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Abstract. Nowadays, neural networks have been widely used in many
machine learning tasks. In practice, one might not have enough expertise
to fine-tune a neural network model; therefore, it becomes increasingly
popular to outsource the model training process to a machine learning
expert. This activity brings out the needs of fair model exchange: if the
seller sends the model first, the buyer might refuse to pay; if the buyer
pays first, the seller might refuse to send the model or send an inferior
model. In this work, we aim to address this problem so that neither the
buyer nor the seller can deceive the other. We start from Zero Knowledge
Contingent Payment (ZKCP), which is used for fair exchange of digital
goods and payment over blockchain, and extend it to Zero Knowledge
Contingent Model Payment (ZKCMP). We then instantiate our ZKCMP
with two state-of-the-art NIZK proofs: zk-SNARKs and Libra. We also
propose a random sampling technique to improve the efficiency of zk-
SNARKs. We extensively conduct experiments to demonstrate the prac-
ticality of our proposal.

1 Introduction

Deep neural networks have recently gained much popularity due to their record-
breaking performance on a wide range of machine learning tasks such as pattern
recognition [5], medical diagnosis [9] and credit-risk assessment [3]. It is well-
known that the final performance of a neural network model highly depends on
its training data. However, the data owners usually do not have enough expertise
to fine-tune the model, thereby they would like to outsource the training process
to some machine learning (ML) experts. This gives ML experts an opportunity
to monetize their skills, but brings the challenge of fairly exchanging the model:
if the seller (i.e., ML expert) returns the model first, the buyer might refuse to
pay the honorarium; if the buyer pays first, the seller might refuse to provide
the model or provide an inferior model. In this paper, we aim to address this
problem so that neither the buyer nor the seller can cheat the other.

Our starting point is zero knowledge contingent payment (ZKCP), which al-
lows fair exchange of digital goods and payments over Bitcoin. Most cryptocur-
rencies like Bitcoin and Ethereum allow a payer to make a payment by specifying
a condition that needs to be met in order for the money to be redeemed by the
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payee. One example of such conditions is a hash-locked transaction [2], where a
payment can be redeemed by presenting a SHA256 preimage of a hash value. In
ZKCP, the seller first encrypts the digital goods s as a ciphertext c and sends
it to the buyer together with the hash of the encryption key y := SHA256(k).
Then, the buyer makes a hash-locked transaction requiring the seller to post k
to the blockchain to redeem the payment. Meanwhile, the buyer can decrypt c
and obtain the purchased information. Moreover, the seller is required to prove
that c really encrypts the “desired information” and the preimage of y is the
encryption key, via a zero-knowledge (ZK) proof [13], which guarantees that the
proof does not leak anything about s and k.

In our case, the digital goods s is a trained neural network, and the “desired
information” means that s reaches a certain level of accuracy. We introduce
a new notion named zero knowledge contingent model payment (ZKCMP), the
whole procedure of which is as follows: (i) the buyer sends the training dataset
to the seller; (ii) the seller trains a model s and commits it to the buyer, denoted
as c = Enc(k, s) and y = hash(k); (iii) the buyer sends the testing dataset
together with desired accuracy acc to the seller; (iv) the seller evaluates the
model on the testing dataset; (v) the seller sends a ZK proof, proving that “the
preimage of y can decrypt c and gets the previously committed model s, which
achieves an accuracy of acc when being evaluated on the testing dataset”; (vi)
the buyer verifies the proof and posts a hash-locked transaction for y; (vii) the
seller redeems the payment by posting k to the blockchain.

For the ZK proof, we investigate both zk-SNARKs [6] and Libra [17]. The
challenge for zk-SNARKs is that the proof generation phase is time-consuming
and memory-consuming since it involves billions of gates for running a neural
network over the testing dataset. To this end, we propose a random sampling
technique to reduce the computational overhead for generating a proof, while still
keeping the exchange secure and fair. The challenge for Libra is that the lay-
ered arithmetic circuit being used can only have a single output, thereby cannot
support the proof for both accuracy and encryption. To conquer this, we con-
struct separate arithmetic circuits for different output, and use zero-knowledge
polynomial commitment to connect them (i.e., commit the I/O of each circuit
so that circuits can be connected in a zero-knowledge way). A common chal-
lenge for both zk-SNARKs and Libra is that proving the final accuracy of the
neural network is non-trivial. We design a customized circuit by composing a
series of matrix operations so that the final accuracy can be proved efficiently.
We summarize our contribution as follows:

– We propose a new notion named zero knowledge contingent model payment
(ZKCMP), which allows fair exchange of a trained machine learning model
and a cryptocurrency payment (e.g., Bitcoin) (cf. Sec. 3).

– We instantiate ZKCMP with zk-SNARKs and Libra respectively, which in-
volves a series of sophistic circuit designs (cf. Sec. 4).

– We propose a random sampling technique to improve the efficiency of zk-
SNARKs (cf. Sec. 4.1).
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– We provide a full-fledged implementation and conduct experiments exten-
sively (cf. Sec. 6).

2 Preliminaries

Notations. Let λ be the security parameter. Let negl(·) denote a negligible func-
tion. Let PRF be a pseudorandom function. Let F be a finite field of prime order.
We denote [x] as the set {1, 2, . . . , x}. We denote ~1n as the vector (1, . . . , 1) ∈ Fn.
Let M be a trained model, we denote w as the model parameter. We denote
D := {〈xi, Li〉}i∈n (where xi is the data sample entry, and Li is its corresponding
label) of size n.

Commitment scheme. A commitment scheme consists of:

– Setup(1λ). It is the public parameter generation algorithm that takes input
as the security parameter λ, and it outputs public parameter pp (to be used
by the other algorithms implicitly).

– Commit(m; r). It is the commitment generation algorithm that takes input
as: the message m, the random coin r. It outputs commitment-opening pair
(E, d). When r is not important, we use Commit(m) for simplicity.

