd Annual International Cryptology Conference, Santa Barbara,
California, USA, August 17-21, 2003, Proceedings. Lecture Notes in Computer
Science, vol. 2729, pp. 44–60. Springer (2003)

20. Guo, J., Liu, M., Song, L.: Linear Structures: Applications to Cryptanalysis of
Round-Reduced Keccak. In: Cheon, J.H., Takagi, T. (eds.) Advances in Cryp-
tology - ASIACRYPT 2016 - 22nd International Conference on the Theory and
Application of Cryptology and Information Security, Hanoi, Vietnam, December
4-8, 2016, Proceedings, Part I. Lecture Notes in Computer Science, vol. 10031, pp.
249–274 (2016)

21. He, L., Lin, X., Yu, H.: Improved Preimage Attacks on 4-Round Keccak-224/256.
IACR Trans. Symmetric Cryptol. 2021(1), 217–238 (2021)

22. Joux, A.: Algorithmic Cryptanalysis. Chapman & Hall/CRC, 1st edn. (2009), pages
285-286

23. Joux, A., Vitse, V.: A Crossbred Algorithm for Solving Boolean Polynomial Sys-
tems. In: Kaczorowski, J., Pieprzyk, J., Pomykala, J. (eds.) Number-Theoretic
Methods in Cryptology - First International Conference, NuTMiC 2017, Warsaw,
Poland, September 11-13, 2017, Revised Selected Papers. Lecture Notes in Com-
puter Science, vol. 10737, pp. 3–21. Springer (2017)

24. Kales, D., Zaverucha, G.: Improving the Performance of the Picnic Signature
Scheme. IACR Trans. Cryptogr. Hardw. Embed. Syst. 2020(4), 154–188 (2020)

32

https://eprint.iacr.org/2020/1058


25. Kipnis, A., Patarin, J., Goubin, L.: Unbalanced Oil and Vinegar Signature
Schemes. In: Stern, J. (ed.) Advances in Cryptology - EUROCRYPT ’99, Inter-
national Conference on the Theory and Application of Cryptographic Techniques,
Prague, Czech Republic, May 2-6, 1999, Proceeding. Lecture Notes in Computer
Science, vol. 1592, pp. 206–222. Springer (1999)

26. Liu, F., Isobe, T., Meier, W., Yang, Z.: Algebraic Attacks on Round-Reduced
Keccak/Xoodoo. IACR Cryptol. ePrint Arch. 2020, 346 (2020), https://eprint.
iacr.org/2020/346

27. Lokshtanov, D., Paturi, R., Tamaki, S., Williams, R.R., Yu, H.: Beating Brute
Force for Systems of Polynomial Equations over Finite Fields. In: Klein, P.N. (ed.)
Proceedings of the Twenty-Eighth Annual ACM-SIAM Symposium on Discrete
Algorithms, SODA 2017, Barcelona, Spain, Hotel Porta Fira, January 16-19. pp.
2190–2202. SIAM (2017)

28. Morawiecki, P., Pieprzyk, J., Srebrny, M.: Rotational cryptanalysis of round-
reduced keccak. In: Moriai, S. (ed.) Fast Software Encryption - 20th International
Workshop, FSE 2013, Singapore, March 11-13, 2013. Revised Selected Papers. Lec-
ture Notes in Computer Science, vol. 8424, pp. 241–262. Springer (2013)

29. NIST’s Post-Quantum Cryptography Project, https://csrc.nist.gov/

Projects/Post-Quantum-Cryptography

30. Patarin, J.: Hidden Fields Equations (HFE) and Isomorphisms of Polynomials
(IP): Two New Families of Asymmetric Algorithms. In: Maurer, U.M. (ed.) Ad-
vances in Cryptology - EUROCRYPT ’96, International Conference on the Theory
and Application of Cryptographic Techniques, Saragossa, Spain, May 12-16, 1996,
Proceeding. Lecture Notes in Computer Science, vol. 1070, pp. 33–48. Springer
(1996)

31. Razborov, A.A.: Lower bounds on the size of bounded-depth networks over a com-
plete basis with logical addition. Mathematical Notes of the Academy of Sciences
of the USSR 41(4), 333—-338 (1987)

