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Abstract. White-box cryptography is often used in embedded appli-
cations. Although white-box cryptography with provable security has
been proposed recently, the circuit size is much larger than that of usual
block ciphers. We address this problem in a different way from previ-
ous works. In particular, we propose a white-box symmetric cipher using
quantum memory. The size of our cipher is a polynomial in input-length
and output-length of an underlying function. The security against classi-
cal attacks is reduced to the security of the underlying classical pseudo-
random function. We show that quantum attacks using the generalized
Grover algorithm to our cipher are ineffective.

Keywords: white-box cryptography · quantum memory · Grover’s al-
gorithm · symmetric cipher

1 Introduction

White-box cryptography provides implementations of symmetric ciphers that
offer cryptographic security against an adversary who makes access to the im-
plementation. Specifically, white-box cryptography protects the confidentiality
of keys that is used in underlying symmetric ciphers. Applications of white-box
cryptography include IC cards and digital rights management (DRM). Although
the white-box implementation of block ciphers such as DES and AES was ini-
tially studied, no implementation successfully hides the key. The current trend
of white-box cryptography is to define the security to be achieved by white-box
cryptography and to show dedicated constructions satisfying the definitions. As
an example of the security goal, no adversary having access to the implemen-
tation can produce a functionally equivalent circuit that is significantly smaller
than the original implementation. This notion is called incompressibility [1],
weak white-box [2], or space-hardness [3]. The circuit size of the constructions
satisfying the notions above is much larger than that of usual block ciphers such
as AES [3, 4].

In fact, there exists a secure white-box implementation of symmetric ciphers.
The table of all the pairs of a plaintext and its ciphertext (e.g., the encryption
with AES) is stored in the memory of a device. However, this implementation is
impractical because it requires ℓ2ℓ+1-bit memory where ℓ is a block length. We
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solve the problem of the memory size by using quantum memory. The number
of qubits in our scheme is a polynomial in L+ ℓ where L is input-length and ℓ is
output-length of an underlying pseudo-random function. Although our scheme
requires quantum memory for storing the table, the plaintext and its ciphertext
are classical (i.e., digital data).

The disadvantage of our scheme is that the quantum state of the table is
non-reusable because of wave function collapse by measurement. However, after
some secret information was shared by both sides, their communication can be
made confidential by using usual symmetric ciphers. It is also allowed to request
the quantum state of the same table again. Hence, the non-reusability is not a
fatal flaw.

This paper is organized as follows: Section 2 describes the proposed scheme
that is based on the classical pseudo-random function. Section 3 analyzes the
security of the scheme on the classical channel. It is shown that the classical
security is reduced to the security of the underlying pseudo-random function.
Section 4 analyzes the security against attacks using the generalized Grover
algorithm. It is shown that such attacks fail because of the lowness of success
probability or the largeness of the number of operations. Section 5 concludes
this paper.

2 XOR Scheme Using a Quantum State

2.1 Encryption Scheme

Let us consider the following scenario of white-box cryptography. Alice manufac-
tures the same encryption devices that output a ciphertext for a given message,
and she gives them to all the partners. When Bob, who is one of her partners,
wants to send a message securely, Bob encrypts the message using the device
and sends the ciphertext to Alice. From the viewpoint of confidentiality, part-
ners excluding Bob cannot obtain any information about the message from the
ciphertext even if the given device is used.

Suppose that partners have full access to implementation of the devices.
Hence, an encryption key in the device must be hidden from partners. The
obvious method to hide the encryption key was described in Sect. 1. Although
the obvious method is classically infeasible, this section shows that the obvious
method is implementable using quantum memory.

Let F be a function from {0, 1}λ×{0, 1}L to {0, 1}ℓ where λ, L, and ℓ denote
a key-length, an input-length, and an output-length, respectively. We call the
following scheme a XORQS[F ] scheme.