– Verify(c, d,m). It is the verification algorithm that takes input as: the com-
mitment c, the opening d, the message m. It outputs a bit b ∈ {0, 1}, indi-
cating acceptance or rejection.

A commitment scheme should be simultaneously binding and hiding, and let
AdvA,HideCOM (λ) and AdvA,BindCOM (λ) denote the corresponding adversarial advantage.
In this work, we instantiate COM with salted SHA256. In particular, we pick a
random r ← {0, 1}λ, and commit to m by E ← SHA256(m||r), the opening is
set as d := (m, r).

Non-interactive Zero-Knowledge (NIZK) proofs. Let R be an efficiently
decidable binary relation, which defines the NP language L := {st| ∃wit :
(st,wit) ∈ R}. A NIZK proof system NIZKR for R consists of:

– Setup(1λ). It is the common reference string (CRS) generation algorithm
that takes input as the security parameter λ, and it outputs a CRS crs.

– Prove(crs, st,wit). It is the proof generation algorithm that takes input as:
the CRS crs, statement st , witness wit. It outputs a proof π.

– Verify(crs, st, π). It is the verification algorithm that takes input as: the CRS
crs, statement s, proof π. It outputs a bit b ∈ {0, 1}.

Definition 1 (NIZK) A triple of algorithms NIZKR := (Setup,Prove,Verify)
is a NIZK proof for the relation R if the following properties holds:

– Perfect Completeness. We say that a NIZK system for R is perfectly
complete if for any adversary A, we have:

Pr

[
crs← Setup(1λ); (st,wit)← A(crs);
π ← Prove(crs, st,wit)

: (st,wit) /∈ R ∨ Verify(crs, st, π) = 1

]
= 1
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– Computational Soundness. We say that a NIZK system for R is com-
putationally sound if for any PPT adversary A, the adversarial advantage
AdvA,SoundNIZK (λ) is:

Pr

[
crs← Setup(1λ);
(st, π)← A(crs)

: Verify(crs, st, π) = 1 ∧ st /∈ L
]

= negl(λ)

– Computational Zero-Knowledge. We say that a NIZK system for R
is computationally zero-knowledge if there exists a pair of PPT simulators
(Sim1,Sim2) such that for any PPT adversary A, , the adversarial advantage

AdvA,ZKNIZK (λ) is:∣∣∣∣Pr [ crs← Setup(1λ) :
AProve(crs,·,·)(crs) = 1

]
− Pr

[
(crs∗, td)← Sim1(1λ) :

ASim∗(crs∗,td,·,·)(crs∗) = 1

] ∣∣∣∣ = negl(λ)

Where the oracle Sim∗(crs∗, td, st,wit) := Sim2(crs∗, st, td) for (st,wit) ∈ R
and the oracle outputs ⊥ if (st,wit) /∈ R.

In practice, the relation decision algorithm is instantiated by a circuit CR(st,wit),
which outputs 1 if (st,wit) ∈ R; otherwise, it outputs 0.

zk-SNARKs. Zero-knowledge succinct non-interactive arguments of knowledge
(zk-SNARKs) [6] is a type of widely used NIZK proof systems. It achieves suc-
cinct proof size and verification time, whereas the proving cost is heavy. zk-
SNARKs can be used to prove the satisfaction problem of a system of rank-1
quadratic equations over a finite field F. See more details in [4].

Definition 2 Denote Ng the number of rank-1 quadratic equations, Nv the num-
ber of variables, and ` the statement size. A system of rank-1 quadratic equations

over F is a tuple S = ((aj , bj , cj)
Ng
j=1, `,Nv) where aj , bj , cj ∈ F1+Nv and ` ≤ Nv.

Such a system S is satisfiable with an input x ∈ F` if there is a witness w ∈ FNv−`
such that: ∀j ∈ [Ng] , 〈aj , (1, x, w)〉·〈bj , (1, x, w)〉 = 〈cj , (1, x, w)〉. In such a case,
we write S(x,w) = 1.

In brief, zk-SNARKs aims to prove the relation RS = {(x,w) ∈ F`×FNv−` :
S(x,w) = 1} holds. In this article, we call the system of rank-1 quadrtic equa-
tions as constraint system, the rank-1 quadratic equation as constraint equation
to make our expression clear.

Libra. Libra [17] is a zero-knowledge proof system that is designed for layered
arithmetic circuits. The performance of Libra is competitive, it has very fast
prover time and succinct proof size/verification time. Libra uses zero-knowledge
GKR protocol [12] and zero-knowledge verifiable polynomial delegation scheme
(zkVPD) [18] as two main building blocks. The construction for non-interactive
version of Libra is presented in Fig. 1. In Appendix A, we provide brief descrip-
tion of its main building blocks.
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Libra.Setup(1λ):

– Generate (pp, vp)← zkVPD.KeyGen(1λ);
– Output crs := (pp, vp);

Libra.Prove(st,wit, C):

– Select a random bivariate polynomial R;
– Compute wit which is defined as Eq. 2;(cf. Eq. 2 in Appendix A)
– Pick random r ← F;
– Commit Com← zkVPD.Commit(wit, r, pp);
– Generate GKR proof [12] π0 showing C(st,wit) = 1;
– Compute (e1, e2)← hash(st, π0, Com);

– For i ∈ {1, 2}: generate proof (yi, πi)← zkVPD.Open(wit, ei, r, pp);
– Output π := (Com, π0, y1, π1, y2, π2);

Libra.Verify(π):

– Compute (e1, e2)← hash(st, π0, Com);
– Return 1 if and only if:

• The GKR proof π0 is verified;
• For i ∈ {1, 2}:

* zkVPD.Verify(Com, ei, yi, πi, vp) = 1;

* yi ← wit(ei);