32. Savage, C.D., Winkler, P.: Monotone Gray Codes and the Middle Levels Problem.
J. Comb. Theory, Ser. A 70(2), 230–248 (1995)

33. Smolensky, R.: Algebraic Methods in the Theory of Lower Bounds for Boolean
Circuit Complexity. In: Aho, A.V. (ed.) Proceedings of the 19th Annual ACM
Symposium on Theory of Computing, 1987, New York, New York, USA. pp. 77–
82. ACM (1987)

34. The Picnic Design Team: The Picnic Signature Algorithm Specification. April 2020.
Version 3.0. https://microsoft.github.io/Picnic/

35. Valiant, L.G., Vazirani, V.V.: NP is as Easy as Detecting Unique Solutions. Theor.
Comput. Sci. 47(3), 85–93 (1986)

36. Williams, R.R.: The Polynomial Method in Circuit Complexity Applied to Algo-
rithm Design (Invited Talk). In: Raman, V., Suresh, S.P. (eds.) 34th International
Conference on Foundation of Software Technology and Theoretical Computer Sci-
ence, FSTTCS 2014, December 15-17, 2014, New Delhi, India. LIPIcs, vol. 29, pp.
47–60. Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2014)

A Formal Analysis of Algorithm 1 with Random Input

In this section we formally analyze Algorithm 1. We begin with worst-case anal-
ysis that holds for any input polynomial system E. We then define a distribution
over equation systems and analyze a slightly modified variant of Algorithm 1 for

33

https://eprint.iacr.org/2020/346
https://eprint.iacr.org/2020/346
https://csrc.nist.gov/Projects/Post-Quantum-Cryptography
https://csrc.nist.gov/Projects/Post-Quantum-Cryptography
https://microsoft.github.io/Picnic/


this input distribution. Throughout the analysis, we use the notation defined in
Section 4.1.

A.1 Worst-Case Analysis

Proposition A.1.

T1 / Tb + n1 · n · 2n−n1 + (n1 + 1) · (E[L] + n ·
(
n−n1

↓w+1

)
+Nk · 2n−n1),

where Tb is the expected brute force complexity.

Proof. We analyze procedures 2 and 1, and the additional operations in Algo-
rithm 1.

Procedure 2. The expected complexity of brute force is Tb. The expected com-
plexity of computing the values of the arrays V and ZV is slightly more than
(n1 + 1) · E[L].

Procedure 1. The complexity of interpolating (U0(y), U1(y), . . . , Un1
(y)) from

their evaluations is

n ·
(
n−n1

↓w
)

+ n1 · n ·
(
n−n1

↓w+1

)
< (n1 + 1) · n ·

(
n−n1

↓w+1

)
.

The complexity of evaluating these polynomials on {0, 1}n−n1 is bounded by
n1 ·n · 2n−n1 (as in (9)). The complexity of the final loop that outputs potential
solutions is about (n1 + 1) · 2n−n1 , which is negligible compared to (9).

Algorithm 1. The computation time of the probabilistic polynomials is negligible.
The work performed inside the loop in iteration k involves at most k compar-

ison operations, each requires at most n1 + 1 bit operations. The total number
of bit operation spent on comparisons (in all iterations) is upper bounded by(
Nk

2

)
·(n1+1)·2n−n1 , while the average per iteration is at most Nk ·(n1+1)·2n−n1 .

�

A.2 Random Equation Systems

We define a random process for choosing a polynomial system E = {Pj(x1, . . . , xn)}mj=1

of degree d, conditioned on a pre-fixed solution x̂∗, chosen arbitrarily, but inde-
pendently of E. This random process is similar to the one used in [3], and is a
reasonable model for cryptographic settings.

