
A Weighted Bit Flipping Decoder for
QC-MDPC-based Cryptosystems

Alexander Nilsson∗†, Irina E. Bocharova‡, Boris D. Kudryashov‡ and Thomas Johansson∗,

∗Dept. of Electrical and Information Technology,
Lund University

Email:{alexander.nilsson, thomas.johansson}
@eit.lth.se

†Advenica AB,
Malmö, Sweden

‡Dept. of Information Systems
St. Petersburg Univ. of Information Technologies,

Mechanics and Optics
and Univ. of Tartu, Estonia

Email: {irinaboc, boriskud}@ut.ee

Abstract—A new “Weighted Bit-flipping” (WBF) iterative de-
coder is presented and analyzed with respect to its Decoding
Failure Rate (DFR). We show that the DFR is indeed lower than
that of the BGF decoder as suggested by the BIKE third round
submission to the NIST PQC standardization process. The WBF
decoder requires more iterations to complete than BGF, but by
creating a hybrid decoder we show that a lower DFR compared
to that of the BGF decoder can still be achieved while keeping
the computational tradeoff to a minimum.

I. INTRODUCTION

It is well-known that quantum computers (QC) can break
the ubiquitous public key cryptosystems (PKC) RSA and
ECC as well as the key-agreement protocols DH and ECDH.
This is due to QCs ability to solve the integer factorization
and the discrete logarithm problems in polynomial time. To
prepare against the development of QCs of sufficient scale to
threaten online communications, many potential replacement
algorithms have been suggested [1]–[4] in the field of post
quantum cryptography (PQC). The code-based PKC scheme
McEliece [1] is one of these proposed replacements. The
security of this PKC is based on hardness of decoding a
random linear code (from the field of coding theory). However,
relatively recently, new versions this code-based PKC were
proposed.

One of the more promising PQC candidates is based on
the use of quasi-cyclic moderate density parity-check (QC-
MDPC) codes [5], instead of Goppa codes. These code-based
schemes improves McEliece in several aspects, one being
the simplified description of a code-based PKC without a
permutation matrix; another one being the reduced size of the
public key. Another key factor in favor of MDPC codes is that
they allow for relatively efficient decoding for a legitimate
user while still ensuring a required level of security for the
corresponding public key. Based on this new idea of using
iterative decoding of MDPC codes, a number of different
schemes have since then been published. In particular, the
NIST PQC standardization process’ third round submission
schemes BIKE [2] and HQC [4] are relevant this paper.

On the flip side of the coin, much effort is required in both
lowering the DFR1 of the iterative decoding process and in
increasing the number of correctable errors. Failing to do so
affects the legitimate user because it raises the requirement of
the block-size (and therefore communication bandwidth) but
more importantly, a poor DFR performance enables reaction
attacks [6]–[8] based on the observation of uncorrectable error
patterns. One decoder is the original iterative Bit-Flipping
(BF) decoder [9] and it, when applied to QC-MDPC codes,
suffers from relatively poor DFR performance due to it
originally being developed for the low-density parity-check
(LDPC) codes that are intensively employed in communication
systems. The inefficiency of the BF decoder stems from the
higher probability of MDPC codes to include short cycles in
the corresponding Tanner graph [5].

A number of different attempts to improve BF decoding of
QC-MDPC codes have been developed in the last couple of
years. In particular, the Black-Grey Flip (BGF) decoder [10]
was selected by BIKE due to its quick convergence (i.e., good
DFR despite a small number of iterations).

Similarities between LDPC codes and MDPC codes allow
for a transfer of ideas which lie behind some improved
BF algorithms to the cryptography area. However, specific
features of MDPC codes require significant modifications of
known iterative decoding techniques. Examples of improved
BF algorithms of this type can be found in [11] and [12],
where BF decoding followed by post-processing was studied.

Our main contribution in this paper is a new decoder design
following an analysis of belief propagation (BP) decoding.
Due to the increased computational complexity of our decoder,
we additionally present a hybrid of our design and that of
the BGF decoder. Both new decoders are evaluated with
simulations to confirm their respective DFRs.

