
The Art of Labeling: Task Augmentation for Private
(Collaborative) Learning on Transformed Data

Hanshen Xiao
MIT

hsxiao@mit.edu

Srinivas Devadas
MIT

devadas@mit.edu

ABSTRACT
We tackle the problems of private learning where an owner wishes
to outsource a training task to an honest-but-curious server while
keeping its data private, and private collaborative learning where two
(or more) mutually distrusting owners outsource respective training
data sets to an honest-but-curious server while keeping their data
sets private from the server and each other.

The privacy property we provide is information-theoretic in na-
ture, Probably Approximately Correct (PAC) approximation resis-
tance (abbreviated to PAC security). Each owner transforms its data
and labels using a private transform. The server combines samples
from each data set into expanded samples with corresponding ex-
panded labels – we refer to this step as Task Augmentation. The
server can be used for inference by any owner by sending it trans-
formed samples. Unlike most prior approaches, our transformed data
approach maintains privacy for each entity, even in the case where
the server colludes with all other entities. Importantly, we show the
utility of collaborative learning typically exceeds the utility that can
be achieved by any entity restricted to its own data set.

Another important application we show is that the Task Augmen-
tation approach can also be used in the single owner case by adding
labeled, learnable noise to amplify privacy. This can be straightfor-
wardly used to produce (Local) Differential Privacy ((L)DP) guaran-
tees. We show that adding labeled noise as opposed to a conventional
(L)DP additive noise mechanism significantly improves the privacy-
utility tradeoff in private learning under the same setup.

CCS CONCEPTS
• Security and privacy → Information-theoretic techniques;

KEYWORDS
privacy; machine learning; collaborative learning

1 INTRODUCTION
With the great success of machine learning, the privacy of data pro-
cessing is receiving increasing attention, both in the two-party setting
where a data owner wishes to outsource training and/or inference
to an untrusted, typically honest-but-curious server, and in a multi-
party (or collaborative) setting where multiple data owners wish to
outsource learning tasks while exploiting aggregation of individual
data sets.

There are many classes of approaches, each with strengths and
limitations, and which provide differing privacy guarantees. Ap-
proaches based on partial or Fully Homomorphic Encryption [20,
41, 42], Garbled Circuits [22] and combinations provide strong com-
putational security guarantees but also suffer large computational

overheads, restricting their use to small-scale problems in the two-
party setting. Approaches to collaborative multi-party learning such
as Federated Learning are efficient but require placing trust in an
aggregating server [48]. Differential Privacy [7, 15, 16, 31] based
approaches can be efficient both in the two-party and multi-party
settings, but unlike the two previous classes of approaches, they
come with a privacy-utility tradeoff in that greater privacy (smaller
𝜖) typically results in lower utility. This is especially true in Local DP
(LDP) [11] settings: when owners decide to release the data (rather
than responding to queries) and resort to outside computing services,
LDP becomes the only known and widely-applied privacy metric.
Unfortunately, even to preserve a single attribute, LDP comes with a
constant noise on each data entry, which most medium size learning
tasks cannot afford. Thus, the tradeoff between reasonable security
and utility remains a long-standing challenge.

Recently, approaches based on data transformation have been
proposed, e.g., Instahide [25], Dauntless [47]. In these approaches,
the owner transforms its data using a private transform, and the trans-
formed data is sent to the untrusted (honest-but-curious) server. The
challenge in this approach is twofold: First, a privacy property for
the exposed transformed data has to be shown, and second, the utility
of learning on the transformed data is expected to match the utility
of non-private learning. In this paper, we utilize the Dauntless frame-
work [47] of Probably Approximately Correct (PAC) approximation
(or inference) resistance, abbreviated to PAC security, and contribute
simpler and more powerful data transformation techniques for both
single and multiple owner settings, as well as associated proofs that
relate PAC security (measured by lower bounds on the number of
exposed transformed samples) to the entropy of private samples.

We present a novel Task Augmentation approach where we train
a model for a more general task, in which the original learning
task(s) become subproblem(s). Given a 𝑐-classification problem on
a data set (𝑥𝑖 , 𝑦𝑖)1, and another data set corresponding to a possibly
unrelated 𝑐 ′-classification task, (𝑥 ′

𝑖
, 𝑦′
𝑖
), we define a new 𝑐 × 𝑐 ′-

classification problem by considering the Cartesian product of any
pairs {(𝑥𝑖 , 𝑦𝑖), (𝑥 𝑗 , 𝑦 𝑗)} in a form

(
(𝑥𝑖 |𝑥 ′𝑗), (𝑦𝑖 |𝑦

′
𝑗
)
)
. The composite

feature domain is now within the (𝑑 + 𝑑 ′)-dimensional space while
the label domain also increases correspondingly to 𝑐 × 𝑐 ′ classes. In
the case of private collaborative learning, the first owner provides a
privately transformed data set for a 𝑐-classification task, and a sec-
ond owner provides a different transformed data set, using a different
private transform, for a 𝑐 ′-classification task. Task Augmentation
is performed by the server, which cannot “see” the original data or
labels, followed by training. Once the server has the trained model,
an owner can outsource inference on a new sample by providing
the server with an appropriately transformed sample. Alternately,
the trained model can be returned to any or all owners, who can

1Here, feature 𝑥𝑖 ∈ R𝑑 while label 𝑦𝑖 ∈ R𝑐 is a one-hot vector.

1

run inference locally by transforming their samples and using one
(or more) transformed samples from each of the other owners. We
note that there is no exposure in either training or inference of pri-
vate (non-transformed) samples. We show that Task Augmentation
provides utility benefits in collaborative learning, i.e., the utility of
models trained on task augmented data is higher than the utility of
models obtained from individual data sets, and approaches the utility
of non-private collaborative training. Our approach does not require
non-collusion assumptions across owners and the server as in many
multi-party computation schemes. We further note that the Task
Augmentation approach may be of independent interest outside of
privacy considerations to improve model generalization in machine
learning, though this is not the focus of this paper.

In summary, this paper makes the following contributions:
(1) We provide a new PAC security theoretical result based

on the PAC security definition of [47], which corresponds
to a simpler transform (multiplication by a random matrix
as opposed to the potentially unstable inverse of a random
matrix), and which has a precise and parameterizable quan-
tification of a sample lower bound.

(2) While the transform of Dauntless [47] only worked well for
fully-connected networks, we present private transforms
and associated PAC security proofs that work well for Trans-
former networks and Convolutional Neural Networks.

(3) We show how to achieve private collaborative learning
using a Task Augmentation approach. Crucially, we do
not require a non-collusion assumption between mutually
distrusting users and a honest-but-curious server.

(4) We propose a novel way to introduce labeled noise incor-
porated with Task Augmentation for further privacy ampli-
fication. Such a technique can be straightforwardly applied
to produce (L)DP guarantees but with a sharpened utility-
privacy tradeoff.

(5) We provide experimental results on the MNIST and CIFAR-
10 data sets for private learning and private collaborative
learning that show that a private transformation approach
can achieve utility, efficiency and provable security.

The rest of the paper is organized as follows. We review the Daunt-
less framework [47] in Section 2. New private transforms and proofs
are the subject of Section 3, where we present a simple, generic
transform for fully connected networks, and show how to augment
it for Transformer networks and Convolutional Neural Networks
(CNNs). We describe the Task Augmentation approach in Section
4. Then, we present a natural private collaboration scheme based on
Task Augmentation and private data transformation in Section 5. In
Section 6, we describe how labeled noise is used to generate an aux-
iliary learning task to augment privacy. In Section 7, we provide two
sets of results on private collaborative learning and private learning
for image recognition problems, including MNIST and CIFAR-10.
Related work is the subject of Section 8. We conclude in Section 9.
Notations: We use I(𝑎, 𝑏) to denote the mutual information between
two random variables 𝑎 and 𝑏. H(𝑎) is the entropy of a variable 𝑎
and the following relationship holds I(𝑎, 𝑏) = H(𝑎) − H (𝑎 |𝑏).
We use ∥𝑊 ∥ to denote the 𝑙2 norm of a matrix 𝑊 , i.e., ∥𝑊 ∥ =

sup∥𝑥 ∥=1 ∥𝑊𝑥 ∥ and ∥𝑊 ∥𝐹 to denote the Frobenius norm of𝑊 .

2 SUMMARY OF DAUNTLESS FRAMEWORK
We begin with the main insights underlying existing security metrics.
In general, either cryptographic encryption, such as RSA, or an infor-
mation theory based Differentially Private additive noise mechanism,
can be regarded as a transformation 𝑇 on plaintext 𝑥 . To measure
the security or privacy guarantee with respect to (w.r.t.) the trans-
formation, dating back to Shannon’s perfect secrecy [40], a primary
approach is to measure the additional information provided by the
ciphertext 𝑇 (𝑥) (transformed data). Said another way, for any adver-
sarial prior knowledge assumed regarding the plaintext 𝑥 , after the
observation of the ciphertext 𝑇 (𝑥), the difference between the prior
and posterior opinions should be limited. If, for a polynomial-time
computationally-bounded adversary, such difference is negligible,
then we say the mechanism 𝑇 is cryptographically secure. From an
information-theoretical standpoint, for example, Differential Privacy
(DP), such difference (restricted to an individual data point) is cap-
tured by parameters 𝑒𝜖 , (𝛿) in (𝜖, (𝛿))-DP [16]. When 𝜖 = 0, DP is
equivalent to perfect secrecy, where the plaintext and ciphertext are
independent.

In the Dauntless framework [47], a different security definition
is proposed, termed PAC security, that takes into account the prior
knowledge of the adversary (see Section 2.1). We describe charac-
teristics of a good transformation in Section 2.2, and consider the
use of neural networks to transform data in Section 2.3. We review
the Dauntless proof strategy for PAC security in Section 2.4, and
contrast it with encryption approaches in Section 2.5.

2.1 PAC Security
PAC learning theory is mimicked to set the privacy metric in a form
that given observations, can an adversary approximate, with error
smaller than 𝜖, the true input with confidence at least (1 − 𝛿)? More
formally,

Definition 2.1 (Resistance to (𝜖, 𝛿)-PAC Approximation [47]). A
transformation mechanism M(𝑋, 𝜃) on a data set 𝑋 of𝑚 data points,
where 𝜃 ∈ Θ is the random seed, is resistant to (𝜖, 𝛿)-PAC approx-
imation for private input data 𝑋 in a distribution P𝑛 , if given the
output M(𝑋), there does not exist an (possibly computationally-
unbounded) algorithm which returns an estimator of the inverse of
the mechanism M based on M(𝑋, 𝜃), namely,𝑔(·) ∈ {M−1 (·, 𝜃), 𝜃 ∈
Θ}, 2 such that

Pr
𝑥∼P,𝑋∼P𝑛,𝜃

(
∥𝑔(M(𝑥, 𝜃)) − 𝑥 ∥ < 𝜖 |M(𝑋, 𝜃)

)
≥ 1 − 𝛿. (1)

The data distribution P captures the prior knowledge from the
adversary’s view. If we take the mechanism M as an encryption
scheme with the key 𝜃 randomly generated, (𝜖, 𝛿)-PAC approxima-
tion resistance captures the hardness in determining or approximat-
ing the key (or true inverse function) given exposed data. In the
above definition, we assume that in the adversarial prior knowledge,
data points are distributed independently. The above metric can also
be generalized to measure the approximation error on data points dis-
tributed differently. It is also worth mentioning that the adversarial
recovery is determined both by the additional information provided

2When M(·, 𝜃) is not invertible, we may approximate each M−1 (·, 𝜃) by some func-
tion M̂−1 (·, 𝜃) that Pr𝑥∼𝑃 (∥M̂−1 (M(𝑥, 𝜃), 𝜃)) − 𝑥 ∥ < 𝜖) ≥ 1 − 𝛿.

2

by ciphertext and the adversary’s prior knowledge on plaintext.3

PAC security suggests an impossibility result even for an unbounded
adversary to recover the secret input within 𝜖-error under restricted
prior knowledge.

An intuitive interpretation for the role of prior knowledge in
the security analysis is analogous to Schrödinger’s cat. Imagine
that one wants to randomly publish an image from a secret data
set, containing one million image samples. Before publishing, the
state of whether a particular image will be published is stochastic
(a hypothetical cat in a box), but once published (box is opened
and observation occurs), uncertainty collapses to a definite result.
However, different from exposing the image directly, with a good
design of the transformation, sufficient amount of uncertainty will be
preserved (rather than collapsed) even after the observation occurs
on the transformed image. Thus, if we view the setup of DP or
Local DP (LDP) from a prior knowledge standpoint, though the
focus is on the participation of an individual data point, the setup is
indeed strong, where the adversary’s prior knowledge is sufficient to
determine almost the full data set except for one data point. As will
be shown below, the PAC security model provides a more generic
framework to handle different prior knowledge setups.

