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Abstract

Layering diverse cryptography is a general method to lower the risk
of a future, or secret, cryptanalytic attack on a system. This report
describes methods to quantifiably estimate this risk reduction.

Diversity is especially helpful in forward security because future
attackers have more time to discover new attacks, making attack in-
dependence of diverse cryptography the major contribution to risk
reduction. Post-quantum security is a part of forward security.

Estimates for highly sensitive data say that the security advan-
tage of diverse layering is worth the extra usage cost, thus advising a
decision to layer diverse cryptography.

1 Introduction

The goal of post-quantum cryptography (PQC) is to hedge the risk that a
quantum computer might break ECC (or RSA) by running Shor’s algorithm.
An attacker who hides the existence of its Shor-running quantum computer
can run a secret attack against ECC (or RSA) users. So, PQC hedges this
type of secret attack.

Layering diverse cryptography is also a method for hedging the risk of
secret attacks (more general secret attacks, not just quantum attacks). This
alignment in purpose suggests that PQC and layering diverse cryptography
share a common purpose, and should perhaps be used in tandem.
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2 Definitions

2.1 Secret and public attacks

An attack against a cryptographic scheme is a feasible method to defeat the
stated security aim of the scheme. An attack is a public attack if reasonable
verification of the attack is available to the general public. Otherwise, an
attack is a secret attack.1 The general public can, at best, estimate the
risk of a secret attack.2

For example, a feasible method to defeat the security aims of Elliptic
Curve Diffie–Hellman (ECDH) would be Shor’s algorithm with a large enough
quantum computer. This would be a public attack, if the existence of a large
enough quantum computer can be verified by the general public, or possibly
if a break of ECDH is demonstrated (such as by a solution to one of the
larger Certicom ECC challenges). Otherwise, it should be considered a secret
attack.

It is important to consider that some cryptographic schemes have future
security aims: meaning that they try to protect today’s data from future
attacks, attacks discovered in the future. When future security is an aim,
such as in encryption, potential future attacks are counted as secret attacks,
whether or not future attacks are made public. When future security is not
an aim, such as in authentication, then future attacks are not counted at all.

2.2 Strongest-link layering

Given a suite of cryptographic schemes [C1, . . . , Cn], all with the same secu-
rity aim, such as

• four key encapsulation schemes: [ECDH, NTRU, McEliece, SIKE], or

• three signature schemes: [ECDSA, Dilithium, SPHINCS+],

a strongest-link layering is a scheme written as

C = C1 & C2 & . . . & Cn, (1)

with the same security aim as the Ci, such that an ability to break C implies
an ability to breaking each Ci individually, and conversely, an ability to break

1A secret attack is a type of zero-day vulnerability.
2Unless investigators or whistle-blowers make the secret attack public.
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all of the Ci separately implies an ability to break C. In other words, as long
as one or more of the Ci is unbroken, the layered scheme C is unbroken.

This report assumes that such strongest-link layering is possible, and
estimates the benefits of strongest-link layering.

2.3 Attack probability

Let E indicate the event of a secret attack against scheme C, and Ei

indicate the event of a secret attack against scheme Ci. If C = C1 & . . . Cn,
then E = E1 ∩ · · · ∩ En, the intersection of the events Ei, because of the
definition of strongest-link layering.3

The (secret) attack probability a against C, is the probability of the
event E of a secret attack against C, which can be written as a = P (E).
Similarly, ai = P (Ei) is the attack probability against Ci. If C is a strongest-
link layering scheme, then a = P (E1 ∩ · · · ∩ En).

2.4 Expected loss (risk)

The risk of secret attacks depends both on the probability a of secret attack
and on the damage D that would be caused by a secret attack.

The damage D of an attack breaking security aims of scheme C depends
on the application4 using the scheme C and the type of data protected by the
scheme C. This report treats D as a given and unchangeable single financial
number, in units of dollars.5

The risk of secret attacks is equated in this report to expected loss L
defined as

L = aD, (2)

where a is the probability of a secret attack and D is the damage that would
result from that secret attack.