We first describe how to generate a uniform polynomial of degree d with
a pre-fixed solution of x̂∗ (in n variables): choose all the

(
n
↓d
)
− 1 coefficients

of the polynomial independently and uniformly at random, except for the free
coefficient (that is not multiplied with any variable). Denote this intermediate
polynomial by P̄ . Define P by setting all of its

(
n
↓d
)
−1 non-free coefficients equal

to those of P̄ , and set its free coefficient to P̄ (x̂∗) (such that P (x̂∗) = 0).
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Note that P (x) is a random variable that is uniformly distributed in the space

of all degree d polynomials that evaluate to 0 at x̂∗. Indeed, there are 2

(
n
↓d
)
−1

such polynomials and each one is selected with the same probability.
Given x̂∗, we generate E (with parameters n,m, d) by choosing each of its

m polynomials as an independent polynomial with the pre-fixed solution x̂∗. We
call (the random variable) E generated by the above process a uniform system
with a pre-fixed solution of x̂∗ (with parameters n,m, d).

In the following, we will analyze a modified variant of Algorithm 1, assuming
that its input is chosen from such a distribution.

A.3 Analysis of Modified Algorithm 1

We analyze a modified variant of Algorithm 1, where we bound the number of
iterations by 4 and return a solution it is found. Otherwise, the algorithm returns
failure. Moreover, we define an event U which holds if for each pair of iterations
0 ≤ i < j < 4, the 2` rows of the matrices A(i) and A(j) are linearly independent.
If U does not hold, we abort and return failure.9 Obviously, the distribution of U
only depends on the parameters `,m. We note that these modifications simplify
the analysis, but are not required in practice. Our goal will be to bound the
expected time complexity T . We have

T ≤ 4 · T1 +Ns · Ts. (18)

Analysis of uniform systems with a pre-fix solution. The following results
analyze the probabilistic setting and will be used in the analysis of the algorithm.

Proposition A.2. Let x̂′ 6= x̂∗ be any n-bit vectors. Let P ′(x) be a uniform
polynomial of degree d ≥ 1 with a pre-fixed solution x̂′. Define P (x) = P ′(x +
x̂′+x̂∗). Then, P (x) is a uniform polynomial of degree d with a pre-fixed solution
x̂∗.

Proof. The polynomial P ′ is distributed uniformly over the space of all degree
d polynomials that evaluate to 0 at x̂′. Note that P (x̂∗) = P ′(x̂′) = 0 and the
change of variables P (x) = P ′(x+ x̂′ + x̂∗) in an invertible transformation that
does not increase the degree of P . Thus, the change of variable shifts the dis-
tribution to put zero weight on degree d polynomials that satisfy P (x̂∗) = 1.
Consequently, P (x) is distributed uniformly in the space of all degree d polyno-
mials that evaluate to 0 at x̂∗, proving the claim. �

The following proposition shows that despite the pre-fixed solution, each
polynomial of E in this setting essentially behaves as a uniform polynomial on
almost all assignments.

Proposition A.3. Let P (x) be a uniform polynomial of degree d ≥ 1 with a
pre-fixed solution x̂∗. Let x̂ 6= x̂∗. Then, Pr[P (x̂) = 0] = 1

2 .

9 It is also possible to select the matrices A(i) in advance such that the event holds,
assuming m is sufficiently larger than 2`.
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Proof. The value of P (x̂) is computed as a sum P (x̂) =
∑
u∈Sx̂

αu(P ), where
Sx̂ ⊆ {0, 1}n is the set of coefficients of monomials of that evaluate to 1 on the
assignment x̂.

If x̂∗ = 0, then the restriction P (x̂∗) = P (0) = 0 only sets to 0 the free coeffi-
cient of P (α0(P )), while the other

(
n
↓d
)
−1 coefficients are chosen independently

and uniformly at random. For any other assignment x̂ 6= x̂∗ = 0, Sx̂ ⊆ {0, 1}n
contains at least one u 6= 0 such that the coefficient αu(P ) is uniformly and
independently distributed. Hence, Pr[P (x̂) = 0] = 1

2 .
Otherwise, x̂∗ 6= 0, but the same argument holds by a change of variables. In

particular, pick P (x) by picking P ′(x) as a uniform polynomial with a pre-fixed
solution of 0 and define P (x) = P ′(x + x̂∗). By Proposition A.2 applied with
x̂′ = 0, P is distributed as desired.

