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Abstract. Whilst lattice-based cryptosystems are believed to be resis-
tant to quantum attack, they are often forced to pay for that security
with inefficiencies in implementation. This problem is overcome by ring-
and module-based schemes such as Ring-LWE or Module-LWE, whose
keysize can be reduced by exploiting its algebraic structure, allowing for
neater and faster computations. Many rings may be chosen to define such
cryptoschemes, but cyclotomic rings, due to their cyclic nature allowing
for easy multiplication, are the community standard. However, there is
still much uncertainty as to whether this structure may be exploited to
an adversary’s benefit. In this paper, we show that the decomposition
group of a cyclotomic ring of arbitrary conductor may be utilised in order
to significantly decrease the dimension of the ideal (or module) lattice
required to solve a given instance of SVP. Moreover, we show that there
exist a large number of rational primes for which, if the prime ideal fac-
tors of an ideal lie over primes of this form, give rise to an “easy” instance
of SVP. However, it is important to note that this work does not break
Ring-LWE or Module-LWE, since the security reduction is from worst
case ideal or module SVP to average case Ring-LWE or Module-LWE
respectively, and is one way.

Keywords: Ideal Lattice · Module Lattice · Ring-LWE · Module-LWE
· Shortest Vector Problem.

1 Introduction

Cryptosystems based on lattices are one of the leading alternatives to RSA and
ECC that are conjectured to be resistant to quantum attacks. Considered to be
the genesis of the study of lattice cryptosystems, in 1996, Ajtai constructed a
one-way function, and proved the average-case security related to the worst-case
complexity of lattice problems [1]. Later, in 2005, Regev proposed the compu-
tational problem known as “Learning With Errors” (LWE) and showed that
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LWE is as hard to solve as several worst-case lattice problems [2]. Whilst these
problems are believed to be difficult to crack even given access to a quantum
computer, their main drawback is their impracticality to implement in cryp-
tosystems due to the large key sizes required to define them.

For this reason, lattices with algebraic structure are often favoured to define
cryptosystems over conventional lattices. In particular, cryptosystems often em-
ploy the use of cyclotomic polynomials as their cyclic nature allows for much
less cumbersome computations. Such lattices come in two main varieties: ideal
lattices, whose structures are formed entirely by embedding an ideal of a num-
ber field into real or complex space, and module lattices, which are free modules
defined over an algebraic ring and can be thought of as a compromise between
classical and ideal lattices. Perhaps the most well-known cryptosystem based
on algebraic structure is the NTRU cryptosystem. Developed in 1996 by Hoff-
stein, Pipher and Silverman [3], the NTRU cryptosystem uses elements of the
convolution ring Z[x]/(xp − 1) and offers efficient encryption and decryption of
messages, making it one of the most popular lattice-based cryptosystems even
to this day. In [13], noting that the ring Z[x]/(xp − 1) could be deemed inse-
cure due to the fact that xp − 1 is not irreducible, Stehlé and Steinfeld updated
NTRU to incorporate a cyclotomic ring in place of the aforementioned ring. The
computational problem involved in breaking NTRU can be thought of as a rank
2 module problem over a cyclotomic ring. More recently, an algebraic variant of
LWE called Ring-LWE (RLWE) was developed by Lyubashevsky, Peikert and
Regev in 2010 [4]. It has been shown that the security of this scheme relies heav-
ily on the hardness of ideal lattice reduction [5]. Moreover, the work by Ajtai was
also generalised to the ring case by Micciancio in 2004 [9]. Using an arbitrary
ring in place of a classical lattice, he managed to show that obtaining a solution
to the ring-based alternative to the knapsack problem on the average was at least
as hard as the worst-case instance of various approximation problems over cyclic
lattices, even for rings with relatively small degree over Z. Whilst there are a
myriad of other schemes that make use of algebras to define a cryptosystem (see
for example [6], [7], [8]), concerns have been raised regarding the security of such
schemes. Whilst the algebraic structure might allow for easier computations, the
additional structure given by an algebra could be exploited to allow for easier
reduction of lattices based on algebras.

As we have already mentioned, cyclotomic polynomials exhibit many prop-
erties that are desirable in cryptography. In particular, cryptographers largely
favour power-of-two cyclotomic rings, that is, cyclotomic rings with conductor
N = 2n for some integer n. This is largely a consequence of a few properties ex-
hibited by power-of-two cyclotomic rings, for example, N/2 is also a power of two
and arithmetic in the ring can be performed with ease using the N -dimensional
FFT. However, restricting cryptosystems to only using power-of-two cyclotomic
rings has its drawbacks. The most obvious of these drawbacks is the increase in
dimension of the ideal lattice when moving from one power-of-two cyclotomic
ring to the next, which doubles with each successive ring, and the cryptosystem
may require a lattice of intermediate security: for example, ideal lattices of the
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cyclotomic ring of conductor 1024 have dimension 512, but the next power-of-
two cyclotomic ring is of conductor 2048, and so ideal lattices defined in this
ring have dimension 1024, which is a significant jump. For this reason amongst
others, cryptographers have begun to move away from power-of-two cyclotomic
rings to cyclotomic rings of more general conductor. However, this migration
from power-of-two cyclotomics is relatively novel, and as such literature regard-
ing the reduction of ideal lattices based on cyclotomic rings of general conductor
is still heavily lacking.

1.1 Previous Works

There have been a variety of studies into the shortest vector problem (SVP) in
lattices generated by ideals. In 2016, Cramer, Ducas, Peikert and Regev pub-
lished a paper detailing an attack on ideals generated by principal ideals of
prime-power cyclotomic rings [21]. They presented a technique involving the use
of the log-unit lattice, and showed that a generator could be recovered that is

a solution to approx-SVP with factor 2O(
√
N) using only a polynomial-time re-

duction algorithm such as the LLL algorithm. Simultaneously, largely inspired
by Bernstein’s work on subfield attacks against ideal lattices [11], Albrecht, Bai
and Ducas proposed a different method by which to attack the NTRU cryptosys-
tem with overstretched parameters - that is, the NTRU encryption scheme with
much larger modulus [12]. Their method entailed an attack on the NTRU cryp-
tosystem by attacking a sublattice, defined by a public key attained by “norming
down” the public key of the original lattice to a subfield, and then “lifting” a
solution on the sublattice to a solution for the original cryptosystem which, pro-
vided the solution is sufficiently good in the sublattice, may yield a short lattice
vector in the full lattice. Indeed, there are many examples of previous works
which detail lattice attacks against ideal lattices. For a detailed list regarding
previous research into the reduction of ideal lattices, we refer the reader to the
“previous works” section of [10].

Recently, Pan, Xu, Wadleigh and Cheng pioneered a remarkable technique to
approach the problem of SVP in prime and general ideal lattices, obtained from
power-of-two cyclotomics [10]. Their method involved manipulating the decom-
position group of prime ideals in order to significantly reduce the dimension of
the lattice required to solve SVP for. Their primary contributions were in two
parts: the first part of the paper took a number field L that is Galois over Q and
showed that, given a prime ideal of its ring of integers OL, if Hermite-SVP can
be solved for a certain factor in a sublattice generated by a subideal, this yields a
solution for Hermite-SVP in the original ideal lattice with a larger factor, where
the factor’s increase depends only on the square root of the degree of L over Q
divided by the size of the decomposition group. The second part of their paper
is dedicated to ideals over the ring of integers of cyclotomic fields of conductor
N = 2n+1. Under the so-called coefficient embedding, they showed that using
a subgroup of the decomposition group of a prime ideal, the shortest vector in
the ideal is equivalent to the shortest vector in a subideal constructed in the
paper, and so solving SVP over such ideals is easy given an oracle to solve SVP
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in lattices of dimension equivalent to the dimension of the ideal lattice generated
by the subideal. Moreover, they showed that if such a prime ideal lies above a
rational prime p of the form p ≡ ±3 mod 8 then the shortest vector is of length
p, and is very easy to determine. In the final section, they showed that their
method also worked for general ideals by considering the prime decomposition
of an ideal.

1.2 Our Results

In this paper, we generalise the results of Pan et. al., both in their work on
Hermite-SVP for prime ideal lattices and solving SVP exactly for prime ideals
in cyclotomic ideals. The first half of the paper is dedicated to the Hermite-SVP
in ideal lattices. Whilst Pan et. al. only covered the case for lattices based on
prime ideals lying above unramified primes, we extend their result to the case of
general ideals whose prime ideal factors all lie over unramified primes, showing
that by solving Hermite-SVP on a subideal with some factor γ, the solution
may be lifted to yield a solution for Hermite-SVP in the original lattice with
factor γ′, where γ′/γ depends only on the factor given by Pan et. al. multiplied
by a value determined by certain properties of the ideal and its decomposition
group. We take this notion even more generally, and consider a module over the
ring of integers of a Galois field and provide two methods by which one may
attain a solution to the module variant of Hermite-SVP which can be lifted to
a solution in the original module for Hermite-SVP with an upper bound, where
the new constant is given in terms of the old factor multiplied by some factor
dependent only on the ideals used to describe the module in the pseudo-basis
representation.