2.5 Usage cost

The usage cost U of scheme C is the cost of using C, and should cover
computer runtime, data transmission, software (or hardware) installation.6

3We assume that there are no (current) public attacks on any of Ei.
4Such as email or web browsing.
5The value of damage may also depend on the identity of the secret attacker.
6The usage cost does not include risk of costs caused by attackers.
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Similarly, let Ui be the usage cost for scheme Ci. This report treats U and
Ui as given, unchangeable financial numbers, in units of dollars.

A strongest-link layering C = C1 & . . . & Cn typically has additive usage
cost of

U = U1 + · · · + Un. (3)

2.6 Net cost, benefit and net benefit

The net cost N of a cryptographic scheme C is the usage cost plus the
expected loss:

N = U + L. (4)

The benefit B of using the scheme C depends on the application using
the scheme C and the type of data protected by the scheme C. This report
treats B as a given and unchangeable single financial number, in units of
dollars.

The net benefit is
B − N, (5)

the benefit minus net cost. We need a positive net benefit (B − N > 0).
If the net benefit is not positive (B − N ≤ 0), then the risk of a secret

attack against the scheme C is too high. This would indicate that better
cryptography is needed, or else something beyond cryptography, such as in-
person, physical, communication.

The requirement B − N > 0 means requiring that N < B. Therefore
B can viewed as a maximum threshold for N . Cryptographers must try to
reduce N such that N is below B. Furthermore, cryptographers also want
to maximize the net benefit B − N by minimizing the net cost N (among all
acceptable options N < B).

3 Estimates

3.1 Thoughtover estimates for a

The thoughtover estimate ã for secret attack probability a of a crypto-
graphic scheme C is

ã = 1 − ot/T (6)

where:
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• T is independent public thought put towards attacking C, the to-
tal time spent thinking how to break the scheme by those who would
publish their attacks if discovered;

• t is independent secret thought put towards attacking C, the total
time spent thinking how to break the scheme by secret attackers, who
would not publish their attacks if discovered; if a scheme C has an aim
to provide future security, its t should also include the potential time
the all relevant future attackers would spend thinking of how break the
scheme;

• o is optimism (or confidence or P-value or statistical significance).

See §4 for justification and discussion of the thoughtover estimate.
A thoughtover estimate ãi for ai is defined similarly, as

ãi = 1 − oti/Ti . (7)

3.2 Cautious optimism

Fixing o = 0.05 is cautious optimism. Cautious optimism is derived from
the typical cut-off for statistical significance of 95% used commonly in
many sciences. If t = T , the public cryptanalysis and secret cryptanalysis
should have equal chances of finding an attack. Putting o = 0.05, allows for
a 95% probability that secret attackers succeed while public attackers fail.
In other words, putting o = 0.05 accounts for public attackers having worse
luck than the secret attackers.

Putting o = 0.5 would not account for the possibility of the secret attack-
ers being luckier at finding attacks than the public attackers.

Any o > 0.5 is over-confidence, assuming the public attackers have better
luck than the secret attackers.

3.3 Estimating time of thought

Estimating time of thought is crucial but difficult to do reliably. Some meth-
ods are discussed in §A.

The most important thing to get right is the ratio t/T . Note that when
future security is an aim, then t can be quite large.
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Cryptography standardization efforts, especially competition-style projects,
like NIST’s AES and PQC projects, have helped to boost T for the cryptog-
raphy considered for standardization.

3.4 Diversified estimate for a

The diversified estimate a∗ for attack probability a of strongest-link lay-
ering C = C1 & C2 & . . . & Cn is

a∗ = a1a2 . . . an, (8)

which is the product of the attack probabilities ai of the schemes Ci.
The diversified estimate applies if the schemes Ci have attack indepen-

dence, meaning that secret attack events Ei are independent. (Recall events
are independent if their probabilities multiply in the sense that

P




s⋂

j=1

Eij


 =

s∏

j=1

P (Eij
) (9)

for distinct indices i1 < i2 < · · · < is.)
See §B for some limitations to attack independence.
Given schemes C1, . . . , Cn with attack independence, usage costs U1, . . . , Un,

with additive usage costs of U = U1 +· · ·+Un, attack probabilities a1, . . . , an,
and damage D, then cost minimization is a discrete optimization problem:
find the subset M ⊆ {1, . . . , n} that minimizes

(
∑

i∈M

Ui

)
+

(
∏

i∈M

ai

)
D. (10)

If 2n is small enough, then optimizing M is easy, given all the other inputs.
The most difficult part of the analysis seems to be properly estimating ai.