Non-interactive Libra for C(st,wit) = 1

Fig. 1: Non-interactive Libra for C(st,wit) = 1

3 Design Overview

A brief introduction to ZKCP. ZKCP [1] [7] is a blockchain based fair ex-
change protocol. For the most common scenarios, the seller S has some digital
goods s which the buyer B wants to purchase on condition that f(s) = 1 for
a verification function f : {0, 1}λ 7→ {0, 1}. In the off-chain phase, S uses a
symmetric encryption Enc to encrypt s with a random key k and publishes the
ciphertext c← Enc(s, k) and the committed key E ← SHA256(k) together with
a ZK proof showing SHA256(k) = E ∧ f(Enc−1(c, k)) = 1. If the proof is correct,
B and S then enter the on-chain phase using a hash-locked transaction [2]. Even
through ZKCP has been extensively explored by both researchers and practi-
tioners, to the best of our knowledge, there is still no formalization so far. For
the first time, we formalize the syntax of ZKCP as follows:

– pp ← Setup(1λ): It is the public parameter generation algorithm that takes
input as: the security parameter 1λ, and it outputs the public parameter pp.
• Invoke crs← NIZK.Setup(1λ);
• Output pp := crs.

– (c, E, d, π)← Prove(pp, s): It is the prove algorithm that takes input as: the
public parameter pp, the digital file s. It then outputs the ciphertext c, a
commitment-opening pair (E, d) and a proof π.
• Sample a random key k ← {0, 1}λ;
• Generate c← Enc(s, k), where Enc is a symmetry encryption;
• Commit to the key (E, d)← COM.Commit(k);
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It is parameterized with a commitment scheme COM.
The buyer B’s account balance: AccB;
The seller S’s account balance: AccS ;

Description:

– Upon receiving (Commit, v, E) from B:
• Assert AccB ≥ v;
• Store E;

– Upon receiving (Redeem, k, d) from S:
• Assert COM.Verify(E, d, k) = 1;
• Set AccS := AccS + v;
• Set AccB := AccB − v;
• Send k to B.

The exchange functionality Fex[COM]

Fig. 2: The exchange functionality Fex[COM]

• Generate π ← NIZK.Prove(pp, (c, E), (k, s));
• Output (c, E, d, π).

– b ← Verify(pp, c, E, π). It is the verification algorithm that takes input as:
the public parameter pp, the ciphertext c, the commitment E, and the proof
π. It then outputs a bit b ∈ {0, 1}, indicating acceptance or rejection.

• Output b← NIZK.Verify(pp, (c, E), π).

– Fex[COM]. It is the the trusted exchange functionality to guarantee the
fairness and security of the payment. As depicted in Fig. 2, when B sends
instruction (Commit, v, E) to Fex[COM], where v is the payment amount,
and E is the committed key, Fex[COM] checks B’s account balance AccB ≥ v
and then stores E. When S sends instruction (Redeem, k, d) to Fex[COM],
where k is the key and d is the opening, Fex calls COM to check the validity.
If COM.Verify(E, d, k) = 1, Fex[COM] transfers v from B’s account balance
AccB to S’s account balance AccS . Fex[COM] can be instantiated by hash-
locked transaction.

From ZKCP to ZKCMP. We extend the idea of ZKCP to a specific class of
problems: paying for qualified trained models. Consider such a scenario, S has
a trained model M which B wants to purchase. Since the model structure is a
common knowledge, they only need to exchange the model parameters, denoted
as w. However, the original ZKCP protocol is not sufficient for our purpose. This
is because in practice B may want to test the accuracy ofM w.r.t his own testing
dataset D before paying for it; however, according to the ZKCP protocol, S can
provide the encrypted model after seeing the testing dataset, which nullifies the
testing soundness.

To address this issue, we propose a new notion named zero knowledge con-
tingent model payments (ZKCMP). Intuitively, let us focus on the Prove. Prove
serves two purposes: (i) send the encryption of the digital goods, so S cannot
change it latter; (ii) prove the digital goods satisfies the requirement. We intro-
duce a new algorithm Seal to seal the the model parameter w to separate these
two purposes. The separation is important, since S must perform Seal(w) before
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B sending his testing dataset D. After receiving D, S generates a proof to prove
the accuracy of M.

The workflow of ZKCMP is presented in Fig. 3. Before the protocol starts,
Setup(1λ) is invoked by a trusted entity to generate pp. It is then sent to both B
and S. To prevent S from cheating, S is required to seal the model parameters w
by invoking (c, E, d)← Seal(w) and send the sealed model c and the committed
key E to B. In this way, S cannot modify the model later. B randomly picks a
testing dataset D := {〈xi, Li〉}i∈n by invoking D ← Sample(n) and sends D to S
together with a threshold τ . After receiving D, S evaluates the model on D by
F (w, xi) = yi ∧ argmax(yi) = Li, where F is the model prediction function cor-
responding toM, and yi is the final model output. argmax is used for the trans-
formation from final model output to its corresponding label. Then S is required
to prove that the accuracy of the trained modelM on D exceeds the threshold τ
as well as E is the commitment of k and c is the encryption of w with k. S obtains
the proof π by invoking π ← Prove(pp, c, E,w, k,D, τ) and sends π back to B.
After that, B checks the validity of π by invoking b← Verify(pp, c, E,D, τ, π). If
b = 1, B sends (Commit, v, E) to the trusted exchange functionality Fex[COM].
S can receive the payment by submitting (k, d) to Fex[COM]; Fex[COM] will then
send (k, d) to B. Then B can obtain the model parameters w ← Ext(c, k). To
prevent redundancy, we present the syntax of ZKCMP that differs from ZKCP.

Fig. 3: Our designed protocol

– (c, E, d)← Seal(w). It is the model sealing algorithm that takes input as: the
model parameters w, and it outputs the sealed model c, the commitment-
opening pair (E, d).
• Sample a random key k ← {0, 1}λ;
• Compute (w1, . . . , w`) ← Convert(w), where Convert is a function map-

ping model parameter w into strings (c.f. Sec.4.2);
• For i ∈ [`]:
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* Generate ksi ← PRF(k, i);
* Set ci := wi ⊕ ksi;

• Commit to the key by (E, d)← COM.Commit(k);
• Output (c := (c1, . . . , c`), E, d);

– π ← Prove(pp, c, E,w, k,D, τ). It is the prove algorithm that takes input
as: the public parameter pp, the sealed model c, the committed key E, the
model parameter w, the key k, the testing dataset D, and the threshold τ .
It then outputs a proof π.

