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Abstract

We study the randomness complexity of interactive proofs and zero-knowledge proofs. In particular,
we ask whether it is possible to reduce the randomness complexity, R, of the verifier to be comparable
with the number of bits,CV , that the verifier sends during the interaction. We show that such randomness
sparsification is possible in several settings. Specifically, unconditional sparsification can be obtained in
the non-uniform setting (where the verifier is modelled as a circuit), and in the uniform setting where the
parties have access to a (reusable) common-random-string (CRS). We further show that constant-round
uniform protocols can be sparsified without a CRS under a plausible worst-case complexity-theoretic
assumption that was used previously in the context of derandomization.

All the above sparsification results preserve statistical-zero knowledge provided that this property
holds against a cheating verifier. We further show that randomness sparsification can be applied to
honest-verifier statistical zero-knowledge (HVSZK) proofs at the expense of increasing the communica-
tion from the prover byR−F bits, or, in the case of honest-verifier perfect zero-knowledge (HVPZK) by
slowing down the simulation by a factor of 2R−F . Here F is a new measure of accessible bit complexity
of an HVZK proof system that ranges from 0 to R, where a maximal grade of R is achieved when zero-
knowledge holds against a “semi-malicious” verifier that maliciously selects its random tape and then
plays honestly. Consequently, we show that some classical HVSZK proof systems, like the one for the
complete Statistical-Distance problem (Sahai and Vadhan, JACM 2003) admit randomness sparsification
with no penalty.

Along the way we introduce new notions of pseudorandomness against interactive proof systems,
and study their relations to existing notions of pseudorandomness.

1 Introduction

Randomness is a valuable resource. It allows us to speed-up computation in various settings and it is es-
pecially useful, or even essential, at the presence of adversarial behavior. Consequently, an extensive body
of research has been devoted to the question of minimizing the randomness complexity in various contexts.
Notably, the seminal notion of pseudorandomness [BM82, Yao82] has been developed as a universal ap-
proach for saving randomness or even completely removing the need for random bits. In this paper, we
study this general question in the context of (probabilistic) interactive proofs.
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Interactive proofs, presented by [GMR89, BM88], form a natural extension of non-deterministic poly-
nomial time computation (NP). A computationally-bounded probabilistic verifier V wishes to decide whether
an input x is a member of a promise problem1 Π = (Πyes,Πno) with the aid of a computationally-unbounded
untrusted prover P who tries to convince V that x is a yes-instance. Towards this end, the two parties ex-
change messages via a protocol, and at the end the verifier decides whether to accept or to reject the input.
The protocol should achieve completeness and soundness. The former asserts that yes-instances should be
accepted except for some small probability (completeness error), and the latter asserts that no-instances
should be rejected regardless of the prover’s strategy except for some small probability (soundness error).
(See Definition 2.2.)

The celebrated result of [LFKN92, Sha92] shows that interactive proofs are as strong as polynomial-
space computations (i.e., IP = PSPACE). Moreover, randomness seems essential for this result: If one
limits the verifier to be deterministic then interaction does not really help – the prover can predict the
verifier messages and so can send all the answers at once – and the power of such proof systems is limited to
NP. Put differently, randomness provides “unpredictability” which is crucial for achieving soundness, i.e.,
for coping with a cheating prover. In fact, even in cases where soundness can be achieved deterministically
(i.e., when the underlying problem is in NP) one may want to use a randomized proof system. This is
the case, for example, when the prover wants to hide some information from the verifier like in the case
of zero-knowledge proofs [GMR89]. Indeed, deterministic proof systems inherently allow the verifier to
convince others in the validity of the statement, a property that violates zero-knowledge for non-trivial
languages [Ore87]. In this context, randomness is used for hiding information similarly to its use in the
setting of randomized encryption [GM84].

How much randomness is needed for interactive proofs? We would like to understand how random-
ness complexity scales with other resources. Specifically, we would like to relate it to the communication
complexity of the protocol – a measure that was extensively studied in the context of interactive proofs and
for which we have better understanding (e.g., [GH98, GVW02]). We therefore ask:

Given an interactive proof system 〈P, V 〉 for a problem Π, can we always sparsify the random-
ness complexity R to be comparable with the amount of communication complexity? Can we
do this while preserving zero-knowledge?

We use the term randomness sparsification to highlight the point that we do not aim for full de-randomization,
rather we only try to make sure that the randomness complexity is not much larger than the communication
complexity.

1.1 Related works

Clearly the question of sparsification becomes trivial for public-coin protocols (aka Arthur-Merlin protocols)
in which all the randomness of the verifier is being sent during the protocol. Goldwasser and Sipser [GS86]
showed that any general interactive proof protocol can be transformed into public-coin protocol, however,

1A promise problem [ESY84] is a partition of the set of all strings into three sets: Πyes the set of yes instances, Πno the set of
no instances, and {0, 1}∗ \ (Πyes ∪ Πno) the set of “disallowed strings”. The more common notion of a language corresponds to
the special case where Πno is the complement of Πyes (i.e., there are no disallowed strings). The promise problem formalization is
especially adequate for the study of interactive proofs and is therefore adopted for this paper. See [Gol06] for a thorough discussion.
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this transformation increases the randomness complexity of the new system and therefore does not resolve
the sparsification question.

Information-theoretically, if the verifier sends at most CV bits during the whole interaction, it should be
possible to emulate it with about CV bits of randomness (in expectation). Indeed, in the context of two-party
communication complexity games, it is well known [New91] that randomized protocols that use R random
bits can be converted into protocols whose randomness complexity is not much larger than the communica-
tion complexity C. While this result can be generalized to the setting of interactive proof systems [AV19], it
does not preserve the computational complexity of the verifier. Specifically, this sparsification is essentially
based on an inefficient pseudorandom generator G whose existence follows from the probabilistic method.

The question of efficient sparsification in the related context of information-theoretic secure multi-
party computation (ITMPC) was addressed by Ishai and Dubrov [DI06]. They introduced the notion of
non-Boolean PRG (nb-PRG) and showed that such a PRG can be used to sparsify efficiently-computable
protocols with passive security.2 The definition of nb-PRG generalizes the standard notion of PRG by con-
sidering non-Boolean distinguishers. Formally, a (T,C, ε) nb-PRGG : {0, 1}S → {0, 1}R fools any T -time
non-Boolean algorithm D : {0, 1}R → {0, 1}C with C output bits in the sense that D(UR) is ε-close (in
statistical distance) to D(G(US)) where UN denotes the uniform distribution over N -bit strings. For poly-
nomially related parameters, nb-PRGs with an optimal seed length ofO(C) bits can be obtained either based
on (exponentially strong) cryptographic assumptions [DI06] or based on standard worst-case complexity-
theoretic assumptions [AS17, AASY16]. In order to sparsify a passively-secure efficient ITMPC protocol,
it suffices to invoke the parties over pseudorandom tapes that are selected according to (T,C, ε) nb-PRG
where C upper-bounds the number of bits communicated to the adversary and T is the total computational
complexity of the protocol. The main idea is to note that any fixed coalition of corrupted parties receives
from the honest parties at most C bits of incoming messages whose distribution can be generated by apply-
ing a procedureD to the pseudorandom tapes of the honest parties. The procedureD is obtained by “gluing”
together the codes of all parties, and can therefore be implemented with complexity T . Since the underly-
ing nb-PRG fools D, the sparsified protocol remains information-theoretic private: An external unbounded
environment that examines the view of the adversary “learns” nothing on the honest parties inputs.

The above argument relies on the efficiency of all internal parties that participate in the protocol. It
is therefore unclear whether it can be extended it to our setting where prover, even when played honestly,
may be computationally unbounded.3 Nuida and Hanaoka [NH12] pointed out to the limitation of the nb-
PRG approach in the context of “leaky” distinguishing games with an internal computationally-unbounded
adversary, and suggested to use exponentially-strong cryptographic pseudorandom generators (whose dis-
tinguishing advantage is exponential in the leakage available to the adversary). It should be mentioned,
however, that although the original sparsification argument of [DI06] fails, we do not know whether nb-
PRGs suffice for sparsification neither in our context nor in the more general context suggested by [NH12].
In fact, known concrete constructions of nb-PRGs (e.g., ones that are based on exponential cryptographic-
PRGs) seem to suffice for this purpose.

Finally, let us mention that several works have studied other aspects of randomness complexity in the
2More precisely, their sparsification applies to protocols with privacy against parties that passively follow the protocol but may

select their random tape arbitrarily. (In addition, they used an indistinguishability-based definition which is equivalent to unbounded
simulation, however, their result seems to generalize to the case of efficient simulation as well.)

3In contrast, one can use nb-PRGs (against arbitrary polynomial-time adversaries) to sparsify efficiently-computable argument
systems. In such systems correctness holds with respect to an efficient prover strategy, and soundness is required to hold only
against efficient provers. However, this setting has no information-theoretic flavor and a standard cryptographic pseudorandom
generator can be used as well.
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context of public-coin interactive proof systems. This includes randomness-efficient methods for round-
reduction [BR94] and for error-reduction [BGG93].

1.2 Our Results and Techniques

In this paper, we present several sparsification results for interactive proofs and for zero-knowledge proofs.
We begin with the former case.

1.2.1 General Interactive Proofs

Before stating our results, we set-up some notation.

Notation 1.1. For polynomially-bounded integer-valued functions R,CV , TV , CP and k we consider proof
systems that on an n-bit input, the parties exchange k(n) messages, where the verifier V uses R(n) random
bits, sends a total number of CV (n) bits, and runs in time TV (n), and the prover sends a total number of
CP (n) bits. We refer to such protocols as IPk[R,CV , TV , CP ] protocols. We also consider non-uniform
IPk[R,CV , TV , CP ] protocols in which the verifier is implemented by a TV -size circuit. We sometimes
omit k and use IP[R,CV , TV , CP ] (or non-uniform IP[R,CV , TV , CP ]) to denote a protocol with an un-
specified round complexity. (Observe that in any case k is upper-bounded by CV + CP .) Similarly, we
let IP (resp.,IP/poly, IPk) denote the union of IP[R,CV , TV , CP ] (resp., non-uniform IP[R,CV , TV , CP ],
IPk[R,CV , TV , CP ]) where R,CV , TV , CP range over all polynomially-bounded functions.