3.5 Compound estimate for a

The compound estimate a′ for the attack probability a of C = C1 & . . . & Cn

is
a′ = ã1 . . . ãn, (11)

which is similar to the diversified estimate a∗ for a, except that each factor
ai has been replaced by its thoughtover estimate ãi.
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The validity of the compound estimate depends on a further assump-
tion, that the thoughtover estimates are independent, which in turn requires
assuming that the ti are independent.

3.6 Conversion to bits

For convenience, the previous variables are converted in Table 1 to a common
unit of bits, defining five new variables pain p, gain g, luck l, fame f , and
hope h. (This uses base two logarithms, lg(2x) = x, of probabilities, ratios,
and other financial amounts, as needed. For example, each bit increase in
gain halves the secret attack probability.)

Notation Definition Typical Range Unit Name
p lg(D) − lg($) [10,40] Bits Pain
g − lg(a) [0,6] Bits Gain
l − lg(− lg(o)) [-4,0] Bits Luck
f − lg(t/T ) [-5,5] Bits Fame
h l + f [-9,5] Bits Hope

Table 1: Converted-to-bits variables

The previous variables can be recovered from the bit variables by reversing
the conversions, such as for expected loss like this:

L = $2p−g. (12)

3.7 Estimating gain

Recall that gain g is g = − lg(a), where a is attack probability. Each type
of estimate (thoughtover, diversified, or compound) for an attack probability
leads to a corresponding estimate for a gain.

The bit variables tend to be additive. The diversified estimate a∗ of a for
C = C1 & . . . & Cn leads to the diversified estimate of gain:

g∗ = g1 + · · · + gn, (13)

where gi is the gain for Ci. To estimate gain, we can use hope, which is luck
plus fame. Similarly, a compound estimate of gain g′ of is

g′ = g̃1 + · · · + g̃n. (14)
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where g̃i is the thoughtover estimate of gain. As a function of hope hi,
the thoughtover estimate of gain can be computed as

g̃i = − lg
(
1 − 2−2−hi

)
. (15)

For hi > − lg lg(e) ≈ −0.53, the thoughtover gain can be approximated fairly
well by:

g̃i ≈ h + lg lg(e) + 2−(hi+1). (16)

In other words, for high hopes, hi > 4, the thoughtover estimate of gain is
hope plus a constant plus a small number.

For hi < −2, the thoughtover estimate of gain is well approximated by
lg(e)2−2−h

. For low hopes like hi < −3, the thoughtover estimate of gain gi

is less than 1
100

. Such gains might be so small that they are unlikely to cause
the net cost to drop below the minimum threshold. Such gains might be so
small that the usage cost can surpass the savings the gains provide to the
expected loss (when used in a compound estimate).

3.8 Artificial numerical estimates

Some numerical estimates of the bit variables are provided in Table 2.

Scheme Usage Cost Fame Hope Gain Attack probability
ECDH 2 2 0 1.000 0.50
McEliece 100 3 1 1.772 0.29
NTRU 3 1 -1 0.415 0.75
SIKE 10 0 -2 0.093 0.94

Table 2: Key encapsulation single-scheme estimates, with luck l = −2

These estimates are partly based on cautious hunches, with low fame es-
timates arising from large estimates for time of thought t by future attackers.
These estimates are partly artificial, being adjusted to illustrate interesting
non-trivial conclusions.

Experts in the specific schemes can improve these estimates by choosing
better values of the input variables, based on their experience and evidence.
Direct estimates of the natural variables t and T instead of the bit variable
f would probably lead to more realistic assessments.

Table 3 evaluates the cost for each of the sixteen strongest-link layering
of the four key encapsulation schemes. The minimal cost solution is layering
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ECDH & McEliece & NTRU. In this example, adding SIKE to this slightly
increased cost. The initial estimates in Table 2 for fame and usage costs
were artificially tweaked to cause SIKE to be excluded from the optimum,
in order to illustrate the possibility that the optimization of net cost can be
non-trivial.

