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Abstract. Attribute-based conditional proxy re-encryption (AB-CPRE)
allows delegators to carry out attribute-based control on the delegation
of decryption by setting policies and attribute vectors. The fine-grained
control of AB-CPRE makes it suitable for a variety of applications,
such as cloud storage and distributed file systems. However, all exist-
ing AB-CPRE schemes are constructed under classical number-theoretic
assumptions, which are vulnerable to quantum cryptoanalysis. There-
fore, we propose the first AB-CPRE scheme based on the learning with
errors (LWE) assumption. Constructed from fully key-homomorphic en-
cryption (FKHE) and key-switching techniques, our scheme is unidirec-
tional, single-hop, and enables a polynomial-deep boolean circuit as its
policy. Furthermore, we split the ciphertext into two independent parts to
avoid two-level or multi-level encryption/decryption mechanisms. Taking
advantage of it, we then extend our single-hop AB-CPRE into an effi-
cient and concise multi-hop one. No matter how many transformations
are performed, the re-encrypted ciphertext is in constant size, and only
one encryption/decryption algorithm is needed. Both of our schemes are
proved to be selective secure against chosen-plaintext attacks (CPA) in
the standard model.

Keywords: Conditional proxy re-encryption · Learning with errors ·
Fine-grained control

1 Introduction

Proxy re-encryption (PRE) allows a semi-trusted proxy with a re-encryption key
to transform a ciphertext intended for Alice (i.e. delegator) to another ciphertext
intended for Bob (i.e.delegatee) without revealing the underlying plaintext [5].
PRE schemes can be classified into two types: one is single-hop, whose ciphertext
can be transformed at most once, e.g., a ciphertext can be converted from Alice
to Bob and cannot be further converted; the other is multi-hop, which means a
ciphertext can be transformed multiple times, e.g., a ciphertext can be converted
from Alice to Bob and to Carol, and so on. Based on the direction of transforma-
tion, PRE can be further categorized into bidirectional and unidirectional. In a
bidirectional scheme, a re-encryption key enables the transformation from Alice
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to Bob and vise versa. Whereas, in the unidirectional setting, a re-encryption key
only supports the transformation from Alice to Bob. Notice that a bidirectional
scheme can be built by running a unidirectional one in both directions.

PRE has found lots of applications that require delegation, but it may not
be sufficient to facilitate flexible delegation. More specifically, once the proxy
obtains a re-encryption key, it can re-encrypt all ciphertexts for delegator into
the ciphertexts for delegatee without any discrimination. Suppose that some of
Alice’s ciphertexts are highly confidential, and they should remain secret from
Bob. To implement the delegation control, a trusted proxy is needed. Such a
trusted model makes PRE unrealistic in complex applications.

To address the above problem, conditional proxy re-encryption (CPRE) was
introduced by Weng et al [31]. A CPRE is a variant of PRE supporting control
on re-encryption. The ciphertext is associated with a condition, and the proxy
can perform a transformation correctly only if the re-encryption key is associated
with the same condition. The delegation control of CPRE makes it applicable
to complex applications, such as encrypted email systems [29], online medical
systems [12], distributed files systems [32] and cloud storage systems [18,19].

An open problem left by Weng et al. is how to construct a CPRE scheme sup-
porting expressive predicates over the condition [31]. To address this problem,
two types of CPRE are proposed: one is fuzzy conditional proxy re-encryption
(F-CPRE), which does not require the condition in the re-encryption key and
ciphertext to exactly match [11]; the other is attribute-based conditional proxy
re-encryption (AB-CPRE), which supports attribute-based control on delega-
tion [23, 32, 33]. Accurately, AB-CPRE is a kind of CPRE with fine-grained
control, in which the ciphertext is associated with an attribute vector x and
the re-encryption key is related to a policy f . The proxy is able to perform a
transformation if f(x) = 0 only. However, as far as our knowledge, there only
exist CPRE [22] and F-CPRE [17] based on learning with errors (LWE). In other
words, there is no quantum-resistant AB-CPRE construction to date.