PRGs against interactive proofs. Let us begin by presenting a natural definition for a PRG against an
interactive proof. Consider an IP[R,CV , TV , CP ] proof system 〈P, V 〉 for a problem Π with completeness
error of δc and soundness error of δs. For a length-extending functionG : {0, 1}S(n) → {0, 1}R(n) we define
the verifier V G(x) to be the verifier that samples a seed s ←↩ {0, 1}S(n) and invokes V with the random
tape G(s) on the input x. We say that G ε-fools the protocol 〈P, V 〉 if

〈
P, V G

〉
forms an interactive proof

system for Π with an additive penalty of ε in the completeness and soundness error, i.e., the completeness
error and soundness errors are upper-bounded by δc + ε and by δs + ε, respectively.

We begin by noting that, in the non-uniform setting, one can construct such PRGs unconditionally with
a seed length that is linear in the verifier’s communication complexity and logarithmic in its running time.

Theorem 1.2. For every functions TV (n), CV (n), CP (n), R(n) : N→ N and ε : N→ [0, 1], there exists a
G : {0, 1}S(n) → {0, 1}R(n) that can be computed by a non-uniform Õ(RTV )-size circuit and ε-fools every
non-uniform IP[R,CV , TV , CP ] protocol where S = 2CV + 2 log(1/ε) + log TV + log log TV +O(1).

As an immediate corollary we derive the following result.

Theorem 1.3 (Non-Uniform Randomness Sparsification for IP). Suppose that a promise problem Π has a
(possibly non-uniform) IP[R,CV , TV , CP ] interactive proof 〈P, V 〉 with completeness error δc and sound-
ness error δs. Then, for every ε(n), the promise problem Π also has a non-uniform proof system 〈P, V ′〉
whose verifier is a non-uniform algorithm with randomness complexity R′ = O(CV + log(1/ε) + log TV )
and computational complexity of T ′V = TV + Õ(TV (R + log(1/ε))) and with identical communication
complexity (C ′V = CV and C ′P = CP ), and identical round complexity. The soundness and completeness

4



error of the new system are δ′s 6 δs+ ε and δ′c 6 δc+ ε. Moreover, if the original proof system has a prefect
completeness then so is the new system.4

The PRG construction (Theorem 1.2) is based on a family of t-wise independent hash functions. That
is, we show that, for a properly chosen parameter t, a randomly chosen t-wise independent hash function is
likely to fool IP[R,CV , TV , CP ]. Unfortunately, one has to invest too many random bits in order to sample
a hash function, and so we use non-uniformity to hard-wire one “good” hash function. (See Section 3 for
details.) An alternative solution is to select the hash function via a common-random-string (CRS) that is
available to both parties and can be reused among many invocations.5 This also leads to uniform sparsifi-
cation in an amortized setting where many instances are considered together. In such a case one can even
remove the CRS and let the verifier sample it once for all the instances. (See Corollary 3.8.)

Single-Instance Sparsification in the uniform setting without CRS? A natural way for achieving ran-
domness sparsification in the uniform setting is to “sparsify” the process of selecting the hash function. That
is, to use a different pseudorandom generator to sample a hash function. Indeed, this approach was taken
by [AASY16] to construct nb-PRGs. The idea is to show that given the description of a hash function hz one
can determine with “not-too-large-complexity” (e.g., low in the polynomial hierarchy) whether hz fools an
interactive proof system. If such a decision can be made by some “algorithm” D then we can select the hash
function by using a PRG that fools D. Unfortunately, our definition of “fooling interactive proofs” does not
seem to be efficiently-decidable. First, the definition implicitly refers to inputs that satisfy the promise of the
underlying problem Π, and deciding whether an input x belongs to Πyes∪Πno may be very hard. Second, as
part of the pseudorandomness requirement, the new system

〈
P, V G

〉
should preserve completeness (up to

an error of ε). However, this property depends on the behavior of the honest prover P which is an inefficient
procedure on which we have no “handle”. In particular, even if we try to design an interactive proof system
for deciding whether hz is a good PRG, it is not clear how to make sure that the unbounded prover really
uses the honest P when needed.

Strong PRGs. We solve both problems by strengthening the notion of pseudorandomness against interac-
tive proofs. Specifically, we say that G strongly ε-fools the protocol 〈P, V 〉 if for every string x ∈ {0, 1}∗
and every possible prover strategy P ∗, the gap between the acceptance probability of V (x) when interact-
ing with P ∗(x) and the acceptance probability of V G(x) when interacting with P ∗(x) is at most ε. While
this definition seems stronger than the previous one, the proof of Theorem 1.2 actually shows that random
hash functions strongly fool interactive proofs. Crucially, this new definition makes no reference to the un-
derlying promise problem or to the honest prover P . (Indeed, one may say that G ε-fools the interactive
machine V .) As a result, the above-mentioned obstacles are removed and we can show that the problem
of checking whether a given hash function hz strongly-fools an IPk proof system admits an IPk+1 proof
system. For constant k, this puts the language of “bad” hash functions in the class AM and so we can select
our hash function by a pseudorandom generator that fools AM – a well-studied object in complexity theory.
Specifically, known constructions of such PRGs [NW94, IW97, KVM02, SU06] can be based on the as-
sumption that E = DTime(2O(n)) is hard for exponential size non-deterministic circuits. (See Theorem 4.3
for details). In Section 4 we prove the following result.

4All our transformations preserve perfect completeness. From now on, we omit this point throughout this section.
5In many scenarios such a CRS is available “for free”. Furthermore, the fact that it is re-usable and that it should not be kept

private from the prover even before the protocol begins, makes it highly-attractive even compared to public coins.
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Theorem 1.4 (Uniform Randomness Sparsification for constant-round proofs). Suppose that E is hard for
exponential size non-deterministic circuits. Then, for every inverse polynomial ε, every constant k and every
polynomially-bounded functionsR,CV , TV , CP , there exists a PRG computable in uniform polynomial time
of T ′V = Õ(TV · (R+log n)) that strongly ε-fools non-uniform IPk[R,CV , TV , CP ] proof systems with seed
length of R′ = 2CV +O(log n). Consequently, every IPk[R,CV , TV , CP ] proof system can be transformed
into a new IPk[R

′, CV , T
′
V , CP ] with an additive penalty of ε in the soundness and completeness errors.

Moreover, perfect completeness is preserved.

The underlying assumption can be viewed as a natural extension of EXP 6= NP to the non-uniform
settings. Similar assumptions were made in the literature (e.g., [BOV03, Dru13, FL92, GW02, TV00]).

Remark 1.5. One should note that when k is constant the underlying assumption suffices for full de-
randomization of the protocol (via a sequence of transformations). Still, one may prefer to use the sparsified
protocol (that still uses some randomness), either due to its efficiency properties (in terms of computation
and communication) or due to its zero-knowledge properties as discussed in Section 1.2.2.

The seed length of our PRGs is dominated by the number of bits, CV , sent by the verifier. (This is
the case both in the uniform and non-uniform settings.) It is not hard to show that such a dependency is
essentially optimal even if one considers the weaker variant of IP PRGs.

Proposition 1.6 (Sparsification lower-bound). For every functions TV (n), CV (n), CP (n), R(n) : N → N
where CV < R every G : {0, 1}S(n) → {0, 1}R(n) that 0.1-fools IP[R,CV , TV , CP ] protocols must have a
seed length of Ω(CV ).

Proof. Assume that S < αCV for some small constant α < 1. A simple information-theoretic argument
shows that y = G(US) is predicatable in the following sense. There exists an index i ∈ [CV ] such that given
the (i− 1)-prefix y[1 : i− 1], one can guess (possibly inefficiently) the next bit y[i] with success probability
of, say, 0.8. Indeed, letting pi := H(yi|y[1 : i − 1]) denote the conditional entropy of yi given the prefix,
we know that

∑CV
i=1 pi 6 H(y) = S < αCV and so, by an averaging argument, there exists an index i

for which pi < α. For sufficiently small constant α, this implies that yi is predictable with probability 0.8.
Consider the following proof system for the trivial empty language (Πyes = ∅ and Πno = {0, 1}∗). The
verifier samples r ∈ {0, 1}R and sends r[1 : i − 1] to the prover who responds with a single bit b. The
verifier accepts if b = y[i]. When r is random the soundness error is 1/2, but when r = G(US), the error
grows to 0.8.

nb-PRGs are not IP-PRGs. We also show (in Appendix A) that, under plausible cryptographic assump-
tions, some nb-PRGs do not fool IP protocols. Roughly, this is done by constructing a nb-PRG which is
malleable. That is, although the prover cannot tell whether the verifier uses random bits or bits that were
generated via the nb-PRG, she can provide a short hint that allows a computationally-bounded algorithm
(the original verifier) to distinguish between the two cases. Our results therefore show that the inapplicabil-
ity of nb-PRGs to our setting reflects an inherent limitation and it is not just an artifact of the previous proof
techniques.

1.2.2 Zero-Knowledge Proofs

We move on and study randomness-sparsification for statistical zero-knowledge proofs. In the following
we focus on constant-round zero-knowledge protocols with a uniform verifier and base our results on the
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assumption from Theorem 1.4. If one is willing to make the verifier non-uniform (or to allow a public
common reference string), then the following results can be proved unconditionally without assumptions for
protocols with an arbitrary number of rounds.

Let SZKk[R,CV , TV , CP ] be an IPk[R,CV , TV , CP ] statistical zero-knowledge protocol, whose zero-
knowledge property holds against an arbitrary, possibly malicious, verifier that may deviate from the pro-
tocol. We begin by noting that PRG-based randomness-sparsification trivially preserves such a strong zero
knowledge property.

Theorem 1.7 (Uniform Randomness Sparsification for constant-round SZK). Suppose that E is hard for
exponential size non-deterministic circuits. Then, for every inverse polynomial ε, every constant-round
SZKk[R,CV , TV , CP ] proof system can be transformed into a new SZKk[R

′, CV , T
′
V , CP ] with randomness

of R′ = 2CV +O(log n), (uniform) verifier’s complexity of T ′V = Õ(TV · (R+ log n)) and with an additive
penalty of ε in the soundness and completeness errors.

The proof is straightforward: Any malicious verifier strategy that can be played in the original protocol
〈P, V 〉 can be also played in the sparsified protocol

〈
P, V G

〉
. Indeed, SZK is a feature of the honest prover

that remains unchanged in the sparsified proof system.

Sparsifying HVSZK? We move on and ask whether such a theorem can be proved for the case of honest-
verifier statistical zero-knowledge protocols (HVSZK). While there are known transformations from HVSZK
to SZK (e.g., [Vad99, GSV98, HRV18]) these transformations incur a communication complexity overhead
that is at least as large as the randomness complexity of the original protocol. Therefore, the problem of
sparsifying HVSZK is not known to be reducible to the sparsification of SZK.