Alice prepares the following state |ϕ1⟩.

|ϕ1⟩ = Iℓ ⊗HL |0ℓ⟩ |0L⟩

=
1√
2L

∑
r∈{0,1}L

|0ℓ⟩ |r⟩ ,
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where Iℓ and HL are the 2ℓ-dimensional identity matrix and the 2L-dimensional
Hadamard matrix, respectively. Alice chooses a λ-bit key v̂ according to the
uniform distribution on {0, 1}λ. Let Uf be a unitary operator for computing f
where f = F (v̂, ·).

|ψ⟩ = Uf |ϕ1⟩

=
1√
2L

∑
r∈{0,1}L

|f(r)⟩ |r⟩

=
∑

(c,r)∈{0,1}ℓ×{0,1}L

ac,r |c, r⟩ (1)

where

ac,r =

{
1√
2L

if c = f(r)

0 otherwise.
(2)

Alice gives |ψ⟩ to all the partners including Bob. Suppose that Bob wants to send
an ℓ-bit message m to Alice in secret. Bob performs the projective measurement
to |ψ⟩. Let (ĉ, r̂) be the measurement result where ĉ = f(r̂) because of Eq. (2).
Bob sends (ĉ⊕m, r̂) to Alice using a classical (digital) channel. After receiving
it, Alice can obtain the message m by computing (ĉ ⊕m) ⊕ f(r̂) because Alice
knows v̂.

Since we focus on white-box applications, we assume that devices (e.g., com-
mercial products) in which |ψ⟩ is embedded are securely sent from Alice to all
the partners. Unlike BB84 [5], the channel for sending |ψ⟩ is not quantum chan-
nel. Furthermore, since all the partners protect devices securely, an adversary
cannot make access to someone else’s (e.g., Bob’s) device. However, there may
exist the adversary in the partners. For example, Bob himself may analyze the
device. Theses assumptions are probably acceptable in white-box applications.

2.2 Properties of the XORQS[F ] Scheme

The unitary operator Uf is used once to produce |ψ⟩, which essentially requires
L + ℓ qubits. The state |ψ⟩ is considered as the table that describes pairs of
an input and its output. If such a table is produced with digital (classical)
information, then f is performed 2L times and the table size is (L+ ℓ)2L bits.

The measurement result (ĉ, r̂) is one-time. In some applications, it may be
sufficient for Alice and Bob to share the message m once. For example, they
can use m as a common-key for encrypting messages using common-key block
ciphers. If Bob wants to send several messages, then Alice may give as many
devices in which the same state |ψ⟩ is embedded as Bob needs.

3 Classical Security Analysis

This section shows the security of the XORQS[F ] scheme against a classical
eavesdropper that can obtain (ĉ⊕m, r̂). From the viewpoint of classical commu-
nication, the XORQS[F ] scheme is equivalent to the following scheme XOR[F ].
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Alice and Bob share the λ-bit key v̂. Bob chooses r̂ according to the uniform
distribution on {0, 1}L. For an ℓ-bit message m, Bob sends (Fv̂(r̂) ⊕ m, r̂) to
Alice where Fv̂ = F (v̂, ·).

We formally analyze the security of the XOR[F ] scheme in terms of the
left-or-right indistinguishability. Theorem1 below means that if F is a pseudo-
random function, then the security of the XOR[F ] scheme mainly depends on
the output-length ℓ of F .

Theorem 1. Let Advlor−cpa
XOR[F ](λ, t, qe, µe) be the advantage function of XOR[F ]

in terms of the left-or-right indistinguishability for time complexity t, at most
qe queries to the oracle of XOR[F ] and the amount of ciphertexts µe when any

chosen-plaintext attack is performed. Let AdvprfF (t, q) be the advantage function
of F for time complexity t and at most q queries to the oracle of F in terms of
the indistinguishability from a random function from {0, 1}L to {0, 1}ℓ. Then,
the following inequality holds.

Advlor−cpa
XOR[F ](·, t, qe, µe) ≤ 2AdvprfF (t, qe) +

qe(qe − 1)

2ℓ+1
(3)

Since there is no asymptotics on the key-length, the first argument in the in-
equality above is written in the symbol ‘·’.

4 Quantum Security Analysis

This section analyzes the security of XORQS[F ] against quantum attacks. This
section also assumes that if v̂ is unknown, then Pr [c = f(r)] = 2−ℓ for a given
c ∈ {0, 1}ℓ and r ∈ {0, 1}L. In other words, an adversary considers f as a random
function.