In the context of private learning, suppose a data owner holds
and decides to expose 𝑛 samples denoted by S = {𝑠𝑖 = (𝑥𝑖 , 𝑦𝑖), 𝑖 =
1, 2, ..., 𝑛}. Here, we consider a uniform transformation 𝑇 across the
full data set S, where the transformed samples become 𝑇 (S) =

{𝑇 (𝑠𝑖), 𝑖 = 1, 2, ..., 𝑛}. In general, the correspondence between 𝑠𝑖 and
𝑇 (𝑠𝑖) is not provided to the adversary, as most learning procedures
do not require a specific order of the samples. To further strengthen
the adversary, we assume such correspondence is known and in such
a setup, resistance to adversary inference using PAC security can be
described as follows. For simplicity, we assume the prior knowledge
w.r.t. each sample is identical as each 𝑠𝑖 is i.i.d. selected from some
distribution 𝑃 and the transformation 𝑇 is randomly generated from
a distribution 𝑄 . Then, PAC security is equivalent to determining
the maximal number𝑚 of transformed samples that can be exposed
given 𝑃,𝑄 and security parameters 𝜖, 𝛿 , i.e., there does not exist an
inversion estimator 𝐴𝑑𝑣 such that

Pr
𝑥∼𝑃,𝑇∼𝑄,S∼𝑃𝑚

(∥𝐴𝑑𝑣 (𝑇 (𝑥),𝑇 (S)) − 𝑥 ∥ < 𝜖) ≥ 1 − 𝛿. (2)

Here 𝐴𝑑𝑣 (𝑇 (𝑥),𝑇 (S)) denotes that 𝐴𝑑𝑣 takes 𝑇 (𝑥) as input to re-
cover 𝑥 while the algorithm is developed on observation 𝑇 (S). In
[47], it is pointed out that one can augment the entropy of S by
mixing private and public data. The above description can also
be generalized to the case where an adversary has different prior
knowledge on each 𝑠𝑖 , for example, 𝑠𝑖 ∼ N(𝜇𝑖 , 𝜏 · 𝑰), a multivariate
Gaussian of mean 𝜇𝑖 .

2.2 Transformation Design
Ideally, a good transformation is expected to provide good privacy,
regarding the original data, and good utility, regarding the model
trained on the transformed data. Arguably, the most natural trans-
formation would be perturbation, such as the common Gaussian or

3Prior knowledge is necessary in the PAC security definition. One may imagine the
case that an adversary has full knowledge of 𝑥 , where the distribution 𝑃 is reduced to a
single point (with zero entropy). An adversary can always exactly recover 𝑥 regardless
of the ciphertext.

Laplace Mechanism in DP. Nonetheless, when the model over trans-
formed samples is also for private use, there is much more freedom
in the choice of transformation. In our private (collaborative) learn-
ing scenario, once a model 𝑓 (·) has been trained on transformed
samples, using a transformation 𝑇 , inference on the model 𝑓 (·) for
a new sample 𝑥𝑛𝑒𝑤 also requires transformation, i.e., we evaluate
𝑓 (𝑇 (𝑥𝑛𝑒𝑤)).

In general, any continuous function with good locality can be a
candidate, where the original sample domain can be smoothly trans-
formed. However, as we will show later, the resultant performance
of a transformation even for the same data set varies significantly
with training mechanisms. This raises a challenging and practical
question that if experimentally transformed data is not efficiently
learnable by a training mechanism, is such a failure due to the trans-
formed data being computationally hard to learn or is it due to an
improper selection of training mechanism? In the following, we first
present tenets of transformation design.

In a statistical learning viewpoint, assume that 𝑓 ∗ is the optimal
model where 𝑓 ∗ = arg min𝑓 E(𝑥,𝑦)𝑙 (𝑓 (𝑥), 𝑦), where 𝑙 (·, ·) is some
loss function and (𝑥,𝑦) denotes the sample from some distribution.
Imagine transformed samples (𝑇 (𝑥), 𝑦) for some transformation 𝑇 ,
to which the optimal model becomes 𝑓 ◦ 𝑇−1. Here, we simply
assume 𝑇−1, or that 𝑇−1 is an approximation of the inverse of 𝑇 . To
provide reasonable utility guarantees, a necessary condition is that
𝑓 ◦𝑇−1 is approximatable by the training algorithm applied. To match
that, one can always creatively modify the existing training model
or even propose something new, which will be suitable for particular
transformed data. A conservative strategy employed in the Dauntless
framework [47] is to force the transformation to match existing
training mechanisms, which may directly benefit from machine
learning research advances, and the training mechanisms can be
taken as a black box. This framework can be outlined as follows:
for given data D from some distribution P, if there exists a training
mechanism which can find a model from a function set C, then
we select a transformation 𝑇 such that for any function 𝑐 ∈ C,
𝑐 ◦𝑇−1 ∈ C.

2.3 Neural Networks
The well-known uniform approximation theorem states that any
continuous function over a compact set can be approximated arbi-
trarily closely by a neural network with sufficiently large width and
a good choice of weights. In general, an 𝐿-layer feed-forward neural
network N(𝑥) can be expressed as

N(𝑥) = 𝜎 (𝐿) (𝜎 (𝐿−1) ...(𝜎 (1) (𝑥𝑊1)𝑊2, ...)𝑊𝐿−1)𝑊𝐿), (3)

where the 𝜎 (𝑖) represent (possibly non-linear) activation functions
and𝑊𝑖 represents the linear operator in 𝑖-th layer, respectively. The
beauty of the neural network is that it (approximately) character-
izes the complicated and infinite continuous function space with a
function class of finite parameters. A large network is formed by
simple bases, through the generalized linear model 𝜎 (𝑥𝑊) on input
𝑥 . Though the approximation capacity of each unit of 𝜎𝑖 (𝑥𝑊𝑖) is
limited, the integration is rich. If we represent the sample in a vector
𝑥 and let 𝜎 be some coordinate-wise activation function, such as Relu
or Sigmoid, (3) just captures a fully-connected network. There are a
huge number of variants such as convolutional network, recurrent
network, long-short term memory, auto-decoder and Transformer.

3

At a high level, we may force these more complicated architectures
into (3), but the function 𝜎 (𝑖) and the dimensions of𝑊𝑖 may require
more complex restrictions. We can always view the neural network
as a large generalized linear model and the following identity holds
for any invertible matrix𝑊 :

N(𝑥) = 𝜎 (𝐿) (𝜎 (𝐿−1) (...(𝜎 (1) (𝑥𝑊1)𝑊2 ...)𝑊𝐿−1)𝑊𝐿)

= 𝜎 (𝐿) (𝜎 (𝐿−1) (...(𝜎 (1) (𝑥𝑊 ·𝑊 −1𝑊1)𝑊2 ...)𝑊𝐿−1)𝑊𝐿)
= N ′(𝑥𝑊).

(4)

Taking 𝑇 simply as a (possibly randomly selected) invertible trans-
formation as 𝑇 (𝑥) = 𝑥𝑊 , (4) shows that if the ground truth model 𝑓
of sample 𝑥 can be well approximated by some N(𝑥), then the opti-
mal model 𝑓 ◦𝑇−1 for transformed data 𝑇 (𝑥) defined above is still
within the expressibility of the same network architecture. The idea
presented above is very generic: Once we rewrite a network such
that its lowest layer, i.e., layer closest to the input, can be rewritten
as a simple generalized linear form, an appropriate linear transfor-
mation can be easily constructed. In [47], a simple transform for a
fully-connected network was presented with an associated privacy
guarantee relating the number of exposed transformed samples to
the entropy of the input data.

2.4 A Framework of PAC Security Analysis
In this subsection, we overview the methodology proposed in Daunt-
less to analyze PAC security of a transformation. To estimate a lower
bound of the sample complexity for an (𝜖, 𝛿) PAC approximation,
we consider how much information (in bits) is at least required for
approximation with this performance and how much information
(in bits) is provided by each transformed sample under given prior
knowledge. To be formal, for any inference algorithm 𝐴𝑑𝑣 depen-
dent on 𝑚 observations S = 𝑇 (𝑥)𝑚 ∼ 𝑃𝑚 in (2), we consider the
mutual information 𝐼 (𝑇−1;𝑔). Since the algorithm 𝑔 can be viewed
as a post processing on S, thus we have

I(𝑇−1;𝑔) ≤ I(𝑇−1; 𝑆) = H(𝑇 (𝑥)𝑚) − H (𝑇 (𝑥)𝑚 |𝑇−1)
≤ 𝑚H(𝑇 (𝑥)) −𝑚H(𝑇 (𝑥) |𝑇−1) =𝑚I(𝑇 (𝑥);𝑇−1) .

(5)
Here, the last inequality is due to the use of the fact that the joint
distribution H(𝑎, 𝑏) ≥ 𝐻 (𝑎) + 𝐻 (𝑏), and 𝑇 (𝑥1) and 𝑇 (𝑥2) are inde-
pendent conditional on 𝑇 , which is bijective to 𝑇−1. Therefore, we
have a natural lower bound on the sample complexity𝑚 as

𝑚 ≥ I(𝑇−1;𝐴𝑑𝑣)
I(𝑇−1;𝑇 (𝑥))

,

for 𝑥 distributed as 𝑃 . The denominator I(𝑇−1;𝑇 (𝑥)) is relatively
easy to handle where

I(𝑇−1;𝑇 (𝑥)) = I(𝑇 ;𝑇 (𝑥)) = H(𝑇 (𝑥)) − H (𝑇 (𝑥) |𝑇) .

Here, we still exploit the fact that 𝑇−1 is bijective to 𝑇 . The trickier
part is the estimation of the numerator. The idea in Dauntless is to
split the domain of 𝑇−1 into several subsets such that any two 𝑇−1

1
and 𝑇−1

2 selected from different subsets sufficiently differ from each
other, where

Pr
𝑥∼𝑃,𝑇

(∥𝑇−1
1 (𝑇 (𝑥)) −𝑇−1

2 (𝑇 (𝑥))∥ > 2𝜖) > 2𝛿.

Such a construction allows the application of Fano’s inequality to
produce a lower bound.

2.5 Contrast with Encryption Approach
Limited prior knowledge and the random transformation produce
two natural challenges that an adversary must address before making
any meaningful inference in practice, even in the simplest case
where the transformation is a random invertible linear operator,
characterized by a 𝑑 ×𝑑 invertible matrix. It may seem that inverting
the transformation can be as simple as solving a linear system, where
𝑑 known plain samples are sufficient.

First, the private transformation setup is not equivalent to that of a
cryptographic encryption, where an adversary may arbitrarily select
polynomial many plaintexts and request corresponding ciphertexts to
guess the key. In the private learning scenario, the owner "encrypts"
her own data. Depending on the confidence of the secrecy of the data,
the owner adjusts the publishing strategy. For example, to strengthen
the entropy of each sample, one technique described in Dauntless
[47] is to use a data augmentation technique mixup [51]4, so even
when public images are used for training, they are only used after
mixing with a private image that is unknown to the adversary. Further,
one can always incorporate some other randomness, such as random
cropping and erasing [43], [52], commonly used data augmentation
techniques, or the data set can be augmented with labeled noise as
described in Section 6, to amplify the private samples’ entropy. Thus,
with limited prior knowledge, breaking the linear system can be hard,
as captured by the PAC security theory.

The second and more straightforward challenge is the unknown
correspondence. Transformed samples are randomly shuffled. Even
if the adversary has partial knowledge on a subset of the secret data
set, due to the random transformation, determining the correspon-
dence is a hard problem, known as (noisy) random linear observation
with unknown permutation (unlabeled sensing) [23, 34, 44]. Even in
the noiseless case, which corresponds to that of an adversary having
full knowledge on the data set, determining the Maximal Likelihood
Estimation (MLE) of the permutation can be NP-hard [34, 35].

As a summary, our sample complexity lower bounds are based
on the uncertainty or entropy of the private samples amplifying
the number of exposed transformed samples required for recovery.
Indeed, the PAC security of Section 3 captures a much stronger
adversary given access to perfect correspondences between each
plain and transformed sample, while in practice recovery is harder.
We defer a comprehensive PAC security study, which takes both
permutation and random transformation into account, to future work.

3 PRIVATE TRANSFORMS AND PAC PROOFS
We review the transform of [47] in Section 3.1 and present a more
utility-friendly variant and prove a more precisely quantified sample
bound based on PAC security. We review Transformer networks in
Section 3.2, and describe a new private transform for Transformers
with an associated privacy guarantee in Section 3.3. We review Con-
volutional Neural Networks (CNNs) in Section 3.4, and describe a

4Mixup achieves significant success in semi-supervised learning, e.g., [3], and has been
used to improve utility, e.g., [46].

4

new private transform for CNNs with an associated privacy guaran-
tee in Section 3.5. Finally, in Section 3.6, we discuss application to
Transfer Learning.

3.1 Fully Connected Network Transform and
Privacy Guarantees

Similar to Dauntless, we first consider the transformation 𝑇 to be a
single fully-connected layer with a random weight matrix𝑊 , i.e.,
𝑇 (𝑥) = 𝜎 (𝑥𝑊). Without loss of generality, we assume𝑇 : R𝑑 → Q𝑑 ,
where Q is some finite set, capturing a quantification with limited
precision. In Dauntless, the authors select the random matrix 𝑊
to be an inverse of a uniform matrix and point out that a random
matrix has a high probability of being ill-conditioned where the least
singular value is small. Training over such transformed data becomes
unstable and therefore the matrix requires additional processing. In
this paper, we propose a new and more generic framework to achieve
PAC security.

First, we consider a more utility-friendly transformation, where
the weight matrix𝑊 is selected to be a random uniform matrix. To
give a simple example for theoretical analysis below, we consider
that each entry of𝑊 is randomly selected from {−1, 0, 1}. It is noted
that the expectation of each entry equals 0 and based on the general-
ization of Johnson–Lindenstrauss Lemma [29], a random matrix of
zero mean has the potential to preserve the transformed sample pair-
wise distance. Such kind of transformation which preserves certain
sample space geometry will ease the following training procedure.