It is instructive to see why Theorem 1.7 does not immediately generalize to the HVSZK setting. Con-
sider for simplicity a 2-message proof system 〈P, V 〉 where V sends a message a and receives a message
b. The view of an honest verifier consists of the input x, the random tape r and the incoming message b. In
the sparsified system,

〈
P, V G

〉
, the view consists of the input x, a PRG seed s and the message a. Suppose

that the original verifier admits a simulator that, given x, samples the pair (r, a). How can we use such a
simulator to sample (s, a)? If we use the original simulator then a random r is unlikely to land in the image
of G which is sparse in the set of all R-bit strings. Moreover, even if we hit the image, it is not clear how to
invert G and find an appropriate seed. We observe that the second problem can be easily solved by exploit-
ing the concrete structure of our PRGs. Specifically, by using algebraic constructions of t-wise independent
hash functions we can efficiently invert the PRGs in polynomial-time.6 To handle the sparsity problem we
suggest two possible approaches:

• Our first solution exploits the prover. We show that the simulation problem can be avoided by asking
the prover to supply R random bits at the beginning of the interaction.

• In the context of honest-verifier perfect zero-knowledge proofs, we show that randomness can be
traded by a simulation slow-down. Specifically, the sparsified protocol (without any modifications)
can be simulated with an overhead of time 2R−S where S is the seed-length of the generator. (See
Corollary 5.14.) Such a simulation implies witness-indistinguishability [FS90] and can be meaningful

6This does not contradict security since our PRG fools verifiers of predetermined fixed polynomial-time (corresponding to the
running time of the verifier) but can be inverted in larger polynomial time. This feature of the fixed-polynomial-time setting (that is
typically used in the context of derandomization [NW94]) seems novel to this work.
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when the underlying problem is harder than 2R−S . Specifically, one can tune S, i.e., the level of
sparsification, according to the hardness of the problem.

How much should we pay? In the above solutions we pay a communication overhead of R (resp., sim-
ulation slow-down of 2R−S) in the sparsification of HVSZK systems (resp., HVPZK) whereas in the case
of SZK proof systems (with security against cheating verifier) we pay nothing. It turns out that one can
interpolate between these two extremes based on a single measure. Roughly, we say that a proof system is
an F -semi-malicious statistical zero-knowledge system (F -SMSZK), for some function 0 < F < R if it is
possible to simulate every verifier that plays honestly except that it selects the first F -bits of its random tape
by some arbitrary (efficiently-computable) distribution (the other R − F coins are chosen uniformly).7 We
prove the following theorem. (See Corollaries 5.7 and 5.10.)

Theorem 1.8 (Trading randomness with prover’s communication or simulation slowdown). Suppose that
E is hard for exponential size non-deterministic circuits. Then, every promise problem Π that admits a
constant-round F -SMSZKk[R,CV , CP , TV ] proof system 〈P, V 〉 also has:

• An HVSZKk+1[R′ = 2CV + O(log n), CV , T
′
V = Õ(TV · (R + log n)), C ′P = CP + R − F ] proof

system. Specifically, the new protocol consists of an additional preliminary message from the prover
that consists of a random string of length R− F bits.

• In the prefect zero-knowledge setting, where 〈P, V 〉 is F -SMPZKk[R,CV , CP , TV ] system, the prob-
lem Π admits an HVPZKk[2CV +O(log n), CV , CP , TV ] proof system whose simulator runs in time
poly(n)2R−F .

Observe that 0 6 F 6 R and that any HVSZK proof system is also an 0-SMSZK and every SZK
proof system is R-SMSZK. Thus Theorem 1.8 implies Theorem 1.7. Interestingly, some classical HVSZK
proof systems also achieve full accessibility of F = R. Most notably, this is the case for the classical
protocol for the complete statistical-distance problem of [SV03] as well as the classical proof system for
graph-non-isomorphism (GNI) of [GMW91]. (See Section B.) In fact, these proof systems have only two
messages and therefore they are known to be insecure against a cheating verifier [Ore87, Theorem 8] (unless
the underlying problems are in BPP). It follows that even the notion of R-SMSZK proof systems is likely
to be weaker then SZK.

We further mention that even when F = 0, we can get some non-trivial simulation for HVPZK.
Specifically by exploiting the concrete properties of our PRG we can get a simulator whose complexity is
poly(n)2R−S whereR is the original randomness complexity and S is the seed length of the simulator. (See
Section 5.5.) As an application, one can adjust the seed length (i.e., the level of sparsification) according to
a given time-bound on the simulation (that may be dictated by the intractability of the underlying language).

Organization. Following some preliminaries (Section 2), we study, in Section 3, randomness sparsifi-
cation for interactive proofs in the non-uniform setting and in the amortized sparsification in the uniform
setting. Section 4 is devoted to randomness sparsification for constant-round uniform interactive proofs, and
Section 5 to statistical zero-knowledge proofs.

7One should not be confused with our notion of semi-malicious SZK proof systems and the one suggested by [LQR+19] that
applies to zero-knowledge PCPs.
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2 Preliminaries

Probabilistic notation. For every n ∈ N we denote by Un the uniform distribution over the set {0, 1}n of
binary strings of length n. For a probability distribution D, we use the notation x ←↩ D to denote a value
x that is sampled according to D. When D is a finite set, the notation x ←↩ D denotes a value x that is
sampled uniformly from D. We follow the standard way of defining distance between two distributions:

Definition 2.1 (Statistical Distance). Given X,Y two probability distributions over some discrete universe
Ω the statistical difference between them is defined:

SD(X,Y ) = maxS⊂Ω|Pr[X ∈ S]− Pr[Y ∈ S]|.

Definition 2.2 (Interactive proof system [GMR89]). A pair of interactive machines 〈P, V 〉 is called an
interactive proof system with completeness error of δc and soundness error of δs for a promise problem
Π = (Πyes,Πno) if the followings hold:

• Completeness: For every x ∈ Πyes we have

Pr[(P, V )(x) = 1] > 1− δc(|x|)

where the probability is taken over the randomness of V and P and we write (P, V )(x) = 1 to denote
the event that, after interacting with P (x), the verifier V (x) accepts.

• Soundness: For any cheating strategy for the prover P ∗ and every x ∈ Πno, it holds that

Pr[(P ∗, V )(x) = 1] 6 δs(|x|).

When the parameters δc and δs are unspecified we assume that they are taken to be o(1).8 By default, we
assume that V is efficient, i.e., it runs in time TV (|x|) for some polynomially-bounded function TV . In
the non-uniform setting, we assume that V can be implemented by a non-uniform family of TV (|x|)-size
probabilistic circuits.

Following Notation 1.1, we let k,R,CV , CP denote the number of messages sent in the protocol, the
randomness complexity of V , the number of bits sent by V , and the number of bits sent by P .

Definition 2.3 (Statistical Zero-Knowledge). An interactive proof system 〈P, V 〉 for a promise problem
Π = (Πyes,Πno) is a Statistical Zero-Knowledge proof system (SZK) with a simulation error of δz if for
every computationally-unbounded verifier V ∗ there exists a simulator Sim that runs in time polynomial in
the complexity of V ∗ such that for every yes-instance x ∈ Πyes it holds that

SD(viewV ∗(x), Sim(x)) 6 δz(|x|),

where viewV ∗(x) is the random variable that corresponds to the view of V ∗(x) when interacting with P (x)
which consists of the random tape and all the incoming messages that were sent by P .

The proof system is an Honest-Verifier Statistical Zero-Knowledge proof system (HVSZK) if the above
holds for the special case where V ∗ = V . We also denote by HVSZK and SZK the class of all promise
problems that posses such an interactive proof system (with error parameters of o(1)).

8Standard ρ-fold parallel repetition reduces the errors exponentially with ρ at the expense of increasing the communication and
computation complexity by a factor of ρ and without affecting the round complexity (see e.g., [Gol98]).
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3 Non-uniform randomness sparsification for IP

In this section we study the possibility of reducing the randomness of a general proof system (P, V ). We
begin by defining a strong form of pseudo-random generators against interactive proof systems.

Definition 3.1 (Strongly fooling a protocol). Let 〈P, V 〉 be a protocol and R(n) denote the randomness
complexity of V . For a length-extending function G : {0, 1}S(n) → {0, 1}R(n) we define the verifier V G(x)
to be the verifier that samples a seed s←↩ {0, 1}S(n) and invokes V (x; r) with randomness r = G(s).

We say that G strongly ε-fools the protocol 〈P, V 〉 if for every input x and any possible prover strategy
P ∗ it holds that

|Pr[(V, P ∗)(x) = 1]− Pr[(V G, P ∗)(x) = 1]| 6 ε.

We say that G strongly ε-fools IP[R,CV , TV , CP ] if it strongly ε-fools any interactive proof 〈P, V 〉 ∈
IP[R,CV , TV , CP ].

Recall that is the class IP[R,CV , TV , CP ] is the class of IP protocols in which on an n-bit input the
verifier runs in TV (n) time, uses at most R(n) random bits and sends at most CV (n) bits to the prover, and
the total length of the prover responds is at most CP (n) bits. Observe that a PRG strongly fools a protocol
regardless of the prescribed prover, and it is a trait of the verifier.

Observation 3.2. Suppose that 〈P, V 〉 is an interactive proof system for a promise problem Π with com-
pleteness error δc and soundness error δs and G strongly ε-fools 〈P, V 〉. Then

〈
P, V G

〉
is an interactive

proof system for a promise problem Π with completeness error δc+ε and soundness error δs+ε. Moreover,
if the original system has perfect completeness then so is the new system.

Proof. The first part is immediate from Definition 3.1. The “Moreover” part holds for any G since for
any yes instance x a bad (faulty) random string s in

〈
P, V G

〉
for which (V G, P )(x) rejects translate into a

random tape r = G(s) for which (V, P )(x) rejects as well.

We continue by showing that pseudo-random generators against circuits with very small error can be
used to fool protocols.

Lemma 3.3 (Fooling protocols via circuit-PRGs). For any functions TV (n), CV (n), CP (n), R(n) : N→ N
and ε : N → [0, 1], any PRG G : {0, 1}S(n) → {0, 1}R(n) that ε/2CV (n)-fools 3TV -size circuits also
strongly ε-fools non-uniform IP[R,CV , TV , CP ] protocols.