Therefore, Pr[P (x̂) = 0] = Pr[P ′(x̂ + x̂∗) = 0] = 1
2 by the first argument

applied to P ′(x) evaluated at the non-zero assignment x̂+ x̂∗. �

Proposition A.4. Let S ⊂ {0, 1}n be a subset. Assume that E is a system
of polynomials with parameters (n,m, d), such that each x̂ ∈ S satisfies the
following condition: for every P (x) ∈ E, Pr[P (x̂) = 0] = 1

2 holds independently.
Then: (1) the probability that E has a solution in S is at most |S| ·2−m, and (2)
the expected number of solutions to E in S is |S| · 2−m.

Proof. By the above condition, every x̂ ∈ S is a solution to E with probability
2−m. Statement (1) follows by a union bound over all assignments in S and
statement (2) follows by linearity of expectation. �

The analysis of modified Algorithm 1. Let E be the event that x̂∗ is an
isolated solution to E. In the following, we bound Pr[E ] and complete the analysis
of T1. We then bound Pr[U ]. These will be used to finish the analysis of the
algorithm.

Proposition A.5. Pr[E ] ≥ 1− 2n1−m.

Proof. Let x̂∗ = (ŷ∗, ẑ∗) be the pre-fixed solution and define the set S = {(ŷ∗, ẑ) |
ẑ 6= ẑ∗}. The event E occurs if E does not have a solution in S. The claim follows
by Proposition A.4 applied to S, whose size is |S| = 2n1 − 1. The precondition
for this proposition holds by Proposition A.3. �

Proposition A.6.

T1 / 2d · log n · 2n1 ·
(
n−n1

↓w+1

)
+ n1 · n · 2n−n1 .

Proof. By Proposition A.1,

T1 / Tb + n1 · n · 2n−n1 + (n1 + 1) · (E[L] + n ·
(
n−n1

↓w+1

)
+Nk · 2n−n1).

We will estimate Tb = 2d · log n · 2n1 ·
(
n−n1

↓w+1

)
and show that the first two terms

dominate the complexity. The result will follow by linearity of expectation.
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First, since Nk ≤ 4, then Nk · (n1 + 1) · 2n−n1 � n1 · n · 2n−n1 , as n1 · n �
4·(n1+1). Moreover, (n1+1)·n·

(
n−n1

↓w+1

)
� Tb given that 2d·log n·2n1 � (n1+1)·n.

Next, observe that in each iteration k, Ẽ(k) is itself a uniform system with
a pre-fixed solution (with ` equations). This follows as E is such a system and
since A(k) has full rank `. Therefore, by Proposition A.3 the condition in Propo-
sition A.4 holds (with S = Wn−n1

w+1 × {0, 1}n1 , excluding the pre-fixed solution).
We can now use the complexity estimate of Section 2.3 for the algorithm of [8]:
Tb = 2d · log n · 2n1 ·

(
n−n1

↓w+1

)
.

Finally, applying Proposition A.4 again with S = Wn−n1
w+1 ×{0, 1}n1 , we have

E[L] = 2−` · |Wn−n1
w+1 × {0, 1}n1 | = 1

2 · (n1 + 1) ·
(
n−n1

↓w+1

)
,

as ` = n1 + 1. This is negligible compared to Tb, given that 2d · log n · 2n1 �
1
2 (n+ 1). �

Our next goal is to bound Ns.

Proposition A.7. Ns ≤ 3
2 · 2

n−2n1 .

Proof. We will show E[Ns | U ] ≤ 3
2 · 2

n−2n1 . If U does not hold, then we abort
the algorithm and it is clear that the proposition holds.

Fix a pair of iterations 0 ≤ i < j < 4. Conditioned on U , Ẽ(i) and Ẽ(j) are
independent uniform equation systems with a pre-fixed solution x̂∗ = (ŷ∗, ẑ∗).

Fix ŷ 6= ŷ∗. Denote the restricted systems Ẽ(i) and Ẽ(j), where y = ŷ for all
polynomials by Ẽiŷ and Ẽjŷ, respectively.

Claim (1). Conditioned on U , the systems Ẽiŷ and Ẽjŷ, are completely uniform
and independent equations system with parameters (n1, `, d).

Proof. Conditioned on U , the 2` polynomials in Ẽ(i) ∪ Ẽ(j) are uniform (and
independent) degree d polynomials with a pre-fixed solution x̂∗ = (ŷ∗, ẑ∗). It
remains to show that each of these polynomials restricted to ŷ 6= ŷ∗ is a uniform
polynomial of degree d.