• Compute I = {i | F (w, xi) = yi ∧ argmax(yi) = Li};
• Output π ← NIZK.Prove(pp, (c, E,D, τ), (w, k));

– b ← Verify(pp, c, E,D, τ, π). It is the verification algorithm that takes input
as: the public parameter pp, the sealed model c, the committed key E, the
testing dataset D, the threshold τ and the proof π. It then outputs a bit
b ∈ {0, 1}, indicating acceptance or rejection.

• Output b← NIZK.Verify(pp, (c, E,D, τ), π);

A ZKCMP protocol Π is a three-party protocol: the buyer B, the seller S, and
a trusted functionality Fex. We denote with [a, b] ← 〈B(F, τ),S(w,F, τ),Fex〉
the event that at the end of Π, B gets a and S gets b, where a, b can be ⊥
meaning that the parties reject the execution, and neither party will learn any
information. We denote with Ev the event that AccS increases v. We define the
view of B as his money v and all the messages exchanged during the protocol:
V iewB := [v||Message〈B(F, τ),S(w,F, τ),Fex〉||Out〈B(F, τ),S(w,F, τ),Fex〉].

Definition 3 A ZKCMP protocol Π satisfies the following properties.

– Completeness. We say a ZKCMP protocol Π is complete if for any (w,D)
such that |I| ≥ n ·τ , where I := {i | i ∈ [n] ∧ F (w, xi) = yi ∧ argmax(yi) =
Li}, the following holds:

Pr

 pp← Setup(1λ);
(c, E)← Seal(w);

π ← Prove(pp, c, E,w, k,D, τ)
:

Verify(pp, c, E,D, τ, π) = 1 ∧
[k, Ev]← 〈B(F, τ),S(w,F, τ),Fex〉

 = 1

– ε-soundness. We say a ZKCMP protocol Π is ε-sound , ε ≥ 0, if for
any possibly malicious PPT Ŝ, if at the end of the protocol Ŝ’s account
balance AccŜ increases with non-negligible probability, then there exists an
PPT extractor ExtŜ which outputs ŵ s.t.

τ − 1

n
|{i|F (ŵ, xi) = y′i ∧ argmax(y′i) = Li}| ≤ ε

– Zero-knowledge. We say a ZKCMP protocol Π is zero-knowledge, if for
any possibly malicious PPT B̂, there exists a PPT simulator SimB̂ s.t.

SimB̂(1λ)
c
≈ V iewB̂(1λ)
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4 Instantiation

In this section, we give two efficient solutions to instantiate ZKCMP for trained
neural networks respectively: (i) zk-SNARKs and (ii) Libra. We use the neural
network in CryptoNets [8] as an example and it can be expressed as:

w(3)(w(2)(w(1)x+ b(1))2 + b(2))2 + b(3) = y ∧ argmax(y) = L (1)

where w(i), b(i) ∀i ∈ [3] are the model parameters. Note that both zk-SNARKs
and Libra works in F, while neural networks require floating-point arithmetic.
A simple solution is to scale the floating-point numbers up to integers by multi-
plying the same constant to all values and drop the fractional parts [14].

In Prove, S aims to give a NIZK proof for the statement:

∃w, k, s.t. ∀i ∈ [`], ci = wi ⊕ PRF(k, i) ∧ COM.Verify(E, d, k) = 1 ∧
1

n
|{i | w(3)(w(2)(w(1)xi + b(1))2 + b(2))2 + b(3) = yi ∧ argmax(yi) = Li}| ≥ τ

To generate a NIZK proof, S constructs a circuit for the statement. The
circuit consists of two components, which we describe in their specific context:

1. Proof of accuracy: Prove I = {i | F (w, xi) = yi ∧ argmax(yi) = Li} and
|I| > n · τ ;

2. Proof of encryption: Prove ∀i ∈ [`]: ksi ← PRF(k, i) ∧ ci := wi⊕ksi and
(E, d)← COM.Commit(k);

Remark. COM is used only once while PRF is frequently invoked, so we instan-
tiate PRF with a lightweight hash function MiMC7 and instantiate COM with
SHA256 (with the random nonce) due to Bitcoin restrictions.

4.1 zk-SNARKs-based Solution

Our first approach is based on zk-SNARKs and we give a high level description
of our approach here. S transforms the statement into the format of constraint
system described in Sec. 2. S then constructs a circuit to show the correctness of
every constraint equation in the constraint system. The proof size of zk-SNARKs
is a small constant, which means low communication between S and B. However,
naively using zk-SNARKs to generate NIZK proofs for neural networks can be
quite time-consuming and memory-consuming. The performance bottleneck lies
in the huge computation of w(3)(w(2)(w(1)xi + b(1))2 + b(2))2 + b(3) = yi which
means enormous constraint equations need to be added into the constraint sys-
tem. In addition, the computation of I is not trivial.

We conclude the main challenge for this approach in the following:

– How to reduce the computation of w(3)(w(2)(w(1)xi+b
(1))2+b(2))2+b(3) = yi

while maintain the soundness;
– How to show the correct computation of I = |{i | w(3)(w(2)(w(1)xi+ b(1))2 +
b(2))2 + b(3) = yi ∧ argmax(yi) = Li}| and prove |I| ≥ n · τ .



x Z. Zhou, X. Cao, J. Liu, B. Zhang, K. Ren

Input: Original constraint system Q = ((aj , bj , cj)
Ng
j=1, l, Nv), selecting

parameter u

Outputs: Reduced constraint system Q′ = ((aj , bj , cj)
u·Ng
j=1 , l, Nv)

Description:

– Sampling(Q, u):
• Sample a random set T ⊂ [Ng ], where |T | = u ·Ng ;
• For k ∈ [u ·Ng ]:

* Select a random constrain equation (aTk , bTk , cTk ) from
Q;

* Add (aTk , bTk , cTk ) into Q′

• Output Q′ := ((aTk , bTk , cTk )
u·Ng
k=1 , l, Nv).