Proof. Let 〈P, V 〉 be some (possibly non-uniform) IP[R,CV , TV , CP ] proof system and letG : {0, 1}S(n) →
{0, 1}R(n) be a PRG that ε/2CV (n)-fools 3TV -size circuits. Fix some input x ∈ {0, 1}n and let CV =
CV (n), TV = TV (n), CP = CP (n) and S = S(n). Fix some proof strategy P ∗. Let viewV (r) denote the
verifier’s view when interacting with P ∗ on the shared input x with randomness r. This view consists of
(x, r), the concatenation, ~a of all the messages sent from V to P ∗ during the interaction and the messages
~b that were sent from P ∗ to V during the interaction.9 In the following, we will think of (~a,~b) as random
variables whose distribution is induced by a random choice of the verifier’s random coins.

9In the context of this proof, we omit the seed s from the verifier’s view. While such an omission will be problematic later when
discussing zero-knowledge, it has no consequences in the current proof.
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We will show that (*) viewV (Ur) is ε indistinguishable from viewV (G(US)) by TV -size circuits. Note
that (*) implies that |Pr[(V, P ∗)(x) = 1] − Pr[(V G, P ∗)(x) = 1]| 6 ε since V decides whether to accept
its view by applying a predicate which is computable by a circuit of size at most TV . Let us assume, without
loss of generality, that the strategy P ∗ is deterministic. Indeed, if (*) does not hold for some randomized P ∗

then, by an averaging argument, there exists a deterministic P ∗ that violates (*).

We proceed by proving (*). Assume towards contradiction that there exists some distinguisher D of
complexity at most TV that violates (*). Then, we can write

ε <

∣∣∣∣∣∣
∑

a∈{0,1}CV

Pr
r←↩UR

[D(x, r,~a,~b) = 1 | ~a = a] Pr
r←↩UR

[~a = a]

−
∑

a∈{0,1}CV

Pr
r←↩G(US)

[D(x, r,~a,~b) = 1 | ~a = a] Pr
r←↩G(US)

[~a = a]

∣∣∣∣∣∣
6

∑
a∈{0,1}CV

∣∣∣∣ Pr
r←↩UR

[D(x, r,~a,~b) = 1 | ~a = a] Pr
r←↩UR

[~a = a]

− Pr
r←↩G(US)

[D(x, r,~a,~b) = 1 | ~a = a] Pr
r←↩G(US)

[~a = a]

∣∣∣∣ ,
where the inequality is due to the triangle inequality. By an averaging argument, we conclude that there
should be at least one element a∗ such that

ε

2CV
<

∣∣∣∣ Pr
r←↩UR

[D(x, r,~a,~b) = 1 | ~a = a∗] Pr
r←↩UR

[~a = a∗]− Pr
r←↩G(US)

[D(x, r,~a,~b) = 1 | ~a = a∗] Pr
r←↩G(US)

[~a = a∗]

∣∣∣∣ .
Recall that the prover is deterministic and therefore once the verifier’s messages are fixed to a∗, the prover’s
messages become fixed as well to some value b∗. We now can define a new distinguisher D′ : {0, 1}R(n) →
{0, 1} that holds (x, a∗, b∗) as a non-uniform advice and operates as follows. Given an input r ∈ {0, 1}R(n),
the distinguisher D′ invokes the verifier V (x) using r as the random coins, and emulates the prover P ∗ by
responding according to b∗. If the resulting transcript disagrees with (a∗, b∗) the distinguisher D′ rejects.
Otherwise, D′ return D(x, r, a∗, b∗). Clearly, D′ distinguishes between r ←↩ UR to r ←↩ G(US) with
advantage ε/2CV . Moreover, D′ can be implemented by a circuit of size TV + (CV + CP ) + TV 6 3TV ,
and therefore we derive a contradiction to the pseudorandomness of G and (*) follows.

The following claim from [AASY16] shows that good circuit PRGs can be obtained from t-wise in-
dependent hash functions. In the following we say that a family of functions H = {hz : X → Y } is
t-wise independent [CW79] if for every t distinct inputs x1, . . . , xt ∈ X and uniformly chosen hz ←↩ H,
the random variable (hz(x1), . . . , hz(xt)) is uniformly distributed over Y t.

Claim 3.4 (PRGs from hash functions (Claim 5.2 in [AASY16])). For every T and ε, δ ∈ [0, 1], and every
familyH = {hz : {0, 1}s → {0, 1}r} of t-wise independent hash functions with t = 4T log T + 2 log(1/δ)
and s = 2 log(1/ε) + log t the following holds. With probability 1− δ, a random member hz ←↩ H ε-fools
any T -size circuit.

By combining Claim 3.4 with Lemma 3.3 we derive the following theorem.
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Theorem 3.5 (Fooling protocols via hashing). For every functions TV (n), CV (n), CP (n), R(n) : N → N
and ε, δ : N → [0, 1], the following holds for every family H =

{
hz : {0, 1}S(n) → {0, 1}R(n)

}
of t-wise

independent hash functions where t = O(TV log TV + log(1/δ)) and S = 2CV + 2 log(1/ε) + log TV +
log log TV + log log(1/δ) +O(1), it holds that

Pr
hz←↩H

[hz strongly ε-fools non-uniform IP[R,CV , TV , CP ]] > 1− δ.

Remark 3.6 (Canonical construction of t-wise independent hash functions). Throughout the paper we use
the following standard construction of t-wise independent hash functions H =

{
hz : {0, 1}S → {0, 1}R

}
where t < 2S < 2R. Let F = GF (2R) denote the finite field of 2R elements. We identify field elements
with binary strings of length R via some canonical representation that supports arithmetic operations with
a computational cost of Õ(R) bit operations (For instance [Sil99]). It is well known [CW79] that the family
H′ = {h′z : F→ F}z∈Ft where h′z denotes the degree-t univariate polynomial whose coefficients are given
by the vector z ∈ Ft is a family of t-wise independent hash functions from {0, 1}R to {0, 1}R. We define H
by restricting the domain ofH to some fixed 2S subset. Specifically, Let hz denote the function that takes an
input x ∈ {0, 1}S , maps it to F by padding it with R − S zeroes, and outputs h′z(x). Then, H = {hz}z∈Ft
is a t-wise independent family. Observe that one can sample an index z by sampling a tR random bits, and
that given z and x ∈ {0, 1}S we can evaluate hz(x) by making O(t) arithmetic operations. Hence the total
bit complexity of sampling and evaluating a function inH is Õ(tR).

By hard-wiring a “good” hash function as a non-uniform advice to Theorem 3.5 we derive the following
corollary (that strengthens Theorem 1.2 from the introduction.).

Corollary 3.7. For every functions TV (n), CV (n), CP (n), R(n) : N→ N and ε : N→ [0, 1], there exists a
PRG : {0, 1}S(n) → {0, 1}R(n) that can be computed by a non-uniform Õ(RTV )-time and strongly ε-fools
non-uniform IP[R,CV , TV , CP ] where S = 2CV + 2 log(1/ε) + log TV + log log TV +O(1).

Theorem 1.3 follows immediately.

The amortized setting. For a promise problem Π = (Πyes,Πno) and a polynomial k(·) define the problem
Πk = (Π′yes,Π

′
no) by letting Π′yes denote the set of all tuples ~x = (x1, . . . , xk(n)) ∈ ({0, 1}n)k(n) such that

xi ∈ Πyes for every i and by letting Π′no denote the set of tuples ~x = (x1, . . . , xk(n)) ∈ ({0, 1}n)k(n) such
that, for every i, xi ∈ Πyes ∪Πno and for at least one i, xi ∈ Πno.

Corollary 3.8 (Uniform Amortized sparsafication of many instances). Let Π be a promise problem that
admits a uniform IP[R,CV , TV , CP ] proof system with negligible soundness and correctness errors. Then,
for every polynomial k(·), the promise problem Πk admits a (uniform) IP[R′, C ′V = kCV , T

′
V , C

′
P = kCP ]

proof system with constant error whereR′ = R ·Õ(TV )+O(k(CV +log k+log TV )) and T ′V = kÕ(TVR).

So for sufficiently large k, the amortized randomness complexity R′/k is O(CV + log k+ log TV ) per
instance.

Proof. Let ε = 1/(10k) and δ = 0.1. Let H be a family of t-wise hash function that expand S bits to R
bits where t = O(TV log TV ) and S = 2CV + 2 log(1/ε) + log TV + log log TV + log log(1/δ) +O(1) 6
2CV + 2 log k + 2 log TV +O(1). The verifier samples a function hz ←↩ H and given ~x = (x1, . . . , xk(n))
applies, for each i, the original verifier V (xi;hz(si)) where si is chosen uniformly and independently from
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US . At the end, we accept if and only if all interactions accepted. The prover simply runs the original
protocol k times.

By Theorem 3.5, with probability 1 − δ the hash function hz ε-fools the original protocol. Therefore,
conditioned on this event, the error in each instance is at most ε + n−ω(1), and by a union bound the total
error is at most δ + kε + kn−ω(1) 6 0.2, as required. The communication grows by a factor of k, the
randomness complexity is O(tR) for sampling the hash function (Remark 3.6) plus O(kS) for sampling the
seeds. The computational complexity for sampling hz is Õ(tR) and each instance has an additional cost of
TV + Õ(tR) (again see Remark 3.6).

4 Uniform Randomness Sparsification for Constant-Round Protocols

In this section we extend the randomness reduction seen in the previous section from the non-uniform setting
to the uniform setting. Recall that in the previous section we reduced the randomness of general IP proofs
by using a non-uniform advice that consisted of a description of a “good” hash function that can be used
as a PRG. As explained in Section 1.2 we cannot afford to to sample the hash function uniformly since
this requires too much randomness (larger than the amount of randomness that is needed for the original
protocol). Instead, we describe a randomness-efficient method for sampling a “good” hash function via a
uniform algorithm by reducing the problem to a more standard de-randomization problem. We further show
that for constant number of rounds, the latter problem can be solved under standard complexity-theoretic
assumptions.

We begin by defining a promise problem whose no-instances corresponds to hash functions that “fool
a given protocol” and its “yes” instances are hash functions that “fail to fool the protocol”.

Definition 4.1. Let 〈P, V 〉 be a k-round (possibly non-uniform) IP[R,CV , CP , TV ] protocol for a promise
problem L with a polynomial-time verifier, and let ε(n) be some inverse polynomial. Fix some efficiently
computable family of hash functions H =

{
hz : {0, 1}S(n) → {0, 1}R(n)

}
z∈{0,1}Z(n) that satisfies Theo-

rem 3.5 with respect to IP[R,CV , CP , TV ] protocols where the underlying parameters ε, δ are taken both to
be ε(n). We define a promise problem Π = ΠP,V,ε over strings z ∈ {0, 1}∗ as follows:

• The set of yes instances, Πyes, consists of all strings z such that hz does not strongly 2ε-fools 〈P, V 〉.