4.1 Attacks Using the Projective Measurement

Suppose that Eve is given |ψ⟩ by Alice and knows (ĉ ⊕m, r̂) that Bob sent to
Alice on the classical channel. To obtain ĉ, Eve measures |ψ⟩ via the orthonor-
mal computational basis. Specifically, Eve prepares a collection of measurement
operators {R̂, Iℓ+L − R̂} where

R̂ =
∑

c∈{0,1}ℓ

|c, r̂⟩ ⟨c, r̂| .

The probability that the result corresponding to R̂ occurs is given by

Pr
[
R̂
]
= ⟨ψ| R̂†R̂ |ψ⟩

= a2ĉ,r̂

where R̂† denotes the Hermitian conjugate of R̂. Hence, the probability of ob-
taining ĉ is 2−L. When the input length L is a typical value (e.g., 128, 256), the
success probability of this attack is negligible.
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4.2 Attacks Using the Generalized Grover Algorithm

Generalized Grover Algorithm We here summarize the generalized Grover
algorithm given in article [8] to analyze the XORQS[F ] scheme. The difference
from (usual) Grover’s algorithm is that an initial state is arbitrary.

Let |ψ⟩ 4 be an initial state that is a superposition of any N states |ψi⟩ (i =
1, 2, . . . , N). Suppose that |ψ⟩ is a superposition of a marked state |ψ(m)⟩ and an
unmarked sate |ψ(u)⟩ as

|ψ⟩ = |ψ(m)⟩+ |ψ(u)⟩ ,

where

|ψ(m)⟩ =
M∑
i=1

ki |ψi⟩ , |ψ(u)⟩ =
N∑

i=M+1

li |ψi⟩ ,

M∑
i=1

|ki|2 +
N∑

i=M+1

|li|2 = 1.

Note that ℓ and l are different symbols. We assume that there exists a unitary
operator U such that

U |x⟩ =

{
− |x⟩ if x ∈ {ψ1, ψ2, . . . , ψM}
|x⟩ if x ∈ {ψM+1, ψM+2, . . . , ψN}.

(4)

Let us consider time evolution by applying Grover’s iteration to |ψ⟩. Let
ki(t) (i = 1, 2, . . . ,M) be marked amplitudes ki at time t and let li(t) (i =
M + 1, r + 2, . . . , N) denote unmarked amplitudes li at time t. The average of
ki(t) and that of li(t) are denoted by k̄(t) and l̄(t), respectively, which are given
by

k̄(t) =
1

M

M∑
i=1

ki(t)

l̄(t) =
1

N −M

N∑
i=M+1

li(t).

Let C(t) be a weighted average that is defined as

C(t) = − 2

N

(
M∑
i=1

ki(t)−
N∑

i=M+1

li(t)

)
.

According to article [8], the average marked and unmarked amplitudes are
given by

k̄(t+ 1) = C(t) + k̄(t),

l̄(t+ 1) = C(t)− l̄(t).

4 The state |ψ⟩ is not limited to |ψ⟩ defined as Eq. (1).
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The average marked and unmarked amplitudes can be expressed concisely as
follows:

k̄(t) = α sin(ωt+ ϕ) (5)

l̄(t) = β cos(ωt+ ϕ)

where

ω = arccos

(
1− 2M

N

)
,

ϕ = arctan

(
k̄(0)

l̄(0)

√
M

N −M

)
,

α2 = k̄(0)2 +
l̄(0)2 · (N −M)

M
, (6)

β2 = l̄(0)2 +
k̄(0)2 ·M
N −M

.

The time dependence of amplitudes is given by

ki(t) = k̄(t) + (ki(0)− k̄(0)), (7)

li(t) = l̄(t) + (−1)t(li(0)− l̄(0)).

As observed above, marked amplitudes that are related with success probability
depend on the marked amplitudes at time t = 0. According to article [8], the

value of
∑M

i=1 |ki(t)|
2
is maximized when t is

t =
π
2 − ϕ

ω

= − k̄(0)

2l̄(0)
+
π

4

√
N

M
− π

24

√
M

N
+O

(
M

N

)
. (8)

A Key Recovery Attack Using the Generalized Grover Algorithm We
consider an adversary that finds the key v for a given (ĉ, r̂) such that ĉ = Fv(r̂).
This attack does not require |ψ⟩ produced with Eq. (1). Recall that F is a pseudo-
random function from {0, 1}λ×{0, 1}L to {0, 1}ℓ where λ ≥ ℓ. LetG be a function
defined as

G(v) =

{
1 if Fv(r̂) = ĉ

0 otherwise.