The second half of the paper focuses on prime ideals of cyclotomic rings.
Our work extends the results of Pan et. al. to prime ideal lattices constructed
from more cyclotomic rings of more general conductors, covering the cases of a
general composite conductor N = s2n+1 and s′pn+1 for some odd prime p, odd
integer s ≥ 3 and integer s′, gcd(s′, p) = 1, which, combined with the work of
Pan et. al., covers the case for any conductor N . In particular, our work shows
that if the prime ideal in question lies above certain primes, then the dimension
in which we have to solve SVP decreases significantly.

Theorem 1. Let N = s2n+1, where n is a positive integer and s ≥ 3 is an odd
integer. Let p be a prime ideal in the ring Z[ζN ] and suppose that p contains a
rational prime ρ, where ρφ(s) ≡ 3 mod 4. Then, given an oracle that can solve
SVP for φ(s)-dimensional lattices, a shortest nonzero vector in p can be found
in time poly(φ(N), log2 ρ) under the canonical embedding.

Theorem 2. Let N = spn+1, where n is a positive integer, p is an odd prime
and s is a positive integer such that gcd(s, p) = 1. Let p be a prime ideal in the
ring Z[ζN ] and suppose that p contains a rational prime ρ, where ρφ(s) = lp+ a
for some integers l, a, gcd(l, p) = gcd(a, p) = 1. Then, given an oracle that can
solve SVP for (p − 1)φ(s)-dimensional lattices, a shortest nonzero vector in p
can be found in time poly(φ(N), log2 ρ) under the canonical embedding.
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As with the case for conductor N = 2n+1, we must ask whether the “average
case” of prime ideal SVP over such cyclotomic rings is easy. This question in
itself is ill-defined, and depends on how we define the distribution from which
we choose the prime ideal. As we show in section 5, if we were to pick our ideal
by uniformly choosing an ideal from the set of prime ideals whose rational prime
lies below a certain bound, the probability of choosing an easily solvable ideal
lattice is non-negligible. However, if we are to uniformly choose from the distri-
bution of ideals of norm less than a certain bound, the probability of choosing
an easily solvable ideal lattice is negligible.

In the last few sections, we also cover the case of general cyclotomic ide-
als and modules defined over a pseudo basis of ideals and vectors. For the case
of general ideals, in a similar fashion to that in Pan et. al.’s work, we analyse
SVP by studying the prime decomposition of ideals, and show that the shortest
nonzero vector in a general ideal can be found by finding the shortest nonzero
vector in a subideal of a smaller dimension. Moreover, the algorithm used to
tackle SVP in such a lattice does not use the prime decomposition of the ideal,
which is the most computationally complex step after SVP. In the module case,
we do not explicitly construct an algorithm to perform SVP, however we show
that using the structure theorem for finitely generated modules over a principal
ideal domain it is possible to construct an isomorphism such that SVP in the
original module can be found by finding the shortest nonzero vector in a module
which has smaller dimension as a lattice after canonically embedding the mod-
ule.

Whilst this work may initially appear to destabilise the security of cryptosys-
tems based on cyclotomic ideals or modules, we must point out that this work
does not break Ring-LWE or respectively Module-LWE. Though Ideal-SVP and
Module-SVP respectively underpin the security of Ring-LWE and Module-LWE
respectively, our work does not directly impact the security of these schemes,
since the worst-case to average-case security reduction is one-way.

1.3 Paper organisation

The paper is organised as follows. Section 2 covers the mathematical prelimi-
naries, including a definition of lattices and their various properties, some basic
algebraic number theory and ideal lattices. The preliminary section ends with
some useful lemmas regarding the factorisation of polynomials over finite fields.
Section 3 covers a reduction Hermite-SVP in ideal lattices and module lattices
based over a Galois extension of Q. In section 4, we present a reduction of SVP
for prime ideals of cyclotomic rings of general conductor, and show that some
special cases of prime ideals are much easier to perform SVP for than others. In
section 5, we show that our method for prime ideal lattices may be lifted to the
case of general ideal lattices of cyclotomic rings. In section 6, we show that mod-
ules over cyclotomic rings may be subject to a similar reduction of SVP under
a suitable isomorphism map. In section 7, we discuss the average-case hardness
of SVP for ideal and module lattices of cyclotomic rings.
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2 Mathematical Preliminaries

2.1 Lattices and the Shortest Vector Problem

A lattice is a discrete additive subgroup of RD. A lattice L has a basis B =
{b1, . . . ,bd},bi ∈ RD for some integer d ≤ D, and every lattice point may be
represented by the linear sum of basis vectors over the integers, that is,

L = L(B) =

{
d∑
i=1

xibi : xi ∈ Z

}
.

We say that L is full-rank if d = D. The determinant of L, det(L), is the square
root of the volume of the fundamental parallelopiped generated by the lattice
basis. If L is full-rank, then det(L) = |det(B)|.
In cryptography, the security of a lattice-based cryptosystem in most cases boils
down to the computational hardness of the shortest vector problem (SVP). The
problem goes as follows: given a lattice L with basis B, find the shortest nonzero
vector in L with respect to the Euclidean (or otherwise specified) norm. Most
cryptosystems, however, loosen the requirement of finding the shortest nonzero
vector, and require the assailant to find a nonzero vector within some range of
the shortest vector. One such problem is known as the Hermite-SVP, and goes
as follows.

Definition 1. Let L be a rank N lattice. The γ-Hermite-SVP is to find a
nonzero lattice vector v ∈ L that satisfies

‖v‖ ≤ γ det(L)1/N ,

for some approximation factor γ ≥ 1.

As opposed to the shortest lattice vector, the determinant of a lattice is well-
defined and can be verified easily. Moreover, as discussed in [10], a solution to
Hermite-SVP can be lifted to a solution for a variety of different SVP-related
problems.

2.2 Algebraic Number Theory

An algebraic number field L is a finite extension of Q by some algebraic integer α,
that is, the solution to a polynomial in Z[x]. The degree of L over Q is equivalent
to the degree of the minimal polynomial of α in Q(x). We denote by OL the ring
of integers of L, which is the maximal order of L. It is well known in algebraic
number theory that any algebraic number field L is a Q-vector space over the
power basis {1, θ, θ2, . . . , θN−1} for some θ ∈ L, and similarly the ring of integers

OL may be expressed as a Z-module over a power basis {1, θ′, . . . , θ′N−1} for
some θ′ ∈ OK [30].
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For a positive integer N , the cyclotomic polynomial ΦN (x) is the polynomial
given by

ΦN (x) =

N∏
k=1:gcd(k,N)=1

(
x− exp

(
2πik

N

))
,

or in other words, the polynomial whose roots are all the primitive Nth roots
of unity. For ease of notation, we generally let ζN = exp

(
2πi
N

)
denote the Nth

root of unity. The field L = Q(ζN ) obtained by appending ζN to Q is called the
cyclotomic field of conductor N , and such a field is of degree φ(N) over Q, where

φ(N) = N
∏

p|N :p prime

(
1− 1

p

)
is Euler’s totient function, which measures the number of integers less than or
equal to N which are coprime to N .
The embeddings σ of a number field L are the injective homomorphisms from L
to C which fix Q. The number of distinct embeddings is equivalent to the degree
of L over Q, and an embedding σ is said to be a real embedding if σ(L) ⊂ R,
and is said to be a complex embedding if σ(L) 6⊂ R. We define the canonical
embedding ΣL from a number field L of degree N to CN by

ΣL : L→ CN a 7→ (σ1(a), σ2(a), . . . , σN (a)).

Moreover, we respectively define the trace and norm of an element in L by

TraceL/Q(a) :=

N∑
i=1

σi(a), NormL/Q(a) =

N∏
i=1

σi(a).

Defining by a the complex conjugate of an element a ∈ L, note that β(x, y) :=
TraceL/Q(xy) for all x, y ∈ L defines a positive-definite bilinear form on the Q-
vector space generated by L.

Another way of embedding a number field L into CN is using the so-called
coefficient embedding. By expressing L by a Q-vector space over a power basis
{1, α, . . . , αN−1}, we may take any element a =

∑N−1
i=0 aiα

i where ai ∈ Q and
define the embedding map

a 7→ (a0, a1, . . . , aN−1).

It is important to note that the coefficient embedding depends on the choice
of basis for L. Also, if OK = Z[α] then OK maps to ZN under the coefficient
embedding.

2.3 Ideal Lattices

An ideal I is a subring of the ring of integers OL. We say that an ideal p is
prime if, for any ab ∈ p for a, b ∈ OL, then either a or b is an element of p. Under
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the canonical embedding, an ideal forms a lattice in RN , and we call lattices
constructed in this way ideal lattices. The volume of an ideal lattice I in RN
is NormL/Q(I)disc(L/Q), where NormL/Q(I) is the norm of the ideal I and is
equivalent to the cardinality of OL/I (roughly speaking, the “density” of the
ideal in OL), and disc(L/Q) is the discriminant of L over Q, which is equivalent
to the volume of the lattice generated after embedding OL via the canonical
embedding.