ECDH McEliece NTRU SIKE Net cost
- - - - 1024
- - - + 970
- - + - 771
- - + + 733
- + - - 400
- + - + 391
- + + - 328
- + + + 324
+ - - - 514
+ - - + 492
+ - + - 389
+ - + + 375
+ + - - 252
+ + - + 253
+ + + - 217
+ + + + 220

Table 3: Key encapsulation combinations, with pain p = 10

If the benefit was B = 300, then net benefit is positive as long as
strongest-link layering includes both ECDH and McEliece.

As an alternative example, suppose that usage costs were lower, or dam-
age were higher. In that case, including SIKE might lower the net cost
(instead of raising it). Indeed with yet higher damages, even more layers
of diverse cryptography (beyond the four in ECDH, McEliece, NTRU and
SIKE) could lower cost even further.

4 Explaining the thoughtover estimate

This section describes a heuristic explanation of the thoughtover estimate.7

7This explanation revises previous work [Bro19] by the author of this report.
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The explanation uses a simplistic model: specialized Poisson point process
model, combined with general statistical inference.

4.1 Poisson model of cryptanalysis

Recall that independent public thought T is the total time spent trying to
break a given scheme. Assume that

• the probability of breaking the scheme is a function π of T , and

• for two disjoint sets of independent thought with times T1 and T2, we
have π(T1 +T2) = π(T1)f(T2). In other words, probabilities of breaking
the scheme are independent for disjoint periods of thought.

These two assumptions imply the well-known Poisson point process model.
There exists a constant A such that the probability of finding no practical
attack in time T is:

P = e−AT . (17)

Call A the attackability of the cryptosystem. Attackability can range
from 0 to ∞. If the attack does not exist, then A = 0. Otherwise, attacka-
bility quantifies how easy it is to break the scheme in a given T .

Well-known properties of the Poisson point process imply that 1/A is the
expected (average) independent thought needed to discover an attack.

4.2 Inference by optimism

Suppose that no practical attack on the target cryptographic scheme has
been observed after spending independent thought T trying to break the
scheme. Assume that

P ≥ o. (18)

for some value o that we will call optimism. We call o = 0.05 cautious
optimism.

A small o means that we recognize the possibility that the public attackers
had the bad luck of not finding an attack. A too large o mean that we were
overconfident of there being no attack.

(Statistical terms related to optimism are confidence and significance,
but optimism seems more appropriate here.)

10



Substituting equation (17) for P in bound (18) bounds attackability A
by

A ≤ −
log o

T
. (19)

Putting o = 0.05 amounts to an estimate that the average time needed to
find an attack would be at least T/3.00, after having tried and failed to find
an attack in time T .

4.3 Independent secret thought

If a secret attacker has secret independent thought t, then the Poisson point
process model says that the probability the secret attacker fails to find an
attack is

q = e−At. (20)

In other words, q is the probability that the cryptosystem remains secure
against the secret attacker with independent secret thought t.

Substituting the inference (19) into equation (20) bounds security prob-
ability q by

q ≥ ot/T . (21)

The attackability A has vanished from this estimate.
The probability of a secret attack is a = 1−q, which is bounded bounded

by
a ≤ ã = 1 − ot/T . (22)

4.4 Thoughtover can over-estimate attacks

The thoughtover estimate is based on an upper bound estimate, meaning that
the observed evidence is consistent with a < ã. Nonetheless, as a prudent
precaution, we consider it as an estimate for a, so a ≈ ã.

A newly proposed scheme C might actually be optimally secure, with a =
2−128, but might have high thoughtover estimate of ã = 0.999, because T is
still small (C being so new), while t is much larger due to future attackers. In
this case, the thoughtover estimate ã = 0.999 is an overestimate for a = 2−128.
In other words, the thoughtover estimate of attack probability always starts
high for new schemes.
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A Methods to estimate time of thought

An estimate for the total time of public thought T is to sum the individual
times of each person contributing to T . This summation assumes that each
person has thoughts independent of other people, which is reasonable when
considering undiscovered attacks.