Let P (y, z) ∈ Ẽ(i) ∪ Ẽ(j) be a polynomial of degree d and assume first that
ŷ = 0. Suppose we fix all the

(
n1

↓d
)

coefficients of the polynomial P (0, z). This

leaves P (ŷ∗, ẑ∗) undefined, as it computed by a sum mod 2 of uniform coeffi-
cients that are not fixed by P (0, z) (e.g., if ŷ∗1 = 1, then the computation of
P (ŷ∗, ẑ∗) includes the coefficient of the singleton monomial y1). In other words,
the coefficients of P (0, z) are independent of P (ŷ∗, ẑ∗) (and the other polyno-
mials in Ẽ(i) ∪ Ẽ(j)). Consequently, if P (y, z) is a uniform degree d polynomial
with a pre-fixed solution (ŷ∗, ẑ∗) such that ŷ∗ 6= 0, then P (0, z) is a uniform
degree d polynomial.

If ŷ 6= 0, then suppose we select a polynomial P ′(x) as a uniform degree d
polynomial with pre-fixed solution (ŷ∗ + ŷ, ẑ∗). As claimed above, P ′(0, z) is a
uniform degree d polynomial. Then, define P (y, z) = P ′(y + ŷ, z). By Proposi-
tion A.2, P (y, z) follows the desired distribution as P (ŷ∗, ẑ∗) = P ′(ŷ∗+ŷ, ẑ∗) = 0.
Moreover, P (ŷ, z) = P ′(0, z) is a uniform degree d polynomial. This concludes
the proof. �
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We denote the event that Ẽ(i) and Ẽ(j) suggest the same solution (ŷ, ẑ) for
some ẑ ∈ {0, 1}n1 by E1, and calculate Pr[E1 | U ].

Note that Algorithm 1 actually tests a candidate solution (ŷ, ẑ) if the sum
mod 2 of all of the solutions suggested by two iterations i,j with y = ŷ is equal
to ẑ, and the number of solutions to each of Ẽ(i) and Ẽ(j) is odd.

We define two additional events: E2 is the event that Ẽ(i) and Ẽ(j) have a
solution in the space S = ŷ × {0, 1}n1 . E3 is the event the sum mod 2 of all
solution to Ẽ(i) and of Ẽ(j) in S is equal to some ẑ ∈ {0, 1}n1 (and thus it may
be tested by the algorithm).

Claim (2). Pr[E2 | U ] ≤ 1
4 .

Proof. Fix some ŷ ∈ {0, 1}n−n1 such that ŷ 6= ŷ∗ is non-zero and fix any it-

eration i. We bound the probability that the system Ẽ
(i)
ŷ has a solution. By

Proposition A.4 applied to S = ŷ × {0, 1}n1 , the probability is upper bounded
by 2n1−` = 1

2 . Similarly, fixing a pair of iterations 0 ≤ i < j < 4 (assum-

ing U), by Claim (1) about the independence of the systems Ẽ
(i)
ŷ and Ẽ

(j)
ŷ , we

use Proposition A.3 (which actually holds under the more restricted setting of
uniform systems with a pre-fixed solutions) for each system independently and
conclude Pr[E2 | U ] ≤ 1

4 as required. �

Claim (3). Pr[E3 | E2, U ] ≤ 2−n1 .

Proof. By Claim (1), it is sufficient to show that for any uniform system Ẽ with
parameters (n1, `, d) that has an odd number of solutions, the sum mod 2 of
solutions is uniformly distributed in {0, 1}n1 .

We do this by re-randomizing the system Ẽ, to obtain another system Ẽ′

with parameters (n1, `, d) that has the same probability of being generated by
the distribution, but where the sum mod 2 of all of the solutions is set to any
fixed b ∈ {0, 1}n1 .