In lattice-based cryptography, the cyclotomic number field L = Q(ζN ) is
frequently used to define an ideal lattice. The ring of integers of L is OL = Z[ζN ]
for any conductor N [29]. Suppose that the cyclotomic polynomial ΦN (x) factors
in the finite field as

ΦN (x) =

g∏
i=1

fi(x)e mod p

for some rational prime p, where fi(x) are irreducible mod p. Then the ideal
pOL factors as

pOL = (p1p2 . . . pg)
e,

where each pi = 〈p, f(ζN )〉 are prime ideals. We say the ideal pi lies over p. If
e > 1, then p is said to be ramified in OL, and otherwise (e = 1) p is unramified
in OL. As such, we are motivated to study the factorisation of cyclotomic poly-
nomials over finite fields in order to better study the structure of prime ideals.
However, before we delve into more technical details regarding the factorisation
of polynomials over finite fields, we introduce the following definition, which will
be a recurring theme throughout the paper, and will be a powerful tool to help
tackle SVP in ideal lattices.

Definition 2. Let L/Q be a finite Galois extension of degree N , and let G be
the Galois group of L over Q. The decomposition group D of a prime ideal p is
a subgroup of G satisfying

D = {σ ∈ G : σ(p) = p},

that is, the embeddings of L that fix p. Then the decomposition field K of p is
defined by

K = {x ∈ L : ∀σ ∈ D,σ(x) = x},

that is, the subfield of L that is fixed by the decomposition group.

2.4 Factorisation of Cyclotomic Polynomials over Finite Fields

The following lemmas will be used throughout section 4 onwards. Lemmas 1-3
are standard in the study of finite fields, and we point the reader to [24] for more
details, and also for any terminology regarding finite fields. Lemma 4 is stated
and proved in [27].
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Lemma 1. Let q be a power of a prime and N be a positive integer such that
gcd(q,N) = 1. Then the N th cyclotomic polynomial ΦN (x) can be factorised
into φ(N)/m distinct monic irreducible polynomials of the same degree m over
Fq, where m is the least positive integer such that qm ≡ 1 mod N .

Lemma 2. Let f1(x), f2(x), . . . , fN (x) be distinct monic irreducible polynomials
over Fq of degree m and order e, and let t ≥ 2 be an integer whose prime factors

divide e but not qm−1
e . Assume that qm ≡ 1 mod 4 if t ≡ 0 mod 4. Then

f1(xt), f2(xt), . . . , fN (xt) are all distinct monic irreducible polynomials of degree
mt and order et.

Lemma 3. Let f(x) be an irreducible polynomial over Fq of degree m and with
f(0) 6= 0. Then the order of f(x) is equal to the order of any root of f(x) in the
multiplicative group F∗qm .

Lemma 4. Let p be an odd prime, and q be a prime power such that q ≡ 1

mod p. If m,n are positive integers satisfying pn | qpn−m − 1 and p - q
pn−m−1
pn ,

then pn+1 | qn+1−m − 1 and p - q
pn+1−m

−1
pn+1 .

3 Solving Hermite-SVP for general ideal lattices in a
Galois extension

In this section, we generalise the results of Pan et. al., specifically their contri-
butions on Hermite-SVP in prime ideal lattices. We consider first general ideal
lattices, and then modules with a pseudo-basis of ideals and vectors with entries
in the overlying number field.

Definition 1. Let L/Q be a finite Galois extension and I ⊂ OL an ideal,
expressible as I = p1...pg, where each pi lies above unramified rational prime
pi. Let DI = {σ ∈ Gal(L/Q) : σ(I) = I}, and KI = LDI = {x ∈ L : σ(x) =
x, for all σ ∈ DI}. These are called the decomposition group and decomposition
field of I, respectively.

Theorem 3. Let L/Q be a finite Galois extension of degree N and I = p1...pg
an ideal of OL, where each pi lies over an unramified rational prime pi such that
pi has gi distinct prime ideal factors in OL. If KI is the decomposition field of
I, then a solution to Hermite-SV P with factor γ in the sublattice c = I ∩OKI
under the canonical embedding of KI will also be a solution to Hermite-SVP

in I with factor γ

√
N/rNormL/Q(I)1/r−1/N

NormKI/Q(disc(L/KI))1/2N (p
(fLp1

−f
KI
p1

)1/r

1 ...p
(fLpg

−f
KI
pg )1/r

g )

under the

canonical embedding of L.

Consider the following diagram:

OL L CN

OKI KI C[KI :Q]

ΣL

ΣKI

β′
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Here β′ is chosen to make the diagram commute. Each embedding of KI extends
to N/[KI : Q] embeddings of L. Then β′ simply repeats the coordinates of ΣKI
N/r times, for r = [KI : Q], by the definition of KI . So ‖β′(x)‖ =

√
N/r‖x‖, for

any x ∈ ΣKI (KI). Set c = I ∩OKI . Then det(c) = NormKI/Q(c)
√
|disc(KI/Q)|.

So Hermite-SVP solution v ∈ c satisfies ‖v‖ ≤ γ(NormKI/Q(c)
√
|disc(KI/Q)|)1/r.

Also note disc(L/Q) = disc(KI/Q)N/rNormKI/Q(disc(L/KI)). Then

‖β′(v)‖ ≤
√
N/r‖v‖ ≤

√
N/rγ · (NormKI/Q(c)

√
|disc(KI/Q)|)1/r

=
√
N/rγ ·NormKI/Q(c)1/r

( disc(L/Q)r/N

NormKI/Q(disc(L/KI))r/N
)1/2r

=
√
N/rγ ·NormKI/Q(c)1/r disc(L/Q)1/2N

NormKI/Q(disc(L/KI))1/2N

= γ

√
N/r

NormKI/Q(disc(L/KI))1/2N
·NormKI/Q(c)1/rdisc(L/Q)1/2N

= γ

√
N/r

NormKI/Q(disc(L/KI))1/2N
·
(
NormKI/Q(c)N/r

√
disc(L/Q)

)1/N
.

The norm is multiplicative: NormKI/Q(I) = NormKI/Q(P1)...NormKI/Q(Pg),
where Pi = pi ∩KI . All the pi lie above unramified primes pi, so we can write
eLpi = 1. Moreover, we have NormL/Q = NormKI/Q ◦ NormL/KI . As a result,

NormL/Q(I) = p
fLp1
1 ...p

fLpg
g , where fLpi is the inertial degree of pi in OL. Also,

NormKI/Q(c) = p
f
KI
p1

1 ...p
f
KI
pg
g . Thus NormL/Q(I) = p

fLp1
1 ...p

fLpg
g = (p

f
KI
p1

1 ...p
f
KI
pg
g ) ·

(p
fLp1
−fKIp1

1 ...p
fLpg−f

KI
p1

g ) = NormKI/Q(c) · (p
fLp1
−fKIp1

1 ...p
fLpg−f

KI
pg

g ), so we can rewrite

NormKI/Q(c) = NormL/Q(I)/(p
fLp1
−fKIp1

1 ...p
fLpg−f

KI
pg

g ). Then we have, setting γ′ =

γ

√
N/r

NormKI/Q(disc(L/KI))1/2N
,

‖β′(v)‖ ≤ γ
√
N/r

NormKI/Q(disc(L/KI))1/2N
·
(
NormKI/Q(c)N/r

√
disc(L/Q)

)1/N
= γ′ ·

((
NormL/Q(I)/(p

fLp1
−fKIp1

1 ...p
fLpg−f

KI
pg

g )
)N/r√

disc(L/Q)
)1/N

= γ′ ·
(
NormL/Q(I)N/r/(p

(fLp1
−fKIp1 )N/r

1 ...p
(fLpg−f

KI
pg )N/r

g )
√
disc(L/Q)

)1/N
= γ′

NormL/Q(I)1/r−1/N

(p
(fLp1
−fKIp1 )1/r

1 ...p
(fLpg−f

KI
pg )1/r

g )

·
(
NormL/Q(I)

√
disc(L/Q)

)1/N
.

Note that when I = p, KI is the regular decomposition field, and fKIp =

1 and fLp = N/r, so NormL/Q(I)1/r−1/N = pN/r(1/r−1/N) = pN/r
2−1/r and

p(fLp −f
KI
p )1/r) = pN/r

2−1/r, and we have recovered the result of the original
paper.
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3.1 Solving Hermite-SVP for module lattices defined over a Galois
extension

The above method can be extended to the case of OL-modules. We propose
two separate methods by which we can approach this problem, yielding different
bounds in each, which may be individually useful depending on the considered
module. As before, L is a field that is a Galois extension of Q with ring of integers
OL. Suppose I1, . . . , Id ⊂ OL are some ideals of OL, and b1, . . . ,bd ∈ LD for
some integer d ≤ D. An OL-module M is defined as the direct sum

M =

d⊕
k=1

Ikbk,

which is a Z-module of finite dimension. We define the volume of M by

Vol(M) = NormL/Q(det(B†B))

d∏
k=1

NormL/Q(Ik)2,

where B is the matrix composed of the columns b1, . . . ,bd, and † denotes
the Hermitian transpose. Suppose that each bk may be expressed as bk =
(bk,1, . . . , bk,D). Letting x denote the complex conjugate of x and 〈·, ·〉 denote
standard inner product of two complex vectors, the positive-definite quadratic
form generated by the module M after embedding is given by

q(x1, . . . , xd) = TraceL/Q

(〈
d∑
k=1

xkbk,

d∑
k=1

xkbk

〉)

= TraceL/Q

 d∑
k,l=1

xkxl

(
D∑
i=1

bk,ibl,i

) ,

where xk ∈ Ik. We define the module variant of Hermite-SVP with approxima-
tion γ ≥ 1 to find an element in M such that

q(x1, . . . , xd) ≤ γVol(M)
1

2d[L:Q] .