II. QC-MDPC BASED MCELIECE CRYPTOSYSTEM

Key Generation, Encryption and Decryption can be per-
formed in a number of different ways (e.g., see BIKE spec-
ification [13]), but for the sake of simplicity and generality

1Decoding Failure Rate, also known as the Frame Error Rate (FER) in the
field of coding theory.

we present a summary of the original proposal by Misoczki,
Tillich and Sendrier [5]. We assume that differences between
different variants of QC-MDPC-based schemes do not affect
the relative DFR and/or computational efficiency of decoding
algorithms, although the performance in absolute terms is
expected to depend on the instantiated scheme in question.

We consider the (n, r, w)-QC-MDPC code, where n = n0r.
It is defined through a parity check matrix

H =
(
H0 H1 · · · Hn0−1

)
, (1)

where the r × r submatrices Hi, i = 0, 1, . . . , n0 − 1 are
circulant matrices with row weight wi. Notice that for MDPC
codes

∑n0−1
i=0 wi is chosen to be of order

√
n log n. In the

sequel, for simplicity, we analyze only the case of n0 = 2 and
equal weights wi = w, for i = {0, 1}.
(a) Key Generation: Generate two random sequences h0,h1

of length r = n/2 and Hamming weight w. Form circulant
matrices H0, H1 as cyclic shifts of h0,h1, respectively.
Construct a generator matrix G as

G =
(
I | Q

)
,where Q = (H−11 H0)

T
, (2)

where T denotes matrix transposition and I is the identity
matrix. The public key is G (compactly represented by
the first row of Q) and the private key is H (compactly
represented by the sequence h0,h1).

(b) Encryption: Generate a random sequence e of length n
and Hamming weight t. The ciphertext x for the plaintext
m is x = u+ e, where u = (m,mQ).

(c) Decryption: Perform iterative decoding of x by using the
known matrix H from Equation (1). Obtain the plaintext
m as the first k bits of the decoded sequence.

III. DECODING OF MDPC CODES

In this section, we briefly recall the iterative decoding
algorithms applied to decoding LDPC/MDPC codes. There
are many implementations of the BF decoding [14], which
differ both in complexity and error correcting performance. For
the detailed overview of MDPC-code-based versions see [10],
[15]. All of these versions are used in the same manner as for
LDPC codes, determined by sparse parity-check matrices. Our
motivation is to modify the BF algorithm in order to take into
account that parity-check matrices of MDPC codes are much
denser than those of LDPC codes.

A. Belief propagation decoding

We start with describing the soft-decision BP algorithm,
which shows close to optimal performance when used with
LDPC codes. In decryption, we interpret vectors u and
x = (x1, . . . , xn) = u + e as the input and output of the
binary symmetric channel (BSC) with crossover probability
ε = t/n. In order to apply BP decoding, we transform the
hard-decision BSC output to a soft-decision sequence of log-
likelihoods ratios (LLRs) y = (y1, . . . , yn), where

yi = µ(1− 2xi), µ = log
1− ε
ε

. (3)

BP decoding (alternatively called message passing algo-
rithm) has many different implementations. Two of them,
namely, sum-product (SP) algorithm [14] and its approxima-
tion, called min-sum (MS) algorithm [16] are well known in
coding theory.

Let V = {1, . . . , n} and C = {1, . . . , r} be the sets of
variable and check nodes (code symbols and parity-checks)
of an MDPC code’s Tanner graph and denote by Z = {zcv}
messages exchanged between nodes c ∈ C, v ∈ V . Notice
that number of elements in Z is determined by the number of
non-zero elements in the parity-check matrix H .

1) SP and MS decoding:
(a) Initialization: let zcv = yv , v ∈ V , c ∈ C.
(b) At each iteration of BP decoding

• For each c ∈ C and all v connected to c compute either

zcv =
∏
v′6=v

sign(zcv′)φ

∑
v′6=v

φ(|zcv′|)

 , (4)

where φ(λ) = ln eλ+1
eλ−1 , λ > 0. or

zcv =
∏
v′6=v

sign(zcv′)α

(
min
v′6=v
|zv′| − β

)
, (5)

for SP and MS versions, respectively. The constants
α > 0 and β ≥ 0 represent a normalization factor and
an offset, respectively.

• For each v ∈ V and all c connected to v update

zcv = yv +
∑
c′6=c

zc′v. (6)

(c) Compute hard decisions as

uv = sign

(
yv +

∑
c

zcv

)
. (7)

Early termination of the decoding procedure can be done if
at each iteration the sequence of hard decisions is computed
according to Equation (7) and the corresponding syndrome
is evaluated. All-zero syndrome vector indicates that a valid
codeword is recovered. The complexity of the SP version of
BP decoding is determined by the computational complexity
of Equation (4).