Second, we provide the sketch of the new PAC security proof
which relies on the Hanson–Wright inequality to give a tighter sam-
ple bound for a more practical security budget. Recall that what (𝜖, 𝛿)
PAC approximation says is that with probability at least (1 − 𝛿), the
adversary can recover the secret input with an approximation error
smaller than 𝜖. The transformation matrix𝑊 ∈ R𝑑×𝑑 is randomly
selected from a set of 3𝑑

2
elements. Assume that an adversary esti-

mator 𝐴𝑑𝑣 can successfully recover the secret input 𝑥 transformed
by𝑊0, where Pr𝑥∼𝑃 (∥𝐴𝑑𝑣 (𝜎 (𝑥𝑊0)) − 𝑥 ∥ < 𝜖) ≥ 1 − 𝛿. Then, we
want to check how many other matrices𝑊 exist such that 𝐴𝑑𝑣 can
also successfully invert 𝜎 (𝑥𝑊). We set out to show that the true
transformation matrix is hard to distinguish amongst exponentially
many possible candidates given the transformed samples, and any
guess of the true inverse is limited to only handling a negligible
fraction of transformations simultaneously.

To support the above goal and avoid tedious discussions in the
theoretical analysis, we add two additional restrictions on the gen-
eration of𝑊 from {0,±1}𝑑×𝑑 . If𝑊 generated is non-invertible, we
consider the following operator. Let the singular value decomposi-
tion (SVD) of𝑊 be𝑊 = 𝑈𝑆𝑉 and we take 𝑆 = 𝑆 + 𝜆 · 𝑰𝑑 , for some
𝜆 > 0. In other words, we add a positive constant 𝜆 uniformly to
the original singular values of 𝑆 and clearly �̂� is then invertible.
Moreover, it is noted that ∥�̂� −𝑊 ∥𝐹 = ∥𝜆𝑈𝑉 ∥𝐹 = 𝜆

√
𝑑, since 𝑈

and 𝑉 are both unitary matrices. Since 𝜆 is arbitrary, we will simply
let 𝜆 → 0 and the perturbation on𝑊 is negligible. If𝑊 generated is
non-invertible, we will take �̂� instead. Thus, in the following, we
will simply take𝑊 as an invertible matrix. Further, we will filter out
all𝑊 from {0,±1}𝑑×𝑑 if ∥𝑊 ∥ > 𝑐

√
𝑑 for some 𝑐.

THEOREM 1. Assume the distribution 𝑃 (prior knowledge) of
𝑥 to be a multivariate Gaussian distribution, N(0, 𝜏 𝑰𝑑), and the
weight matrix𝑊 of the transformation𝑇 = 𝜎 (𝑥𝑊) 5 to be randomly
selected from {0,±1} such that ∥𝑊 ∥ ≤ 𝑐

√
𝑑 , then such a mechanism

𝑇 satisfies (𝜖, 𝛿)-PAC security if the number𝑚 of samples exposed
satisfies

𝑚 ≤
log

(
(1 − 𝑒−𝑙𝑜𝑔 (3/2)𝑐𝑑)3𝑑2) − log

((𝑑2

𝛽𝑑2
)
× 2𝛽𝑑

2)
I(𝑇−1;𝜎 (𝑥𝑊))

(6)

where I(𝑇−1;𝜎 (𝑥𝑊)), which equals H(𝜎 (𝑥𝑊)) − H (𝜎 (𝑥𝑊) |𝑊),
can be upper bounded by

I(𝑇−1;𝜎 (𝑥𝑊)) ≤ 𝑑
∑
𝑜∈𝑄

(
− 𝑝1 (𝜎−1 (𝑜)) log(𝑝1 (𝜎−1 (𝑜)))

)
+ 𝑜 (1),

Here, let Q1 (·) be the probability density function (pdf) of N(0, 𝜏 ∥𝑣 ∥)
where ∥𝑣 ∥2 ∼ 𝐵(𝑑, 2/3), a binomial distribution, and 𝑝1 (𝜎−1 (𝑜)) =∫
𝑧∈𝜎−1 (𝑜) 𝑄1 (𝑧)𝑑𝑧. Additionally, 𝜖 and 𝛿 satisfy the following,

𝜖 =

√
𝜏2𝛽𝑑2 − 𝑡

2𝑐
√
𝑑

, and 𝛿 ≤ 1 − 𝑒−
𝑡

8𝑐2𝑑𝜏2

2
, (7)

with free parameters 𝑐 > 1, 𝑡 > 0 and 𝛽 > 0.

The proof of the above theorem is in Appendix A. Asymptotically,
Theorem 1 tells that after exposing 𝑂 (𝑑) transformed samples, we
have resistance to PAC inference with estimation error 𝜖 = Θ(𝜏

√
𝑑)

when the original secret samples are uncertain to the adversary,
captured by a Gaussian. A more heavy-tailed distribution (more
uncertainty) will produce a larger 𝜖.
Remark 1: The framework presented here works for all kinds of
sub-Gaussian random matrices𝑊 where an asymptotically similar
security guarantee can be provided. For example, one can change the
generation of matrix𝑊 to be a random binary matrix {0, 1}𝑑×𝑑 . It is
noted that, with a random binary matrix, even if we assume that the
adversary has the full knowledge of the secret data, determining the
encoding matrix𝑊 will be reduced to a (multidimensional) Subset
Sum Problem [17]. In the worst case, it can be NP-hard, though
information theoretically, the produced sample bound has only a
constant difference from what is provided in Theorem 1.

We give a concrete example of the above sample bound. When we
select 𝜏 = 1, 𝛽 = 0.2, 𝑐 = 1.1 and 𝑡 = 32𝑐2𝑑 , it produces (𝜖, 𝛿) at least
(0.2

√
𝑑, 0.49) for 𝑑 > 3000. For the sample bound, we approximate

the I(𝑇−1;𝜎 (𝑥𝑊)) by
∑𝑑
𝑖=1 I(𝑇−1;𝜎 (𝑥𝑊) (𝑖)), where 𝜎 (𝑥𝑊) (𝑖)

denotes the 𝑖-th coordinate of 𝜎 (𝑥𝑊). If 𝜎 (·) is a quantification func-
tion which only keeps the first three digits after the decimal point,
then I(𝑇−1;𝜎 (𝑥𝑊)) ≈ 0.0138𝑑 and provides the (𝜖, 𝛿) guarantee
when at most𝑚 = 31.5𝑑 samples are exposed.

3.2 Transformer Network
Transformers are a relatively modern network architecture, which
outperforms many existing architectures based on recurrent or con-
volutional layers in many Natural Language Processing (NLP) tasks
[45] [12]. Recently, image Transformers [14] have become competi-
tive with CNNs in visual recognition tasks.

5When 𝜎 is non-invertible, we simply assume𝑇 −1 = 𝜎−1 (·)𝑊 −1 and 𝜎−1 is an oracle
such that 𝜎−1 (𝜎 (𝑥𝑊)) = 𝑥 ·𝑊 .

5

x1

x2

x3

x4

p

dp

Embedding
E

x1 E
x2 E
x3 E
x4 E

p

dp

XT E WQ = Q

XT E WK = K

XT E WV = V

XT XT E

Figure 1: First part of a Transformer with 𝑝 = 4 patches

Without loss of generality, assume each training sample 𝑥 is
formed by 𝑝 segments, 𝒙 = [𝒙𝑖 , 𝒙2, ..., 𝒙𝑝], where each 𝒙𝑖 ∈ R𝑑𝑝 can
be a patch of an image or a word in a sentence. Put 𝒙 into a matrix
form 𝑋𝑇 ∈ R𝑝×𝑑𝑝 , where the 𝑖-th row corresponds to 𝒙𝑖 . The first
step in the Transformers we consider is the multiplication of each
patch by a learnable 𝑑𝑝 × 𝑑𝑝 embedding matrix 𝐸 as shown in Fig. 1
to produce an embedded 𝑝 × 𝑑𝑝 matrix 𝑋𝑇 𝐸.

The fundamental method applied in a Transformer to processing
the data is Self Attention to measure the relevance amongst differ-
ent 𝒙𝑖 . In a Self Attention model, there are three weight matrices
𝑊𝑞,𝑊𝑘 ,𝑊𝑣 ∈ R𝑑𝑝×𝑑′ to be trained (see Fig. 1), corresponding to
the Query, Key and Value, defined below. Then, we call 𝑄 = 𝑋𝑇𝑊𝑞 ,
𝐾 = 𝑋𝑇𝑊𝑘 and 𝑉 = 𝑋𝑇𝑊𝑣 as Query, Key and Value vectors, respec-
tively, each of dimension 𝑝 × 𝑑 ′. The output of the Self Attention is
defined as

𝑠𝑜 𝑓 𝑡𝑚𝑎𝑥
(𝑄 ∗ 𝐾𝑇

√
𝑑 ′

)
·𝑉 . (8)

Here, ∗ can be either the dot product or matrix multiplication.

3.3 Private Transform for a Transformer Network
Now, we will describe an appropriate transformation 𝑇 . Perform
an independent linear transformation on each row of 𝑋𝑇 , which
corresponds to each segment of 𝒙, say

𝑋𝑇 →

𝒙1�̃�1
𝒙2�̃�2
...

𝒙𝑝�̃�𝑝

 (9)

where each �̃�𝑖 is a 𝑑𝑝 × 𝑑𝑝 random matrix. Therefore, each patch is
being multiplied by different private randomness as shown in Fig. 2.
To preserve the representation capacity of a Transformer, we add an
𝐸𝑖 learnable fully connected layer for each 𝑥𝑖�̃�𝑖 and feed the result
to the Transformer as illustrated in Figure 2. Given that we have
added this learnable matching layer, we remove the 𝐸 embedding
matrix. Essentially, the 𝐸 matrix of Figure 1 is replaced by 𝑝 𝐸𝑖
matrices in Figure 2.

Consider the original sample to be a vector of length 𝑑 = 𝑝 · 𝑑𝑝 .
In the case of the fully connected network (see Section 3.1) recall
that we have a 𝑑 × 𝑑 random matrix 𝑊 as the private transform.
Here, we have 𝑝 �̃�𝑖 random matrices, each of dimension 𝑑𝑝 × 𝑑𝑝 , as
the collective private transform, meaning there is a factor of 𝑝 less
randomness, which affects the sample bound by the corresponding
factor.

THEOREM 2. Assume the distribution P (prior knowledge) of
𝑥 to be a multivariate Gaussian distribution, N(0, 𝜏 𝑰𝑑), and the
transformation weight matrix �̃�𝑖 for each patch to be independently

x1

x2

x3

x4

p

dp

p

dp

XT

x1 W1͠
x2 W2͠
x3 W3͠

x4 W4͠

p

dp

x1 W1E1͠

x2 W2E2͠
x3 W3E3͠
x4 W4E4͠

Figure 2: A Transformer with Additional Matching Layer

and randomly selected from {0,±1}𝑑𝑝×𝑑𝑝 such that ∥�̃�𝑖 ∥ ≤ 𝑐
√
𝑑,

then such a mechanism 𝑇 satisfies (𝜖, 𝛿)-PAC security with (𝜖, 𝛿)
described in (7), if the number𝑚 of samples exposed satisfies

𝑚 ≤
𝑝 log

(
(1 − 𝑒− log(3/2)𝑐√𝑝𝑑𝑝) · 3𝑑

2
𝑝
)
− log

((𝑝 ·𝑑2
𝑝

𝛽𝑑2

)
× 2𝛽𝑑

2)
I(𝑇−1;𝜎 (𝑥𝑊))

,

(10)
where I(𝑇−1;𝜎 (𝑥𝑊)) = 𝑝

(
H(𝜎 (𝑥�̃�)) − H (𝜎 (𝑥�̃�) |�̃�)

)
, 𝑥 ∼

N(0, 𝑰𝑑𝑝) and �̃� corresponds to the random 𝑑𝑝 × 𝑑𝑝 weight matrix
generated for each patch. Here, 𝑐 > 1/√𝑝, 𝛽 > 0 and 𝑡 > 0 are free
parameters.

The proof of Theorem 2 is in Appendix B. It is noted that for any pa-
rameter selection (𝑐, 𝛽, 𝑡) in (7), the scaled (𝑐, 𝛽/𝑝, 𝑡/𝑝) produces the
same (𝜖, 𝛿). Therefore, under the same setup, the sample complexity
in Theorem 2 will be 𝑂 (𝑝) smaller than that of Theorem 1.

3.4 Convolutional Neural Network (CNN)
In a CNN, a convolution is a linear multiplication of a set of weights
with the input data, typically an image. The multiplication is per-
formed between an array of input data and a two-dimensional array
of weights, called a filter or a kernel. The 𝑘 × 𝑘 kernel is typically
much smaller than the

√
𝑑×

√
𝑑 input data. The type of multiplication

applied between a kernel-sized patch of the input and the kernel is a
dot product or scalar product.

Using a kernel smaller than the input allows the same kernel (set
of weights) to be multiplied by the input array multiple times at
different positions on the input. Elaborating, the filter is applied
systematically to each (possibly overlapping) kernel-sized patch of
the input data, left to right, top to bottom. The amount of overlap is
controlled by a stride parameter, that can vary from 1 to 𝑘 .

The first layer of a CNN is typically a convolutional layer, which
consists of many learnable kernels. During the forward pass, we
convolve each kernel across the width and height of the input image
as described above. During training, the network will learn kernels
that activate when some type of visual feature such as an edge of
some orientation is seen. Each kernel in the convolutional layer
produces a separate 2-dimensional activation map that is processed
by subsequent layers.

The key observation is that these kernels perform local compu-
tations, and the private matrix transform for the fully connected
network is a global transform that matches a fully connected layer.
Not surprisingly, transforming images in such a fashion results in
significantly degraded utility in CNN-based object detection.