Sampling algorithm: Q′ ← Sampling(Q, u)

Fig. 4: Sampling algorithm: Q′ ← Sampling(Q, u)

Reducing computational complexity. Generally speaking, in zk-SNARKs,
all the constraint equations need to be added to a constraint system to maintain
the soundness. Intuitively, we would like to check a subset of the constraint equa-
tions whereas the soundness error are still tolerated. We introduce a Sampling
algorithm to reduce the computation.

As described in Sec. 2, the constraint system over F is denoted as Q =

((aj , bj , cj)
Ng
j=1, N). Sampling takes input as the original constraint system Q, a

selecting parameter u, and it outputs a reduced constraint system Q′ (cf. Fig. 4).
Now, we construct a constraint system for our example neural network and

apply Sampling to reduce the computation. According to Eq. 1, we divide the
model into four layers: (i) x(1) = (w(1)x+ b(1))2;(ii) x(2) = (w(2)x(1) + b(2))2;(iii)
y = w(3)x(2)+b(3);(iv) L = argmax(y). We take the third layer y = w(3)x(2)+b(3),
where w(3) ∈ F10×100, x(2) ∈ F100, b(3) ∈ F10 and y ∈ F10 (we use specific num-
bers here for better explaination), as the example to show how these constraints
are produced.

We first define the following variables: (1, S, w(3), x(2), b(3), y), where S =

(S(1), ..., S(1000)), w
(3) = (w

(3)
(1,1), w

(3)
(1,2), ..., w

(3)
(10,99), w

(3)
(10,100)), x

(2) = (x
(2)
(1), ..., x

(2)
(100)),b

(3) =

(b
(3)
(1), ..., b

(3)
(10)), y = (y(1), ..., y(100)). Then we rewrite y = w(3)x(2) + b(3) in the

terms of two operations as follows:

– Inner Product (i.e. w(3)x(2) = S): It produces the constraint equations:
• For i ∈ [10]:

* S((i−1)×100+1) = w
(3)
(i,1) · x

(2)
(1);

* S((i−1)×100+j) = w
(3)
(i,j) · x

(2)
(i) + S((i−1)×100+j−1), 1 < j ≤ 100

– Addition (i.e. S + b(3) = y): It produces the constraint equations:

• For i ∈ [10]: y(i) = S(100×i) + b
(3)
(i) ;

Note that, the constraints equations we described above are produced by a
single test case. Our goal is to evaluate the model on a large testing dataset, so
we need Sampling to reduce the computation. We denote the set of constraints
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equations produced by test case xi as si, and apply Sampling to each si to get
the reduced constraint system Q′ .
Remark. In our construction, u is generally set to a small value, such as 3%.
With Sampling, the computation can be largely reduced, and we show the sound-
ness error is acceptable in Sec. 5.

Computing |I|. After computing the model output ∀i ∈ [n] : yi ∈ Fm, we use it
to compute |I|. Here we present algorithms VCompute to compute |I| and show
whether |I| ≥ n · τ without revealing I:

– VComputing(y, L, τ):

• For i ∈ [n]:
* Find the maximum value of yi: yi,max ← max(yi);
* Construct di ∈ Zm2 as follows:

· For k ∈ [m]: set di,k = 1 iff yi,k ≥ yi,max; otherwise, set di,k = 0;
* Add the constraint equation

∑m
k=1 di,k = 1 to Q′;

• Compute |I| =
∑n
i=1 di,Li , and add it to Q′;

• Output 1 iff |I| ≥ n · τ ; otherwise, output 0.

Remark. With overwhelming probability, there is a unique index j such that
yi,j = yi,max. If there are more than one entry reaching the maximum value, it
means the model cannot determine which entry is the correct output. In case of
such a rare occurrence, we may choose a rule in advance (e.g. random selection)
to ensure that there is only one index j such that di,j = 1. A similar situation
may occur in the Libra-based solution, and we take the same approach.

4.2 Libra-based Solution

We first give a high level description. S commits to the witness w, k at the
beginning. Then S constructs multiple circuits which consist of two main com-
ponents: (i) evaluate accuracy of the model; (ii) encrypt the model parameter
w := (w(1), w(2), w(3), b(1), b(2), b(3)). Note that, in the latter part, the model pa-
rameter w(i) ∈ Fni×mi , b(i) ∈ Fni+3×mi+3 ,∀i ∈ [3], needs to be converted into
(w1, . . . , w`) ∈ F` for efficient encryption. This leads to a subtle issue: how to
show the consistency between model parameter w(i), b(i),∀i ∈ [3], and the con-
verted model parameter (w1, . . . , w`) ∈ F`.

For this approach, our main effort is to show:

– How to show the correct computation of |I| and prove |I| ≥ n · τ ;
– How to combine multiple circuits with the purpose of maintaining zero-

knowledge property.

Computing |I|. S constructs three circuits as follows.

– C1 : F (w, x) = y, where y ∈ Fn×m.
– C2 : argmax(y) = L′, where L′ ∈ Fn×m.
– C3 : Judge(L′, L, τ) = r, where r ∈ F.
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Unlike Sec. 4.1, we present the ground-truth label L in the form of one-hot
vectors. After computing y ← w3(w2(w1x+b1)2 +b2)2 +b3 using C1, S computes
the predicted label L′ in the following way:

– argmax(y) :
• For i ∈ [n] :

* Find the maximum value of yi: yi,max ← max(yi);
* Compute yi,mid ← yi,max − 1;

* Compute L′i ← relu(yi − yi,mid ·~1m), where relu(x) = max(0, x);
• Output the predicted label L′ := (L′1, . . . , L

′
n), where L′ ∈ Fn×m.