2) Bit-Flipping (BF) decoding: BF decoding is a simple
hard-decision version of BP decoding algorithm. The two
originally suggested in [14]. BF algorithms differ in the way
the decoding threshold is chosen.
(a) Initialization: compute syndrome s = xHT.
(b) At each iteration

• For each c ∈ C and all v connected to c set zcv = sc,
where sc is the c-th component of s.

• For each v ∈ V and all c connected to v compute a
number of unsatisfied checks (NUC): σv =

∑
c zcv .

• Flip symbols of x at positions v such that σv >
maxv σv − δ.

(c) Return x.

Early termination can be performed if none of positions
were flipped at some iteration. The parameter δ > 0 deter-
mines a tradeoff between DFR and complexity.

B. Black-Grey-Flip Decoder (BGF)

Building on the basic BF (Bit-Flipping) decoder we first
briefly describe the “Black-Grey” (BG) decoder2 described
in [17]. On top of the BF algorithm this decoder utilizes two
additional lists (called black and grey, respectively) to keep
track of bit flips which are considered “uncertain”. The bits
specified in these lists are reevaluated against conditions. Bits
that meet these conditions are flipped again, thereby undoing
the first flip. Each iteration of the BG implementation is
divided into three steps.
Step I Perform a single round of BF decoding, (i.e. flipping

bits according to their NUC value σv and a threshold
τ) producing two lists:
• A black list containing all flips performed.
• A grey list containing all flips with a NUC value

close to (but not above) the threshold.
Recompute the syndrome.

Step II Another round of BF decoding but this time only con-
sider bits in the black list. Recompute the syndrome.

Step III Another round of BF decoding but this time only con-
sider bits in the grey list. Recompute the syndrome.

BGF introduces an optimization due to recognizing (see
[17]) that it is only during the first iteration there are un-
certain bits to reevaluate. Steps II and III are therefore only
performed for the first iteration. Leaving only Step I makes
BGF equivalent to BF decoding during the remaining number
of iterations. One can view the relative time-complexity of the
BGF decoder as 1 × BGrounds + 4 × BFrounds ≈ 7 × BFrounds
according to [17].

IV. ANALYSIS OF BF DECODING OF MDPC CODES

In BP decoding (SP, MS or BF) we associate with nonzero
elements of parity-check matrix H an array of random vari-
ables zcv . At decoding iterations, zcv values are updated
depending on syndrome values. In case of BF decoding the
Hamming weight of parity checks determines row-processing
errors to next iterations. In what follows, we try to construct
an approximate model of error propagation in BP decoding.

For a code of rate R defined by a parity-check matrix H
with column weight w, a single error influences w rows with
d = w/(1−R) = wn0 nonzero symbols in each row. In total,
N1 = wd variables zcv associated with nonzero elements of
H in w parity checks are affected by a single error. Among
them only w elements belong to the column corresponding to
the “true” erroneous variable node. The other (wd−w) non-
zeros can be interpreted as an additional binary noise caused
by correlation between parity checks.

If the number of introduced errors t� 1, then the nonzero
symbols of the binary noise are assumed to be independent

2”Black-Grey-Flip” (BGF) is an optimized variant of the BG decoder first
found in the BIKE pre-Round-1 submission CAKE by Sendrier and Misoczki.

and identically distributed. Assume that a single variable zcv
is equal to 1 due to a single channel error with probability

p =
#of affected positions

total # of nonzero elements
=
wd− w
rd

=
w − 1 +R

r
.

If t errors occur then zcv will be equal to 1 if the number of
its flips will be odd and equal to 0, otherwise. The probability
of “false” ones caused by odd number of flips is equal to
(see [14])

ε =
1− (1− 2p)t

2
=

1−
(

2(w−1+R)
r

)t
2

. (8)

Below we interpret ε in Equation (8) as the probability of
errors in computing NUCs induced by the binary noise caused
by high correlation of parity checks.

