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Abstract. A recent preprint [3] suggests the use of exponentiation in
a non-associative algebraic structure called entropoid to construct post-
quantum analogues of DLP-based cryptosystems. In this note, we show
a polynomial-time reduction from the entropoid version of DLP to the
conventional DLP in the underlying finite field. The resulting attack takes
less than 10 minutes on a laptop against parameters suggested in [3] for
128-bit post-quantum secure key exchange and runs in polynomial time
on a quantum computer. We briefly discuss how to generalize the attack
to the generic setting.
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1 Introduction

The quest for drawback-free post-quantum substitutes of vital cryptographic
building blocks continues. One approach to replace DLP-based schemes (such
as Diffie–Hellman) is to search for algebraic structures supporting a generalized
exponentiation operation that commutes— so Alice and Bob can obtain a shared
secret—while not being vulnerable to Shor’s quantum algorithm.

What [3] proposes is such an algebraic structure: It defines a non-associative
binary operation, however with a sufficiently strong alternative associativity law
to permit defining an exponentiation map that makes exponents commute. More
concretely, [3] defines an entropoid to be a quasigroup1 (G, ∗) where ∗ is entropic,
i.e., satisfies the pseudo-associativity law

(x ∗ y) ∗ (z ∗ w) = (x ∗ z) ∗ (y ∗ w) . (†)

(To be precise, [3] requires an additional addition operation on G and explicitly excludes associative
or commutative multiplication. We ignore these details as they are not needed in the sequel.)

Acknowledgement. Thanks to Diego F. Aranha for suggesting the title in reference
to a cartoon series that he—and, presumably, others—watched at some point.

∗ Date of this document: 2021-07-27.
1 A quasigroup is a set G together with a binary operation ∗ : G×G→ G such that
for all a ∈ G, the maps a ∗ − : G → G and − ∗ a : G → G are bijections. (In other
words, all left- and right-divisions are possible and uniquely defined.)



The cryptosystem is then based on non-associative exponentiation in (G, ∗):
Besides the number of times an element is multiplied by itself, an exponent must
thus also encode how these multiplications are parenthesized. For example, the
list of all such generalized exponents up to size 4 may be represented as follows:

−, �, ��, (��)�, �(��), �(�(��)), �((��)�), (��)(��), ((��)�)�, (�(��))� .

Now, the remarkable (and, from a cryptographer’s perspective, intriguing)
thing about groupoids satisfying (†) is that the non-associative exponentiation
map behaves “as it should”; i.e., for generalized exponents A,B as above we have

(xA)B = (xB)A . (?)

This equation virtually screams Diffie–Hellman, and indeed, building analogues
of DLP-based systems on top of the commutativity property (?) for entropoids
is precisely what [3] proposes.

After laying out the general framework, [3] proceeds to construct a concrete
instantiation E∗

(p−1)2 of this idea using an algebraic multiplication law on a subset
of Fp × Fp. The parameters of the entropoid E∗

(p−1)2 defined in [3] are a (large)
prime p together with constants a3, a8, b2, b7 ∈ Fp subject to some mild algebraic
constraints. The definition of E∗

(p−1)2 is as follows:

E∗
(p−1)2 =

(
Fp \ {−a3/a8}

)
×

(
Fp \ {−b2/b7}

)
(x1, x2) ∗ (y1, y2) =

(a3(a8b2 − b7)
a8b7

+ a3x2 +
a8b2
b7

y1 + a8x2y1,

b2(a3b7 − a8)
a8b7

+
a3b7
a8

y2 + b2x1 + b7x1y2

)
.

Notice that
1 = (1/b7 − a3/a8, 1/a8 − b2/b7)

is a left-neutral element of (E∗
(p−1)2 , ∗).

2 Reduction to finite-field DLP

In this section, we demonstrate an attack against the concrete instantiation
E := E∗

(p−1)2 proposed by [3]. Section 2.1 will discuss how that attack should
generalize to the entropoid cryptography concept in a generic setting.

The hidden group. First, it follows from [9, Theorem 1] that we can recover
an abelian group structure (E, ·) on the set E characterized the property

(x ∗ 1) · y = x ∗ y .
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It is not hard to check using (†) that (E, ·) is in fact an abelian group with
identity element 1, and that σ : E→ E, x→ x ∗ 1 is an automorphism of order 2
of both (E, ∗) and (E, ·). Thus, we have established that

x ∗ y = xσ · y .