Since the expected number of v such that G(v) = 1 is 2λ−ℓ, they are denoted by
v1, v2, . . . , v2λ−ℓ . Although the key v̂ used by Alice is one of them, we consider
that the attack succeeds if any of them is found. In addition, v’s such that
G(v) = 0 are denoted by v2λ−ℓ+1, v2λ−ℓ+2, . . . , v2λ . Let UG be the following
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unitary operator that corresponds to Eq. (4).

UG |v⟩ =

{
− |v⟩ if v ∈ {v1, v2, . . . , v2λ−ℓ}
|v⟩ otherwise.

Parameters of the generalized Grover algorithm are defined as follows:

N = 2λ

M = 2λ−ℓ

ki(0) =
1√
2λ

for i = 1, 2, . . . ,M

li(0) =
1√
2λ

for i =M + 1,M + 2, . . . , N.

Then, the inital state |ψ⟩ is defined as

|ψ⟩ = |ψ(m)⟩+ |ψ(u)⟩

=

M∑
i=1

ki(0) |vi⟩+
N∑

i=M+1

li(0) |vi⟩ ,

and the average of amplitudes are given by

k̄(0) = l̄(0) =
1√
2λ
.

Since the probability to find the marked state is

M∑
i=1

|ki(t)|2 =M
∣∣k̄(t)∣∣2 (∵ Eq. (7))

=M |α sin(ωt+ ϕ)|2 (∵ Eq. (5)),

its maximal value is given by

Mα2 =M

(
k̄(0)2 +

l̄(0)2(N −M)

M

)
(∵ Eq. (6))

= 1

when t is

t = −1

2
+
π

4

√
2ℓ − π

24

1√
2ℓ

+O
(
2−ℓ
)
(∵ Eq. (8)).

Thus, the number of repetitions depends on the output length ℓ, not the key
length λ when λ ≥ ℓ. Although the success probability of this attack is close to
1, this attack is infeasible when the output length ℓ is a typical value (e.g., 256,
512).
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A Left-or-Right Distingushing Attack Using the Generalized Grover
Algorithm Suppose that an adversary knows that the message m is either m1

or m2 with Pr [m = m1] = Pr [m = m2] = 1/2. The goal of the adversary is
to guess m for given (ĉ ⊕ m, r̂) and |ψ⟩ with the probability larger than 1/2.
Note that if |ψ⟩ is not given to the adversary, this attack is the left-or-right
distinguishing attack described in Sect. 3.

The following is one of the left-or-right distinguishing attacks. Since m = m1

or m2, an adversary A considers the following state as the marked state.

|ψ(m)⟩ =
2∑

i=1

ki |ψi⟩

=

2∑
i=1

ki |(ĉ⊕m)⊕mi, r̂⟩

where

ki =

{
1√
2L

if mi = m

0 if mi ̸= m.
(9)

The unmarked state is given as

|ψ(u)⟩ =
2L+1∑
i=3

li |ψi⟩+
2L+ℓ∑

i=2L+2

li |ψi⟩

=
∑

F\(ĉ,r̂)

1√
2L

· |c, r⟩+
∑

F̄\(ĉ⊕m1⊕m2,r̂)

0 · |c, r⟩

where

F = {(c, r)|c = F (v̂, r) for r ∈ {0, 1}L}
F̄ = ({0, 1}ℓ × {0, 1}L)\F .

The sum of |ψ(m)⟩ and |ψ(u)⟩ is equivalent to |ψ⟩ in Eq. (1), but they only differ in
the order of indexes. Let UFv̂

be the following unitary operator that is available
to the adversary.