6

√ d

√ d

k

k

s

k2

1
xi

∙
k2

1
k2

k2

=
zi = xi ∙ Wi

Wi
(random)

͠
͠

Figure 3: Private Transform for CNN

3.5 Private Transform for a CNN
Figure 3 illustrates the private transform tailored for CNNs. We
pretend that we are convolving the image with a 𝑘 × 𝑘 kernel, and
each 𝑘 × 𝑘 window of the input image is converted to a 1 × 𝑘2 𝑥𝑖
vector, similar to the patches in a Transformer Network described in
Section 3.2. The only difference is that 𝑥𝑖 may be overlapped. Each
𝑥𝑖 is privately transformed to be multiplied by a different random
𝑘2 × 𝑘2 �̃�𝑖 matrix, which maintains locality within the window.
Depending on the stride 𝑠, different numbers of 1 × 𝑘2 vectors are
generated, one for each position of the pretend kernel. A total of

𝑞2 = (
√
𝑑−𝑘
𝑠 +1)2 many transformed 𝑧𝑖 = 𝑥𝑖�̃�𝑖 vectors are generated.

Now, we describe a modified CNN architecture suitable for train-
ing over the transformed data. Figure 4 shows the additional match-
ing layer that we require in front of the CNN (similar to the Trans-

former case) for efficient learning. A total of (
√
𝑑−𝑘
𝑠 + 1)2 fully-

connected layers of dimension 𝑘2×𝑘2 are placed before the CNN. In
addition, since we have already generated the convolution windows
over the input in the transform, we modify the first convolutional
layer of the CNN to only perform the multiplication of the provided
input by a number of learnable weight kernels as shown in Figure 4;
we assume the original CNN has 𝑢 learnable kernels in its first layer.
The second and subsequent layers in the CNN are unchanged.

Indeed, the security guarantee for the above private transformation
for CNN is almost the same as what is described in Theorem 2 even
when the patches are (possibly) overlapped. The details can be found
in Appendix C.

3.6 Transfer Learning
Through the above three examples, we have introduced the key
idea behind the conservative transformation framework. We now
briefly discuss transfer learning with private transformation. Transfer
learning is a broad machine learning concept, where to address a new
task, one may start by reusing an earlier model trained for a similar
task. Transfer learning has received great success. For example in a
Transformer network, if we initialize the weights by those trained on
the public Imagenet data set, the classification accuracy over CIFAR-
10 can be improved by at least 20% [14]; a small and easier image

k2
1

z1 = x1 ∙ W1͠

k2
1

z2

k2
zq2

1

k2

k2
E1

(learnable)

k2

k2
E2

(learnable)

k2

k2
Eq2

(learnable)

Second Convolutional Layer in CNN

a1
..

aq2

k2 a1
..

aq2

k2 a1
..

aq2

k2
k2 k2 k2

u learnable
kernels

a1 a2 aq2

Figure 4: CNN with Additional Matching Layer and Modified
First Layer

classification task may enjoy the experience gained from solving a
larger and more challenging problem.

Usually, in deep learning, the bottom layers extract more funda-
mental and general features. To incorporate the private transforma-
tion idea into the context of transfer learning, for a given pretrained
model, a data owner may split and take the first several layers of the
network out as a public fixed function while uniformly transforming
the secret samples through it. Then, depending on the particular
subsequent network architecture, the owner can apply a proper pri-
vate transformation on the processed data. For example, consider
a CNN, which is formed by multiple convolutional layers in the
beginning with fully-connected layers at the end. Given pre-trained
parameters, the owner can first let secret samples pass through the
first convolutional layers, and then apply the private transformation
shown in Section 3.1. Then, the user can send those transformed
samples with a request to train the remaining layers.

The above idea also captures the data embedding scenario. In
many NLP tasks, one has to first select an appropriate pre-trained
model such as BERT [13], to efficiently embed the input, for example
a sentence, to dense vectors, which are then fed to train a model.
In such a case, depending on the specific network used, the private
transformation can be naturally applied on the embedded data rather
than the original data.

4 TASK AUGMENTATION
The balance between generalization and empirical loss minimiza-
tion is one of the most challenging problems in machine learning.
Such a tradeoff has been extensively studied in existing works, e.g.,
[5, 21, 50]. In practice, there are two common approaches to improve
generalization but reduce memorization. One is data augmentation,
where training is implemented over similar but more fuzzy data.
Many useful techniques have been discovered such as mixup [51],
random cropping [43] and erasing [52]. The other is on the opti-
mization side such as adding regularization [30] or more robust loss
functions [1, 18] resistant to outliers. All of these improvements
over either the data representation or model training apply even for
transformed data. Here, we consider this problem from a different
perspective.

7

The key idea behind Task Augmentation (see Algorithm 1) is
that we aim to train a model for a more general task, where the
original learning task may become a subproblem. Suppose one is
working on a 𝑐-classification problem with 𝑛 training samples in a
form (𝑥𝑖 , 𝑦𝑖), where the feature 𝑥𝑖 ∈ R𝑑 while label 𝑦𝑖 ∈ R𝑐 is a
one-hot vector. Now, imagine there is another data set correspond-
ing to 𝑐 ′-classification task, whose samples are in a form (𝑥 ′

𝑖
, 𝑦′
𝑖
),

where 𝑥 ′
𝑖
∈ R𝑑′ with one-hot vector label 𝑦′

𝑖
∈ R𝑐′ . In general,

the 𝑐 ′-classification task is not necessarily related to the original
𝑐-classification. Then, we define a new 𝑐 × 𝑐 ′-classification by con-
sidering the Cartesian product of any pairs {(𝑥𝑖 , 𝑦𝑖), (𝑥 𝑗 , 𝑦 𝑗)} in a
form

(
(𝑥𝑖 |𝑥 ′𝑗), (𝑦𝑖 |𝑦

′
𝑗
)
)
. The composite feature domain is now within

the (𝑑 +𝑑 ′)-dimensional space while the label domain also increases
corresponding to 𝑐 × 𝑐 ′ classes.

Algorithm 1 Task Augmentation
Input

(a) Main training data set of 𝑛 samples(
(𝑥1, 𝑦1), (𝑥2, 𝑦2), ..., (𝑥𝑛, 𝑦𝑛)

)
with feature 𝑥𝑖 ∈ R𝑑

and one-hot label vector 𝑦𝑖 ∈ R𝑐 for 𝑐 classes.
(b) A (separate) auxiliary training data set of 𝑛′ samples(

(𝑥 ′1, 𝑦
′
1), (𝑥

′
2, 𝑦

′
2), ..., (𝑥

′
𝑛, 𝑦

′
𝑛)
)

with feature 𝑥 ′
𝑖
∈ R𝑑′ and

one-hot label vector 𝑦′
𝑖

for 𝑐 ′ classes.
(c) A query 𝑥 asking for inference.

Phase 1: Data Generation and Training
1: for 𝑖 = 1 :𝑚 do
2: Randomly select 𝑗𝑖 ∈ [1 : 𝑛] and 𝑙𝑖 ∈ [1 : 𝑛′].
3: Generate a composite sample (𝑥𝑖 , 𝑦𝑖) in a Cartesian product,

where 𝑥𝑖 = (𝑥 𝑗𝑖 |𝑥 ′𝑗𝑖) and 𝑦𝑖 = (𝑦 𝑗𝑖 |𝑦′𝑗𝑖).
4: end for
5: Train a model 𝑓 on (𝑥 [1:𝑚] , 𝑦 [1:𝑚]).

Phase 2: Inference
1: Choose𝑚′ ∈ [1 : 𝑛′]
2: for 𝑗 = 1 :𝑚′ do
3: Evaluate model 𝑓 on (𝑥, 𝑥 ′

𝑗
) and let 𝑦 𝑗 = 𝑓

(
(𝑥 |𝑥 ′

𝑗
)
)
.

4: end for
5: Calculate 𝑦 =

∑𝑚′
𝑗=1 𝑦 𝑗 .

6: Output 𝑖∗ = arg max𝑖∈[1:𝑐] 𝑦 𝑗 (𝑖) as the inference result.

We have three remarks on Task Augmentation. First, though the
learning task becomes more complicated with a feature dimension
increase, random regrouping of sample pairs from two data sets also
produces a larger sample pool. Second, during inference, instead of a
single evaluation, the prediction benefits from a more comprehensive
test with multiple different composite samples. Ideally, one may ap-
ply the entire auxiliary training data to enhance the inference. From
our experiments, usually 10𝑐 ′, i.e., around 10 auxiliary samples per
auxiliary class, is enough to guarantee good performance. From the
above protocol, it is clear that Task Augmentation is an independent
framework, which does not require any specific restrictions on either
the sample representation or the training mechanism selection. Third,
we note that Task Augmentation is easily generalized to more than
one auxiliary data set.
Implementation: We now describe detailed implementations of
Task Augmentation in different neural networks.

The samples in the Cartesian product can be straightforwardly
handled by a fully-connected network, where one can simply scale
the number of weights in each neuron to match the input size.

As for image processing in CNNs, there are two natural ways to
incorporate Task Augmentation. One is to put one image just below
the other to produce a new taller picture. For example, two 32 × 32
images can form a 64 × 32 image. The other strategy is to put the
two images into two channels, where we feed a 32 × 32 × 2 image to
the network. Correspondingly, if originally kernels of size 𝑘 × 𝑘 are
applied in the first convolution layer, then the kernel size doubles
to be 𝑘 × 𝑘 × 2 to handle the convolution over the composite input.
Depending on the particular network architecture, one may select
the proper strategy.

The implementation of Task Augmentation in Transformer net-
works is a combination of that in fully-connected networks and
CNNs. Recall that the first layer of a Transformer is a fully con-
nected network while the input is not a vector but a patch matrix,
similar to a CNN. So for two inputs 𝑥1 = (𝑥11, 𝑥12, ..., 𝑥1𝑝) and
𝑥2 = (𝑥21, 𝑥22, ..., 𝑥2𝑝), we merge them into

𝑥 =
(
(𝑥11 |𝑥21), (𝑥12 |𝑥22), ..., (𝑥1𝑝 |𝑥2𝑝)

)
,

where each patch size doubles and correspondingly the number of
weights to learn in the first fully-connected layer doubles.

5 PRIVATE COLLABORATIVE LEARNING
Now, we can proceed to describe the private collaborative learning
protocol. Imagine that there are two data set owners and each holds
private samples. We consider the extreme case that both users do
not trust each other but aim to privately train a model utilizing the
samples from both via an untrusted server. To preserve the local data
privacy, a natural generalization of Dauntless protocol (see Section 2)
is for each owner to independently transform her own data and send
to the server; on the other side, the server trains over the aggregated
transformed samples.

However, such trivial extensions encounter a utility dilemma.
Imagine that the two owners have samples of a common class, where
through a straightforward data sharing or collaborative training they
may easily produce a better model. However, after independent
transformation, if we still label samples the same, the difficulty of
learning increases significantly since similar samples after indepen-
dent transformations may differ dramatically. Similarly, if we label
them differently, it is equivalent to addressing the two owners’ re-
spective classification tasks independently, and the performance is
no better than that of training individually. It may seem that inde-
pendently transformed data only complicates the training procedure
without benefiting from it.

Another direction is Multi-Party Computation (MPC), where
through cryptographic primitives data owners may collaboratively
produce and share a same transformation, without either one know-
ing the transformation. However, in such a setup, even if the resultant
trained model is shared by all owners, each time a given owner wants
to utilize the model, the implementation requires the assistance of
the other one to first transform the input so the model can be eval-
uated, which can be costly. Furthermore, the privacy budget of the
transformation is always limited, therefore the number of predictions
is bounded.

8

Owner 1
Sample: (𝑥 !:#

! , 𝑦 !:#
!)

Transformation: 𝑇! ∼ 𝒟

Owner 2
Sample: (𝑥 !:#

$, 𝑦 !:#
$)

Transformation: 𝑇$ ∼ 𝒟

𝑇!(𝑥 !:#
!) 𝑇$(𝑥 !:#

$)

(𝑇!(𝑥 !:#
!), 𝑦 !:#

!)

(𝑇$ (𝑥 !:#
$), 𝑦 !:#

$)

Server
1). Sample random regrouping:
& 𝑇!(𝑥%!) 𝑇$ (𝑥&$) , 𝑦%! 𝑦&$)

2). Training model 𝑓 + 	on
aggregate samples.

𝑓 + 	

𝑥#'(Evaluating and taking
majority of 𝑓 " on test

samples 𝑇!(𝑥#'() 𝑇$(𝑥 !:#
$) .

Evaluating and taking
majority of 𝑓 " on test

samples 𝑇!(𝑥 !:#
!) 𝑇$(𝑥′#'() .