Assume that in Ẽ the mod 2 sum of solutions is a ∈ {0, 1}n1 . Let b ∈ {0, 1}n1

be arbitrary and perform a change of variables: for each i ∈ {1, . . . , n1}, replace
each occurrence of zi in all polynomials of Ẽ by zi + ai + bi. This results in
a new system Ẽ′ with the same parameters in which every solution ẑ to Ẽ is
transformed to a solution ẑ + a + b to Ẽ′. Since the number of solutions to Ẽ
is odd and their sum mod 2 is a, then the sum mod 2 of solutions to Ẽ′ is
a+a+ b = b. Moreover, Ẽ and Ẽ′ have the same probability of being generated.
�

Finally, we have Pr[E1 | U ] = Pr[E2 | U ] ·Pr[E3 | E2, U ] ≤ 1
4 ·2
−n1 . Recall that

these events are defined for a fixed ŷ 6= ŷ∗ and iteration pair (i, j). We define
an indicator random variable for each such pair (of which we have at most 6)
and for each ŷ ∈ {0, 1}n−n1 such that ŷ 6= ŷ∗, and sum their expectations (i.e.,
probabilities). We conclude that E[Ns | U ] ≤ 3

2 · 2
n−2n1 . �

Proposition A.8. Pr[U ] ≥ 1− 12 · 2−m+2`.
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Proof. Fix an iteration pair (i, j). The probability that the 2` rows of the matrices
A(i) and A(j) are linearly independent is lower bounded by the probability that
they are linearly independent if they are selected uniformly at random (without
the rank conditions on A(i) and A(j)). The latter probability is

(1− 2−m)(1− 2−m+1) . . . (1− 2−m+2`−1) >

e−2
−m+1−2−m+2−...−2−m+2`

>

e−2
−m+2`+1

>

1− 2−m+2`+1.

where we have used the inequalities e−t < 1− t
2 and 1− t < e−t, which hold for

all 0 < t < 1.
The result follows by a union bound over all

(
4
2

)
= 6 iteration pairs. �

Theorem A.1. Assume that the input to (modified) Algorithm 1 is a uniform
equation system with pre-fixed solution. Then, it correctly returns this solution
with probability at least

11
16 − 12 · 22`−m − 2n1−m = 11

16 − 48 · 22·n1−m − 2n1−m.

In particular, if m ≥ 2 · n1 + 10, its success probability is at least 5
8 . Moreover,

its expected time complexity satisfies

T / 4 · (2d · log n · 2n1 ·
(
n−n1

↓w+1

)
+ n1 · n · 2n−n1) + 3

2 · 2
n−2n1 · Ts

(where Ts is the average time to test a solution).

Proof. We assume E (analyzed in Proposition A.5) and U and (analyzed in
Proposition A.8) occur. These two conditions hold, except with probability at
most 2n1−m + 12 · 2−m+2`.

Then (conditioned on E), by Proposition 3.1, every iteration isolates the pre-
fixed solution with probability at least 1

2 . The algorithm returns a solution once
it is isolated twice. Thus, the probability it succeeds after at most 4 iterations
is the sum of probabilities is succeeds after exactly 2, 3, and 4 iterations:

1
4 + 2 · 18 + 3 · 1

16 − 2n1−m − 12 · 2−m+2` = 11
16 − 12 · 22`−m − 2n1−m.

By (18) and based on Proposition A.6 and Proposition A.7,

T ≤ 4 · T1 +Ns · Ts /
4 · (2d · log n · 2n1 ·

(
n−n1

↓w+1

)
+ n1 · n · 2n−n1) + 3

2 · 2
n−2n1 · Ts.

�

Remark A.1. In case m ≥ 4` = 4 ·(n1+1), we can modify the algorithm to select
an arbitrary subset of equations of E in each iteration 0 ≤ i < 4 to form Ẽ(i)

such that the 4 selected subsets are non-intersecting (and the analyzed equation
systems are completely independent). In this case, Theorem A.1 continues to
hold with a slightly better success probability, as Pr[U ] = 1.
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B Reducing the Complexity of Testing Candidate
Solutions

We describe how to optimize the complexity of testing candidate solutions in
Algorithm 1. The expected complexity of naively testing a solution by evaluating
it on a polynomial equation is about

(
n
↓d
)