UFv̂
=

{
− |c, r⟩ if |c, r⟩ ∈ {|ψ1⟩ , |ψ2⟩}
|c, r⟩ if |c, r⟩ ∈ {|ψ3⟩ , |ψ4⟩ , . . . , |ψ2L+ℓ⟩}

Suppose that the adversary A performs the generalized Grover algorithm
using UFv̂

. The adversary measures the state after applying the Grover iteration
t times. Let (c′, r′) be the measurement result. The adversary computes mg =
c′ ⊕ (ĉ ⊕m). If mg ∈ {m1,m2} and r′ = r̂, then the adversary outputs mg as
a guessed message. Otherwise (i.e., if one of states except for |ψ1⟩ and |ψ2⟩ is
observed), the adversary randomly outputs m1 or m2 as a guessed message mg.
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The guessed message mg is correct (i.e., the attack succeeds) if the state |ψi⟩
where i is the index such that m = mi is observed. Let us explain its reason.
First, suppose that m = m1. Then, the marked state |ψ(m)⟩ is given by

|ψ(m)⟩ = 1√
2L

· |ψ1⟩+ 0 · |ψ2⟩

=
1√
2L

· |ĉ, r̂⟩+ 0 · |(ĉ⊕m1)⊕m2, r̂⟩ .

After applying the Grover iteration, if |ψ1⟩ is observed, then the adversary out-
puts the correct message m1 because

c′ ⊕ (ĉ⊕m) = ĉ⊕ (ĉ⊕m)

= m1.

If |ψ2⟩ is observed, then the adversary outputs the incorrect message m2 because

c′ ⊕ (ĉ⊕m) = (ĉ⊕m1 ⊕m2)⊕ (ĉ⊕m)

= (ĉ⊕m1 ⊕m2)⊕ (ĉ⊕m1)

= m2.

Next, suppose that m = m2. Then, the marked state |ψ(m)⟩ is given by

|ψ(m)⟩ = 0 · |ψ1⟩+
1√
2L

· |ψ2⟩

= 0 · |(ĉ⊕m2)⊕m1, r̂⟩+
1√
2L

· |ĉ, r̂⟩ .

With similar considerations to the above, if |ψ2⟩ is observed, then the adversary
outputs the correct message m2. Otherwise, the adversary outputs the incorrect
message m1.

The advantage of the adversary A at time t is defined as

Adv(A, t) =

∣∣∣∣Pr [m = mg]−
1

2

∣∣∣∣ .
Without loss of generality, we can assume that m = m1 to evaluate Adv(A, t)
because of the symmetry of |ψ1⟩ and |ψ2⟩. Then, Adv(A, t) is written as

Adv(A, t) =

∣∣∣∣Pr [m = mg|m = m1]−
1

2

∣∣∣∣ . (10)

For i = 1, 2, let Ei(t) be the event such that |ψi⟩ is observed after applying the
Grover iteration t times and let E1(t) ∨ E2(t) denote the complement of the event
E1(t)∨E2(t). Let ki(t) denote the amplitude of |ψi⟩ after performing the Grover
iteration t times. Since m = m1, k1(0) and k2(0) are given as

k1(0) =
1√
2L
, k2(0) = 0 (∵ Eq. (9)). (11)
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Since Pr [Ei(t)] = |ki(t)|2, the conditional probability of Eq. (10) is transformed
as follows:

Pr [m = mg|m = m1] = Pr [m = mg|m = m1 ∧ E1(t)] · Pr [E1(t)]

+ Pr [m = mg|m = m1 ∧ E2(t)] · Pr [E2(t)]

+ Pr
[
m = mg|m = m1 ∧ (E1(t) ∨ E2(t))

]
· Pr

[
E1(t) ∨ E2(t)

]
= 1 · |k1(t)|2 + 0 · |k2(t)|2 +

1

2
·

(
1−

2∑
i=1

|ki(t)|2
)

=
1

2
+

|k1(t)|2 − |k2(t)|2

2
.

Hence, the advantage of A is simplified as

Adv(A, t) =
1

2
·
∣∣∣|k1(t)|2 − |k2(t)|2

∣∣∣ .
Supposing that m = m1 without loss of generality, we evaluate

Dif(t) = |k1(t)|2 − |k2(t)|2 . (12)

Substituting

k̄(0) =
1

2

2∑
i=1

ki(0)

=
1

2
√
2L

(∵ Eq. (11))

into Eq. (7) yields

k1(t) = k̄(t) +
1

2
√
2L
, k2(t) = k̄(t)− 1

2
√
2L
. (13)

Substituting the equations above into Eq. (12) gives

Dif(t) = |k1(t)|2 − |k2(t)|2

=
2√
2L

∣∣k̄(t)∣∣ .
It follows that Dif(t) is maximized when

∣∣k̄(t)∣∣ is maximum.