Example 1: Let r = 4801, w = 45, t = 100. It is easy to
check that ε = 0.423 and that the expected value of NUC is
equal to εw = 18.9 for error-free positions and is equal to
(1 − ε)w = 26.1 for positions in error. These estimates were
confirmed by long simulations. �

What follows from this example is that the information
about errors obtained from NUC values σv is “extremely
noisy”. We can expect σv < w/2 for many error positions
and σv > w/2 for many error-free positions In other words,
syndrome values used in BF decoding for making decisions
about bits to be flipped are typically unreliable. These consid-
erations lead us to the conclusion that syndrome values used
in BF decoding should be classified and weighted according to
their ‘reliabilities’. Similar ideas are behind one improvement
of BF decoding in [18].

V. THE NEW VERSIONS OF BF DECODER

For a given syndrome vector s = (s0, . . . , sr−1), particular
values sc = 0 or 1 mean that the number of erroneous (to
be flipped) positions θc among positions involved into the c-
th check is even or odd, respectively. Our goal is to find a
statistical criterion for distinguishing between cases θc = 0
or θc ∈ {2, 4, · · · } if sc = 0 and between cases θc = 1 or
θc ∈ {3, 5, · · · } if sc = 1. In other words, we aim at estimating
“reliability” of the syndrome components sc.

Positions v with the number of NUCs σv > w/2 are consid-
ered as candidates for flipping. For a check c, c = 0, . . . , r−1

let σ[c] = (σ
[c]
0 , . . . , σ

[c]
d−1) be a sequence of σi = σvi , where

vi, i = 0, . . . , d− 1 are nonzero symbols of the check c. We
are going to measure reliability of sc as a function of the NUC
sequence σ[c].

Let χ(x) be an indicator function which is equal to 1 if x
is true and 0, otherwise. The number of votes for flipping in
the c-th parity check can be expressed as

θc =

d−1∑
i=0

χ(σ
[c]
i > w/2). (9)

To obtain a quantitative measure of reliability we evaluated,
empirically for the MDPC code from Example 1, the following

logarithmic likelihood values

A0(θc) = log
Pr (ec = 0|sc = 0, θc)

Pr (ec > 0|sc = 0, θc)
, (10a)

A1(θc) = log
Pr (ec = 1|sc = 1, θc)

Pr (ec 6= 1|sc = 1, θc)
, (10b)

where ec is the number of errors (out of t introduced errors)
in the symbols of the c-th check. Functions As(θc), s = 0, 1
are identical for all checks c = 0, . . . , r − 1 due to the code
regularity. This allows to use As(θ) as a reliability measure
for the syndrome value s given that the number of votes for
flipping in a check is equal to θ. Functions As(θ) empirically
evaluated for the code of Example 1 are presented in Figure 1.
We can see that to the syndrome components s corresponding
to the check with a small number of votes θ should be
assigned 3–4 times larger weights than to the components
corresponding to checks with large θ.

0 5 10 15 20 25 30 35 40 45

Number of votes for flipping in a parity check

-0.5

0

0.5

1

1.5

2

2.5

3

3.5

4

R
el

ia
bi

lit
y

of
 s

yn
dr

om
e

co
m

po
ne

nt

A
0
()

A
1
()

Fig. 1. Logarithmic likelihood ratios defined as in Equation (10) for syndrome
components as functions of the number of votes for flipping (NUCs above
w/2)

It follows that after computing syndrome and NUCs, one
can compute weighting factors for syndrome component either
by A0 or by A1 depending on the value of the syndrome com-
ponent. For all variable nodes, the weighted NUC values can
be obtained by adding the reliability info with NUC weighted
by 1/2 (chosen empirically). The rest of the algorithm works
as in the original BF algorithm with the threshold equal to the
maximal shifted and weighted NUC value. A variable node
with the maximal value of combined reliability and NUC is
flipped.

The algorithm shown in Figure 2 is an approximated version
of the theoretical WBF algorithm described above. Instead of
using fixed arrays of weighting coefficients A0, A1, the algo-
rithm searches for minimum numbers of votes separately for
satisfied and unsatisfied checks (lines 6, 7). The contribution
of syndrome components with the smallest number of votes
is amplified (lines 10 and 12) by multiplication with the fixed
coefficient 3.

Simulations show that performance of the theoretical and
simplified weighted algorithms are hardly distinguishable.