• The set of no instances, Πno, consists of all strings z such that hz strongly ε-fools 〈P, V 〉.

We prove the following lemma.

Lemma 4.2 (ΠP,V,ε ∈ IPk+1). For any k-message protocol 〈P, V 〉 (resp., non-uniform protocol 〈P, V 〉)
and inverse polynomial ε the promise problem ΠP,V,ε is in IPk+1 (resp., IP/polyk+1) and the computational
complexity of the corresponding verifier is O(TV + TH) where TV is the complexity of V and TH is the
computational complexity of universal evaluation of H. Consequently, for constant k, ΠP,V,ε is in AM
(resp., in AM/poly).

Proof. On a shared input z ∈ {0, 1}∗, the prover will try to convince the verifier that hz does not strongly
2ε-fools 〈P, V 〉. Recall that this means that one of the following holds for some input x:

• (Case 0:) There exists P ∗ Strategy such that Pr[(V hz , P ∗)(x) = 1]− Pr[(V, P ∗)(x) = 1] > 2ε.
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• (Case 1:) There exists P ∗ Strategy such that Pr[(V, P ∗)(x) = 1]− Pr[(V hz , P ∗)(x) = 1] > 2ε.

Accordingly, the prover first declares x and whether case (0) or case (1) holds and then proceeds to prove
its claim via an interactive proof. Specifically, on common input (1n, z) the parties invoke the following
(k + 1)-move protocol.

1. The prover finds an input x ∈ {0, 1}n and a proof strategy P ∗ such that Case c ∈ {0, 1} holds.
The prover sends x and c.

2. The verifier samples two strings, r0 ←↩ UR, r1 ←↩ hz(US) and a random bit b ∈ {0, 1}.
The two parties invoke an interactive protocol where the prover plays P ∗(x) and the verifier plays
V (x; rb).
Let v ∈ {0, 1} denote the output (acceptance bit) of V (x; rb).

3. The verifier accepts if b = v ⊕ c.

Completeness: Assume that hz does not strongly 2ε-fool 〈P, V 〉 and let us assume that case (0) holds.
(The other case is proved symmetrically.) Then, the probability that the verifier accepts is

1

2
Pr[(P ∗, V hz)(x) = 1] +

1

2
(1− Pr[(P ∗, V )(x) = 1]) >

1

2
+ ε.

Soundness: Fix some no instance z for which hz strongly ε-fool 〈P, V 〉. We analyze the acceptance
probability of the verifier when interacting with a cheating prover. Fix an arbitrary first message (x, c) of the
prover and let us denote by P ∗ the strategy that the prover plays in Step 2 of the protocol. Since hz strongly
ε-fool 〈P, V 〉, it holds that the difference between the quantities

q = Pr[(P ∗, V )(x) = 1] and qz = Pr[(P ∗, V hz)(x) = 1]

is at most ε in absolute value. Suppose that c = 0 (the other case is symmetric). Then, the verifier accepts
with probability

1

2
qz +

1

2
(1− q) 6 1/2 + ε/2,

as required.

Overall, the protocol has completeness of 1/2+ε and soundness of 1/2+ε/2. Since ε = Ω(1/poly(n)),
we can use standard parallel amplification theorems to reduce the error (cf. [Gol98, Appendix A]). This
completes the proof of the first part of the lemma. The “Consequently” part, follows from the equivalence
between constant-round IP protocols and AM proofs [GS86, BM88].

We will make use of the following result.

Theorem 4.3 (PRGs against AM/poly [IW97, KVM02, SU06]). Suppose that E = DTime(2O(n)) is hard
for exponential-size non-deterministic circuits10 , i.e., there exists a language L in E and a constant β > 0,
such that for every sufficiently large n, circuits of size 2βn fail to compute the characteristic function of L
on inputs of length n.

10A non-deterministic circuit C has additional “non-deterministic input wires”. Such a circuit evaluates to 1 on x if and only
if there exist an assignment to the non-deterministic input wires that makes C output 1 on x. Non-Deterministic circuits can be
therefore viewed as a non-uniform version of the class NP.
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Then for every polynomial T (·) and inverse polynomial ε(·), there exists a pseudo-random generator
G that stretches seeds of length ρ = O(logm) into a string of length m in time poly(m) such that G ε-fools
every promise problem Π = (Πyes,Πno) that admits an AM/poly proof system with a T -size verifier in the
following sense. For every sufficiently large m and b ∈ {yes, no}∣∣∣∣ Pr

z←↩Um
[z ∈ Πb]− Pr

z←↩G(Uρ)
[z ∈ Πb]

∣∣∣∣ 6 ε(m).

By combining the above theorem with Lemma 4.2, we derive the following corollary.

Corollary 4.4 (uniform PRG against constant-round IP protocols). Under the assumption of Theorem 4.3 for
every polynomials TV (n), CV (n), CP (n), R(n) : N→ N, constant k ∈ N and inverse polynomial ε : N→
[0, 1] there exists a polynomial-time computable PRG that strongly ε-fools non-uniform IPk[R,CV , CP , TV ]
with seed length of 2CV +O(log n).

Proof. Let ε′ = ε/4. Fix some non-uniform 〈P, V 〉 interactive proof in IPk[R,CV , CP , TV ] and let Π =
ΠP,V,ε′ denote the corresponding promise problem defined in Definition 4.1. Recall that

H =
{
hz : {0, 1}S(n) → {0, 1}R(n)

}
z∈{0,1}Z(n)

is a family of t-wise independent hash functions where t = O(TV log TV + log(1/ε′)) and S = 2CV +
2 log(1/ε′) + log TV + log log TV + log log(1/ε′) +O(1) that can be evaluated by a poly(n)-time universal
evaluation algorithm H : {0, 1}Z(n) × {0, 1}S(n) → {0, 1}R(n). As shown in Lemma 4.2, the promise
problem Π is in AM/poly. Let us denote by T (n) the time complexity of the verifier in the corresponding
proof system (and recall that T = O(TV + TH) and so it depends only on ε,R,CV , CP and TV ). Let
G′ : {0, 1}ρ(n) → {0, 1}Z(n) be the PRG that ε′-fools AM/poly problems with T -time verifiers as promised
in Theorem 4.3. Recall that ρ(n) = O(logZ(n)) = O(log n).

We define the PRG against non-uniform IPk[R,CV , CP , TV ] that maps a random seed of length ρ(n)+
S(n) into a pseudorandom string of length R(n) as follows. Given a seed (s1, s2) where s1 ∈ {0, 1}ρ(n)

and s2 ∈ {0, 1}S(n), output H(G′(s1), s2) = hG′(s1)(s2). Note that PRG is indeed efficiently computable
and that its definition depends only in the parameters R,CV , CP , TV and ε. We prove that PRG strongly
ε-fools 〈P, V 〉. For this it suffices to show that, except with probability ε/2, over the choice of s1, it holds
that hG′(s1)(s2) strongly ε-fools 〈P, V 〉. Indeed,

Pr
s1

[G′(s1) ∈ Πno] > Pr
z

[z ∈ Πno]− ε′ > 1− 2ε′ > 1− ε/2

where the first inequality follows from the pseudo-randomness ofG′ and the second inequality follows from
Theorem 3.5. The corollary follows.

Theorem 1.4 follows immediately from Corollary 4.4

5 Zero Knowledge Proofs

In this section we study the problem of randomness sparsification for zero-knowledge proof systems.
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5.1 SZK proof systems

We begin by noting that PRG-based sparsification trivially preserves zero-knowledge against malicious
verifier.

Observation 5.1. If 〈P, V 〉 is a constant-round SZK proof system and G ε-fools 〈P, V 〉 then
〈
P, V G

〉
is an

SZK proof system whose soundness error and completeness error increase by ε. Moreover, if 〈P, V 〉 has
perfect completeness the so is

〈
P, V G

〉
.

Proof. By Observation 3.2, the system
〈
P, V G

〉
is an interactive proof system with the desired parameters.

Since zero-knowledge against cheating verifier is a property of P the new system is also zero-knowledge.

By combining the above observation with Corollary 4.4 we derive Theorem 1.7.

5.2 Semi-Malicious SZK Proof Systems

We move on to study sparsification for semi-malicious SZK proof systems. We begin by introducing this
new variant of zero-knowledge.

Definition 5.2 (F semi-malicious SZK). Let F : N → N be an integer valued function and let 〈P, V 〉 be
a proof system with randomness complexity of R for a promise problem Π. Let D(1n; s) be an efficiently-
computable algorithm that given randomness s outputs F (n) bits. Define the verifier VD(x) as follows:

• Sample random coins s for D, and compute the F (|x|)-bit string f = D(1|x|, s).

• Sample r′ ←↩ {0, 1}R(|x|)−F (|x|).

• invoke V (x) on the concatenated random tape f ◦ r′.

Let µ(D) denote the completeness error of the proof system 〈P, VD〉 with respect to Π, and let viewVD(x)
denote the random variable that corresponds to the view of the verifier VD(x) when interacting with P on a
common input x.

We say that 〈P, V 〉 is F semi-malicious zero-knowledge proof system with zero-knowledge error of δz ,
abbreviated (F, δz)-SMSZK, if for every efficiently-computable algorithm D(1n; s) there exists a simulator
SimD that runs in expected polynomial-time such that for every yes instance x,

SD(SimD(x), viewVD(x)) 6 δz + µ(D). (1)

By default, we assume that δz is negligible and in this case we refer 〈P, V 〉 as F -SMSZK proof system. The
notion of F semi-malicious perfect zero-knowledge proof system (F -SMPZK is short) is defined analo-
gously, except that the simulator’s deviation in (1) must be zero. We refer to the F -bit prefix of the verifier’s
tape as the accessible bits.

Remark 5.3 (On the additive term µ(D)). One could consider a more restrictive definition of F -SMSZK
in which the deviation of the simulator SimD is bounded by δz regardless of the completeness error µ(D)
of D. While our reductions are compatible with this alternative variant as well, we choose to employ the
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current definition since it is more liberal. Further note that the additive term µ(D) intuitively allows the
simulator to deviate when the protocol outputs non-accepting transcripts. Thus, one can roughly think of
our definition as restricting the attention to semi-malicious distributions D that put most of their mass on
strategies for which completeness hold.