𝑥′#'(

User-side Individual Prediction Server-side Sample Aggregation and Training

Figure 5: The Task Augmentation Framework for Private Collaborative Learning

Task Augmentation addresses this challenge elegantly. It is noted
that even if the respective transformations are independently selected
but distributed identically, in a global view, identically distributed
samples after such transformations are still distributed the same. Task
Augmentation based collaborative learning for multiple data owners
is presented in Figure 5. In general, assume that there are 𝐾 owners
and without loss of generality, assume each owner has 𝑛 samples.
First, for the data transformation procedure, each owner indepen-
dently generates a transformation 𝑇𝑖 , 𝑖 ∈ [1 : 𝐾], from some fixed
distribution D. Transformed data (𝑇𝑖 (𝑥𝑖[1:𝑛]), 𝑦

𝑖
[1:𝑛]) is then sent to

the server. It is worth emphasizing that each owner can independently
select her own labeling strategy of𝑦𝑖[1:𝑛]

6. Second, on the server,𝐾𝑛

samples are randomly regrouped as
(
(𝑥1
𝑖1
, 𝑦1
𝑖1
), ..., (𝑥𝐾

𝑖𝐾
, 𝑦𝐾
𝑖𝐾
)
)
, where

at most 𝑛𝐾 different combinations can be produced. The server then
takes the corresponding 𝐾-Cartesian product on both the 𝐾 features
and labels as aggregate samples,

(
(𝑥1
𝑖1
|𝑥2
𝑖2
|...|𝑥𝐾

𝑖𝐾
), (𝑦1

𝑖1
|𝑦2
𝑖2
|...|𝑦𝐾

𝑖𝐾
)
)
,

and trains a model 𝑓 (·) over them. Model 𝑓 (·) is then sent back to
all the owners. Third, for the application of 𝑓 (·), each owner pub-
lishes at least one, a few, or all the transformed𝑇𝑖 (𝑥𝑖[1:𝑛]) features to
other owners. There are no additional security assumptions required
on the other owners and the server, since the transformed samples
(𝑇𝑖 (𝑥𝑖[1:𝑛]), 𝑦𝑖) have been exposed to the server in the first step, and
this additional sharing of transformed features amongst owners will
not cause any further data privacy loss. Now, when owner 𝑖 wants to
apply 𝑓 (·) on a newly incoming 𝑥𝑛𝑒𝑤 for prediction, with 𝑇𝑖 (𝑥𝑖[1:𝑛])
at hand, at most 𝑛𝐾−1 many virtual test samples can be constructed
as

(
𝑇1 (𝑥 𝑗1) |....|𝑇𝑖 (𝑥𝑛𝑒𝑤) |...|𝑇𝐾 (𝑥 𝑗𝐾)

)
for 𝑗𝑙 ∈ [1 : 𝑛]. After embed-

ding the 𝑥𝑛𝑒𝑤 sample into the composite domain and applying 𝑓 (·)
on some number of virtual samples, owner 𝑖 may take the majority
on the 𝑖-th segment as the outputs of 𝑓 (·). Ideally, a well-trained
𝑓 (·) will produce

𝑓
(
𝑇1 (𝑥 𝑗1) |....|𝑇𝑖 (𝑥𝑛𝑒𝑤) |...|𝑇𝐾 (𝑥 𝑗𝐾)

)
= (𝑦1

𝑗1
|...|𝑦𝑖 |...|𝑦𝐾𝑗𝐾),

where 𝑦𝑖 is the true label of 𝑥𝑛𝑒𝑤 . Clearly, in the above construc-
tion, owner 𝑖 does not necessarily need the knowledge of other 𝑦𝑙

𝑗𝑙
,

6Under the Cartesian product, the owners’ respective label space is independent. Thus,
every owner only needs to guarantee that the labels are orthogonal, such as one-hot
vectors, for her different classes.

𝑙 ≠ 𝑖; owner 𝑖 only need focus on the 𝑖-th segment, and a good esti-
mation can be the majority of all evaluations. Furthermore, during
the individual prediction, the implementation does not require the
participation of other users as in the MPC case; with the assistance
of at least one published transformed sample from each owner, one
can already enjoy the benefits of the collaboratively learned model.

6 AUGMENTATION WITH LABELED NOISE
In Section 5, we described a private collaborative learning protocol
where the various tasks are typically addressing similar learning
problems. Indeed, Task Augmentation strengthens robustness in gen-
eral, and when no private transformation is applied, the resulting
utility will be at least the worst utility of the multiple tasks addressed
individually. However, similarity of tasks is not a necessary condi-
tion to apply Task Augmentation. In this section, we explore using
Task Augmentation in a single data owner setting for privacy am-
plification, where multiple tasks address very different problems.
In particular, we generate random data sets, which are easy to clas-
sify such as (linearly) separable sets, and utilize them for privacy
amplification.

As before, the 𝑐-classification task corresponds to the owner’s
training task. Consider synthesizing linearly separable noise, and
adding this labeled noise 𝑐 ′-classification task to the 𝑐-classification
data set by defining a new 𝑐 × 𝑐 ′-classification problem as described
in Section 4. The key difference here is that the private transform is
applied after Task Augmentation, as opposed to before Task Aug-
mentation in the collaborative multiple owner case of Section 5. We
can do this because the real data set and the learnable noise data set
are owned by the same entity. Applying the private transform after
Task Augmentation effectively obfuscates the original data set over
and beyond just applying the transform since noise is mixed into the
original data.

We now describe how to synthesize learnable noise. We consider
two separate sets. Let (𝑥𝑒 , 𝑦𝑒) be a synthesized (noise) sample, which
is binary-labeled and 𝑦𝑒 ∈ {±1}. When 𝑦𝑒 = 1, 𝑥𝑒 is randomly
generated such that each coordinate 𝑥𝑒 (𝑗) ∼ N (𝜇, 𝜏), 𝑗 = 1, 2, ..., 𝑑,
i.e., it follows a Gaussian distribution with mean 𝜇 and variance
𝜏 . Similarly, when 𝑦𝑒 = −1, let 𝑥𝑒 ∼ N(−𝜇 · 1, 𝜏 · 𝑰𝑑), where 1 =

9

(1, 1, ..., 1). Clearly, when 𝜇 ≫ 𝜏 , we simply construct two separate
sets as the synthesized data set. 7

Consider the following composite sample form
(
(𝑥 |𝑥𝑒), (𝑦 |𝑦𝑒)

)
,

where 𝑥 ∈ R𝑑 is the original sample and (𝑥𝑒 , 𝑦𝑒) is a binary-labeled
sample synthesized as described above. We apply the private trans-
form to composite samples, (𝑥 |𝑥𝑒) ·𝑊 . This corresponds to multi-
plying by a matrix (or matrices) of appropriate dimension depending
on the network that we will train on (see Section 4). One can view
Task Augmentation with noise as adding randomness and entropy to
the private data.

The above framework can also be straightforwardly applied to
produce (L)DP guarantees even without the private transform by
simply releasing the

(
𝑥 + 𝑥𝑒 , (𝑦 |𝑦𝑒)

)
data set. It is noted that the

privacy guarantee is characterized by the variance of the noise, and
the selected mean parameter 𝜇 does not cause any additional privacy
loss – the sensitivity stays the same with a uniform shift. Thus, the
separable noise N(±𝜇, 𝜏 𝑰𝑑) produces the same (L)DP guarantee as a
regular Gaussian mechanism that adds N(0, 𝜏 𝑰𝑑). In Section 7.2, we
will show how significantly Task Augmentation with labeled noise
can improve classification accuracy in comparison to conventional
additive noise.

7 EXPERIMENTS
7.1 Prediction
We present results on MNIST handwriting recognition and CIFAR-
10 object detection data sets. In each experiment, we compare the
accuracy obtained on the test suite for non-private and private (trans-
formed data) training, in single user and collaborative settings, and
the training times required. The overheads for transforming the data
are negligible and therefore not reported.

Three different networks were used in our experiments:
• Fully Connected Network (FCN): A 7 layer network, formed

by 210, 29, 28, 27, 26, and 25 neurons, with a regression layer
at the end.

• Image Transformer Network (ITN): We use the architecture
of Vision Transformer [14] with 16 patches.

• Convolutional Neural Network (CNN): We test Resnet 20
and Resnet 56.

Results for MNIST are presented in Table 1 while those for CIFAR-
10 are presented in Tables 2, 3 and 4. Since MNIST is a fairly simple
data set, we focus on the implementation of MNIST with FCN only.
MNIST experiments were run in Matlab R2020a, and CIFAR-10
experiments were run using PyTorch 1.7.1 on a RTX 3090 GPU.
MNIST Results: The entire MNIST data set contains 60,000 sam-
ples of 10-digit handwriting pictures and an additional 10,000 test
samples. We vary the data set size used for training. With a smooth
transformation via a uniform matrix, in a single user case, the test
accuracies are essentially the same as non-private training (see Table
1). The training time is also essentially the same – the number of
epochs and the time per epoch (not shown) are essentially the same.

Further, collaborative private learning almost matches the non-
private case where two owners simply share the plain data and train a
single model. It is also better than the corresponding single user case,
e.g., 98.1% for the 2 × 30,000 case is slightly higher than the 97.8%
7One can also similarly construct two linearly separable sets, where for some selected
(secret) 𝑤 ∈ R𝑑 , (𝑥𝑒 .𝑦𝑒) satisfy 𝑥𝑒 ∼ N(0, 𝜏 · 𝑰𝑑) and 𝑦𝑒 = 𝑠𝑖𝑔𝑛 (𝑥 · 𝑤𝑇) .

MNIST Non-Private Training
Network # Samples Epoch Accuracy(%)

FCN 1,000 100 87.7
FCN 2,000 100 91.8
FCN 4,000 50 94.3
FCN 30,000 15 97.8
FCN 60,000 15 98.2

MNIST Single User Private Training
Network # Samples Epoch Accuracy(%)

FCN 1,000 100 87.6
FCN 2,000 100 91.4
FCN 4,000 50 93.7
FCN 30,000 15 97.8
FCN 60,000 15 98.2

MNIST 2-Collaborative Private Training
Network # Samples Epoch Accuracy(%)

FCN 2 × 1,000 450 91.3
FCN 2 × 2,000 225 93.4
FCN 2 × 30,000 25 98.1

Table 1: MNIST with Fully Connected Network

for the non-private/private 30,000 sample case. In the collaborative
scenario, the joint task is augmented to a 100 (10 × 10) classification
and 2× longer training time per epoch is required.

We also tested naive collaborative private training, where without
Task Augmentation, the server either simply aggregates both owners’
respective transformed data and trains a 20-classifier over them; or
trains a 10-classifier if the two owners have prior consensus on the
labeling so only 10 labels are needed. In both cases, the resultant
test accuracy degrades significantly to about 70% (not shown). As
explained in Section 5, this will happen for all data sets and networks.
CIFAR-10 Results: We include the implementation with FCN on
CIFAR-10 in Table 2, primarily for completeness; FCN does not
perform well for object detection. We note that test accuracy obtained
by private training approaches that of non-private training (53.5%
versus 54.6%) and private collaborative training with 2 users, each
with 25,000 samples, improves over non-private single user training
with 25,000 samples (52.7% versus 49.9%).

For the Transformer network, we split the images into 𝑝 = 16
patches. The results are included in Table 3. ITNs are better than
FCNs at object detection; similar to the FCN case, single-user private
training produces test classification accuracy close to non-private
training, and collaborative private training slightly improves over
non-private/private training with half the data set. We also report
GPU time per epoch in Table 3. The increase in training time for
private single-user training is because of the additional layer in the
network (see Fig. 2). There is an additional increase in collaborative
learning for the augmented task with double the sample size.

Finally, in Table 4, we present the results of private classification
using CNN. We note that for CIFAR-10, under the private trans-
formation described in Section 3.5, the selections of kernel size 𝑘
within 3 to 5 associated with a stride 𝑠 no bigger than 𝑘 only pro-
duces small performance differences. Thus, in Table 4, we simply
set 𝑘 = 𝑠 = 4 and 𝑘 = 𝑠 = 3 for the private training of the single
user case and the collaborative case, respectively. CNNs perform

10

CIFAR-10 Non-Private Training
Network # Samples Epoch Accuracy(%)

FCN 12,500 30 46.4
FCN 25,000 30 49.9
FCN 50,000 20 54.6

CIFAR-10 Single User Private Training
Network # Samples Epoch Accuracy(%)

FCN 12,500 30 46.2
FCN 25,000 30 49.7
FCN 50,000 20 53.5
CIFAR-10 2-Collaborative Private Training

Network # Samples Epoch Accuracy(%)
FCN 2 × 12,500 120 47.5
FCN 2 × 25,000 100 52.7

Table 2: CIFAR-10 with Fully Connected Network

CIFAR-10 Non-Private Training
Network # Samples Epoch Accuracy(%) GPU Time(s)

ITN 25,000 60 67.4 1.5
ITN 50,000 40 74.1 3.0

CIFAR-10 Single User Private Training
Network # Samples Epoch Accuracy(%) GPU Time(s)

ITN 25,000 60 65.6 5.4
ITN 50,000 40 72.3 7.0
CIFAR-10 2-Collaborative Private Training

Network # Samples Epoch Accuracy(%) GPU Time(s)
ITN 2 × 25,000 180 67.8 14.2

Table 3: CIFAR-10 with an Image Transformer Network

CIFAR-10 Non-Private Training
Network # Samples Epoch Accuracy(%) GPU Time(s)

CNN Res20 25,000 60 89.5 1.1
CNN Res20 50,000 60 92.4 2.2
CNN Res56 25,000 80 89.9 3.0
CNN Res56 50,000 80 93.2 6.0

CIFAR-10 Single User Private Training
Network # Samples Epoch Accuracy(%) GPU Time(s)

CNN Res20 25,000 200 85.0 4.1
CNN Res20 50,000 200 88.9 8.2
CNN Res56 25,000 200 86.1 9.1
CNN Res56 50,000 200 89.8 12.0

CIFAR-10 2-Collaborative Private Training
Network # Samples Epoch Accuracy(%) GPU Time(s)

CNN Res20 2 × 25,000 300 86.3 24.8
CNN Res56 2 × 25,000 300 87.8 28.6

Table 4: CIFAR-10 with Convolutional Neural Network

significantly better than ITNs and FCNs for CIFAR-10. The com-
parisons between non-private training, private single-user training,
and private collaborative training are similar to the ITN case, except
that private collaborative training does not improve over non-private
with half the data set, due to the high efficacy of the half-sized data
set; it does improve over private training with the half-sized data set.
We do not believe this to be a fundamental limitation and expect to
match non-private training with appropriate training scripts.