1 function [y,it]= WBF(y,V,C,w,maxit)
2 s=mod(sum(y(V),2),2)’; % syndrome
3 for it=1:maxit
4 nuc=sum(s(C)); % NUC
5 SM=sum(nuc(V)>w/2,2)’; % votes
6 minSM1=min(SM(s==1));
7 minSM0=min(SM(s==0));
8 REL=2*s-1;
9 mask=(s==0) & (SM<=minSM0+3);

10 REL(mask==1)=REL(mask==1)*3;
11 mask=(s==1) & (SM<=minSM1+3);
12 REL(mask==1)=REL(mask==1)*3;
13 metric=sum(REL(C));
14 [mm,˜]=max(metric);
15 f=find(metric==mm);
16 [˜,J]=min(sum(SM(C(:,f))));
17 s(C(:,f(J)))=˜s(C(:,f(J)));
18 y(f(J))=˜y(f(J)); % flip
19 if sum(s)==0, return; end
20 end

Fig. 2. Matlab program for simplified WBF decoding.

In Figure 2, only one position is flipped per iteration.
Similarly to the BF decoding, a certain threshold can be
selected in such a way that at step 16 in Figure 2 more
than one flip can be allowed. This modification will make the
convergency faster at the cost of slightly increasing DFR. The
simulated WBF decoder in Section VI-B use this optimization.

A. Complexity and constant-time considerations

A single round of normal BF decoding comprises of the
following parts:
• (Re)compute the syndrome
• Check the syndrome Hamming weight.
• Calculate NUCs.
• Check NUCs and flip based on the threshold.

It has been shown to be possible to implement these opera-
tions efficiently and in constant time [19]. For WBF decoding
we must additionally consider the following operations:
• Calculate the number of votes to flip, for each syndrome

position.
• Find the minimum number of votes. 3

• Determine the reliability of each syndrome value (based on
number of votes).

• Determine a new “metric” for each variable node (based on
the weighted syndrome values).

• Find and flip the variables with the highest metric.
It is possible to implement these operations in a constant

time manner, since none of them requires branching or in-
dexing based on secret data. However, to implement them
efficiently is left as out of scope for this paper.

3It might be possible to empirically determine a static threshold to use
instead of dynamically calculate the minimum.

B. A hybrid decoder

Accounting for the decrease in interference noise due to
a reduction in the number of error positions, we know that
making the right bit-flipping decisions is more important early
in the decoding process. Due to this, one can argue for an
optimization of using an adaptable decoding algorithm, which
progressively uses less and less expensive computations (this
is exactly the optimization introduced for the BG decoder to
make the BGF decoder) [17].

To realize such an algorithm while keeping the implemen-
tation complexity low and constant time we look into a hybrid
solution where we pair two different decoding algorithms
based on DFR and execution speed criteria.

We consider the pairing of our WBF algorithm together
with Black Grey Flip (BGF) decoder, which has a very quick
convergence. We limit WBF to run only 2 iterations, after
which we run the (BGF) decoder for 3 iterations. As previously
explained, this means that the BGF decoder will run a single
round of BG decoding followed by 2 rounds of normal BF
decoding. The complexity of the combined algorithm can
informally be thought of as 2 ×WBFrounds + 1 × BGrounds +
2×BFrounds ≈ 2×WBFrounds +5×BFrounds. Appreciating the
fact that one round of WBF requires more computations than
one round of BF we recognize that even this hybrid will be
slower than that of the BGF decoder. Our hybrid decoder can
still remain a competitive alternative if properly implemented
(e.g., by using techniques from [19]).

VI. SIMULATION

In this section, we present a comparative analysis between
our proposed decoders and the BGF decoder.

A. Method

We apply a similar methodology as the one given in [17],
[20]–[22]. By using the same parameters as those used by
BIKE (security level 1) [13], we facilitate easier comparisons
of different DFR rates. One must note that we use a different
way of encoding messages, which might affect the DFR rates
in absolute terms. However, the relative differences between
decoders are assumed to be unaffected, as previously stated.

B. Results

In this section, we present the simulation results of the de-
coding algorithms studied in this paper. The data is presented
in Figure 3. Using the same methodology as in [17], [20]–[22],
we attempt in Table I to estimate a value of r that achieves a
DFR = 2−128. The estimation was made using a simple linear
extrapolation from the last two data points of each graph. This
is the most straightforward and conservative choice [20].