Let us consider Pr [E1(t) ∨ E2(t)] that is the probability such that either |ψ1⟩
or |ψ2⟩ is observed after performing the Grover iteration t times. In other words,
Pr [E1(t) ∨ E2(t)] is the probability such that the marked state is observed af-
ter performing the Grover iteration t times. The value of Pr [E1(t) ∨ E2(t)] is
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computed as

Pr [E1(t) ∨ E2(t)] =

2∑
i=1

|ki(t)|2

= |k1(t)|2 + |k2(t)|2

= 2
∣∣k̄(t)∣∣2 + 1

2L+1
(∵ Eq. (13)).

The probability above is maximized when
∣∣k̄(t)∣∣ is maximum. Hence, the prob-

ability above and Dif(t) are maximized at the same t of Eq. (8), that is,

t = −2L+ℓ−1 − 1

2L − 1
+
π

4

√
2L+ℓ

2
− π

24

√
2

2L+ℓ
+O

(
2

2L+ℓ

)
. (14)

The maximum value of Dif(t) is given by

max
t

Dif(t) =
2√
2L

|α| (∵ Eq. (5)). (15)

Since l̄(0) is computed as

l̄(0) =
1

2L+ℓ − 2

2L+ℓ∑
i=3

li(0)

=
2L − 1

(2L+ℓ − 2)
√
2L
,

substituting k̄(0) and l̄(0) into Eq. (6) gives

α2 =
1

4 · 2L
+

(2L−1)2

(2L+ℓ−2)22L
· (2L+ℓ − 2)

2

=
1

2L+2
+

(2L − 1)2

2L+1(2L+ℓ − 2)
. (16)

Since the maximum value of Dif(t) is given by

max
t

Dif(t) =
2√
2L

√
1

2L+2
+

(2L − 1)2

2L+1(2L+ℓ − 2)
(∵ Eqs. (15), (16)),

we obtain the maximum advantage of A as follows:

max
t

Adv(A, t) =
1√
2L

√
1

2L+2
+

(2L − 1)2

2L+1(2L+ℓ − 2)
.

When L and ℓ are typical values (e.g., 256, 512), the advantage of A is negligibly
small and t of Eq. (14) is too large to perform the attack.
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5 Conclusions

White-box (classical) cryptography with provable security has been proposed
recently. There exists a problem in the constructions of white-box cryptography:
the size of memory is larger than that of usual symmetric ciphers. To address
this problem, we have shown the XORQS[F ] scheme that uses quantum memory
in white-box cryptography. The size of qubits required by the XORQS[F ] scheme
is a polynomial in the sum of input-length and output-length of the underlying
function.

We have analyzed the confidentiality of the XORQS[F ] scheme against both
of classical attacks and quantum attacks using the generalized Grover algorithm.
The left-or-right distinguishing attack using the generalized Grover algorithm is
not efficient in the sense that the success probability is small. This is because
amplitudes of the initial state of the XORQS[F ] scheme is not uniform.
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A Proof of Theorem1

In this Appendix, the key-length λ of F is replaced with k to obtain consistency
with notations of article [6]. Note that it differs from the definition of k in
Sect. 4.2. Accordingly, F is a family of functions: {0, 1}k × {0, 1}L → {0, 1}ℓ.

A scheme XOR[F ] is defined as follows: Alice and Bob have shared a k-bit
key v that was chosen according to the uniform distribution on {0, 1}k. Let
f = F (v, ·). Since f is the function from {0, 1}L to {0, 1}ℓ, Bob chooses a nonce
r according to the uniform distribution on {0, 1}L. For an ℓ-bit message m, Bob
sends a ciphertext (c, r) = (f(r)⊕m, r). The decryption done by Alice is omitted.

Let us consider the following experiment Explor-cpa-bXOR[F ],A(k) for XOR[F ]. Let b

be a bit chosen according to the uniform distribution on {0, 1}. An adversary A
makes queries a pair of ℓ-bit plaintexts (m(0),m(1)) to a left-or-right encryption
oracle that returns a ciphertext as (f(r)⊕m(b), r). Eventually, if A guesses b = 1,
A outputs d = 1. Otherwise A outputs d = 0. The output of the experiment is
d. The advantage of the adversary A is defined by

Advlor-cpaXOR[F ],A(k)

= Pr
[
Explor-cpa-1XOR[F ],A(k) = 1

]
− Pr

[
Explor-cpa-0XOR[F ],A(k) = 1

]
.