CIFAR-10 Training with Regular Gaussian Mechanism
Task # Samples Epoch Accuracy(%)
FCN 50,000 20 28.0

CNN Resnet20 25,000 100 28.2
CNN Resnet20 50,000 100 33.8
CIFAR-10 Training with Labeled Separable Gaussian

Task # Samples Epoch Accuracy(%)
FCN 50,000 20 34.2

CNN Resnet20 25,000 100 50.6
CNN Resnet20 50,000 100 53.7

Table 5: Private Learning with Non-labeled and Labeled Noise

7.2 Privacy Amplification Using Labeled Noise
Adding noise to plain data is a straightforward way to enhance pri-
vacy, especially in the context of (L)DP, where Laplace and Gaussian
mechanisms are the most commonly used approaches. Through well-
scaled noise (proportional to the sensitivity of output), desired (L)DP
guarantees can be provided [16].

In Table 5, we compare the regular Gaussian Mechanism to la-
beled noise using Task Augmentation in an LDP setting of CIFAR-
10 classification. No private transform was applied. The CIFAR-10
dataset is normalized where each attribute is within [0, 1]. Under
the regular Gaussian Mechanism, we add independent Gaussian
noise, N(0, 1), to each attribute of the selected CIFAR-10 data set.
Alternately, we generate separable noise data of the same size as
the selected training data, where the attribute of a sample is either
independently generated from N(3, 1) or N(−3, 1), associated with
two distinct labels, as described in Section 6. It is noted that the
variances of noise are exactly the same in both cases, therefore an
identical privacy guarantee is produced. The only difference is that
noise is viewed as an underlying binary classification task in the
latter case, where we add the noise data to the original data and
expand the label accordingly to a 20-classification in a Task Augmen-
tation manner. From Table 5, we see that Task Augmentation with
separable noise data significantly outperforms the regular Gaussian
mechanism, especially in the CNN case, where the classification
accuracy on the test set is improved from 33.8% to 53.7%. When
noise gets larger, more significant improvements are obtained.

7.3 Image Recovery Attacks
In the following, we experiment with recovery in settings with dif-
fering adversarial prior knowledge and show that a small amount of
uncertainty makes image recovery difficult as previewed in Section
2.5. Suppose the adversary has partial knowledge of the data set and
correspondence between the transformed samples and private sam-
ples. In Fig. 6, we present an example where given 15,000 exposed
transformed CIFAR-10 images, the adversary can narrow down each
private sample within four candidates, i.e., the adversary knows that
each private sample is randomly selected from a corresponding four
sample set. We assume that 50% of the correspondences between
each transformed sample and candidate sets are known. The attacker
first creates a data set using each transformed sample as a feature
vector, and the label for the feature is chosen as the average of
the four candidates, and then trains a neural network to invert the
transformation. The attacker then tries to predict the label (private

11

(a) Plain CIFAR-10 Images

(b) Recovery of FCN based Transformed CIFAR-10 Images

(c) Recovery of CNN based Transformed CIFAR-10 Images

Figure 6: Transformed CIFAR-10 Image Recovery: Prior Knowledge on 50% Correspondences and 4 Candidates Per Plain Sample

sample) for a new feature (transformed sample). In Fig. 6, FCN and
CNN transformed data is provided to the attacker, and corresponding
recoveries are provided. In particular, in the CNN transformation,
we set kernel size 𝑘 = 4 and stride 𝑠 = 4 with further incorporation
of random cropping to augment data. The summary is that a small
amount of uncertainty impedes recovery significantly. Additional
details and experiments are in Appendix D.

8 RELATED WORK
Cryptographic Methods: There has been considerable work ap-
plying homomorphic encryption and Garbled circuit techniques
for neural network prediction (e.g., [27], [26], [37]). Neural net-
work training is considerably more challenging for cryptographic
approaches. Secure multiparty computation (MPC) [19] allows mul-
tiple parties to compute a function on their private inputs in such a
way that the participants only learn the output of the function and
nothing else about each other’s inputs. MPC approaches to learning
tasks (e.g., [32], [36]) have significant computation overhead and
require all parties to collaborate for inference as well as training.
Random Transformation: Random unitary transformations are
known to preserve pairwise sample distance and have been used
for face recognition applications while preserving privacy (e.g., [28],
[33]). Security analysis of the protection schemes is limited to ana-
lyzing specific attacks, such as brute force or diversity attacks. The
transformations work, i.e., produce good utility, for specific post-
processing computations or learning methods such as Support Vector
Machines (SVM). More generic random projections with one-time
use have been used to achieve secrecy in particular compressive sens-
ing applications [4]. An encryption scheme based on multiplication
by a sparse sensing matrix is proposed in [10]. Those transforma-
tions and privacy guarantees are only for a single data point and thus
the encrypted data cannot be computed on.

Huang et al. proposed a private training protocol, Instahide in [25].
Instahide performs sample-specific sign-flipping unlike the uniform
transformation over each sample in the Dauntless framework. Carlini
et al. [6] approximates the sample correspondence in Instahide with
a similarity graph, and follow-up works [8, 24], which are based on
the phase retrieval model, present several attacks on Instahide.
Multi-task Learning: Multi-task learning (MTL) studies training a
joint model which solves multiple tasks simultaneously and possibly
related tasks, behaving like hints, may improve the performance as

compared to when tasks are trained separately. For example, in [49]
for sentiment analysis, a prediction task on whether an input sentence
contains a positive or negative sentiment word is added to the task; in
[9] to detect name error, a prediction on whether a name is present in
a sentence is added. With a different motivation, Task Augmentation
proposed in this paper is a more generic framework, where the
point is not to look for efficient hints for the main task, but instead
to improve generalization by addressing a more complex task and
strengthening the prediction from the more generic model obtained
via training. Task Augmentation can be straightforwardly applied
in MTL and we also believe the advanced network architectures
[39] proposed in MTL may benefit the implementation of Task
Augmentation, which we will explore in our future work.

9 CONCLUSION
We have presented private learning and private collaborative learning
strategies with information-theoretic security properties. Using the
framework proposed in [47], we have given private data transforms
and associated theorems that significantly extend the framework,
and are applicable to Transformer networks and CNNs. Importantly,
we have presented a Task Augmentation approach that elegantly gen-
eralizes the transformation based approach to collaborative learning,
without requiring trust between users or in the server. Collaborative
learning performed in such a fashion has been shown, in most cases,
to improve the utility of aggregate models over and beyond utilities
obtainable from individual data sets.

Transforming the data set has a negligible cost. The main over-
head comes from the larger-sized network that needs to be trained
due to the additional layers (in ITNs and CNNs). Additionally, in col-
laborative learning, overhead stems from the sample size increasing
with the number of data owners. Utility obtained from transformed
data approaches that of non-private data training but there is still a
gap. However, we have treated the machine learning algorithm as
a black box; an avenue for worthwhile future research is to explore
tailoring machine learning scripts to work better and more efficiently
for transformed data. We note that our current implementation is
un-optimized and there is significant room for improvement.

Another avenue of fruitful research is to explore computational
security properties of transformation based learning. With a prior
example from Fully Homomorphic Encryption, theoretically a trans-
formation with zero utility loss but which is computationally-hard

12

to invert should exist. Our framework sheds light on some possible
constructions that are worth exploring.

REFERENCES
[1] Jean-Yves Audibert, Olivier Catoni, et al. 2011. Robust linear least squares

regression. The Annals of Statistics 39, 5 (2011), 2766–2794.
[2] Eric Benhamou, Jamal Atif, and Rida Laraki. 2018. Operator norm upper bound

for sub-Gaussian tailed random matrices. Available at SSRN 3307071 (2018).
[3] David Berthelot, Nicholas Carlini, Ian Goodfellow, Nicolas Papernot, Avital

Oliver, and Colin A Raffel. 2019. Mixmatch: A holistic approach to semi-
supervised learning. In Advances in Neural Information Processing Systems.
5049–5059.

[4] Tiziano Bianchi, Valerio Bioglio, and Enrico Magli. 2015. Analysis of one-time
random projections for privacy preserving compressed sensing. IEEE Transactions
on Information Forensics and Security 11, 2 (2015), 313–327.

[5] Olivier Bousquet and André Elisseeff. 2002. Stability and generalization. The
Journal of Machine Learning Research 2 (2002), 499–526.

[6] Nicholas Carlini, Samuel Deng, Sanjam Garg, Somesh Jha, Saeed Mahlouji-
far, Mohammad Mahmoody, Shuang Song, Abhradeep Thakurta, and Florian
Tramer. 2020. An Attack on InstaHide: Is Private Learning Possible with Instance
Encoding? arXiv preprint arXiv:2011.05315 (2020).

[7] Kamalika Chaudhuri, Claire Monteleoni, and Anand D Sarwate. 2011. Differen-
tially private empirical risk minimization. Journal of Machine Learning Research
12, 3 (2011).

[8] Sitan Chen, Zhao Song, and Danyang Zhuo. 2020. On InstaHide, Phase Retrieval,
and Sparse Matrix Factorization. arXiv preprint arXiv:2011.11181 (2020).

[9] Hao Cheng, Hao Fang, and Mari Ostendorf. 2015. Open-domain name error
detection using a multi-task rnn. In Proceedings of the 2015 Conference on
Empirical Methods in Natural Language Processing. 737–746.

[10] Wonwoo Cho and Nam Yul Yu. 2019. Secure and Efficient Compressed Sensing-
Based Encryption With Sparse Matrices. IEEE Transactions on Information
Forensics and Security 15 (2019), 1999–2011.

[11] Graham Cormode, Somesh Jha, Tejas Kulkarni, Ninghui Li, Divesh Srivastava,
and Tianhao Wang. 2018. Privacy at scale: Local differential privacy in practice.
In Proceedings of the 2018 International Conference on Management of Data.
1655–1658.

[12] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. 2018. Bert:
Pre-training of deep bidirectional transformers for language understanding. arXiv
preprint arXiv:1810.04805 (2018).

[13] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. 2018. Bert:
Pre-training of deep bidirectional transformers for language understanding. arXiv
preprint arXiv:1810.04805 (2018).

[14] Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn,
Xiaohua Zhai, Thomas Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg
Heigold, Sylvain Gelly, et al. 2020. An image is worth 16x16 words: Transformers
for image recognition at scale. arXiv preprint arXiv:2010.11929 (2020).

[15] Cynthia Dwork, Moni Naor, Omer Reingold, Guy N Rothblum, and Salil Vadhan.
2009. On the complexity of differentially private data release: efficient algorithms
and hardness results. In Proceedings of the forty-first annual ACM symposium on
Theory of computing. 381–390.

[16] Cynthia Dwork, Aaron Roth, et al. 2014. The algorithmic foundations of differ-
ential privacy. Foundations and Trends in Theoretical Computer Science 9, 3-4
(2014), 211–407.

[17] Arnaud Fréville. 2004. The multidimensional 0–1 knapsack problem: An overview.
European Journal of Operational Research 155, 1 (2004), 1–21.

[18] Aritra Ghosh, Himanshu Kumar, and PS Sastry. 2017. Robust loss functions under
label noise for deep neural networks. In Proceedings of the AAAI Conference on
Artificial Intelligence, Vol. 31.

[19] O. Goldreich, S. Micali, and A. Wigderson. 1987. How to Play ANY Mental
Game. In Proceedings of the Nineteenth Annual ACM Symposium on Theory of
Computing (STOC ’87). 218–229.

[20] Thore Graepel, Kristin Lauter, and Michael Naehrig. 2012. ML confidential:
Machine learning on encrypted data. In International Conference on Information
Security and Cryptology. Springer, 1–21.

[21] Moritz Hardt, Ben Recht, and Yoram Singer. 2016. Train faster, generalize better:
Stability of stochastic gradient descent. In International Conference on Machine
Learning. PMLR, 1225–1234.

[22] Wilko Henecka, Stefan K ögl, Ahmad-Reza Sadeghi, Thomas Schneider, and
Immo Wehrenberg. 2010. TASTY: tool for automating secure two-party computa-
tions. In Proceedings of the 17th ACM conference on Computer and communica-
tions security. 451–462.

[23] Daniel Hsu, Kevin Shi, and Xiaorui Sun. 2017. Linear regression without corre-
spondence. arXiv preprint arXiv:1705.07048 (2017).

[24] Baihe Huang, Zhao Song, Runzhou Tao, Ruizhe Zhang, and Danyang Zhuo. 2020.
InstaHide’s Sample Complexity When Mixing Two Private Images. arXiv preprint
arXiv:2011.11877 (2020).

[25] Yangsibo Huang, Zhao Song, Kai Li, and Sanjeev Arora. 2020. Instahide: Instance-
hiding schemes for private distributed learning. In International Conference on
Machine Learning. PMLR, 4507–4518.

13

[26] Chiraag Juvekar, Vinod Vaikuntanathan, and Anantha Chandrakasan. 2018.
{GAZELLE}: A low latency framework for secure neural network inference.
In 27th {USENIX} Security Symposium ({USENIX} Security 18). 1651–1669.

[27] Jian Liu, Mika Juuti, Yao Lu, and Nadarajah Asokan. 2017. Oblivious neural
network predictions via minionn transformations. In Proceedings of the 2017
ACM SIGSAC Conference on Computer and Communications Security. 619–631.

[28] Takahiro Maekawa, Takayuki Nakachi, Sayaka Shiota, and Hitoshi Kiya. 2018.
Privacy-preserving SVM computing by using random unitary transformation. In
2018 International Symposium on Intelligent Signal Processing and Communica-
tion Systems (ISPACS). IEEE, 146–150.