In Table I the extrapolation does not yield quite the expected
values. For instance, the Hybrid decoder performs better than
WBF, although the opposite is clearly visible in Figure 3. We
assume this to be a limitation of the experiment; even lower
DFRs are needed if we want to make certain that we are indeed
extrapolating only the linear part of the curves. The WBF and
hybrid algorithms are also fine-tuned for lower r-values with a

8,
59
9

8,
68
1

8,
74
7

8,
83
7

8
,9
33

9,
01
3

9,
12
7

9,
20
3

9,
29
3

9,
39
1

9,
46
1

9,
53
9

9
,6
43

9,
73
9

9,
81
7

9,
90
1

1
0,
0
0
9

1
0,
1
0
3

1
0
,1
8
1

1
0
,2
7
3

1
0
,3
5
7

2−22

2−10

22

r

D
ec

od
in

g
Fa

ilu
re

R
at

e

BGF Hybrid WBF

Fig. 3. Graph of the DFR as a function of r, for different decoding algorithms.
Minimum 1,000 decryption failures for each data point with each key used
for maximum 10,000 ciphertexts.

TABLE I
A SUMMARY OF THE DIFFERENT DECODING ALGORITHMS. SEE TEXT FOR

EXTRAPOLATION METHOD.

Algorithm Max #
Iterations

Average #
Iterations

Extrapolated r
(DFR = 2−128)

WBF 92 34 13379
Hybrid 5 5 13018
BGF 5 5 13660

high DFR, due to practical reasons. It’s possible that the WBF
algorithm can be further tuned for r-values corresponding to
a low DFR.

VII. CONCLUSION

In this paper, we presented a new Weighted Bitflipping
iterative decoder (WBF). We showed that it significantly
lowers the DFR for all simulated parameters compared to
other decoders. Specifically, we compared it to the Black Grey
Flip decoder as found in the NIST PQC 3rd round submission
BIKE [13].

Due to the increased computational complexity of the
WBF decoder, we proposed a hybrid decoder which combines
the quick convergence of the BGF decoder with the better
DFR of the WBF decoder. This results in a much smaller
computational complexity by lowering the required number
of iterations.

ACKNOWLEDGMENTS

This work was partially supported by the Wallenberg AI,
Autonomous Systems and Software Program (WASP) funded
by the Knut and Alice Wallenberg Foundation, by the grant
PRG49 from the Estonian Research Council and by the ERDF
via CoE project EXCITE. The computations were enabled
by resources provided by the Swedish National Infrastructure
for Computing (SNIC) at LUNARC, partially funded by the
Swedish Research Council through grant agreement no. 2018–
05973.

REFERENCES

[1] R. J. Mceliece, “A public-key cryptosystem based on algebraic coding
theory,” Coding Thv, vol. 4244, pp. 114–116, 1978.

[2] N. Aragon, P. Barreto, S. Bettaieb, L. Bidoux, O. Blazy, J.-C. Deneuville,
P. Gaborit, S. Gueron, T. Guneysu, C. A. Melchor et al., “Bike: bit
flipping key encapsulation,” 2017.

[3] J. Bos, L. Ducas, E. Kiltz, T. Lepoint, V. Lyubashevsky, J. M. Schanck,
P. Schwabe, G. Seiler, and D. Stehlé, “Crystals – kyber: a cca-
secure module-lattice-based kem,” Cryptology ePrint Archive, Report
2017/634, 2017, https://eprint.iacr.org/2017/634.

[4] C. A. Melchor, N. Aragon, S. Bettaieb, L. Bidoux, O. Blazy, J.-
C. Deneuville, P. Gaborit, E. Persichetti, G. Zémor, and I. Bourges,
“Hamming quasi-cyclic (hqc),” NIST PQC Round, vol. 2, pp. 4–13,
2018.

[5] R. Misoczki, J.-P. Tillich, N. Sendrier, and P. S. Barreto, “MDPC-
McEliece: New McEliece variants from moderate density parity-check
codes,” in IEEE Trans. Inf. Theory, 2013, pp. 2069–2073.

[6] Q. Guo, T. Johansson, and P. Stankovski, “A key recovery attack on
MDPC with CCA security using decoding errors,” in International Con-
ference on the Theory and Application of Cryptology and Information
Security. Springer, 2016, pp. 789–815.

[7] Q. Guo, T. Johansson, and P. S. Wagner, “A Key Recovery Reaction
Attack on QC-MDPC,” IEEE Trans. on Inf. Theory, 2018.

[8] A. Nilsson, T. Johansson, and P. Wagner Stankovski, “Error Ampli-
fication in Code-based Cryptography,” IACR Trans. Cryptogr. Hardw.
Embed. Syst., pp. 238–258, 2019.