Observe that 0 6 F 6 R and that any HVSZK proof system is also an 0-SMSZK and every SZK
proof system is R-SMSZK. On the other hand, as mentioned in Section 1.2.2, the classical HVSZK proof
system for the complete statistical-distance problem of [SV03] can be shown to have maximal accessible
bit complexity of F = R too. (See Section B.) Thus, even R− SMSZK complexity is a weaker notion than
SZK complexity.

Remark 5.4. One can use a more general definition in which the “accessible bits” are not necessarily the
first ones and can be taken to be any set of F (|x|) indices that can be efficiently computable and possibly
depend on the input x itself. However, in this case one can always modify the verifier (by pre-permuting the
random tape) and make sure that the accessible bits are located in the first F (|x|) indices.

Remark 5.5. Typical SMSZK systems (e.g., for statistical-distance [SV03] or for GNI [GMW91]) satisfy
the following stronger definition. There exists a “universal” simulator Sim such that for every yes instance
x and every fixing f ∈ {0, 1}F (|x|) of the first F (|x|) bits of the verifier, the distribution Sim(x, f) is
(δz + µ(f))-close, in statistical-distance, to the view of Vf when interacting with P on the input x, where
Vf denotes the verifier that given an input x and a random tape r′ ←↩ {0, 1}R(|x|)−F (|x|) invokes V (x) on
the concatenated random tape f ◦ r′.

5.3 SMSZK: Randomness vs. Prover’s Communication/CRS

Theorem 5.6. Let 〈P, V 〉 be an (F, δz)-SMSZKk[R,CV , CP , TV ] proof system for the promise problem
Π. Suppose that G : {0, 1}S → {0, 1}R ε-fools non-uniform IP[R,CV , CP , TV ] protocols. Consider the
following proof system 〈P ′, V ′〉 that on shared input x of length n proceeds as follows:

1. P ′ sends a random message a of length R− F where R = R(n) and F = F (n).

2. The verifier reads his random tape s ←↩ US(n), computes r2 = G(s), expands a to an R-bit string
r1 = 0F ◦ a and sets r = r1 ⊕ r2. From now on, the prover plays P (x) and verifier plays V (x; r).

Then, 〈P ′, V ′〉 is an HVSZKk+1 proof system with zero-knowledge error of δz + ε and an ε additive penalty
in the correctness and soundness error.

Proof. We begin by showing that 〈P ′, V ′〉 is an IPk+1 proof system for Π. For any fixing of a ∈ {0, 1}R−F ,
define the proof system 〈Pa, Va〉 in which the verifier expands a to r1 like in the above description, samples
r2 uniformly and calls V (x; r1⊕r2) and the prover operates as before. Clearly, the soundness and correctness
of this system is the same as the original one. Next, define the a-residual proof system 〈P ′a, V ′a〉 which is
identical to the sparsified system 〈P ′, V ′〉 except that a is hard-coded into V ′ who skips the first step of
the above protocol. The proof system 〈P ′a, V ′a〉 is the G-sparsified version of 〈Pa, Va〉, and since G ε-fools
non-uniform proof systems, the system 〈P ′a, V ′a〉 is sound and complete (with an additive error of ε). Since
this is true for every choice of a, it follows that 〈P ′, V ′〉 is an IPk+1 proof system for Π.

Let D(1n; s) be the algorithm that samples s ←↩ US(n) and outputs the F (n)-bit prefix of G(s), and
let SimD denote the simulator of the original F -SMSZKk[R,CV , CP , TV ] proof system with respect to the
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distribution D(1n). We define a simulator Sim′ for 〈P ′, V ′〉 that, on an input x of length n, operates as
follows:

1. Let S = S(n), R = R(n) and F = F (n). Invoke SimD(x) and sample a view (x, s′, α, c′) where s′

is the S-bit seed sampled for D, α ∈ {0, 1}R−F form the uniform part of the verifier’s random tape,
and c′ is the (simulated) sequence of incoming messages.

2. Compute r′2 = G(s) and set a′ ∈ {0, 1}R−F to be the XOR of α with the (R− F )-bit suffix of r′2.

3. Output the tuple (x, s′, a′, c′).

Fix a yes instance x. We analyze the statistical distance between the simulated tuple (x, s′, a′, c′) and the
“real” tuple (x, s, a, c) that corresponds to the distribution of the real view of V ′ when interacting with P . It
suffices to show that if the original simulator is perfect the two distributions are identical. (Indeed, since the
new simulator makes a single call to the original simulator, a deviation of δz + ε of the original simulator
can increase the statistical distance of the new one by at most δz + ε.)

First observe that in both experiments s and s′ are distributed uniformly. Fix some value for s = s′, and
consider the conditional distributions [(a′, c′)|s′] and [(a, c)|s]. Next observe that a is uniform and that a′

is uniform as well (since α is uniform). Finally, conditioned on (s, a) = (s′, a′) the transcript c is sampled
according to the experiment 〈P, V 〉 (x; r) where r = (0F ◦ a)⊕G(s) and similarly the simulated transcript
c′ is sampled according to the experiment 〈P, V 〉 (x; r′) where r′ = (0F ◦ a′)⊕G(s′) = (G(s′)[1 : F ] ◦ α)
and so the tuples are identically distributed.

By combining Theorem 5.6 with Corollary 4.4 we derive the following corollary which implies the first
part of Theorem 1.8 from the introduction.

Corollary 5.7 (Trading randomness with prover’s communication for SMSZK). Suppose that E is hard
for exponential size non-deterministic circuits. Then, for every inverse polynomial ε, every constant-round
(F, δz)-SMSZKk[R,CV , CP , TV ] proof system can be transformed into a new

HVSZKk+1[R′ = 2CV +O(log n), CV , T
′
V = Õ(TV · (R+ log n)), C ′P = CP +R− F ]

system with an additive penalty of ε in the soundness and completeness error and an additive penalty of ε+δz
in the simulation error. Specifically, the new protocol consists of an additional preliminary message from the
prover that consists of a random string of length R−F bits. Moreover, the transformation preserves perfect
completeness, and if the original proof system is semi-malicious perfect zero-knowledge then the resulting
scheme admits a perfect simulation (i.e., it is HVPZKk+1[R′, CV , T

′
V , C

′
P ]).

Remark 5.8. Corollary 5.7 can be converted to a statement regarding HVSZK in the common reference
string model by replacing the first message of the prover with a common reference string ρ. This CRS can be
chosen by the prover (a malicious choice does not affect the soundness). However, the CRS is not reusable
among several invocations.

5.4 SMPZK: Randomness vs. Simulation Complexity

In the perfect setting, SMPZK proof systems can be sparsified at the expense of slowing-down the simulation
by a factor of 2R−F .
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Lemma 5.9. Let 〈P, V 〉 be an F -SMPZK proof system for a promise problem Π. Let G : {0, 1}S(n) →
{0, 1}R(n) be a poly(n)-time computable function that ε-fools 〈P, V 〉. Then the protocol

〈
P, V G

〉
is a proof

system with an additive penalty of ε in soundness and completeness errors that has a perfect honest-verifier
simulator Sim′ with expected running-time of (poly(n))2R(n)−F (n).

Proof. Let D(1n; s) be the algorithm that samples s ←↩ US(n) and outputs the F (n)-bit prefix of G(s),
and let SimD denote the simulator of the original F -SMPZK proof system with respect to the distribution
D(1n). The view of V D in interaction with P over a yes-instance x ∈ {0, 1}n is parsed into (x, s, β, c)
where s ←↩ US(n), β ←↩ UR(n)−F (n) and c is the vector of incoming messages. We define a new simulator
Sim′(x) as follows: (1) Sample (x; s′, β′, c′) by invoking SimD(x) (2) If the last R(n)−F (n) bits of G(s′)
equal to β′ output the transcript (x; s′, β′, c′) and halt; otherwise, goto (1).

Since β′ is uniformly distributed, at each iteration Sim′ halts with probability 2F (n)−R(n), and so the
expected running time is poly(n)2R(n)−F (n). Perfect simulation follows by noting that (s′, β′) are dis-
tributed identically to the random tape of V G and that conditioned on every fixing of these coins, (s, β), the
simulated transcript c′ is distributed just like a real interaction between P (x) and V G(x; s, β) (since SimD

is a perfect simulator).

By combining Lemma 5.9 with Corollary 4.4 we derive the following corollary which implies the
second part of Theorem 1.8 from the introduction.

Corollary 5.10. Assuming that E is hard for exponential size non-deterministic circuits, let ε : N → [0, 1]
be an inverse polynomial and R,CV , CP , TV : N → N be polynomially bounded functions where Cv =
ω(log n). Suppose that the promise problem Π admits a constant-round F -SMPZKk[R,CV , CP , TV ] proof
system. Then Π admits an IPk[R

′ = 2CV + O(log n), CV , CP , TV ] proof system with an honest-verifier
perfect simulator that runs in expected time of poly(n)2R−F and with ε penalty in the soundness and
completeness errors.

5.5 HVPZK: Randomness vs. Simulation Complexity

Corollary 5.10 shows that F -SMPZK systems can be sparsified with a simulation slow-down of 2R−F . In
this section we describe a different simulation strategy that yields a slow-down of 2R−S where S is the seed-
length of the PRG. This holds even when F = 0, i.e., for HVPZK proof systems. This theorem is based
on a PRG that satisfies some additional features (e.g., regularity and the existence of an efficient inversion
algorithm). We later show that our PRGs meet these requirements.

Definition 5.11. We say that a function G : {0, 1}S → {0, 1}R is δ-regular if G(US) is δ-close in statistical
distance to U(Image(G)), the uniform over the image of G. (In particular, a 0-regular function maps
the same number of inputs to each of its outputs.) A uniform inversion algorithm for G is a randomized
algorithm that given an input y ∈ {0, 1}R outputs ⊥ if y is not in the image of G, and, otherwise, outputs a
uniformly chosen preimage of y under G.