The advantage function of XOR[F ] is defined by

Advlor-cpaXOR[F ](k, t, qe, µe) = max
A

Advlor-cpaXOR[F ],A(k)

where t is time complexity, qe is the number of queries to the left-or-right en-
cryption oracle, and µe is the amount of ciphertexts.

Let R be the set of all the functions: {0, 1}L → {0, 1}ℓ. When f is chosen
according to the uniform distribution on R, a scheme XOR[R] can be constructed

in a way similar to XOR[F ]. The advantage of the adversary A, Advlor-cpaXOR[R],A(·),
and the advantage function of XOR[R], Advlor-cpaXOR[R](·, t, qe, µe), are defined in a

similar way. The argument on the key-length are unnecessary (denoted by ‘·’)
because R is not a family of keyed functions. Lemma1, which is a simplified
version of Lemma 10 in article [6], shows the upper bound of the advantage
function of XOR[R].

Lemma 1. For any t, qe, and µe = qeℓ, the following inequality holds.

Advlor-cpaXOR[R](·, t, qe, µe) ≤
qe(qe − 1)

2ℓ+1
(17)

Since R is not a keyed function, the first argument is written in the symbol ‘·’.

Proof. Consider an adversary A with time complexity t, the number of queries
qe, and the amount of ciphertexts µe. Let ri be the nonce that is used by the

left-or-right encryption oracle for the i-th query (m
(0)
i ,m

(1)
i ). When b is fixed, let

Collor-cpa-b be an event that there exists a collision such that ri = rj where i ̸= j.
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The complementary event of Collor-cpa-b (i.e., there is no collision) is denoted by

Col
lor-cpa-b

. Since the choice of ri is independent of that of b and queries of A,
the equalities below hold.

Pr
[
Collor-cpa-1

]
= Pr

[
Collor-cpa-0

]
, (18)

Pr
[
Col

lor-cpa-1
]
= Pr

[
Col

lor-cpa-0
]
. (19)

Since the distribution of (f(ri)⊕m(1)
i , ri) is the same of that of (f(ri)⊕m(0)

i , ri)
if there is no collision in nonces, the following equation holds.

Pr
[
Explor-cpa-1XOR[R],A(·) = 1

∣∣∣Collor-cpa-1]
= Pr

[
Explor-cpa-0XOR[R],A(·) = 1

∣∣∣Collor-cpa-0] . (20)

The advantage of the adversary A is evaluated as follows:

Advlor-cpaXOR[R],A(·)

= Pr
[
Explor-cpa-1XOR[R],A(·) = 1

]
− Pr

[
Explor-cpa-0XOR[R],A(·) = 1

]
where for b = 1, 0,

Pr
[
Explor-cpa-bXOR[R],A(·) = 1

]
= Pr

[
Explor-cpa-bXOR[R],A(·) = 1

∣∣∣Collor-cpa-b]Pr [Collor-cpa-b]
+ Pr

[
Explor-cpa-bXOR[R],A(·) = 1

∣∣∣Collor-cpa-b]Pr [Collor-cpa-b] . (21)

Substituting Eqs. (18)–(20) into Eq. (21) gives

Advlor-cpaXOR[R],A(·) =
(
Pr
[
Explor-cpa-1XOR[R],A(·) = 1

∣∣∣Collor-cpa-1]
− Pr

[
Explor-cpa-0XOR[R],A(·) = 1

∣∣∣Collor-cpa-0])
· Pr

[
Collor-cpa-1

]
≤ Pr

[
Collor-cpa-1

]
≤ qe(qe − 1)

2ℓ+1
.

The discussion above depends on only t and qe of A, and does not depend on the
algorithm of A. The value of µe is equal to qeℓ regardless of b. Hence, Eq. (17)
holds.