[29] Jiří Matoušek. 2008. On variants of the Johnson–Lindenstrauss lemma. Random
Structures & Algorithms 33, 2 (2008), 142–156.

[30] Francesca Mignacco, Florent Krzakala, Yue Lu, Pierfrancesco Urbani, and Lenka
Zdeborova. 2020. The role of regularization in classification of high-dimensional
noisy Gaussian mixture. In International Conference on Machine Learning.
PMLR, 6874–6883.

[31] Noman Mohammed, Rui Chen, Benjamin CM Fung, and Philip S Yu. 2011.
Differentially private data release for data mining. In Proceedings of the 17th
ACM SIGKDD international conference on Knowledge discovery and data mining.
493–501.

[32] Payman Mohassel and Yupeng Zhang. 2017. SecureML: A System for Scalable
Privacy-Preserving Machine Learning. In 2017 IEEE Symposium on Security and
Privacy (SP). 19–38. https://doi.org/10.1109/SP.2017.12

[33] Ibuki Nakamura, Yoshihide Tonomura, and Hitoshi Kiya. 2016. Unitary transform-
based template protection and its application to l 2-norm minimization problems.
IEICE TRANSACTIONS on Information and Systems 99, 1 (2016), 60–68.

[34] Ashwin Pananjady, Martin J Wainwright, and Thomas A Courtade. 2017. Linear
regression with shuffled data: Statistical and computational limits of permutation
recovery. IEEE Transactions on Information Theory 64, 5 (2017), 3286–3300.

[35] Ariel D Procaccia, Sashank J Reddi, and Nisarg Shah. 2012. A maximum likeli-
hood approach for selecting sets of alternatives. arXiv preprint arXiv:1210.4882
(2012).

[36] M. Sadegh Riazi, Mohammad Samragh, Hao Chen, Kim Laine, Kristin E. Lauter,
and Farinaz Koushanfar. 2019. XONN: XNOR-based Oblivious Deep Neural
Network Inference. In 28th USENIX Security Symposium, USENIX Security 2019,
Santa Clara, CA, USA, August 14-16, 2019, Nadia Heninger and Patrick Traynor
(Eds.). USENIX Association, 1501–1518.

[37] Bita Darvish Rouhani, M Sadegh Riazi, and Farinaz Koushanfar. 2018. Deepse-
cure: Scalable provably-secure deep learning. In Proceedings of the 55th Annual
Design Automation Conference. 1–6.

[38] Mark Rudelson, Roman Vershynin, et al. 2013. Hanson-wright inequality and
sub-gaussian concentration. Electronic Communications in Probability 18 (2013).

[39] Sebastian Ruder. 2017. An overview of multi-task learning in deep neural net-
works. arXiv preprint arXiv:1706.05098 (2017).

[40] Claude E Shannon. 1949. Communication theory of secrecy systems. The Bell
system technical journal 28, 4 (1949), 656–715.

[41] Xiaoqiang Sun, Peng Zhang, Joseph K Liu, Jianping Yu, and Weixin Xie. 2018.
Private machine learning classification based on fully homomorphic encryption.
IEEE Transactions on Emerging Topics in Computing 8, 2 (2018), 352–364.

[42] Hassan Takabi, Ehsan Hesamifard, and Mehdi Ghasemi. 2016. Privacy preserving
multi-party machine learning with homomorphic encryption. In 29th Annual
Conference on Neural Information Processing Systems (NIPS).

[43] Ryo Takahashi, Takashi Matsubara, and Kuniaki Uehara. 2019. Data augmentation
using random image cropping and patching for deep cnns. IEEE Transactions on
Circuits and Systems for Video Technology 30, 9 (2019), 2917–2931.

[44] Jayakrishnan Unnikrishnan, Saeid Haghighatshoar, and Martin Vetterli. 2018.
Unlabeled sensing with random linear measurements. IEEE Transactions on
Information Theory 64, 5 (2018), 3237–3253.

[45] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones,
Aidan N Gomez, Lukasz Kaiser, and Illia Polosukhin. 2017. Attention is all you
need. arXiv preprint arXiv:1706.03762 (2017).

[46] Vikas Verma, Alex Lamb, Christopher Beckham, Amir Najafi, Ioannis Mitliagkas,
David Lopez-Paz, and Yoshua Bengio. 2019. Manifold mixup: Better represen-
tations by interpolating hidden states. In International Conference on Machine
Learning. PMLR, 6438–6447.

[47] Hanshen Xiao and Srinivas Devadas. 2021. DAUnTLeSS: Data Augmentation and
Uniform Transformation for Learning with Scalability and Security. Cryptology
ePrint Archive, Report 2021/201. (2021). https://eprint.iacr.org/2021/201.

[48] Qiang Yang, Yang Liu, Tianjian Chen, and Yongxin Tong. 2019. Federated
machine learning: Concept and applications. ACM Transactions on Intelligent
Systems and Technology (TIST) 10, 2 (2019), 1–19.

[49] Jianfei Yu and Jing Jiang. 2016. Learning sentence embeddings with auxiliary
tasks for cross-domain sentiment classification. Association for Computational
Linguistics.

[50] Chiyuan Zhang, Samy Bengio, Moritz Hardt, Benjamin Recht, and Oriol Vinyals.
2016. Understanding deep learning requires rethinking generalization. arXiv
preprint arXiv:1611.03530 (2016).

[51] Hongyi Zhang, Moustapha Cisse, Yann N Dauphin, and David Lopez-Paz. 2017.
mixup: Beyond empirical risk minimization. arXiv preprint arXiv:1710.09412
(2017).

[52] Zhun Zhong, Liang Zheng, Guoliang Kang, Shaozi Li, and Yi Yang. 2020. Ran-
dom erasing data augmentation. In Proceedings of the AAAI Conference on
Artificial Intelligence, Vol. 34. 13001–13008.

A PROOF OF THEOREM 1
The proof of Theorem 1 is divided into two parts. First, to lower
bound I(𝑇−1;𝐴𝑑𝑣) = I(𝑊 −1, 𝜎−1;𝐴𝑑𝑣), it is clear that

I(𝑊 −1, 𝜎−1;𝐴𝑑𝑣) = I(𝜎−1;𝐴𝑑𝑣) + I(𝑊 −1;𝐴𝑑𝑣 |𝜎−1)
≥ I(𝑊 −1;𝐴𝑑𝑣 |𝜎−1).

(11)

Thus, it is sufficient to consider I(𝑊 −1;𝐴𝑑𝑣 |𝜎−1). For any estimator
𝐴𝑑𝑣 , we call it is successful if

Pr
𝑥∼𝑃,𝑊 ∼𝑄

(∥𝐴𝑑𝑣 (𝑥𝑊) − 𝑥 ∥ < 𝜖) ≥ 1 − 𝛿. (12)

Since 𝑊 is uniformly selected, I(𝑊 −1;𝐴𝑑𝑣 |𝜎−1) = 𝐻 (𝑊 −1) −
𝐻 (𝑊 −1 |𝐴𝑑𝑣), 𝐻 (𝑊 −1) = log(3𝑑2 − 𝑆𝑐), where 𝑆𝑐 is the number
of matrices in {0, 1}𝑑×𝑑 where ∥𝑊 ∥ > 𝑐. We apply the following
lemma to upper bound 𝑆𝑐 .

LEMMA A.1 ([2]). For a square matrix𝑊 ∈ R𝑑×𝑑 , whose entry
is i.i.d. selected from a sub-Gaussian of zero mean, there exists
non-negative constants 𝑎 and 𝑏, such that

Pr(∥𝑊 ∥ > 𝜂
√
𝑑) ≤ 𝑎 · 𝑒−𝜂𝑏𝑑 ,

for any 𝜂 > 𝑎.

With some calculation, when we select𝑊 randomly from {0,±1}𝑑×𝑑 ,

Pr(∥𝑊 ∥ > 𝑐
√
𝑑) ≤ 𝑒−𝑙𝑜𝑔 (3/2)𝑐𝑑 .

Thus, we have 𝑆𝑐 ≤ 3𝑑 · 𝑒−𝑙𝑜𝑔 (3/2)𝑐𝑑 . Now, to handle 𝐻 (𝑊 −1 |𝐴𝑑𝑣),
let us consider any two matrices𝑊 and𝑊 ′ where 𝐸 =𝑊 −𝑊 ′, and
a predictor𝑊 −1

0 that 𝐴𝑑𝑣 selects,

Pr
𝑥∼𝑃

(
∥(𝑥𝑊 − 𝑥𝑊 ′)𝑊 −1

0 ∥ > 2𝜖
)
> 2𝛿,

then𝑊 −1
0 can successfully recover at most one of transformed data

𝑥𝑊 and 𝑥𝑊 ′. Otherwise, if both Pr𝑥∼𝑃 (∥𝑥𝑊𝑊 −1
0 −𝑥 ∥ < 𝜖) ≥ 1−𝛿

and Pr𝑥∼𝑃 (∥𝑥𝑊 ′𝑊 −1
0 − 𝑥 ∥ < 𝜖) ≥ 1 − 𝛿 hold, then

Pr
𝑥∼𝑃

(∥𝑥 (𝑊 −𝑊 ′)𝑊 −1
0 ∥ < 2𝜖) ≥ 1 − 2𝛿,

which gives a contradiction. Clearly, we know if the adversary pre-
cisely selects the𝑊 −1

0 = 𝑊 −1, then 𝑥𝑊 ·𝑊 −1 = 𝑥 , where secret
input can be perfectly recovered under weight matrix𝑊 . In the fol-
lowing, we set𝑊0 =𝑊 −1, and see how many other transformations
𝑊 ′ exist that cannot be attacked successfully by the adversary. We
introduce the following Lemma.

LEMMA A.2 (HANSON–WRIGHT INEQUALITY [38]). Let 𝑥 =

(𝑥1, 𝑥2, ..., 𝑥𝑑) be a random Gaussian vector with independent co-
ordinates where E(𝑥𝑖) = 0 and 𝑉𝑎𝑟 (𝑥𝑖) = 𝜏2, then for a matrix
𝐴 ∈ R𝑑×𝑑 and any 𝑡 ≥ 0,

Pr(𝑥𝐴𝑥𝑇 − E[𝑥𝐴𝑥𝑇] < −𝑡) ≤ 𝑒𝑥𝑝 [−1
2

𝑡

𝜏2∥𝐴∥
] . (13)

Here, ∥𝐴∥ is the 𝑙2 norm of 𝐴.
14

https://doi.org/10.1109/SP.2017.12
https://eprint.iacr.org/2021/201

Combining Lemma A.1 and A.2, we can lower bound the norm
∥𝑥 (𝑊 −𝑊 ′)𝑊 −1∥ by considering ∥𝑥𝐸∥ · 1

∥𝑊 ∥ . For the first part,

∥𝑥𝐸∥, we have ∥𝐸∥ ≤ ∥𝑊 ∥ + ∥𝑊 ′∥ ≤ 2𝑐
√
𝑑 for any𝑊 and𝑊 ′. Now,

we can lower bound the ∥𝑥𝐸∥ with Lemma A.2. First, take 𝐴 = 𝐸𝐸𝑇

into (13), it is noted that E[𝑥𝐴𝑥𝑇] = E[∥𝑥𝐸∥2] = 𝜏2∥𝐸∥2
𝐹

, where in
our special case ∥𝐸∥2

𝐹
is at least the number of nonzero entries in 𝐸.

With the bound on ∥𝐸∥, we have that

Pr(∥𝑥𝐸∥2 < 𝜏2∥𝐸∥2
𝐹 − 𝑡) ≤ 𝑒−

𝑡

8𝑐2𝑑𝜏2 . (14)

On the other hand, for any given𝑊 , there are at most(
𝑑2

𝛽𝑑2

)
× 2𝛽𝑑

2

many selections of𝑊 ′ such that ∥𝐸∥2
𝐹
= ∥𝑊 −𝑊 ′∥2

𝐹
≤ 𝛽𝑑2. Thus,

we have at least ((1 − 𝑒−𝑙𝑜𝑔 (3/2)𝑐𝑑))3𝑑2 −
(𝑑2

𝛽𝑑2
)
× 2𝛽𝑑

2) many selec-

tions of𝑊 ′ such that ∥𝐸∥2
𝐹
> 𝛽𝑑2. Now putting things together, if

we set

𝜖 =

√
𝜏2𝛽𝑑2 − 𝑡

2𝑐
√
𝑑

, 𝛿 ≤ 1 − 𝑒−
𝑡

8𝑐2𝑑𝜏2

2
,

then

I(𝑊 −1;𝐴𝑑𝑣 |𝜎−1) ≥ log
(
(1−𝑒−𝑙𝑜𝑔 (3/2)𝑐𝑑)3𝑑

2)
−log

((𝑑2

𝛽𝑑2

)
×2𝛽𝑑

2)
.

The next part of the proof is to handle I(𝑊 −1, 𝜎−1;𝜎 (𝑥𝑊)) =

I(𝑊 −1;𝜎 (𝑥𝑊)) + I(𝜎−1;𝜎 (𝑥𝑊) |𝑊 −1). In our assumption, 𝜎 is
some deterministic function selected, and thus I(𝜎−1;𝜎 (𝑥𝑊) |𝑊 −1)
equals 0. On the other hand,

I(𝑊 −1;𝜎 (𝑥𝑊)) = H(𝜎 (𝑥𝑊)) − H (𝜎 (𝑥𝑊) |𝑊) ≤ H (𝜎 (𝑥𝑊)).