As in the previous subsection, denote by KIl the decomposition field of the ideal
Il, and let K be the minimum field containing all KIl . Then we must have

TraceL/Q

 d∑
k,l=1

xkxl

(
D∑
i=1

bk,ibl,i

)
= TraceK/Q

TraceL/K

 d∑
k,l=1

xkxl

(
D∑
i=1

bk,ibl,i

)
= TraceK/Q

 d∑
k,l=1

xkxl

(
D∑
i=1

TraceL/K
(
bk,ibl,i

)) .
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Let cl = Il ∩ OKIl for all 1 ≤ l ≤ d, and consider the module

M ′ =

d⊕
k=1

ckb
′
k,

where b′k are vectors in LD[L:K] such that 〈b′k,b′l〉 =
∑D
i=1 TraceL/K

(
bk,ibl,i

)
for

all 1 ≤ k, l ≤ d. The quadratic form generated by M ′ is a subset of the quadratic
form generated by M , given by

q′(y1, . . . , yd) = TraceK/Q

 d∑
k,l=1

ykyl

(
D∑
i=1

TraceL/K(bk,ibl,i)

) ,

for yk ∈ ck, and the volume of M ′ in the space generated by embedding LD is

Vol(M ′) = NormL/Q(det(G))

d∏
k=1

NormL/Q(ck)2.

Letting Il = p
(l)
1 p

(l)
2 . . . p

(l)
gl be the prime decomposition of the ideal Il, where

p
(l)
k are (not necessarily distinct) prime ideals, we have

NormKIl
(Il) =

gl∏
k=1

NormKIl
(P(l)

k ),

where P(l)
k := p

(l)
k ∩ KIl . Assume that each p

(l)
k lies over an unramified prime

p
(l)
k , then eL

p
(l)
k

= 1 for each l, k. Moreover, we have NormL/Q = NormKIl/Q ◦
NormL/KIl

. As a result, for all 1 ≤ l ≤ d,

NormL/Q(Il) =

gl∏
k=1

p
(l)
k

fL
p
(l)
k ,

where fL
p
(l)
k

is the inertial degree of p
(l)
k in OL. Also,

NormKIl/Q(cl) =

gl∏
k=1

p
(l)
k

f
KIl
p
(l)
k .

Thus

NormL/Q(Il) =

gl∏
k=1

p
(l)
k

fL
p
(l)
k =

gl∏
k=1

p
(l)
k

f
KIl
p
(l)
k

gl∏
k=1

p
(l)
k

fL
p
(l)
k

−f
KIl
p
(l)
k

= NormKIl/Q(cl)

gl∏
k=1

p
(l)
k

fL
p
(l)
k

−f
KIl
p
(l)
k ,



Subfield Algorithms for Ideal- and Module-SVP 13

so we may rewrite

NormKIl/Q(cl) = NormL/Q(Il)
gl∏
k=1

p
(l)
k

−
(
fL
p
(l)
k

−f
KIl
p
(l)
k

)
.

We assume that we have a tuple (y1, . . . , yd), yk ∈ ck, that satisfies

q′(y1, . . . , yd) ≤ γVol(M ′)
1

2d[L:Q] .

Then, by definition of the volume of M ′,

q′(y1, . . . , yd) ≤ γ

(
NormL/Q(det(B†B))

d∏
k=1

NormL/Q(ck)2

) 1
2d[L:Q]

= γ

NormL/Q(det(B†B))
∏d
l=1 NormL/Q(Il)2[L:KIl ]

∏gl
k=1 p

(l)
k

[L:KIl ]

(
fL
p
(l)
k

−f
KIl
p
(l)
k

)


1
2d[L:Q]

= γVol(M)
1

2d[L:Q]

∏d
l=1 NormL/Q(Il)

[L:KIl
]−1

d[L:Q]

∏gl
k=1 p

(l)
k

[L:KIl
]−1

d[L:Q]

(
fL
p
(l)
k

−f
KIl
p
(l)
k

) .

Since all yk ∈ ck ⊆ Ik, we have q(y1, . . . , yd) = q′(y1, . . . , yd), and so we arrive
at the following theorem.

Theorem 4. Let L/Q be a finite Galois extension of degree [L : Q] and let

I1, I2, . . . , Id be ideals of OL, expressible as Ik = p
(k)
1 p

(k)
2 . . . p

(k)
gk , where each

p
(k)
l is a (not necessarily distinct) prime ideal lying above an unramified ratio-

nal prime p
(k)
l such that p

(k)
l has g

(k)
l distinct prime ideal factors in OL. Let

〈Ik,bk〉dk=1 define a pseudo-basis of a module M , where

M =

d⊕
k=1

Ikbk.

Here, bk ∈ LD for some integers d ≤ D. If KIl is the decomposition field of the
ideal Il, define cl = Il ∩ OKIl . Define by M ′ the module given by

M ′ =

d⊕
k=1

ckb
′
k,

where b′k are defined so that 〈b′k,b′l〉 =
∑D
i=1 TraceL/K

(
bk,ibl,i

)
for all 1 ≤ k, l ≤

d. Then, given a tuple (y1, . . . , yd), yk ∈ ck that acts as a solution to Hermite-SVP
with factor γ in the space generated by embedding LD in the module M ′ (where
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we define Hermite-SVP for modules as in the definition in this subsection), the
tuple yields a solution to Hermite-SVP in the module M with factor γ′, where

γ′ = γ

d∏
l=1

NormL/Q(Il)
[L:KIl

]−1

d[L:Q]

gl∏
k=1

p
(l)
k

−
[L:KIl

]−1

d[L:Q]

(
fL
p
(l)
k

−f
KIl
p
(l)
k

)
.

Alternatively, the method below leads to a similar result for a different γ′ :

Theorem 5. Let M ⊂ Ld be a finitely generated, torsion-free OL-module. Then
there exists a submodule M ′ ⊂ M , a subfield K ⊂ L, and fractional OL-ideals
Ii such that a solution to Hermite-SVP with factor γ in M ′ is a solution to

Hermite-SVP in M with factor γ′ =
γ
√
r/r′
√
disc(L/Q)

k−1
rk N1/r

2r
√

NormK/Q(disc(L/K))
, where r = [L : Q],

r′ = [K : Q], for Īi = Ii ∩K and N = NormL/Q(Īi)/NormL/Q(Ii).

Proof. Let M ⊂ Ld be a finitely generated, torsion-free OL-module, with gen-
erators x1, ..., xk. Then by the structure theorem for finitely generated modules
over Dedekind domains, M ∼= ⊕ki=1Ii, for Ii rank one projective OL-modules, i.e.
fractional ideals. Set H = {σ ∈ Gal(L/Q) : σ(Ii) = Ii for i = 1, ..., k}. Let K be
the fixed field of H. Write [L : Q] = r, and set [K : Q] = r′. Define the sublattice
M ′ isomorphic to the direct sum M ′ ∼= ⊕ki=1(Ii ∩K), which is an OK-module.
Then we have the following diagram, where Σ denotes the canonical embedding
of the module, applied to each summand in the direct sum of M and M ′:

M Ld Cdr

M ′ Kd Cdr′

Σ
Ld

Σ
Kd

β

Here ΣKd is the canonical embedding of K applied coordinatewise to the module,
and because of the definition of K, β is the repetition of each coordinate r/r′

times, i.e. for v ∈ Kd, ‖β(v)‖ =
√
r/r′‖v‖. Now, suppose v ∈ M ′ is a solution

to Hermite-SVP, so ‖v‖ ≤ γ · det(M ′)1/kr′ . Then, writing Ii ∩K = Īi, we have

‖β(v)‖ =
√
r/r′‖v‖

≤
√
r/r′γ · det(M ′)1/kr′ = γ

√
r/r′ · det

(
⊕ki=1 (Ii ∩K)

)1/kr′
= γ

√
r/r′ ·

k∏
i=1

det
(
Īi
)1/kr′

= γ
√
r/r′ ·

( k∏
i=1

det(Īi)
)1/kr′

= γ
√
r/r′ ·

( k∏
i=1

NormK/Q(Īi)
√
|disc(K/Q)|

)1/kr′
= γ

√
r/r′ ·

(√
|disc(K/Q)|

)1/r′( k∏
i=1

NormK/Q(Īi)
)1/kr′

.
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Using the fact that disc(L/Q) = disc(K/Q)r/r
′
NormK/Q(disc(L/K)), we rear-

range for disc(K/Q)1/r′ = r
√
disc(L/Q)/NormK/Q(disc(L/K)) and say

‖β(v)‖ ≤ γ
√
r/r′ ·

(√
|disc(K/Q)|

)1/r′( k∏
i=1

NormK/Q(Īi)
)1/kr′

= γ
√
r/r′ · 2r

√
disc(L/Q)/NormK/Q(disc(L/K))

( k∏
i=1

NormK/Q(Īi)
)1/kr′

=
γ
√
r/r′

2r
√

NormK/Q(disc(L/K))
· 2r
√
disc(L/Q)

( k∏
i=1

NormK/Q(Īi)
)1/kr′

=
γ
√
r/r′

√
disc(L/Q)

k−1
rk

2r
√

NormK/Q(disc(L/K))
·
√
disc(L/Q)

1/rk( k∏
i=1

NormK/Q(Īi)
)1/kr′

.