With overwhelming probability, there is only one entry is non-zero (i.e.
1) in L′i. If not, approach desribed in Sec. 4.1 will be taken. S can prove
L′ ← argmax(y) by π2 ← Libra.Prove(L′, y, C2), and B can validate it by b ←
Libra.Verify(π2). The algorithm mentioned later can be proved and verifed us-
ing Libra (cf. Fig. 1) in the similiar way. Then S can judge whether the model
accuracy exceeds the threshold τ :

– Judge(L′, L, τ) :
• Compute δ ← relu(L′ − L);
• Compute |δ| ← ~1Tn · δ ·~1m;
• Compute |I| ← n− |δ|;
• Output r ← relu(n · τ − |I|).

If r = 0, it means that |I| ≥ n · τ , that is, this model meets B’s requirement.

Converting w. For efficient encryption, the model parameter w(i) ∈ Fni×mi , b(i) ∈
Fni+3×mi+3 ,∀i ∈ [3], needs to be converted into (w1, . . . , w`) ∈ F`. Without loss
of generality, we resize w(i) and b(i) into matrix with the same number of columns
denoted as m′. Then S can convert w as follows:

– Convert(w) :
• Resize the model parameter into the same column m′: ∀i ∈ [3], w(i) ∈
F`i×m′ , b(i) ∈ F`i+3×m′ , and set ` :=

∑6
i=1 `i, `0 := 0;

• Set B := (β, β2, . . . , βm
′
)T , where β is a public variable to control the

precision of w;
• Compute ∀i ∈ [3], w(i)·B = (wli−1+1, · · · , wli)T , b(i)·B = (wli+2+1, · · · , wli+3

)T ;
• Output ws := (w1, . . . , w`) ∈ F`.

Remark. In the above algorithm, we assume there existsm′ such thatm′|nimi,∀i ∈
[6]. If the original model parameter does not have enough entries to fill `im

′ en-
tries of the resized version, we just pad 0.

Putting the Pieces Together. In order to prove the whole process, S con-
structs multiple circuits as follows:
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Fig. 5: The circuits designed for Libra

– Component 1: proof of accuracy

• C1 : F (w, x) = y.
• C2 : argmax(y) = L′.
• C3 : Judge(L′, L, τ) = r.

– Component 2: proof of encryption
• C4 : Convert(w) = ws.
• C5 : ∀i ∈ [`],PRF(k, i) = ksi.
• C6 : COM.Commit(k) = (E, d).
• C7 : ∀i ∈ [`], wi ⊕ ksi = ci.

These circuits are connected in the way shown in Fig. 5. However, the output
of a circuit may be the input of another which should be kept private. Our
solution is to use zkVPD scheme (cf. Appendix A) to connect the circuits.

Take the component 2 as an example. The prover P first computes w, k, ws
and ks defined as Eq. 2 and commits to them using zkVPD.Commit. After the
verifier V receiving a claim about the output of C7, that is c, she computes c and
evaluates it on u where u is randomly selected. Then P and V will reduce c(u)
layer by layer recursively until it reaches the input layer. At the end, V queries
the evaluations of ws(p), ks(q) using zkVPD.Open where p and q are randomly
selected by V, and validates them by zkVPD.Verify. If zkVPD.Verify outputs 1,
P and V continue to deal with C4 and C5. For C4, V uses ws(p) as the start point
instead of evaluating on a random point. Then they will reduce ws(p) layer by
layer to complete the protocol. For C5, the similar approaches will be applied for
ks(q). The construction above can be made non-interactive by applying Fiat-
Shamir heuristic [10]. The non-interactive version of Libra based on a 254-bit
prime field can provide a security level of 100+ bits [17].

5 Security Analysis

Security analysis of Sampling. We now examine the soundness of our reduced
constraint system Q′. As defined in Sec. 3, if the system is ε-sound with accuracy
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τ , then the real model accuracy is bounded by (τ−ε, 1]. Recall the proof has two
components: (i) show the prover knows a set of model parameters w such that
(c, E, d)← Seal(w) and (ii) show the prover knows a set of model parameters w′

such that
|{i |F (w′, xi) = yi ∧ argmax(yi) = Li}| ≥ n · τ .

In general, an adversary may perform the following two types of attacks:

– Inconsistent model parameters attack. In this attack, the adversary
try to use inconsistent w 6= w′ between the encrypted model and the testing
model to produce a valid proof, whereas F (w′, xi) is correctly computed.

– Model execution tampering attack. In this attack, the adversary try to
tamper the model execution F (w′, xi) = yi by modifying the intermediate
variable values during the computation.

Lemma 1 Let u be the selecting parameter, n be the testing dataset size. Denote
AdvA,SoundNIZK (λ) as the soundness advantage of the underlying NIZK proof system.
The probability that any PPT adversary can success with the inconsistent model
parameters attack is

AdvA,SoundNIZK (λ) + (1− AdvA,SoundNIZK (λ)) · (1− u)n.

Proof. We assume that the adversary cannot break the soundness of the un-
derlying NIZK system. Every parameter in w will be checked at least once in
constraint equations set si. Since we select N ′g · u constraint equations from si
to check, the probability for adversary to escape from capturing in a single test
case is (1− u). With n test cases, the probability is (1− u)n. ut

Lemma 2 Let u be the selecting parameter, n be the testing dataset size. Denote
AdvA,SoundNIZK (λ) as the soundness advantage of the underlying NIZK proof system.
The probability that any PPT adversary can success with the model execution
tampering attack is

AdvA,SoundNIZK (λ) + (1− AdvA,SoundNIZK (λ)) · (1− u)n·ε.