Lemma 5.12. Let 〈P, V 〉 be an HVPZK proof system for a promise problem Π whose simulator Sim runs
in time TSim. Let G : {0, 1}S(n) → {0, 1}R(n) be a poly(n)-time computable function that ε-fools 〈P, V 〉,
can be uniformly inverted in expected time of TG−1 , and is δ-regular. Then the protocol

〈
P, V G

〉
is a

proof system with an additive penalty of ε in soundness and completeness errors and with an honest-verifier
simulator Sim′ with statistical deviation of δ and expected running-time of (TSim + TG−1) 2R

|Image(G)| .
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Proof. For a given instance x, the view of the original verifier V can be parsed to (x, r, v) where r is the
randomness and v is the transcript. Let us parse the view of V G (in an interaction (P, V G)(x)) as a tuple
(x, s, r, v) where s is the seed r = G(s) and v is the transcript v. (While r is redundant it will be useful to
keep it as part of the view.) The simulator Sim′(x) does the following: (1) Sample (r′, v′) by calling Sim(x);
(2) Call the G-inverter on r′ and denote its output by s′. If the output is ⊥ output ⊥; otherwise, output the
tuple (x, s′, r′, v′).

Let us analyze the statistical deviation of Sim′. Fix some yes instance x and consider the distribu-
tion (x, s, r, v) in the real interaction (P, V G)(x). Observe that, conditioned on r = r′ the simulated
tuple (x, s′, r′, v′) is distributed identically to the real distribution (x, s, r, v). Indeed, in both cases s is
uniform preimage of r and v is a random transcript that corresponds to an interaction between P (x) and
V (x;G(s)). Therefore, the statistical distance between the simulated view (conditioned on not outputting
⊥) and the real view is exactly the statistical distance between r = G(US) and r′ = U(Image(G)) which is
at most δ since G is δ-regular. Finally, observe that the success probability (that r′ hits Image(G)) is exactly
|Image(G)|/2R, and so the expected number of iterations is 2R/|Image(G)| as required.

We move on and show that our PRGs are invertable and almost-uniform.

Proposition 5.13. Let k ∈ N be a constant, R,CV , CP , TV : N → N polynomially-bounded functions and
ε : N → [0, 1] be an inverse polynomial. Let G : {0, 1}S(n) → {0, 1}R(n) be the uniform PRG (resp., non-
uniform PRG) that ε-fools non-uniform IPk[R,CV , CP , TV ] (resp., non-uniform IP[R,CV , CP , TV ]) that is
promised by Corollary 4.4 (resp., Corollary 3.7). Then G is (poly(n)2−S(n))-regular, the image of G, on
n-bit inputs, consists of at least 2S(n)/poly(n) strings and there is an algorithm that, given the description
of G, uniformly inverts G in expected poly(n) time.

Proof. We begin with the non-uniform version of G (from Corollary 3.7). As explained in Remark 3.6, G is
defined by some degree-t univariate polynomial hz : F → F over the field F = GF (2R) and t = poly(n).
To compute G on an input x ∈ {0, 1}S , we map x to a field element (by padding with R − S zeroes) and
output the evaluation of hz on the padded-version of x.

Let y be a string in the image of G. First observe that the number of preimages under G is at most
t since the polynomial hz,y = hz(x) − y is of degree t = poly(n). Hence, |Image(G)| > 2S/poly(n)
and G(US) samples every element y ∈ Image(G) with probability py ∈ [1/|Image(G)|, t/|Image(G)|].
Since U(Image(G)) samples each element from Image(G) with weight 1/|Image(G)|, it follows that G is
δ regular for δ = O(t/|Image(G)|) = poly(n)/2S(n).

Next, observe that there exists a randomized algorithm A that given y lists in expected time of TA =
poly(t, R) = poly(n) all the pre-images of y under G. (This can be done, for example, by factoring
hz,y to its irreducible components via the algorithm of [CZ81] and by noting that, for each root a of hz,y,
the polynomial x − a must appear in the factorization.) We can therefore sample a random preimage in
expected-polynomial time.

We move on to the uniform setting. Recall that in this setting (Corollary 4.4), the PRG G is defined
as follows: (1) Sample a short seed s1 of length O(log n) and a long seed s2 of length S − O(log n); (2)
Feed the short seed s1 into a PRG G1 that fools AM/poly languages (with properly chosen parameters) and
use the resulting string z = G1(s1) to select a degree-t univariate polynomial hz : F → F over the field
F = GF (2R) where t = poly(n) as before; (3) Output hz(s2).

It follows that each point in the image ofG has at most t·|Image(G1)| 6 poly(n) preimages. Therefore,
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|Image(G)| > 2S(n)/poly(n) and G is δ-regular for δ = O(poly(n)/2S). Finally, in order to uniformly
invert y ∈ Image(G) we compute, for every s1, the list Ls1 =

{
(s1, s2) : hG1(s1)(s2) = y

}
(using the

aforementioned algorithm for hz where z = G1(s1)), and then sample a preimage (s1, s2) uniformly from
the union of all these (polynomially-many) lists. The expected running time is O(2|s1|poly(n)) = poly(n),
as required.

By combining Lemma 5.12 and Proposition 5.13, we derive the following corollary.

Corollary 5.14. Assuming that E is hard for exponential size non-deterministic circuits, let ε : N → [0, 1]
be an inverse polynomial and R,CV , CP , TV : N → N be polynomially bounded functions where Cv =
ω(log n). Suppose that the promise problem Π admits a constant-round HVPZKk[R,CV , CP , TV ] proof
system. Then Π admits an IPk[R

′ = 2CV + O(log n), CV , CP , TV ] proof system with an honest-verifier
simulator with negligible deviation error and expected running time of poly(n)2R−S .
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A nb-PRGs do not fool interactive-proofs

A cryptographic nb-PRG [DI06] is a strong form of nb-PRG that fools non-boolean distinguishers with
an arbitrary polynomial time complexity. (One can define a similar variant in the non-uniform setting by
considering circuit families of an arbitrary polynomial size).

Definition A.1 (based on [DI06]). Let C(n), R(n), S(n) : N → N be all polynomial in n and assume that
C(n) < R(n). A polynomial-time computable function G : {0, 1}S(n) → {0, 1}R(n) is a C-crypto-nb-PRG
if for and every polynomial-time non-Boolean distinguisher D : {0, 1}R(n) → {0, 1}C(n) the statistical
distance

SD(D(UR(n)) , D(G(US(n))))

is negligible in n.

We show that even crypto-nb-PRG’s cannot fool IP protocols in general. For this, we introduce the
notion of malleable PRG. Roughly speaking, a PRG G is malleable if G can be broken by an efficient
adversary that is allowed to succinctly communicate with an all powerful oracle. In more detail, G is
malleable if there exists an efficient algorithm H that given a pseudorandom string r, computes a short
digest of r, denoted by h = H(r), and sends h to a computationally-unbounded algorithm T that sends
back a short “trapdoor” t = T (h) such that given t and the pseudorandom string r one can efficiently
“break” the PRG and certify that it is in the image of G. We proceed with a formal definition.

Definition A.2. A C-crypto-nb-PRG G : {0, 1}S(n) → {0, 1}R(n) is malleable if there exist a polynomial-
time algorithmH : {0, 1}R(n) → {0, 1}L1(n) and a computationally-unbounded algorithm T : {0, 1}L1(n) →
{0, 1}L2(n) where L(n) = L1(n) + L2(n) is at most C(n) and a polynomial-time computable function
A : {0, 1}R(n) × {0, 1}L2(n) → {0, 1} such that

Pr
r←↩UR(n)

[A(r, T (H(r))) = 1] = o(1) but Pr
r←↩G(US(n))

[A(r, T (H(r))) = 1] = 1− o(1). (2)
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Lemma A.3. Suppose that G : {0, 1}S(n) → {0, 1}R(n) is a malleable C-crypto-nb-PRG. Then there exists
a two-message IP2[R,CV , TV , CP ] proof-system 〈P, V 〉 for the trivial language {0, 1}∗ with CV +CP < C
and completeness error of o(1) (and, vacuously, perfect soundness) such that

〈
P, V G

〉
has completeness

error of 1− o(1).

Proof. Let H,T and A be as in Definition A.2. Given an input x ∈ {0, 1}n, the verifier V samples r ←↩
UR(n), sends h = H(r) to the prover, and receives the response t = T (h). The verifier accepts if A(r, t) =

0. By Eq. (2), 〈P, V 〉 accepts every x ∈ {0, 1}n with probability 1− o(1) but
〈
P, V G

〉
accepts every x with

probability o(1).

Constructing malleable nb-PRG. Crypto-nb-PRGs were constructed in [DI06] based on cryptographic
one-way permutations (OWP) with incompressible hardcore bits. Roughly speaking, a hardcore bit b of a
OWP f is `-incompressible, if no pair of adversaries (D,E) can win with probability significantly better
than 1/2 in the following compressing game. The compressor D is a polynomial-time algorithm that, given
y = f(x) for a random x, sends at most ` � |y| bits y′ to the computationally-unbounded decompressor
E that, based on the digest y′, should guess the hardcore bit b(x). This notion naturally strengthens the
standard notion of hardcore bits that corresponds to the case ` = 1. Dubrov and Ishai [DI06] observed that
standard transformations of OWP to PRGs can be used to transform OWP with `-incompressible hardcore
bits to (`− 1)-crypto-nb-PRG.

We show that a variant of their construction yields malleable PRGs when it is instantiated with trap-
door permutations. The following definition naturally generalizes the notion of one-way permutation with
incompressible hardcore bits to the setting of trapdoor permutations.

Definition A.4. A collection of permutations F = {fz} is a trapdoor-permutation with `-incompressible
hardcore bits if the following properties hold:

• (Efficient indexing, evaluation and inversion) There exists a triple of probabilistic polynomial-time
algorithms (I, F, F−1) such that the followings hold. The index-sampler I(1n) uses ρ(n) random
bits to sample a description z ∈ {0, 1}L1(n) of some permutation fz : {0, 1}m(n) → {0, 1}m(n) and
a trapdoor information t ∈ {0, 1}L2(n). In addition, for every (z, t) in the support of I(1n) and every
x, y ∈ {0, 1}m(n) the evaluator F (z, x) outputs fz(x), and the inverter F−1(t, y) outputs f−1

z (y).

• (Incompressibility) There exists an efficiently computable hardcore bit b : {0, 1}L1(n)×{0, 1}m(n) →
{0, 1} which is `-incompressible in the following sense: For every poly(n)-time compressor D :
{0, 1}L1(n) × {0, 1}m(n) → {0, 1}`(n) and every computationally unbounded decompressor E it
holds that

Pr
(z,t)←↩I(1n),x←↩{0,1}m(n)

[E(z, (D(z, fz(x)))) = b(x)] 6 1/2 + ε(n),

for some negligible function ε.