We can write NormK/Q(Īi) = Nr′/rNormL/Q(Ii)
r′/r, where N is as in the state-

ment of the theorem. Moreover, setting γ̃ =
γ
√
r/r′
√
disc(L/Q)

k−1
rk

2r
√

NormK/Q(disc(L/K))
, we plug both

into our expression for

‖β(v)‖ ≤
γ
√
r/r′

√
disc(L/Q)

k−1
rk

2r
√

NormK/Q(disc(L/K))
·
√
disc(L/Q)

1/rk( k∏
i=1

NormK/Q(Īi)
)1/kr′

= γ̃ ·
√
disc(L/Q)

1/rk( k∏
i=1

Nr′/rNormL/Q(Ii)
r′/r
)1/kr′

= γ̃N1/r ·
√
disc(L/Q)

1/rk( k∏
i=1

NormL/Q(Ii)
)1/rk

= γ̃N1/r ·
( k∏
i=1

NormL/Q(Ii)
√
disc(L/Q)

)1/rk

= γ′ · det(M)1/rk,

so letting γ′ = γ̃N1/r =
γ
√
r/r′
√
disc(L/Q)

k−1
rk N1/r

2r
√

NormK/Q(disc(L/K))
, v is a solution to Hermite-

SVP in M with approximation factor γ′.

4 Prime Ideals of Cyclotomic Fields

4.1 The Cyclotomic Field L = Q(ζs2n+1)

We let s be some positive odd integer, s ≥ 3. The following is Theorem 2.2 from
[26].

Theorem 6. Let q be an odd prime power, and let s ≥ 3 be any odd number
such that gcd(q, s) = 1, and let qφ(s) = m2A + 1 for some odd m, A ≥ 1.
Then, for any A− 1 ≤ n and for any irreducible factor f(x) of Φs2A(x) over Fq,
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then f(x2n−A+1

) is also irreducible over Fq. Moreover, all irreducible factors of
Φs2n+1(x) are obtained in this way.

Theorem 7. For any prime ideal p = 〈ρ, f(ζs2n+1)〉 of OL for some rational
prime ρ, gcd(ρ, s) = gcd(ρ, 2) = 1 and irreducible polynomial f(x) of Φs2n+1

in Fρ[x], write ρφ(s) = m2A + 1 where m is an odd integer and A ≥ 1, and
let r = min{A − 1, n}. Then, given an oracle that can solve SVP for φ(s2r+1)-
dimensional lattices, a shortest nonzero vector in p can be found in
poly(φ(s2n+1), log2 ρ) time with the canonical embedding.

Proof. We assume that n ≥ A otherwise the theorem is vacuously true, so r =
A− 1. Let

G = {σi : gcd(i, 2) = gcd(i, s) = 1}

denote the Galois group of L over Q, where

σi : Q(ζs2n+1)→ Q(ζs2n+1),

σi(ζ
k
s2n+1) = ζkis2n+1 .

By Theorem 6, for any factor f(x) of Φs2n+1(x) that is irreducible in Fρ[x], there
exists a polynomial g(x) that is a factor of Φs2r+1(x) that is irreducible over Fρ[x]

such that f(x) = g(x2n−r ). Then the prime ideal lattice p can be represented by

〈ρ, f(ζs2n+1)〉 = 〈ρ, g(ζs2r+1)〉.

For any 1 ≤ k ≤ 2n−r−1, the map σks2r+1+1 fixes ζl2
n−r

s2n+1 for any integer 0 ≤ l <
s2r+1. Moreover, since gcd(ks2r+1 + 1, 2) = gcd(ks2r+1, s) = 1, each subset Hk

of G generated σks2r+1+1 forms a cyclic group, and so the set H = H1 ×H2 ×
· · · × H2n−r−1 forms a subgroup of the decomposition group of p, since both ρ
and f(ζs2n+1) = g(ζ2n−r

2n+1 ) are fixed by each σi ∈ H. K = Q(ζ2n−r

s2n+1) must be the

fixed field of the group H, as for all i ∈
(
Z/s2n+1Z

)×
,

σi(ζ
2n−r

s2n+1) = ζ2n−r

s2n+1 ⇐⇒ i ≡ 1 mod s2r+1.

Note that OK has the Z-basis {1, ζ2n−r

s2n+1 , ζ
2(2n−r)
s2n+1 , . . . , ζ

(φ(s2r+1)−1)(2n−r)
s2n+1 }. Let-

ting c = p ∩ OK , we claim that

p =

2n−r⊕
k=0

ζks2n+1c.
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For any a ∈ p, there exist integers zi, wi such that

a =

φ(s2n+1)−1∑
i=0

ziζ
i
s2n+1f(ζs2n+1) +

φ(s2n+1)−1∑
i=0

wiζs2n+1ρ

=

2n−r−1∑
k=0

ζks2n+1

φ(s2r+1)−1∑
j=0

(
zk+j2n−rζ

j2n−r

s2n+1 f(ζs2n−r ) + wk+j2n−rζ
j2n−r

s2n+1 ρ
)

=

2n−r−1∑
k=0

ζks2n+1

(φ(s2r+1)−1∑
j=0

zk+j2n−rζ
j2n−r

s2n+1

 f(ζs2n+1)

+

φ(s2r+1−1∑
j=0

wk+j2n−rζ
j2n−r

s2n+1

 ρ

)
,

which proves our claim. Now, for any xk ∈ c, 0 ≤ k ≤ 2n−r − 1, let x =∑2n−r−1
k=0 xkζ

k
s2n+1 ∈ p. Then the quadratic form induced by the ideal lattice

p is given by

TraceL/Q(xx) = TraceL/Q

2n−r−1∑
k,l=0

xkxlζ
k−l
s2n+1


=

s2n+1−1∑
i=0:gcd(i,s)=gcd(i,2)=1

2n−r−1∑
k,l=0

σi
(
xkxlζ

k−l
s2n+1

)

=

s2r+1−1∑
i=0:gcd(i,s)=gcd(i,2)=1

2n−r−1∑
j=0

2n−r−1∑
k,l=0

σi+js2r+1(xkxl)ζ
(i+js2r+1)(k−l)
s2n+1

=

s2r+1−1∑
i=0:gcd(i,s)=gcd(i,2)=1

2n−r−1∑
j=0

2n−r−1∑
k,l=0

σi(xkxl)ζ
(i+js2r+1)(k−l)
s2n+1 ,

but note that we have

2n−r−1∑
j=0

ζ
(i+js2r+1)(k−l)
s2n+1 =

2n−r−1∑
j=0

ζ
i(k−l)
s2n+1 ζ

j(k−l)
2r+1 =

{
2n−r if k = l,

0 otherwise.

Hence

TraceL/Q(xx) = 2n−r
s2r+1−1∑

i=0:gcd(i,s)=gcd(i,2)=1

2n−r−1∑
k=0

σi(xkxk)

= 2n−r
2n−r−1∑
k=0

TraceK/Q(xkxk),
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and so λ1(p) = λ1(c), as required. The algorithm below summarises how to find
the shortest nonzero vector in a prime ideal lattice p. The most time-consuming
step in the algorithm below is Step 2, and all other steps may be performed in
poly(φ(s2n+1), log2 ρ) time.

Algorithm 1: SVP algorithm for prime ideal lattices of Z[ζs2n+1 ]

input : A prime ideal p = 〈ρ, f(ζs2n+1)〉 in Z[ζs2n+1 ], where ρ is odd and
gcd(ρ, s) = 1.

output: A shortest vector in the corresponding prime ideal lattice.

1 Compute the ideal c generated by ρ and f(ζs2n+1) in OK where

K = Q(ζ2
n−r

s2n+1).
2 Find a shortest vector v in the φ(s2r+1)-dimensional lattice c.
3 Output v.

4.2 The Cyclotomic Field L = Q(ζspn+1)

The following theorem is a generalisation of Theorem 2 in [27].

Theorem 8. Let s, p, q be positive integers such that p is an odd prime, q is
a prime power and gcd(s, p) = gcd(q, p) = 1. Suppose qφ(s) ≡ a mod p, for
some integer gcd(a, p) = 1 and set qφ(s) = mpA + a for some integer m such
that gcd(m, p) = 1 and some integer A ≥ 0. Then for any n ≥ A − 1 and any
irreducible factor f(x) of the cyclotomic polynomial ΦpAs(x) over Fq, f(xn−A+1)
is also irreducible. Moreover, all the irreducible factors of Φpn+1s(x) are obtained
in this way.

Proof. See Appendix A.

Theorem 9. For any prime ideal p = 〈ρ, f(ζspn+1)〉 where ρ is a positive ra-
tional prime, gcd(ρ, s) = gcd(ρ, p) = 1 and irreducible polynomial f(x) of the
cyclotomic polynomial Φspn+1(x) in Fρ[x], assume that ρφ(s) ≡ a mod p for

some gcd(a, p) = 1 and set ρφ(s) = mpA + a for some positive integer m such
that gcd(m, p) = 1 and some integer A ≥ 1 and let r = min{A − 1, n}. Then,
given an oracle that can solve SVP for φ(spr+1)-dimensional lattices, a shortest
nonzero vector in p can be found in poly(φ(spn+1), log2 ρ) time with the canonical
embedding.