Proof. Here we adapt the weakest assumption: adversary only needs to change
one intermediate variable value to influence accuracy. Denote there are n test
cases in D and adversary changes M test cases to influence accuracy, and we have
ε = M

n . Denote the probability that the adversary escapes from capturing is p.
In our assumption, there is one constraint can not be satisfied in each constraints
set produced by M test cases. Similar to the proof of Lemma 1, the probability
p is (1− u)M . Replace M with n · ε, the equation p = (1− u)n·ε holds. ut

Remark. As shown in Fig. 6, when n = 10000, if the prover deviates the model
accuracy from τ for 1%, she will be caught with at least 95% probability.

Security analysis of main construction. We examine the security of our
construction. Intuitively, the security of our ZKCMP protocol largely depends
on the soundness and zero-knowledge properties of underlying NIZK proofs.
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We also assume COM and PRF are a secure commitment scheme and secure
pseudorandom function, respectively. More formally, we prove the security of our
construction by the following theorem, and its proof is provided in Appendix B.

Theorem 1 Let PRF : {0, 1}λ ×{0, 1}λ 7→ {0, 1}µ(λ) be a secure pseudorandom
function, and COM : {0, 1}∗ 7→ {0, 1}λ be a commitment scheme. The protocol
described in Sec. 3 with Fex[COM] as depicted in Fig. 2 is perfect complete,
0-sound, and computational zero-knowledge if the underlying NIZK protocol is
perfect complete, computational sound, and computational zero-knowledge.

Fig. 6: Fix p = 0.95 and n = 10000, the relation between ε and u.

6 Implementation and Experiments

We fully implement the proposed instantiations and evaluate the neural network
described in CryptoNets [8] on MNIST dataset. All experiments are conducted
on the same machine that has 80 Intel Xeon E5-2680 v4 vCPUs@2.5 GHz with
700GB RAM and is running on Ubuntu.

Efficiency of Sampling. We conduct experiments to demonstrate the efficiency
of our proposed Sampling technique. Fixing selecting parameter u = 3%, the
results are shown in Table 1 and Fig. 7. The results show that it is able to
reduce the cost of proof generation significantly.

Performance of our solutions. Since Prove and Verify account for main cost,
we focus on describing them. We compare our instantiations in terms of prover
time, verifier time and proof size. Fixing selecting parameter n = 10000, u = 3%,
the experiment results are shown in Table 2 and Fig. 8.For zk-SNARKs based
solution, its proof size is a small constant (1019 bits) while its prover time
(5781.95s) and verifier time (18.5781s) is acceptable. For Libra based solution,
although proof size is larger (104.4257KB), it costs much less in both prover
time (1034.1239s) and verifier time (0.4413s).
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Table 1: Performance of Sampling

Image number 5 10 15 20 25 30

Prover Time(s)
Original 42.4675 80.6847 135.829 161.769 220.973 272.984

Sampling 2.72504 4.43177 5.82092 7.50026 8.54351 10.4192

Verifier Time(s)
Original 0.01525 0.021936 0.028138 0.035503 0.041257 0.054159

Sampling 0.0152 0.021861 0.027569 0.034297 0.040474 0.049441

Table 2: Performance of solutions

Image number 0 2000 4000 6000 8000 10000

Prover Time(s)
zk-SNARKs 464.36 1466.78 2593.56 3773.49 4503.66 5781.95

Libra 11.8639 202.9769 392.7659 609.2089 799.3409 1034.1239

Verifier Time(s)
zk-SNARKs 0.0126 3.8566 8.0160 11.9275 16.0533 18.5781

Libra 0.1546 0.4067 0.4268 0.4440 0.4449 0.4413

Proof Size(KB)
zk-SNARKs 0.9951 0.9951 0.9951 0.9951 0.9951 0.9951

Libra 50.1967 97.4724 99.7902 102.1080 102.2080 104.4257

7 Related Work

SafetyNets [11] is a framework that enables a computationally weak client to
outsource neural network inferences to an untrusted server (cloud), and allows
the server to prove the correctness of the inference results using interactive proof.
In this scenario, clients knows both the model and the input data, whereas
in our case both the model and the input data has to be committed to the
verifiers. Slalom [16] is a framework that allows neural network evaluations inside
trusted execution environments (TEEs), and the matrix multiplication layers
are outsourced to an untrusted GPU without compromising integrity or privacy.
They use a lightweight way for verification but it is limited to linear layers and
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requires TEEs. In [19], Zhao et al. proposed to use zk-SNARKs naively to valid
neural network prediction. The prover commits to the value of all intermediate
layers, and the verifier validates one random layer with a zk-SNARKs proof.
This scheme neither provide negligible soundness nor support validation for large
testing dataset.

8 Conclusion

In this paper, we address the problem of fair model exchange by proposing a
new concept called Zero Knowledge Contingent Model Payment (ZKCMP). We
investigate two state-of-the-art NIZK proofs: zk-SNARKs and Libra, and use
them as the main building block to instantiate our ZKCMP protocol respec-
tively. In particular, we propose a random sampling technique to improve the
efficiency of zk-SNARKs. Therefore, our proposal is able to support validation
for large testing dataset. To demonstrate the practicality of our proposal, we
have conducted extensive experiments.
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A The Main Building Blocks of Libra

zkVPD scheme. A zkVPD scheme [18] allows a verifier to delegate the com-
putation of polynomial evaluations to a powerful prover without leaking any
sensitive information, and validates the result in time that is constant or loga-
rithmic to the size of the polynomial. Let F be a family of l-variate polynomial
over F. A zkVPD for f ∈ F and t ∈ Fl consists of the following algorithms:

– (pp, vp)← KeyGen(1λ)

– com← Commit(f, rf , pp)
– {0, 1} ← Check(com, vp)

– (y, π)← Open(f, t, rf , pp)

– {0, 1} ← Verify(com, t, y, π, vp)

GKR protocol. Using sumcheck protocol [15] as a main building block, Gold-
wasser et al. [12] constructed an interactive protocol for layered arithmetic cir-
cuits with size C and depth d. We denote the number of gates in the i-th layer as
Ci and let ci = dlog2 Sie. We then define a function Vi : {0, 1}ci → F that takes
a binary string b ∈ {0, 1}ci as input and returns the output of gate b in layer
i. Therefore, V0 corresponds to the output of the circuit and VD corresponds to
the input. Then we extend Vi to its multilinear extension.