We move on and present a construction of malleable nb-PRG based on a (slightly modified) version
of the BMY construction [BM82, Yao82]. Let us assume for now that the identifier z sampled by I(1n) is
uniformly distributed in {0, 1}L1(n) and that L1(n) + L2(n) < `(n). We will later explain how to relax
these assumptions.

Construction A.5 (malleable nb-PRG from incompressible TDPs). Let τ : N → N be a polynomially-
bounded parameter.
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• The generator G samples (z, t) ←↩ I(1n) and x0 ←↩ {0, 1}m(n), for i = 0 . . . τ(n) − 1, it outputs
b(z, xi) where xi is defined recursively to be fz(xi−1). In addition it outputs xτ(n) and z.

• The algorithm H(~b, xτ(n), z) outputs the suffix z.

• The (computationally-unbounded) algorithm T (z) outputs some trapdoor t that corresponds to z.

• The algorithmA parses its first input as (~b, xτ(m), z) and uses its second input t to compute x0, . . . , xτ(m)−1

recursively by setting xi = F−1(t, xi+1). The algorithm accepts if, for every i, the i-th entry of ~b
equals to b(z, xi).

By taking τ to be a sufficiently large polynomial (e.g., larger than the randomness complexity of I) we
can guarantee that G expands its input. Also, it is not hard to verify that for super-constant τ = ω(1) the
malleability property, as defined in Eq. (2), holds. Indeed, a random string is accepted with probability 2−τ

whereas a pseudorandom string is accepted with probability 1. Finally, the argument of [DI06, Thm. 3.2]
shows that if the underlying TDP has `-incompressible hardcore bits then the construction forms an (`− 1)-
crypto-nb-PRG. (For completeness we re-prove this in Lemma A.6.) Overall, assuming that the index z and
trapdoor t have a total bit-length of L1 +L2 that is smaller than `, we get a malleable cryptographic nb-PRG.

Lemma A.6. Suppose that Construction A.5 is instantiated with a family F of trapdoor permutations
with `-incompressible hardcore bits and that the identifier z sampled by I(1n) is uniformly distributed
in {0, 1}L1(n) and denote by ρ(n) the randomness complexity of I . Then, for every polynomial τ(n) >
ρ(n)−L1(n), the resulting function G : {0, 1}ρ(n)+m(n) → {0, 1}τ(n)+m(n)+L1(n) is an (`− 1) crypto-nb-
PRG.

Proof. The output of G can be parsed into (~b(z, x), xτ , z). Let w = τ +m+L1 denote the output length of
G. (To avoid clutter we leave the dependency in n implicit.) Assume, towards a contradiction, that G is not
an (`− 1) crypto-nb-PRG. That is, there exists some polynomial time algorithm D : {0, 1}w → {0, 1}`−1,
and a polynomial p = p(n) such that D(G(Uρ+m)) is 1/p far in statistical distance from D(Uw). Using
the standard equivalence between statistical distance and indistinguishability by computationally unbounded
adversaries, we conclude that there exists an unbounded adversary E : {0, 1}`−1 → {0, 1} such that the
adversary A(·) := E(D(·)) distinguishes G(Uρ+m) from Uw with distinguishing advantage of 1/p.

Using a standard hybrid argument (cf. [Gol01, Chapter 3.4]), we can turn A into a predictor algorithm
A′ that, for some j ∈ {1, . . . , w}, predicts the j-th bit of the random variable (~b(z, x), xτ , z) based on the
(w− j)-long suffix of this random variable with inverse polynomial advantage of 1/(pw). Note that the last
m+ L1 bits of the PRG (corresponding to the (xτ , z) part) are uniformly distributed since F is a family of
permutations. Therefore, the predictable index j must be smaller or equal to τ . Specifically, A′ takes the
following form. Given a suffix (uj:τ , x

τ , z), the predictor A′ samples a random j-bit prefix u′ ←↩ Uj and
outputs u′j ⊕ A′(u′, uj:τ , xτ , z). We can now construct a compressor D̃ and a de-compressor Ẽ that break
the OWP family by essentially decomposing A into D and E again.

Formally, we define the operation of D̃ on input (z, y) (supposedly y = fz(x)) as follows: Sample
u′ ←↩ Uj and sends the bit u′j together with d = D(u′, b(z, y), b(z, y1), ..., b(z, yτ−j−1(y)), yτ , z) where
yi = f i(y). The de-compressor Ẽ outputs E(d) ⊕ u′. It is not hard to verify that when z is random
and y = fz(Um), the distribution (u′, b(z, y), b(z, y1), ..., b(z, yτ−j−1(y)), yτ , z) is identical to the hybrid
distribution (u′, uj:τ , x

τ , z) defined above. It follows that the success probability of (D̃, Ẽ) (over a random
z and y = fz(Um)) is at least 1/2 + 1/(pw), as required.
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Relaxing the assumptions. The above argument shows that nb-distinguishers cannot tell the difference
between a pseudorandom tuple (~b, xτ(n), z) that was sampled by G, and a random tuple in which ~b, xτ(n)

are uniformly sampled and z ←↩ I(1n). When the output of I is uniform this is equivalent to our defini-
tion of pseudorandom against nb-distinguishers. If z is not uniform (think of an RSA modulus), one can
heuristically modify the construction as follows. First, assume that the randomness complexity ρ(n) of I
is relatively small compared to `(n), say ρ(n) 6 `(n)/3. If this is not the case, reduce the randomness
complexity of I via a standard cryptographic PRG – It seems likely that the incompressibility assumption
still holds. Denote the random coins of I by r, and assume that z is (almost uniform) over some set Z and
let L1 denote log |Z|. (For RSA this assumption holds assuming that the underlying cryptographic PRG
used for sampling is regular.) Then, instead of outputting z, the generator G outputs h(z) where h is a good
randomness extractor that outputs essentially all the L1-bits of entropy of z (h can be randomized as long as
it outputs its seed). Now given h(z) the mapping T recovers z, and outputs some random coins r for which
I(1n, r) = (z, t). Finally, A computes I(1n; r) = (z, t) and proceeds as in the above construction. Observe
that L1 + L2 6 2ρ < `, as required.

B Examples for F-SMSZK proof systems

In this section, we argue that the notion of SMSZK is a natural one by showing that the canonical HVSZK
proof systems for the GNI problem [GMW91] and for the SZK problem [SV03, Vad99] achieve full F -
SMSZK security where F is as large as the randomness complexity.

B.1 Graph Non-Isomorphism

Protocol B.1 ([GMW91] protocol for GNI). Given shared input 〈G0 = (V0, E0), G1 = (V1, E1)〉 the renowned
interactive proof 〈P, V 〉 described below is an HVPZK proof:

1. The random tape of V consists of a random bit b ←↩ {0, 1} and randomness r that defines a random
permutation π = πr over [n]. For concreteness, we may assume that r ∈ {0, 1}O(n logn) and that the
mapping from r to π is done by using the algorithm Π of [FY38].

2. V permutes the nodes of Gb under π, and sends the permuted graph H = π(Gb) to P .

3. P finds c ∈ {0, 1} such that H ∼= Gc and sends c.

4. V accepts if c = b.

Proposition B.1. The protocol B.1 is R-SMPZK for GNI with perfect completeness, and soundness error
of 1/2, where R is all the random bits used by V .

Proof. Given any efficiently computable sampling algorithm D(1n, s) that samples an R(n) bits, we define
a new simulator SimD as follows:

• Sample a random tape s for D and generate (b, r) = D(1n, s).

• Set π = Π(r) and H = π(Gb).
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• Output (s,H, b, b, π).

It is not hard to verify that the simulator SimD perfectly samples the view of the verifier, VD that selects its
random tape by invoking D.

The protocol is typically iterated t-times in parallel to reduce the soundness error to 2−t. This version
of the protocol is also R-SMPZK via a similar proof.11

B.2 The Statistical Distance Protocols

The SDα,β is a promise problem whose input consists of a pair of circuits (X1, X2) of size n that map
k = k(n) bits to m = m(n) bits. The input is a Yes instance (resp., No instance) if the output distributions
X1(Uk) and X2(Uk) are α(n)-far (resp., β(n)-close) in statistical distance.

Protocol B.2 ([SV03, Vad99] protocol for SD). Given a pair of circuits 〈X1, X2〉 the parties invoke the
following protocol:

• The verifier’s random tape consists of a random bit b←↩ {0, 1} and a random string u←↩ Uk.

• V sends x = Xb(u) to P .

• If Pr[X0 = x] > Pr[X1 = x] then P responds with c = 0, otherwise with c = 1.

• V accepts if b = c.

It is well known that the above protocol forms an HVSZK proof system for SD1−ε,β with completeness
and simulation error of ε and soundness error of 1+β

2 . We show that the protocol is in fact R-SMSZK
protocol with similar parameters.

Proposition B.2. For any ε, β : N → [0, 1], Protocol B.2 is (R, 0)-SMSZK proof system for SD1−ε,β with
completeness error of ε and soundness error of 1+β

2 , where R(n) = k(n) + 1 is the randomness complexity
of Protocol B.2. Moreover, for ε = 0, the protocol forms an R-SMPZK proof system.

Proof. Completeness and soundness are analyzed in [SV03, Vad99]. We prove that the protocol is (R, 0)-
SMSZK. Let ε, β : N → [0, 1] and let D : 1n × {0, 1}S(n) 7→ {0, 1}R(n) be some efficient sampling
algorithm. We define a simulator SimD for the proof system

〈
P, V D

〉
that given a pair of circuits 〈X1, X2〉

acts as follows:

• Sample s←↩ US(n).

• Invoke D(s) and parse it’s output into (b, u)

• Generate x = Xb(u)

• Output (s, b, x, c = b)

11More generally, any R-SMPZK with strong simulation property as defined in Remark 5.5 remains R-SMPZK under parallel
repetition.
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The simulated view is distributed identically to the real view conditioned on the event that real view is
being accepted (i.e., c = b). Hence for any X = (X0, X1) ∈ SD1−ε,β , it holds that

SD(SimD(X), viewV D(X)) 6 µ(D) + 0

where µ(D) is the completeness error of
〈
P, V D

〉
, i.e., the maximum over all yes instances 〈X1, X2〉, of

Pr
(b,u)←↩D(US),x=Xb(u)

[|X−1
b (x)| 6 |X−1

1−b(x)|]

where X−1
a (x) is the set of preimages of x under Xa.

We mention that the classical result of [SV03] shows that the promise problem SD(1/3,2/3) can be
reduced in time poly(n, τ) to an instance of SD(1−2−τ ,2−τ ).
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