Proof. We assume that n ≥ A otherwise the theorem is vacuously true. Let

G = {σi, 1 ≤ i ≤ spn+1 − 1 : gcd(i, p) = gcd(i, s) = 1}
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denote the Galois group of L over Q, where

σi : Q(ζspn+1)→ Q(ζspn+1),

σi(ζ
k
spn+1) = ζkispn+1 .

By Theorem 8, for any factor f(x) of Φspn+1(x) that is irreducible in Fρ[x], there
exists a polynomial g(x) that is a factor of Φspr+1(x) that is irreducible over

Fρ[x] such that f(x) = g
(
xp

n−r
)

. Then the prime ideal p can be represented by

〈ρ, f(ζspn+1)〉 = 〈ρ, g(ζspr+1)〉.

For any 1 ≤ k ≤ pn−r−1, the map σkspr+1+1 fixes ζlp
n−r

spn+1 for any integer 0 ≤
l < spr+1. Moreover, since gcd(kspr+1 + 1, p) = gcd(kspr+1, s) = 1, each subset
Hk of G generated by σkspr+1+1 forms a cyclic group, and so the set H =
H1×H2×· · ·×Hpn−r−1 forms a subgroup of the decompositiong group of p, since

both ρ and f(ζspn+1) = g
(
ζp
n−r

spn+1

)
are fixed by each σi ∈ H. ThenK = Q(ζn−rspn+1)

must be the fixed field of the group H, as for all i ∈
(
Z/spn+1Z

)×
,

σi(ζ
pn−r

spn+1) = ζp
n−r

spn+1 ⇐⇒ i ≡ 1 mod spr+1.

Note that OK has the Z-basis {1, ζp
n−r

spn+1 , ζ
2pn−r

spn+1 , . . . , ζ
(φ(spr+1)−1)pn−r

spn+1 }. Letting
c = p ∩ OK , we claim that

p =

pn−r−1⊕
k=0

ζkspn+1c.

For any a ∈ p, there exist integers zi, wi such that

a =

φ(spn+1)−1∑
i=0

ziζ
i
spn+1f(ζspn+1) +

φ(spn+1)−1∑
i=0

wiζspn+1ρ

=

pn−r−1∑
k=0

ζkspn+1

φ(spr+1)−1∑
j=0

(
zk+jpn−rζ

jpn−r

spn+1 f(ζspn−r ) + wk+jpn−rζ
jpn−r

spn+1 ρ
)

=

pn−r−1∑
k=0

ζkspn+1

(φ(spr+1)−1∑
j=0

zk+jpn−rζ
jpn−r

spn+1

 f(ζspn+1)

+

φ(spr+1)−1∑
j=0

wk+jpn−rζ
jpn−r

spn+1

 ρ

)
,

which proves our claim. Now, for any xk ∈ c, 0 ≤ k ≤ pn−r − 1, let x =∑pn−r−1
k=0 xkζ

k
spn+1 ∈ p. Then the quadratic form induced by the ideal lattice
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p is given by

TraceL/Q(xx) = TraceL/Q

pn−r−1∑
k,l=0

xkxlζ
k−l
spn+1


=

spn+1−1∑
i=0:gcd(i,s)=gcd(i,p)=1

pn−r−1∑
k,l=0

σi(xkxlζ
k−l
spn+1)

=

spr+1−1∑
i=0:gcd(i,s)=gcd(i,p)=1

pn−r−1∑
j=0

pn−r−1∑
k,l=0

σi+jspr+1(xkxl)ζ
(i+jspr+1)(k−l)
spn+1

=

spr+1−1∑
i=0:gcd(i,s)=gcd(i,p)=1

pn−r−1∑
j=0

pn−r−1∑
k,l=0

σi(xkxl)ζ
(i+jspr+1)(k−l)
spn+1 ,

but note that we have

pn−r−1∑
j=0

ζ
(i+jspr+1)(k−l)
spn+1 =

pn−r−1∑
j=0

ζ
i(k−l)
spn+1 ζ

j(k−l)
pr+1 =

{
pn−r if k = l,

0 otherwise.

Hence

TraceL/Q(xx) = pn−r
spr+1−1∑

i=0:gcd(i,s)=gcd(i,p)=1

pn−r−1∑
k=0

σi(xkxk)

= pn−r
pn−r−1∑
k=0

TraceK/Q(xkxk),

and so λ1(p) = λ1(c), as required. The algorithm below summarises how to find
the shortest nonzero vector in a prime ideal lattice p. The most time-consuming
step in the algorithm below is Step 2, and all other steps may be performed in
poly(φ(spn+1), log2 ρ) time.

Algorithm 2: SVP algorithm for prime ideal lattices of Z[ζspn+1 ]

input : A prime ideal p = 〈ρ, f(ζspn+1)〉 in Z[ζspn+1 ], where

gcd(p, ρ) = gcd(ρ, s) = 1 and ρφ(s) ≡ ±1 mod p.
output: A shortest vector in the corresponding prime ideal lattice.

1 Compute the ideal c generated by ρ and f(ζspn+1) in OK where

K = Q(ζp
n−r

spn+1).

2 Find a shortest vector v in the φ(spr+1)-dimensional lattice c.
3 Output v.
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4.3 Some Special Prime Ideals of Cyclotomic Rings

Theorem 10. Let L = Q(ζs2n+1) be a cyclotomic field for some positive odd
integer s ≥ 3 and some integer n ≥ 0. Let p denote a prime ideal lying over a
positive rational odd prime ρ such that ρφ(s) ≡ 3 mod 4. Then, given an oracle
that can solve SVP for φ(s)-dimensional lattices, a shortest nonzero vector in p
can be found in poly(φ(s2n+1), log2 ρ) time with the canonical embedding.

Proof. For some integer N > 1, we must have ρφ(s) ≡ 2l+1 mod 2N , and so for
some integer k, we have ρφ(s) = 1+2l+2Nk = 1+2(2N−1k+ l). Since 2N−1k+ l
is an odd integer and N is taken totally arbitrarily, the claim holds by Theorem
7.

Theorem 11. Let L = Q(ζspn+1) be a cyclotomic field for some positive integer
s 6= 1 such that gcd(s, p) = 1, an odd prime p and some integer n ≥ 0. Let p
denote a prime ideal lying over a positive rational odd prime ρ such that ρφ(s) =
lp+a for some integers l, a, gcd(l, p) = gcd(a, p) = 1. Then, given an oracle that
can solve SVP for (p− 1)φ(s)-dimensional lattices, a shortest nonzero vector in
p can be found in poly(φ(spn+1), log2 ρ) time with the canonical embedding.

Proof. For some integer N > 1, we must have ρφ(s)equivlp+ a mod pN , and so
for some integer k, we have ρφ(s) = ma + pl + pNk = a + p(pN−1k + l). Since
gcd(pN−1k + l, p) = 1 and N is taken totally arbitrarily, the claim holds by
Theorem 9.

5 General Ideals of Cyclotomic Rings

5.1 The Cyclotomic Field L = Q(ζs2n+1)

As before, we set s to be some odd integer greater than or equal to 3.

Theorem 12. Let I be a nonzero ideal of Z[ζs2n+1 ] with prime factorisation

I = p1p2 . . . pt,

where pi = (fi(ζs2n+1), ρi) for rational primes ρi are (not necessarily distinct)

prime ideals. If ρi is odd, write ρ
φ(s)
i = mi2

Ai +1, for some integer mi such that
gcd(mi, 2) = 1 and let r = max{ri}, where

ri =

{
min{Ai − 1, n}, if ρ ≡ 1 mod 2,

n ifρ = 2.

Then SVP in the lattice generated by I can be solved via solving SVP in a
φ(s2r+1)-dimensional lattice.

Proof. If r = n the theorem vacuously holds, so we assume otherwise. We may
assume WLOG that r = r1. Following the notation of Theorem 7, we denote by

G = {σi : 1 ≤ i ≤ s2n+1 − 1, gcd(i, 2) = gcd(i, s) = 1}
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the Galois group of L, and consider the subgroup H = H1×H2×· · ·×H2n−r−1 ,
where Hk is the cyclic group generated by 〈σks2r+1+1〉, which is a subgroup of the
decomposition group of every pi, since σks2r+1+1(ρi) = ρi, σks2r+1+1(fi(ζs2n+1)) =
σks2r+1+1(gi(ζs2r+1)) = gi(ζs2r+1) = fi(ζs2n+1), where gi(x) is an irreducible fac-

tor of Φs2Ai (x). As shown in Theorem 7, the fixed field of H is K = Q(ζ2n−r

s2n+1),

which has ring of integers OK = Z[ζ2n−r

s2n+1 ]. Let c = I ∩ OK . We claim that for

any a ∈ I, there exist a(k) ∈ c for 0 ≤ k ≤ 2n−r − 1 such that

a =

2n−r−1∑
k=0

ζks2n+1a(k).