Definition 4 (Multi-linear Extension) Let V : {0, 1}l → F be a function.

The multilinear extension of V is the unique polynomial Ṽ : Fl → F such that

Ṽ (x1, x2, . . . , xl) = V (x1, x2, . . . , xl) for all (x1, x2, . . . , xl) ∈ {0, 1}l. Ṽ can be

expressed as:

Ṽ (x1, x2, . . . , xl) =

l∑
b∈{0,1}

l∏
i=1

((1− xi)(1− bi) + xibi) · V (b),

where bi is i-th bit of b.

To ensure zero knowledge, P masks the polynomial Ṽi and the sumcheck
protocol by adding random polynomials. In particular, for layer i, P selects a
random bivariate polynomial Ri(x1, z) and defines

V i(x1, . . . , xci) = Ṽi(x1, . . . , xci) + Zi(x1, . . . , xci) ·
∑

z∈{0,1}

Ri(x1, z), (2)

where Zi(x) =
∏ci
i=1 xi(1 − xi), so Zi(x) = 0,∀x ∈ {0, 1}ci . Since Ri is ran-

domly selected, revealing evaluations of V i does not leak information about Ṽi.
A random polynomial δi(x, y, z) is also selected to mask the sumcheck protocol.
In this way, the sumcheck protocol will not leak information and thus be zero
knowledge. See more details in [17].
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B Proof of Theorem 1

Proof. For perfect completeness, since the underlying NIZK is perfect complete,

it is straightforward that the verification Verify would return 1, and Fex guar-

antees that the buyer B will recive k when the event Em occurs.

For 0-soundness, the event Ev occurs when the potentially malicious seller

Ŝ produces an accepting proof π and submits (Redeem, k, d) to Fex[COM]; By

the soundness of the underlying NIZK protocol, with overwhelming probabil-

ity, the model parameter w := (w1, . . . , w`) can satisfy |{i | F (w, xi) = yi ∧
argmax(yi) = Li}| ≥ n·τ , where ∀i ∈ [`] : wi = ci⊕PRF(k, i) ∧ COM.Verify(E, d, k) =

1. Moreover, due to the binding property of the commitment scheme COM, k

cannot be changed afterwards. Therefore, we can construct an extractor ExtŜ
that takes input as {ci}i∈[`] and k from the out-going messages of Ŝ, and outputs

the model as wi = ci ⊕ PRF(k, i).

For computational zero-knowledge, we first construct a simulator Sim works

as follows.

– During Setup:

• Invoke (crs∗, td)← NIZK.Sim1(1λ);

• Output pp := crs∗;

– During Seal:

• Pick a random key k∗ ← {0, 1}λ;

• Compute (E∗, d∗)← COM.Commit(k∗);

• For i ∈ [`], compute c∗i ← {0, 1}µ(λ), where µ(λ) := |ci|;
• Output (c∗ := (c∗1, . . . , c

∗
` ), E

∗);

– During Prove:

• Invoke π∗ ← NIZK.Sim2(pp, (c∗, E∗,D, τ), td);

• Output π∗;

Lemma 3 The adversary’s view output by the simulator Sim as described above

is indistinguishable from the real view with advantage

AdvA,ZKNIZK (1λ) + AdvA,HideCOM (1λ) + ` · AdvAPRF(1λ).

Proof. We prove Lemma 3 by the sequence of hybrids H0, . . . ,H3 as follows.

Hybrid H0: it is the real view.

Hybrid H1: it is the same as Hybrid H0, except during Setup, NIZK.Sim1(1λ)

is used to generate the simulated CRS crs∗; during Prove, π∗ is generated by

NIZK.Sim2(pp, (c, E,D, τ), td) instead of the real proof.
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Claim 1 If the underlying NIZK proof system is computationally zero-knowledge

with advantage AdvA,ZKNIZK (1λ), then the view of Hybrid H1 is indistinguishable

from the view of Hybrid H0 with distinguishing advantage AdvA,ZKNIZK (1λ).

Proof. By definition 1, it is straightforward that if an adversaryA can distinguish

H1 from H0 with advantage AdvA,ZKNIZK (1λ), then A can break the zero-knowledge

property of the underlying NIZK proof system with the same advantage. ut

Hybrid H2: it is the same as Hybrid H1, except during Seal, replace (E∗, d∗)

as COM.Commit(k∗) instead of COM.Commit(k).

Claim 2 If the distinguishing advantage of the COM hiding property is AdvA,HideCOM (1λ),

then the view of Hybrid H2 is indistinguishable from the view of Hybrid H1 with

distinguishing advantage AdvA,HideCOM (1λ).

Proof. It is straightforward by direct reduction. ut

HybridH3: it is the same as HybridH2, except during Seal, for i ∈ [`], replace

c∗i as {0, 1}µ(λ) instead of wi ⊕ PRF(k, i).

Claim 3 If the distinguishing advantage of PRF is AdvAPRF(1λ), then the view of

Hybrid H3 is indistinguishable from the view of Hybrid H2 with distinguishing

advantage ` · AdvAPRF(1λ).

Proof. First of all, the distribution of Di := c∗i ⊕ wi is the uniformly random.

Since the distinguishing advantage of Di and PRF(k, i) is bounded by the ad-

vantage of PRF AdvAPRF(1λ), by hybrid argument, the overall distinguishing ad-

vantage of H3 and H2 is bounded by ` · AdvAPRF(1λ). ut

Hybrid H3 is the simulated view; therefore, the overall distinguishing advan-

tage is AdvA,ZKNIZK (1λ) + AdvA,HideCOM (1λ) + ` · AdvAPRF(1λ). ut

This concludes the proof. ut