Notably, the non-associative non-commutative structure of (E, ∗) is really just
the abelian group structure of (E, ·) with one input twisted by an automorphism.

Maps to finite fields. Concretely, the automorphism σ and the newly recovered
abelian group structure on E are

σ((x1, x2)) =
(a8
b7
x2 +

a28b2 − a3b27
a8b27

,
b7
a8
x1 +

a3b
2
7 − a28b2
a28b7

)
;

(x1, x2) · (y1, y2) =
(
b7x1y1 +

a3b7
a8

x1 +
a3b7
a8

y1 +
a23b7 − a3a8

a28
,

a8x2y2 +
a8b2
b7

x2 +
a8b2
b7

y2 +
a8b

2
2 − b2b7
b27

)
.

The group (E, ·) is easily seen to decompose as a direct product as there are no
interactions at all between the first and second component.

Furthermore, as suggested by the classification of affine algebraic groups of
dimension one, each component of (E, ·) ought to be isomorphic to (F×

p , ·), and
indeed, a possible isomorphism is given by

ι : E→
(
F×
p

)2, (x1, x2) 7→
(
b7x1 + a3b7/a8, a8x2 + a8b2/b7

)
.

Newfound associativity. Rewriting x ∗ y as xσ · y reveals that the choice of
parenthesization of a non-associative exponentiation in (E, ∗) matters much less
than it seems at first: Computing a few examples (or, more formally, induction)
using the property σ2 = id quickly reveals that any non-associative power of an
element x ∈ E can simply be written in the form

(xσ)i · xj

with i, j ∈ Z≥0; exponentiations now taking place in (E, ·). We may thus recover
the constants i, j corresponding to Alice’s private-key operation x 7→ xA in order
to evaluate that map on arbitrary elements of E other than the generator g ∈ E
chosen in the cryptosystem. This involves a multidimensional discrete-logarithm
computation in (E, ·), which is polynomial-time on a quantum computer and can
be reduced to DLPs in the finite field Fp and some linear algebra classically:

– Map g, gσ, gA to Fp via ι: (α1, α2) = ι(g), (β1, β2) = ι(gσ), (γ1, γ2) = ι(gA).
– Pick a generator κ of the group F×

p and compute the discrete logarithms
ri = logκ(αi), si = logκ(βi), ti = logκ(γi) in Fp.

– Solve the linear system
(
i j

)(r1 r2
s1 s2

)
=

(
t1 t2

)
modulo p− 1 for (i j) ∈ Z2.

– Evaluate Alice’s private-key map x 7→ xA by computing x 7→ ι−1
(
(xσ)i · xj

)
.
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Representation of private keys. Our reduction as described above does not
strictly solve the DELP problem exactly as given in [3, Definition 23], since
that formulation assumes a specific way of writing down generalized exponents.
However, we argue that this detail is a distraction: The DELP from [3] is in its
current version already satisfied with equivalent keys—as it should, since the
mapping from private to public keys is non-injective, so recovering the exact
private key is information-theoretically impossible anyway—and thus there is
no reason an attacker wouldn’t be happy with any representation of the private
key that allows them to compute the private-key operation in polynomial time.

In any case, it appears feasible (albeit perhaps somewhat tedious) to devise an
algorithm for recovering a private key in the style of [3] from the representation
of the private key obtained in the attack above.

2.1 The general case

The main structure result for entropoids is the following theorem, which was
independently (and with slightly different conditions) proved by Murdoch [6],
Toyoda [9], and Bruck [1]:

Theorem 1. For every entropic quasigroup (G, ∗), there exists an abelian group
(G, ·), commuting automorphisms σ, τ of (G, ·), and an element c ∈ G, such that

x ∗ y = xσ · yτ · c .

Thus, like we have observed in the example above (with τ = id and c = 1), the
composition law in any entropic quasigroup comes from a multiplication in an
abelian group that is twisted by automorphisms and translated by a constant.