[9] R. G. Gallager, Information theory and reliable communication. Wiley,
1968.

[10] N. Drucker, S. Gueron, and D. Kostic, “On constant-time QC-MDPC
decoding with negligible failure rate,” Cryptology ePrint Archive, Report
2019/1289, Tech. Rep., 2019.

[11] I. E. Bocharova, B. D. Kudryashov, and V. Skachek, “AVN-based
elimination of short cycles in Tanner graphs of QC LDPC Codes,”
in 2019 IEEE International Symposium on Information Theory (ISIT).
IEEE, 2019, pp. 56–60.

[12] H. Bartz and G. Liva, “On decoding schemes for the MDPC-McEliece
cryptosystem,” arXiv preprint arXiv:1801.05659, 2018.

[13] N. Aragon, P. S. L M Barreto, S. Bettaieb, O. Blazy, P. Gaborit,
S. Gueron, C. Aguilar Melchor, R. Misoczki, E. Persichetti, and
G. Zémor, “BIKE: Bit flipping key encapsulation submission for round
3 consideration,” Tech. Rep., 2020.

[14] R. G. Gallager, Low-density parity-check codes. M.I.T. Press: Cam-
bridge, MA, 1963.

[15] I. V. Maurich, T. Oder, and T. Güneysu, “Implementing QC-MDPC
McEliece encryption,” ACM Trans. on Embedded Computing Systems
(TECS), vol. 14, no. 3, p. 44, 2015.

[16] M. P. Fossorier, M. Mihaljevic, and H. Imai, “Reduced complexity
iterative decoding of low-density parity check codes based on belief
propagation,” IEEE Trans. on Commun., vol. 47, no. 5, pp. 673–680,
1999.

[17] N. Drucker, S. Gueron, and D. Kostic, “QC-MDPC decoders
with several shades of gray,” Tech. Rep. Report 2019/1423,
2020. [Online]. Available: https://eprint.iacr.org/2019/1423.pdfhttps:
//eprint.iacr.org/2019/1423

[18] H. Kamabe and S. Kobota, “Simple improvements of bit-flipping
decoding,” in 2010 The 12th International Conference on Advanced
Communication Technology (ICACT), vol. 1. IEEE, 2010, pp. 113–
118.

[19] N. Drucker and S. Gueron, “A toolbox for software optimization of
QC-MDPC code-based cryptosystems,” J. Cryptogr. Eng., vol. 9, no. 4,
pp. 341–357, nov 2019. [Online]. Available: http://link.springer.com/
10.1007/s13389-018-00200-4

[20] N. Sendrier and V. Vasseur, “About low DFR for QC-MDPC decoding,”
in International Conference on Post-Quantum Cryptography. Springer,
2020, pp. 20–34.

[21] ——, “On the decoding failure rate of QC-MDPC bit-flipping
decoders,” vol. 11505 LNCS, pp. 404–416, 2019. [Online]. Available:
http://link.springer.com/10.1007/978-3-030-25510-7{ }22

[22] N. Drucker, S. Gueron, and D. Kostic, “On constant-time QC-
MDPC decoders with negligible failure rate,” in Lect. Notes
Comput. Sci. (including Subser. Lect. Notes Artif. Intell. Lect.
Notes Bioinformatics), 2020, vol. 12087 LNCS, pp. 50–79. [Online].
Available: http://link.springer.com/10.1007/978-3-030-54074-6{ }4

https://eprint.iacr.org/2017/634
https://eprint.iacr.org/2019/1423.pdf https://eprint.iacr.org/2019/1423
https://eprint.iacr.org/2019/1423.pdf https://eprint.iacr.org/2019/1423
http://link.springer.com/10.1007/s13389-018-00200-4
http://link.springer.com/10.1007/s13389-018-00200-4
http://link.springer.com/10.1007/978-3-030-25510-7{_}22
http://link.springer.com/10.1007/978-3-030-54074-6{_}4

	Introduction
	QC-MDPC based McEliece cryptosystem
	Decoding of MDPC Codes
	Belief propagation decoding
	SP and MS decoding
	Bit-Flipping (BF) decoding

	Black-Grey-Flip Decoder (BGF)

	Analysis of BF decoding of MDPC codes
	The new versions of BF decoder
	Complexity and constant-time considerations
	A hybrid decoder

	Simulation
	Method
	Results

	Conclusion
	Acknowledgments
	References