(up to a small constant).
We can optimize the amortized complexity by testing together batches of can-

didate solutions that share the same value of the most significant bits (MSBs).
The evaluation of the equations in E is done via a Horner-like method for multi-
variate polynomials (by recursively writing polynomials in E as Pj(x1, . . . , xn) =

x1 ·P (1)
j (x2, . . . , xn)+P

(2)
j (x2, . . . , xn)). As an example, for d = 4 and n = 128, a

choice of n1 = 12 optimizes the time complexity (as shown in Table 1). Recalling
from (12) that we test a total of about Ns = 2n−2n1 = 2104 candidate solutions,
if we test batches that share the 90 MSBs of y on 16 equations of E (after which
a very small fraction of candidates remain), the total testing complexity becomes
about 290 · 16 ·

(
128
↓4
)

+
(
128−90
↓4

)
· 2104 ≈ 2122. This is negligible compared to the

total complexity which is about 2129.

C Description of Keccak

We briefly describe the sponge construction and the Keccak hash function. More
details can be found in the Keccak specification [5]. The sponge construction [6]
works on a state of b bits, split into two parts: the first part contains the first
r bits of the state (called the outer part) and the second part contains the last
c = b− r bits of the state (called the inner part).

Given a message, it is first padded and cut into r-bit blocks, and the b state
bits are initialized to zero. The sponge construction then processes the message in
two phases: In the absorbing phase, the message blocks are processed iteratively
by XORing each block into the first r bits of the current state, and then applying
a fixed permutation on the value of the b-bit state. After processing all the blocks,
the sponge construction switches to the squeezing phase. In this phase, k output
bits are produced iteratively, where in each iteration the first r bits of the state
are returned as output and the permutation is applied to the state.

The Keccak hash function uses multi-rate padding: given a message, it first
appends a single 1 bit. Then, it appends the minimum number of 0 bits followed
by a single 1 bit, such that the length of the result is a multiple of r. Thus,
multi-rate padding appends at least 2 bits and at most r + 1 bits.

We focus on Keccak versions with b = 1600 and c = 2k, where k ∈ {224, 256, 384, 512}.
The 1600-bit state can be viewed as a 3-dimensional array of bits, a[5][5][64], and
each state bit is associated with 3 integer coordinates, a[x][y][z], where x and y
are taken modulo 5, and z is taken modulo 64.

The Keccak permutation consists of 24 rounds, which operate on the 1600
state bits. Keccak uses the following naming conventions, which are helpful in
describing its round function:
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– A row is a set of 5 bits with constant y and z coordinates, i.e. a[∗][y][z], or
r(y, z).

– A column is a set of 5 bits with constant x and z coordinates, i.e. a[x][∗][z].
– A lane is a set of 64 bits with constant x and y coordinates, i.e. a[x][y][∗].
– A slice is a set of 25 bits with a constant z coordinate, i.e. a[∗][∗][z].

Each round of the Keccak permutation consists of five mappings R = ι ◦ χ ◦
π ◦ ρ ◦ θ. The five mappings given below are applied for each x,y, and z (where
the state addition operations are over F2):

1. θ is a linear map, which adds to each bit in a column, the parity of two other
columns.

θ: a[x][y][z]← a[x][y][z] +

4∑
y′=0

a[x− 1][y′][z] +

4∑
y′=0

a[x+ 1][y′][z − 1]

2. ρ rotates the bits within each lane by T(x,y), which is a predefined constant
for each lane.
ρ: a[x][y][z]← a[x][y][z + T (x, y)]

3. π reorders the lanes.

π: a[x][y][z]← a[x′][y′][z], where

(
x

y

)
=

(
0 1

2 3

)
·
(
x′

y′

)
4. χ is the only non-linear mapping of Keccak, working on each of the 320 rows

independently.
χ: a[x][y][z]← a[x][y][z] + ((¬a[x+ 1][y][z]) ∧ a[x+ 2][y][z])
Since χ works on each row independently, it can be viewed as an Sbox layer
which simultaneously applies the same 5 bits to 5 bits Sbox to the 320 rows
of the state. The Sbox function is an invertible mapping in with the algebraic
degree of each output bit as a polynomial in the five input bits is 2.

5. ι adds a 64-bit round constant to the first lane of the state.
ι: a[0][0][*]←a[0][0][*]+RC[ir]
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