As before, this implies that any non-associative power of an element x ∈ G
can in fact be written as a product combination in (G, ·) of elements of the form
xξ and cγ where ξ, γ ∈ 〈σ, τ〉. The classification of finite abelian groups implies
that there exists a small2 subset of such elements that suffices to span the entire
subquasigroup 〈g〉

*
generated by g ∈ G, and again, recovery of the exponents

corresponding to Alice’s private-key operation consists of a multidimensional
discrete-logarithm computation (which is polynomial-time quantumly).

Therefore, all instantiations of the entropoid framework where a representation
of ∗ using · and σ, τ, c can be found efficiently (cf. Section 2.2) should be breakable
in polynomial time on a quantum computer.

Too many solutions. Summarizing the discussion above, our goal is to rewrite
a given public key gA as a product gξ · cγ where ξ, γ ∈ Z[σ, τ ], such that we can
hope to compute xA for any x by evaluating xξ · cγ . However, there are usually
multiple solutions (ξ, γ) to this decomposition problem, and they do not all yield
equivalent private keys: For example, if c = gα, then (ξ, γ) is a solution if and

2 Polynomially-sized in log |G|.
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only if (ξ + α, γ − 1) is, but (g2)ξ+α · cγ−1 = (g2)ξ · cγ+1 is off by a factor of c.
It may seem that multiple input-output pairs of Alice’s private-key operation are
required to disambiguate, but this is not the case,3 since the following property of
non-associative exponentiation reveals exploitable redundancy in the pair (ξ, γ):

Lemma 2. For a binary operation x ∗ y = xσ · yτ · c as in Theorem 1 and any
non-associative exponent A, there exists γ ∈ Z[σ, τ ] such that for all x ∈ G

xA = x1+(σ+τ−1)γ · cγ . (o)

Moreover, if (o) holds for some x = g ∈ G, then (o) holds for all x ∈ 〈g〉∗.

Proof. Induction on A for the first claim; induction on x for the second claim. ut

2.2 Ways out?

More recently, another preprint by Gligoroski [4] correctly points out that the mere
existence of a representation as in Theorem 1 does not mean it is computationally
efficient to find,4 and that not every entropic magma is a quasigroup, which may
affect the applicability of Theorem 1 to more general instantiations.

Regarding the first issue, we remark that the attack does not actually require
recovering “nice” formulas for the hidden group structure as we did in Section 2:
One may equivalently evaluate · as a combination of ∗ and one-sided divisions
(assuming these are efficiently computable). This does not prove that we can
always make Theorem 1 efficient, but it does show that the attack demonstrated
in this note was more than a lucky coincidence where we could “see” the group.

Regarding the second issue, we note that there are generalizations of Theorem 1
with weaker assumptions [7, 10, 5], hence there appears to be no reason to believe
that this attack strategy is inherently limited to cases covered by Theorem 1. As
above, it is not clear that these theorems can always be made efficient.

In any case, the concrete construction proposed in [4] is breakable using
essentially the same attack as before: First linearize the “small” entropoid just as
described here, then solve a linear-algebra problem taking into account Lemma 2.
An implementation is included in the attack code archive linked in Section 3.

3 Attack implementation

We have fully implemented the reduction described in the preceding in sage [2]
and verified that it succeeds against the proof-of-concept sage implementation of
entropoid Diffie–Hellman that was (commendably!) provided in [3].

The reduction itself consists of polynomially many algebraic operations in Fp
and requires negligible time in practice. Since the sizes of p suggested by [3]
3 In fact, this scenario is information-theoretically impossible, as it would mean the
data encoded in the public key is insufficient to complete a functioning key exchange.

4 The first version of this note had used more optimistic language regarding this matter.
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are relatively small (between 128 and 512 bits), the CADO-NFS software [8]
can solve the resulting DLP instances within at most a couple of days on a
high-end desktop computer. For the largest proposed key-exchange instantiation
with claimed 256-bit classical and 128-bit post-quantum security, CADO-NFS
computes the DLPs arising from the reduction in less than 10 minutes on a
laptop with a 4-core i5-6440HQ processor and 16 gigabytes of memory.

Attack code is available at https://yx7.cc/files/entropoid-attack.tar.gz.
(Note that the prime p is chosen smaller in this example so that sage’s default
method resolves the DLPs resulting from the reduction quickly. The same code
can handle large sizes if the DLP computations are outsourced to CADO-NFS.)
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