We prove the claim via induction. When t = 1, the claim holds by Theorem 7, so
we assume the claim holds for t− 1. Letting I = p1p2 . . . pt−1, we have I = ptI.
It suffices to show that for any xy, x ∈ I, y ∈ pt, there exist b(k) ∈ I ∩ OK
for 0 ≤ k ≤ 2n−r − 1 such that xy =

∑2n−r−1
k=0 ζks2n+1b(k). By the induction

assumption, there exist x(i) ∈ I ∩ OK , y(j) ∈ pt ∩ OK , 0 ≤ i, j ≤ 2n−r − 1 such

that x =
∑2n−r−1
i=0 ζis2n+1x(i) and y =

∑2n−r−1
j=0 ζjs2n+1y

(j). Hence, we have

xy =

2n−r−1∑
i,j=0

ζi+js2n+1x
(i)y(i)

=

2n−r−1∑
k=0

ζks2n+1

∑
i+j=k

x(i)y(j) +

2·2n−r−2∑
k=2n−r

ζks2n+1

=

2n−r−1∑
k=0

ζks2n+1

∑
i+j=k

x(i)y(j) +

2n−r−2∑
k=0

ζks2n+1

∑
i+j=k+2n−r

ζ2n−r

s2n+1x(i)y(j)

=

2n−r−2∑
k=0

ζks2n+1

 ∑
i+j=k

x(i)y(j) +
∑

i+j=k+2n−r

ζ2n−r

s2n+1x(i)y(j)


+ ζ2n−r−1

s2n+1

∑
i+j=2n−r−1

x(i)y(j).

By letting

b(k) =
∑
i+j=k

x(i)y(j) +
∑

i+j=k+2n−r

ζ2n−r

s2n+1x(i)y(j)

for 0 ≤ k ≤ 2n−r − 2 and

b(2
n−r−1) =

∑
i+j=2n−r−1

x(i)y(j),

we have proven our claim. As in Theorem 7, we have λ1(I) = λ1(c), as required.

The following algorithm may be used to compute the shortest vector in I.
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Algorithm 3: SVP algorithm for general ideal lattices of Z[ζs2n+1 ]

input : An ideal I.
output: A shortest vector in the corresponding ideal lattice.

1 for r = 1 to n do

2 Compute a basis (b(i))0≤i<φ(s2r+1) of the ideal lattice c = I ∩ OK where

K = Q(ζ2
n−r

s2n+1).

3 if (ζj
s2n+1b

(i))0≤i<φ(s2r+1),0≤j≤2n−r is exactly a basis of the ideal lattice I
then

4 Find a shortest vector v in the φ(s2r+1)-dimensional lattice c.
5 Output v.

5.2 The Cyclotomic Field L = Q(ζspn+1)

As before, p is a positive, odd prime and s is a positive integer such that
gcd(s, p) = 1.

Theorem 13. Let I be a nonzero ideal of Z[ζspn+1 ] with prime factorisation

I = p1p2 . . . pt,

where pi = (fi(ζspn+1), ρi) for rational primes ρi are (not necessarily distinct)

prime ideals. If ρ
φ(s)
i ≡ a mod p for some gcd(p, a) = 1, write ρ

φ(s)
i = mip

Ai +1
and let r = max{ri}, where

ri =

{
min{Ai − 1, n}, if ρ

φ(s)
i ≡ a mod p,

n if ρ = p.

Then SVP in the lattice generated by I can be solved via solving SVP in a
φ(spr+1)-dimensional lattice.

Proof. If r = n the theorem vacuously holds, so we assume otherwise. We may
assume WLOG that r = r1. Following the notation of Theorem 9, we denote by

G = {σi : 1 ≤ i ≤ spn+1 − 1, gcd(i, p) = gcd(i, s) = 1}

the Galois group of L, and consider the subgroup H = H1×H2×· · ·×Hpn−r−1 ,
where Hk is the cyclic group generated by 〈σkspr+1+1〉, which is a subgroup of the
decomposition group of every pi, since σkspr+1+1(ρi) = ρi, σkspr+1+1(fi(ζspn+1)) =
σkspr+1+1(gi(ζspr+1)) = gi(ζspr+1) = fi(ζspn+1), where gi(x) is an irreducible fac-

tor of ΦspAi (x). As shown in Theorem 9, the fixed field of H is K = Q(ζp
n−r

spn+1),

which has ring of integers OK = Z[ζp
n−r

spn+1 ]. Let c = I ∩ OK . We claim that for

any a ∈ I, there exist a(k) ∈ c for 0 ≤ k ≤ pn−r − 1 such that

a =

pn−r−1∑
k=0

ζkspn+1a(k).
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We prove the claim via induction. When t = 1, the claim holds by Theorem 9, so
we assume the claim holds for t− 1. Letting I = p1p2 . . . pt−1, we have I = ptI.
It suffices to show that for any xy, x ∈ I, y ∈ pt, there exist b(k) ∈ I ∩ OK
for 0 ≤ k ≤ pn−r − 1 such that xy =

∑pn−r−1
k=0 ζkspn+1b(k). By the induction

assumption, there exist x(i) ∈ I ∩ OK , y(j) ∈ pt ∩ OK , 0 ≤ i, j ≤ pn−r − 1 such

that x =
∑pn−r−1
i=0 ζispn+1x(i) and y =

∑pn−r−1
j=0 ζjspn+1y

(j). Hence, we have

xy =

pn−r−1∑
i,j=0

ζi+jspn+1x
(i)y(i)

=

pn−r−1∑
k=0

ζkspn+1

∑
i+j=k

x(i)y(j) +

2pn−r−2∑
k=pn−r

ζkspn+1

=

pn−r−1∑
k=0

ζkspn+1

∑
i+j=k

x(i)y(j) +

pn−r−2∑
k=0

ζkspn+1

∑
i+j=k+pn−r

ζp
n−r

spn+1x
(i)y(j)

=

pn−r−2∑
k=0

ζkspn+1

 ∑
i+j=k

x(i)y(j) +
∑

i+j=k+pn−r

ζp
n−r

spn+1x
(i)y(j)


+ ζp

n−r−1
spn+1

∑
i+j=pn−r−1

x(i)y(j).

By letting

b(k) =
∑
i+j=k

x(i)y(j) +
∑

i+j=k+pn−r

ζp
n−r

spn+1x
(i)y(j)

for 0 ≤ k ≤ pn−r − 2 and

b(p
n−r−1) =

∑
i+j=pn−r−1

x(i)y(j),

we have proven our claim. As in Theorem 9, we have λ1(I) = λ1(c), as required.

The following algorithm may be used to compute the shortest vector in I.

6 Modules over Cyclotomic Rings

We let L = Q(ζN ) be the cyclotomic field of conductor N , where N is of the
form sqn+1, where q is either 2 or an odd prime and s is a positive integer,
gcd(s, q) = 1. Then, denoting by I1, . . . , Id some ideals of Z[ζN ] and some vectors
b1, . . . ,bd ∈ LD for some d ≤ D, we define a module over OL

M =

d⊕
i=1

Iibi.
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Algorithm 4: SVP algorithm for general ideal lattices of Z[ζspn+1 ]

input : An ideal I.
output: A shortest vector in the corresponding ideal lattice.

1 for r = 1 to n do

2 Compute a basis (b(i))0≤i<φ(spr+1) of the ideal lattice c = I ∩ OK where

K = Q(ζ2
n−r

spn+1).

3 if (ζj
spn+1b

(i))0≤i<φ(spr+1),0≤j≤pn−r is exactly a basis of the ideal lattice I
then

4 Find a shortest vector v in the φ(spr+1)-dimensional lattice c.
5 Output v.

By the structure theorem for finitely generated modules over Dedekind domains,
we must have

M ∼=
d⊕
i=1

Ji,

for some rank one projective OL-modules Ji, i.e. fractional ideals. By the def-
inition of a fractional ideal, for every Ji there exists an xi ∈ Q such that
xiJi = J ′i ⊆ OL, and so

Ji =
1

xi

gi∏
j=1

p
(i)
j ,

where p
(i)
j are prime ideals lying over some rational prime ρ

(i)
j , and assume we

have gcd(ρ
(i)
j , N) = 1. Now, we let

ρ
(i)
j

φ(s)
=


m2A

(i)
j + 1 if N = s2n+1,m odd integer,

mpA
(i)
j + a if N = spn+1 for odd prime p,

and ρ
(i)
j

φ(s)
≡ a mod p, gcd(m, p) = gcd(a, p) = 1.

Define the value r
(i)
j = min{A(i)

j − 1, n}. We let r = maxi,j{r(i)
j } and ci =

(xiJi) ∩K where K = Q(ζsqr+1). As we have already shown, every Ji may be
represented as

xiJi =

qn−r−1⊕
k=0

ciζ
k
sqn+1 ,

and so we have

M ∼=
d⊕
i=1

1

xi

qn−r−1⊕
k=0

ciζ
k
sqn+1 =

qn−r−1⊕
k=0

(
d⊕
i=1

1

xi
ci

)
ζksqn+1 .
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Denoting by f−1 the inverse of the isomorphism f that maps M to
⊕d

i=1 Ji, we

may apply f−1 to
⊕d

i=1
1
xi
ci, from which we obtain a rank d module M ′ over

OK , where K is the field that is fixed by the decomposition group of every ci,
and so

M ∼=
qn−r−1⊕
k=0

M ′ζksqn+1 .

Moreover, as we have already shown the direct sum on the right hand side can
be treated as a sum of orthogonal components under the canonical embedding.
Therefore, the minimum lattice vector of M under the canonical embedding is
equivalent to the minimal lattice vector of M ′ under the canonical embedding, as
an isomorphism between the modules implies they span the same set of vectors.