Thus, one can simply upper bound H(𝜎 (𝑥𝑊)) by
∑𝑑
𝑖=1 H(𝜎 (𝑥𝑊) (𝑖)),

where 𝜎 (𝑥𝑊) (𝑖) corresponds to the 𝑖-th coordinate of 𝜎 (𝑥𝑊). If we
ignore the negligible fraction of𝑊 where ∥𝑊 ∥ > 𝑐

√
𝑑 , then each en-

try of𝑊 is i.i.d. selected and thus each coordinate of 𝜎 (𝑥𝑊) is iden-
tically distributed as 𝜎 (⟨𝑥, 𝑣⟩), where 𝑣 is a random vector, each coor-
dinate of which is i.i.d. selected from {0,±1}. Thus, the distribution
of ⟨𝑥, 𝑣⟩ is equivalent to N(0, 𝜏 ∥𝑣 ∥), where ∥𝑣 ∥2 follows a Binomial
distribution 𝐵(𝑑, 2/3), where Pr(∥𝑣 ∥2 = 𝑢) =

(𝑢
𝑑

)
(2/3)𝑢 (1/3)𝑑−𝑢 .

Therefore, let Q1 (·) be the probability density function (pdf) of
N(0, 𝜏 ∥𝑣 ∥) where ∥𝑣 ∥2 ∼ 𝐵(𝑑, 2/3) then

H(𝜎 (𝑥𝑊)) = −
∑

𝑜∈𝜎 (·)
𝑝1 (𝜎−1 (𝑜)) log(𝑝1 (𝜎−1 (𝑜))), (15)

where 𝑝1 (𝜎−1 (𝑜)) corresponds to the probability of Q1 (·) on the
support set of the inverse of 𝜎 (·) at point 𝑜 .

B PROOF OF THEOREM 2
We rewrite the linear operators (�̃�1,�̃�2, ...,�̃�𝑝) on 𝒙 = (𝒙1, 𝒙2, ..., 𝒙𝑝)
as

𝒙 ·𝑊 = 𝒙 ·

�̃�1 0 0
0 �̃�2 0
...

0 0 �̃�𝑝

 , (16)

where compared to the weight matrix used in Theorem 1, now the
weight matrix 𝑊 for the Transformer network becomes a block
diagonal matrix.

With a similar reasoning as the proof of Theorem 1, first

𝐻 (𝑊) = 𝑝𝐻 (�̃�𝑖) ≥ 𝑝 log
(
(1 − 𝑒−𝑙𝑜𝑔 (3/2)𝑐√𝑝𝑑𝑝) · 3𝑑

2
𝑝
)
.

As for 𝐻 (𝑊 |𝐴𝑑𝑣), it is noted that since ∥�̃�𝑖 ∥ ≤ 𝑐
√
𝑑, the produced

diagonal matrix also satisfies ∥𝑊 ∥ ≤ 𝑐
√
𝑑 . On the other hand, since

there are only 𝑝𝑑2
𝑝 entries we can select in𝑊 , for any given𝑊 , there

are at most
((𝑝 ·𝑑2

𝑝

𝛽𝑑2

)
× 2𝛽𝑑

2)
many𝑊 ′ such that ∥𝑊 −𝑊 ′∥2

𝐹
≤ 𝛽𝑑2 .

Thus, if we set

𝜖 =

√
𝜏2𝛽𝑑2 − 𝑡

2𝑐
√
𝑑

, 𝛿 ≤ 1 − 𝑒−
𝑡

8𝑐2𝑑𝜏2

2
,

then

I(𝑊 −1;𝐴𝑑𝑣 |𝜎−1) ≥ 𝑝 log
(
(1−𝑒−𝑙𝑜𝑔 (3/2)𝑐√𝑝𝑑𝑝)3𝑑

2
𝑝
)
−log

((𝑝 · 𝑑2
𝑝

𝛽𝑑2

)
×2𝛽𝑑

2)
.

As for 𝐼 (𝑇−1;𝑇 (𝑥)), it is clear that the transformations on each
patch are independent and thus

I(𝑇−1;𝜎 (𝑥𝑊)) =
𝑝∑
𝑖=1

I(𝑇−1;𝜎 (𝒙𝑖�̃�𝑖)).

On the other hand, as assumed, both �̃�𝑖 and 𝒙𝑖 are independent and
identically distributed, respectively. Therefore, each I(𝑇−1;𝜎 (𝒙𝑖�̃�𝑖))
equals

H(𝜎 (𝒙�̃�)) − H (𝜎 (𝒙�̃�) |�̃�),
the case in Theorem 1 but replacing 𝑑 by 𝑑𝑝 . Thus, 𝐼 (𝑇−1;𝑇 (𝑥)) is
still 𝑂 (𝑑) for the transformation designed for transformer case.

C ANALYSIS OF PRIVATE TRANSFORM FOR
CNN

Different from the transformation for Transformer network analyzed
in Theorem 2, in a CNN, the patches can be overlapped. However,
we can still rewrite the linear operator defined in (16), while𝑊 is
not strictly block-wise diagonal and𝑊 ∈ R𝑑×𝑘2𝑝 .

We give an example here. Imagine 𝒙 = (𝑥1, 𝑥2, 𝑥3) where (𝑥1, 𝑥2)
forms the first patch and (𝑥2, 𝑥3) forms the second one. Two inde-
pendent matrices �̃�1,�̃�2 ∈ R2×2 are generated and we express the
transformation as follows,

𝒙 ·𝑊 = (𝑥1, 𝑥2, 𝑥3) ·

𝑤11 𝑤12 0 0
𝑤13 𝑤14 𝑤21 𝑤22

0 0 𝑤23 𝑤24

 . (17)

once �̃�1 and �̃�2 are invertible, the right-hand inverse of𝑊 can be
written as

𝑊 −1
𝑅 =

𝑤−1

11 𝑤−1
13 /2 0

𝑤−1
12 𝑤−1

14 /2 0
0 𝑤−1

21 /2 𝑤−1
23

0 𝑤−1
22 /2 𝑤−1

24

 .
Here, 𝑤−1

𝑖 𝑗
denotes the 𝑗-th entry of �̃� −1

𝑖
. It is easy to verify that

𝑊𝑊 −1
𝑅

= 𝑰𝑑 . From the above example, as the number of overlapped
patches increase, it corresponds to a larger weight𝑊 . Especially, if
each entry will be included in at most 𝑟 patches, the norm of𝑊 can
be up to 𝑐

√
𝑑𝑟 , where ∥�̃�𝑖 ∥ ≤ 𝑐

√
𝑑. On the other hand, with more

patches and a larger corresponding𝑊 , the freedom in generating
𝑊 also increases accordingly, by a factor of about 𝑟 compared to
the𝑊 for non-overlapped patches shown in the proof of Theorem

15

2. This is because if each entry will appear in 𝑟 patches, then the
number of patches and the corresponding�̃�𝑖 will increase by 𝑟 times.
Thus, with properly scaling the free parameter 𝑐, 𝑡 and 𝛽, the security
guarantee of transformations for overlapped patches is almost the
same as Theorem 2 by replacing 𝑑𝑝 with 𝑘2, the size of kernel.

To be formal, in the CNN case described. Amongst those over-
lapped patches, each entry (pixel) of input 𝑥 will be included in at

most (𝑘/𝑠)2 patches, and totally there are 𝑝 = (
√
𝑑−𝑘
𝑠 + 1)2 patches.

For each �̃�𝑖 ∈ R𝑘
2×𝑘2

, if ∥�̃�𝑖 ∥ ≤ 𝑐
√
𝑑 , then the composite matrix𝑊

satisfies ∥𝑊 ∥ ≤ (𝑘/𝑠)2𝑐
√
𝑑 .

Since there are 𝑘4𝑝 many entries to be selected in𝑊 , we have

I(𝑇−1;𝐴𝑑𝑣 |𝜎−1) ≥ 𝑝 log
(
(1−𝑒−𝑙𝑜𝑔 (3/2)𝑐

√
𝑑𝑘)3𝑘

4)
−log

((𝑝 · 𝑘4

𝛽𝑑2

)
×2𝛽𝑑

2)
,

where

𝜖 =

√
𝜏2𝛽𝑑2 − 𝑡

2𝑐 (𝑘/𝑠)2
√
𝑑
, 𝛿 ≤ 1 − 𝑒−

𝑡

8𝑐2 (𝑘/𝑠)4𝑑𝜏2

2
.

As for 𝐼 (𝑇−1;𝑇 (𝑥)), we cannot simply write it as the sum of 𝐼 (𝑇−1, 𝜎 (𝑥𝑖�̃�𝑖))
since 𝑥𝑖 are not independent due to overlapping. However, the upper
bound

𝐼 (𝑇−1;𝑇 (𝑥)) ≤ 𝑝𝑘2H(𝜎 (⟨𝑥, 𝑣⟩) + 𝑜 (1),
still holds where 𝑥 ∼ N(0, 𝜏 𝑰𝑘2) and ∥𝑣 ∥2 follows a Binomial
distribution B(𝑘2, 2/3). Therefore, 𝐼 (𝑇−1;𝑇 (𝑥)) = 𝑂 (𝑝𝑘2) while
I(𝑇−1;𝐴𝑑𝑣 |𝜎−1) = Θ(𝑝𝑘4). When we scale the selection of (𝑐, 𝑡, 𝛽)
in Theorem 2 to be 𝑐, (𝑘/𝑠)4𝑡, (𝑘/𝑠)4𝛽, it provides asymptotically
the same bound as described in Theorem 2 after replacing the patch
size 𝑑𝑝 by 𝑘2 for constant 𝑘/𝑠.

D ADDITIONAL EXPERIMENTS AND
EXPLANATION

Training Time: In the proposed Transformer networks and CNNs,
we incorporate an additional fully-connected layer for each patch,
and therefore the training time of each epoch accordingly increases
as compared to that of the original network.

We take the regular Resnet 20 as an example. With 50,000 CIFAR-
10 samples, each epoch takes 2.0 seconds. Now, consider the mod-
ified CNN architecture shown in Section 3.5 when 𝑘 = 4 and
𝑠 = 4. Each image is split into 64 patches and accordingly 64 fully-
connected layers are added to process each patch, respectively. Under
the same setup, in each epoch, the 64 fully-connected layers’ training
takes 7.5 seconds while the subsequent layers in the CNN take 2.3
seconds.

With further incorporation of Task Augmentation with 2 own-
ers, compared to single-user private learning, the processing time
almost doubles. Continuing with the above example, the number of
additional fully-connected layers doubles to 128 and they take 12.9
seconds per epoch to train. Accordingly the subsequent CNN part
takes 4.5 seconds per epoch to train.
Task Augmentation Implementation Details: During our experi-
ment, we set the classification loss function to be the binary cross
entropy on the expanded label, which is more numerically stable
compared to a simple regression on 10 × 10 classes. The learning
rate strategy in our collaborative CNN learning is set to be 0.1, 0.01
and 0.001 for 1-150, 151-250 and 251-300 epochs, respectively. We
adopt the first Task Augmentation method described in Section 4 to

implement Resnet20 and Resnet56, i.e., we aggregate two 32×32×3
images into a form 64 × 32 × 3.
Multiple-layer Private Transformation and Recovery Attack:
We provide another set of experiments where we consider more
than one layer in the private transformation. The transformation
design framework and PAC theory can be easily generalized to a
multi-layer transformation associated with non-linear operators. For
example, let the transformation 𝑇 (𝑥) = 𝜎 (𝑥𝑊1) ·𝑊2, where𝑊𝑖 are
still independent random {±1, 0}𝑑×𝑑 matrices and 𝜎 (·) is a normal-
ized Sigmoid function 𝜎 (𝑧) = 𝑒𝑧/10

1+𝑒𝑧/10 in our following CIFAR-10
image recovery experiments.

Under the same setup, we assume 15,000 CIFAR transformed
samples are exposed. Different prior knowledge of the adversary
are assumed and shown in Fig. 7. The attack is implemented as
described in Section 7.3, where a two-layer network formed by a
fully-connected layer and a regression layer is trained to approxi-
mate the inversion. The two layers each have 3072 neurons and are
connected by a Relu function.

The two-layer transformation 𝑇 (𝑥) = 𝜎 (𝑥𝑊1) ·𝑊2 with a non-
linear activation function 𝜎 imposes greater empirical hardness to
invert the transformed pictures. On the other hand, the impact on
training performance is within 1% compared to the single-layer trans-
formation applied previously.

16

Figure 7: Additional Transformed CIFAR-10 Image Recovery

(a) Plain CIFAR-10 Images

(b) Recovery of FCN based Transformed Images with Prior Knowledge on 90% Correspondences and 4 Candidates Per Plain Sample

(c) Recovery of FCN based Transformed Images with Prior Knowledge on 50% Correspondences and 2 Candidates Per Plain Sample

17

	Abstract
	1 Introduction
	2 Summary of Dauntless Framework
	2.1 PAC Security
	2.2 Transformation Design
	2.3 Neural Networks
	2.4 A Framework of PAC Security Analysis
	2.5 Contrast with Encryption Approach

	3 Private Transforms and PAC Proofs
	3.1 Fully Connected Network Transform and Privacy Guarantees
	3.2 Transformer Network
	3.3 Private Transform for a Transformer Network
	3.4 Convolutional Neural Network (CNN)
	3.5 Private Transform for a CNN
	3.6 Transfer Learning

	4 Task Augmentation
	5 Private Collaborative Learning
	6 Augmentation with Labeled Noise
	7 Experiments
	7.1 Prediction
	7.2 Privacy Amplification Using Labeled Noise
	7.3 Image Recovery Attacks

	8 Related Work
	9 Conclusion
	References
	A Proof of Theorem 1
	B Proof of Theorem 2
	C Analysis of Private Transform for CNN
	D Additional Experiments and Explanation