The independent thought of a single person can be upper-bounded. The
maximum number of years a single person can think about breaking a scheme,
can be estimate by the age of the scheme C, and by the educational and work
experience of the person. A typical person might have a maximum rate of
thought per year of independently trying to break a given scheme C. An
upper limit of 100 hours per year seems reasonable, accounting for the need
to think about other things and also for exhaustion causing repeated thoughts
that are no longer independent.

Also needed is an estimate of how many people have thought about break-
ing C, and the average amount of time they spend thinking about breaking
C. Direct self-reports can be considered. Publication records might also help
estimate times of independent thought. A partial attack on C, such as one
that requires revising the scheme’s parameters, can be regarded as strong
evidence of thought.

Estimating secret thought t has extra complications. Secret attackers
may not want even the size of t to leak: they may even try to deceive the
public by implying t is too small or too large, perhaps to influence the public’s
decision to use the scheme C.

When aiming for future security, the secret thought t should include future
thought. This future thought contribution to t could be quite large, and
should be proportionate to the amount of time that future security is desired.
Future thought is likely to increase with the increased deployment of the
scheme C, but the most relevant estimations for the risk of secret attacks
against C would assume that C is deployed.

Alternatively, one could estimate the ratio t/T directly, trying to compare
a secret attackers capabilities against the public scrutiny. Such an estimate
could be used as a check against the possibility that the estimate t and T
are arrived at by different methods.
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B Attack dependence

B.1 Clear overlaps between schemes

For some sets of scheme {C1, . . . , Cn}, such as key encapsulation, there might
be clear overlaps. For example, ECDH, NTRU, McEliece and SIKE might
all use the hash function SHA-2. Similarly, multiple signature schemes might
all use the same hash function SHA-2.

Strictly speaking, such overlap rules out absolute attack independence.
A single attack on the overlapping part, SHA-2 above, could break all the
individual schemes.

To work around this, we can assume that overlapping parts are perfectly
secure, making all estimates conditional upon the security of overlapping
part.

B.2 Dynamic allocation of thought

A secret attacker targeting C = C1 & . . . & Cn could also estimate the inde-
pendent public thought T1, . . . , Tn, but could control t1, . . . , tn to optimize
the success of finding a secret attack on C.

One possible allocation strategy is to choose ti proportional to Ti. If
the ti are run in parallel (over the same time period), then the expectation
is to break all Ci in the same average time period. This might minimize
the switching resources between attack efforts. If the attacker adopts this
strategy, then the attack probability is (1 − ot/T )n, where t =

∑
ti and T =∑

Ti. Surprisingly, the effectiveness of this attack does not depend on the
individual Ti.

C Manipulating estimates

Qualitative recommendations and quantitative estimates are both vulnera-
ble to intentional manipulation, or accidental bias. However, quantitative
estimates are more open to review and correction.
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D Diversity is needed to make agility work

The term agility means the ability to rapidly change the scheme in the event
of a public attack. Diversity of schemes is needed in order to change to a
scheme that is not vulnerable to the public attack. Diversity is needed to
make agility work.

E Using estimation

The damage and the secret attack probability viewed together determine the
most reasonable course of action in the given circumstances.

1. If a is optimally low, with a < 2−128, and damage D < $250, then the
expected loss is negligible, with L = $2−78. In this case, there is no
reason to improve cryptography, because any reduction in risk will be
negligible.

2. If D is negligible, with D < $2−20, say, then L ≤ D because a ≤ 1,
which means L is also negligible. In this case, there is no reason to
use cryptography at all, because the risk not using cryptography is
negligible.

3. If D is high, say D/$ ∈ [210, 240], and a is non-negligible, say a ∈
[2−30, 1], then L could be non-negligible. In this case, there is reason to
try to improve the cryptography, by lowering a to reduce the expected
loss.

Note that the ideal a = 0 is impossible for most schemes, because a key-
guessing attack has a > 0. A key-guessing attack can be regarded as secret
in that the key-guesses are secret, meaning there is no simple patch for the
public. The normal response to key-guessing attack is to allow them if a is
negligibly small, such a < 2−128.
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