7 SVP Average-Case Hardness

The average case hardness of SVP over prime ideals depends on the distribution
chosen which defines the ideal. We consider the following distributions.
Distribution 1: We uniformly randomly select a prime ideal lying over a ratio-
nal prime ρ, where we take ρ uniformly randomly from the set

{ρ < M : ρ is prime},

for some large fixed integer M .

– When L = Q(ζs2n+1), we assume that security is compromised when ρφ(s) ≡
2l + 1 mod 2N , that is, we have an oracle that can solve SVP for φ(s)-

dimensional lattices. Now, suppose s =
∏d
i=1 p

ki
i , for some positive integers

pi, ki, d where pi are distinct primes, and assume without loss of generality
that pi ≤ pj for all i ≤ j. Then for some g ≤ d, we have p1, . . . , pg ≤M , and
so the probability of s being coprime to ρ is given by

1− g

π(M)− 1
≈ 1− g

π(M)
≥ 1− g log(M)

MC(M)
,

where π denotes the prime counting function and C(M) ≤ 1 is a positive
constant that increases with the size of M [31]. We assume that we have
a ρ that satisfies gcd(s, ρ) = 1. By Dirichlet’s theorem on arithmetic pro-
gressions, there are infinitely many primes of the form ρ ≡ 3 mod 4, and
approximately half of all primes take this form, so the probability of choosing
an easily solvable prime ideal lattice is approximately 1/2.

– When L = Q(ζspn+1) for some odd prime p, we assume that security is

compromised when ρφ(s) ≡ lp+a mod pN for some positive integer N , that
is, we have an oracle that can solve SVP for (p−1)φ(s)-dimensional lattices.

Similarly to before, if s =
∏d
i=1 p

ki
i for some positive integers pi, ki, d where
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pi are distinct primes not equal to p such that pi ≤ pj for all i ≤ j, if pg is
the largest prime such that pg < M , the probability that s is coprime to ρ is

1− g

π(M)− 1
≈ 1− g

π(M)
≥ 1− g log(M)

MC(M)
,

where π denotes the prime counting function and C(M) ≤ 1 is a posi-
tive constant that increases with the size of M . We assume that ρ satisfies
gcd(s, ρ) = 1. For all primes ρ, we may find a prime of the form lρ+a where
gcd(l, p) = gcd(a, p) = 1 by setting l =

∏
q<ρ: q prime,gcd(a,q)=1 q. By Dirich-

let’s theorem on arithmetic progressions, there are infinitely many primes of
this form, and so the approximate probability of picking an easily solvable
prime ideal lattice is (p− 1)/p.

Distribution 2: We fix a large M , and select a prime ideal uniformly randomly
from the set

{p a prime ideal : ρ ∈ p, ρ is prime, ρ < M}.

– When L = Q(ζs2n+1) for some odd integer s ≥ 3, we assume that we have an
oracle to solve SVP over φ(s)-dimensional lattices, and so the “easy” SVP
cases occur when our prime ideal lies over a prime ρ where ρφ(s) = 2l + 1
for some odd l. However, we can’t use Lemma 1 to attain a better lower
bound than 1 on the number of ideals above ρ, and as such the probability
of picking an easily solvable ideal is at least 1

1+2nφ(s) .

– When L = Q(ζspn+1), the number of prime ideals lying over ρ is greater than

or equal to φ(sp)
φ(s) = p−1, and since there are p−1 easy cases, the probability

of picking an easily solvable ideal is at least 1

1+ pn

p−1φ(s)
.

Distribution 3: We fix a large M , and select a prime ideal uniformly randomly
from the set

{p a prime ideal : N(p) < M}.

Our method of reduction to a 2r-dimensional sublattice c only works when p
does not split completely in L, or equivalently, when N(p) = ρ. By Chebotarev’s
density theorem, the number of primes less than M that split completely in
L = Q(ζm) is approximately M

φ(m) log(M) , and hence there are M
log(M) prime ideals

lying above those primes for which our reduction method cannot be applied.
Now, if our algorithm is to provide a reduction, we need N(p) = ρf < M for
some positive integer m, and so the prime ideal must lie over a rational prime ρ
such that ρ <

√
M . Hence, there are at most

√
M of such primes, and as such,

there are at most:

– φ(s)2n−1
√
M when L = Q(ζs2n+1) for odd, positive integer s ≥ 3,

– φ(s)(p− 1)pn−1
√
M when L = Q(ζspn+1) for odd positive integer s and odd

prime p, gcd(s, p) = 1.
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Then, for the relevant factor α(L)
√
M listed above, the density of easy instances

for our algorithm is at most α(L) log(M)√
M

, which goes to zero as M tends to infinity

for all considered fields.
General Ideals and Modules: For any of the distributions covered, we can
make similar assertions about the density of easy cases in general ideals and
modules. If the probability of choosing an easily solvable prime ideal lattice in a
given distribution is P , then given a general ideal I that has g distinct factors,
the probability that the ideal is easily solvable is P g, since we require that all
the prime ideal factors are individually easy cases. Similarly for the module case,
for a module M of rank d over OL, we have M ∼=

⊕d
i=1 Ji. Then applying the

previous logic over the prime decomposition of all the ideals Ji, if Ji has gi
distinct prime ideal factors, then the probability of picking an easily solvable

module lattice is P
∏d
i=1 gi .

8 Concluding Remarks

In this paper, we have successfully generalised methods pioneered by Pan et. al.
in [10]. First, we showed that a solution to Hermite SVP for a general ideal lat-
tice may be yielded by solving Hermite-SVP with a smaller factor in a subideal
by exploiting the decomposition group of the ideal. Moreover, we showed that
a similar argument may be made for module lattices defined over the ring of
integers of a field that is Galois over Q, and present two methods by which we
may approach the module case. For ideals of cyclotomic rings, we generalised
Pan et. al.’s results to construct an efficient SVP algorithm for ideals of cyclo-
tomic rings of arbitrary conductor, and showed that there exists certain classes
of ideal lattices whose structure is significantly weaker to our algorithm than
others. An open problem remains to construct an efficient SVP algorithm for
the case of modules over cyclotomic rings as our work did not include an explicit
construction of the isomorphism mentioned in section 7.
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A Supplementary Material

A.1 Proof of Theorem 8

Proof. Let f(x) be any irreducible factor of ΦpAs(x). We take t in Lemma 2 to be
pn−A+1 and check the conditions of Lemma 2 term by term. By Lemmas 1 and
3, f(x) has order pAs and degree m, where m is the least positive integer such
that qm ≡ 1 mod spA. We claim that the prime divisor p of t divides e = spA

but not qm−1
e . Clearly p divides spA, so we only need to show the latter. We

proceed via induction, and assume first that A = 1. Note that qφ(s) = 1 mod s
(a consequence of Euler’s theorem), and so qφ(s)m′ ≡ 1 mod sp, where m′ is the
smallest integer so that qφ(s)m′ ≡ 1 mod p, and so m | φ(s)m′. If a contradiction
to our claim were to hold, then we would have

qφ(s)m′ − 1 ≡ 0 mod p2.

The above may be represented in terms of its decomposition into cyclotomic
polynomials:

qφ(s)m′ − 1 ≡
∏
d|m′

Φd(q
φ(s)) mod p2.

By Lemma 1, each cyclotomic polynomial factors into distinct irreducible factors
mod p. Since qφ(s) ≡ a mod p, the above can only be zero if the factor (qφ(s)−a)
occurs in the factorisation of two distinct cyclotomic polynomials, which implies
that there is at least one polynomial Φk(x) containing the factor (x − a) such
that k < m′. Then we must have

qφ(s)k − 1 ≡
∏
d|k

Φd(q
φ(s)) mod p ≡ 0 mod p,

which is a contradiction since m′ was defined to be the minimum integer such

that qφ(s)m′ ≡ 1 mod p. Then we must have p - q
m′φ(s)−1

p and since m | m′φ(s),

p - qm−1
e . Now, assume that p - qm

′φ(s)pA−1
−1

pA
for some A ≥ 1, and as before

we let m′ be the minimum integer such that qφ(s)m′ ≡ 1 mod p, so we must

have that m | m′φ(s)pA−1. By Lemma 4, since pA | qφ(s)m′pA−1 − 1 and p -
qφ(s)m

′pA−1
−1

pA
, we must have pA+1 | qφ(s)m′pA − 1 and p - q

φ(s)m′pA−1
pA+1 , and since

m | φ(s)m′pA, it holds that p - q
φ(s)m−1

e as required. Moreover, p is an odd prime
so 4 - t, hence all the requirements in Lemma 2 have been fulfilled. Therefore it

follows that f(xp
n−A+1

) is also irreducible over Fq. By this method we can get
φ(pAs)
m irreducible factors of Φpn+1s(x). Now, suppose that Φpn+1s(x) factors into

φ(pn+1s)
M = (p−1)pnφ(s)

M distinct factors, where M is the least integer such that
qM ≡ 1 mod pn+1s. By Lemma 4, we must have M = mpn−A+1 and hence

φ(pn+1s)

M
=

(p− 1)pnφ(s)

mpn−A+1
=

(p− 1)pA−1φ(s)

m
.

Hence in this way we may obtain all the irreducible factors of Φpn+1s(x).
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