Let us consider the following experiment Expprf-bF,D . Determine b according
to the uniform distribution on {0, 1}. If b = 0, then a function f is chosen
according to the uniform distribution on R. Otherwise, f is chosen according to
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the uniform distribution on {0, 1}k (i.e., f = F (v, ·)). For a query x ∈ {0, 1}L of
a distinguisher D, an oracle returns f(x). Eventually, if D guesses b = 0, then
D outputs d = 0. Otherwise D outputs d = 1. The output of the experiment is
d. The advantage of D is defined by

AdvprfF,D = Pr
[
Expprf-1F,D = 1

]
− Pr

[
Expprf-0F,D = 1

]
and the advantage function of F is defined by

AdvprfF (t, q) = max
D

AdvprfF,D

where t is time complexity of D and q is the number of queries to the oracle. The
notation of AdvprfF does not explicitly take the key-length k of F as a parameter.
It means that the resource depending on k is included by t or qe. Theorem1 is
proven below.

Proof. Consider the experiment Expprf-bF,D , that is, after the distinguisherD makes
queries to the oracle f , D guesses the value b. Suppose that there exists an ad-
versary A with the advantage Advlor-cpaXOR[F ],A(k). The algorithm of D is as follows:

1. Determine bD according to the uniform distribution on {0, 1}.
2. Run A. When A makes a query (m(0),m(1)), D chooses r according to the

uniform distribution on {0, 1}ℓ. After D makes a query r to the oracle f , D
obtains f(r) as the answer of the oracle. Then, D returns (f(r)⊕m(bD), r)
to A.

3. Eventually, A outputs bA as the guess of bD. Output 1 as the guess of b if
bD = bA. Otherwise, output 0.

The time complexity of D, t, is equal to that of A, the number of queries by D,
qe, is that by A, and the amount of ciphertexts obtained by A is µe = qeℓ. The
advantage of D is given by

AdvprfF,D = Pr
[
Expprf-1F,D = 1

]
− Pr

[
Expprf-0F,D = 1

]
= Pr [bD = bA|b = 1]− Pr [bD = bA|b = 0] . (22)

The second term above is transformed as follows:

Pr [bD = bA|b = 0]

= Pr [bD = bA|b = 0 ∧ bD = 1] · Pr [bD = 1]

+ Pr [bD = bA|b = 0 ∧ bD = 0] · Pr [bD = 0]

=
1

2
(Pr [bD = bA|b = 0 ∧ bD = 1]

+Pr [bD = bA|b = 0 ∧ bD = 0])

=
1

2

(
Pr
[
Explor-cpa-1XOR[R],A = 1

]
+ Pr

[
Explor-cpa-0XOR[R],A = 0

])
=

1

2

(
1 + Pr

[
Explor-cpa-1XOR[R],A = 1

]
− Pr

[
Explor-cpa-0XOR[R],A = 1

])
=

1

2

(
1 + Advlor-cpaXOR[R],A(·)

)
(23)
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where ‘·’ means that R is not a keyed function. The first term is transformed in
a similar way.

Pr [bD = bA|b = 1] =
1

2

(
1 + Advlor-cpaXOR[F ],A(·)

)
(24)

Since there is no asymptotics on the key-length, the first argument in the equa-
tion above is written in the symbol ‘·’. Substituting Eq. (23) and Eq. (24) into
Eq. (22) gives

AdvprfF,D =
1

2

(
Advlor-cpaXOR[F ],A(·)−Advlor-cpaXOR[R],A(·)

)
.

From the definition, the following inequality holds.

AdvprfF (t, qe) ≥
1

2

(
Advlor-cpaXOR[F ],A(·)−Advlor-cpaXOR[R],A(·)

)
Applying Lemma1 to the inequality above yields

AdvprfF (t, qe) ≥
1

2

(
Advlor-cpaXOR[F ],A(·)−

qe(qe − 1)

2ℓ+1

)
,

that is,

Advlor-cpaXOR[F ],A(·) ≤ 2AdvprfF (t, qe) +
qe(qe − 1)

2ℓ+1
.

The discussion above does not depend on an algorithm of A, that is, it only de-
pends on resources required by A. When t, qe, and µe denote the time complexity,
the number of queries to the oracle of XOR[F ] and the amount of ciphertexts of
A, respectively, the inequality below holds.

Advlor-cpaXOR[F ](·, t, qe, µe) ≤ 2AdvprfF (t, qe) +
qe(qe − 1)

2ℓ+1