On the other hand, several multi-hop PRE schemes are available in the liter-
ature [3,9,14,16,21,28,30]. However, the majority of them do not capture condi-
tional re-encryption property. To achieve delegation control, Mo et al. proposed
a unidirectional multi-hop condition proxy re-encryption [25]. Liang et al. sug-
gested a bidirectional multi-hop identity-based conditional proxy re-encryption
(IBCPRE) with constant-size ciphertexts [18]. But, how to construct a multi-hop
CPRE with fine-grained control remains open.

The existing lattice-based CPRE and multi-hop IBCPRE leave us two inter-
esting problems: AB-CPRE over lattices and multi-hop AB-CPRE with constant-
size ciphertext. Therefore, the new scheme should be secure under lattice-based
assumptions, e.g., LWE, but it should also enjoy constant-size ciphertexts no
matter how many transformations are performed.

1.1 Contribution

We first formalize the definition and security notation for unidirectional multi-
hop AB-CPRE. Specially, to achieve multi-hop, we require that a ciphertext with
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Table 1. Comparison between Ours and Existing Schemes

Schemes Types Policy Assumption Security Key Privacy Standard Model Direction Multi-hop

[22] IBCPRE Match LWE sCPA X × → ×
[17] F-CPRE Threshold LWE sCPA × X → ×
[33] AB-CPRE Access Tree 3-QDBDH CCA × X → ×
[32] AB-CPRE Access Tree BDH CPA × × → ×
[23] AB-CPRE LSSS 3-wDBDHI CCA × X → ×

Scheme I AB-CPRE Boolean Circuit LWE sCPA X X → ×
[25] CPRE Match DDH CCA × × → X
[18] IBCPRE Match BDH CCA × X ↔ X

Scheme II AB-CPRE Boolean Circuit LWE sCPA X X → X

an attribute vector x for user α could be transformed into another ciphertext
with a different attribute vector y for user β. Regarding security notation of AB-
CPRE, we define a selective security and key privacy against chosen-plaintext
attacks.

We also present two LWE-based unidirectional AB-CPRE schemes: the first
one single-hop; the second one is multi-hop. Our designs are obtained from fully
key-homomorphic encryption and key-switching techniques. Table 1 make a com-
parison between existing lattice-based CPRE, multi-hop CPRE, and ours. Our
LWE-based constructions have the following features:

– The majority of PRE schemes are built with 2-level encryption/decryption
mechanisms, where the second-level ciphertext allows to be transformed into
the first-level one. To make CPRE more concise, we split ciphertext CT into
two parts: one is ct, the ciphertext for message; the other is cc, the cipher-
text for attributes. As a result, only one encryption/decryption is needed.
Moreover, by reconstructing cc, our single-hop AB-CPRE can be extended
into a multi-hop one with constant-size ciphertexts.

– Combining with FKHE, the delegation policy enables any polynomial-deep
boolean circuit. As a consequence, our schemes support fine-grained delega-
tion control.

– Our schemes enjoy indistinguishability of encryption and re-encryption key
against chosen-plaintext attacks in standard model.

1.2 Related Work

In 2010, Zhao et al. [33] supposed the first AB-CPRE scheme to improve the ex-
pressiveness and flexibility of the condition construction. Later, Yang et al. [32]
presented a ciphertext-policy AB-CPRE, whose re-encryption key is related to a
set of attributes whereas the ciphertext is associated with a policy. In 2018, Mao
et al. [23] constructed the first anonymous AB-CPRE by linear secret sharing
schemes (LSSS). But all stated AB-CPRE schemes were constructed under clas-
sical numbertheoretic assumptions and none of them considers multi-hop case.
We are thus motivated to propose AB-CPRE schemes over lattices that is secure
against quantum attacks.
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1.3 Organization

The rest of paper is organized as follows. The introduction of lattices, such
as LWE, lattice trapdoor, and Gaussian sampling is presented in Section 2.
The definition and security notation of universal AB-CPRE are formalization
in Section 3. In Section 4, we propose our single-hop AB-CPRE scheme in the
standard model and give the corresponding security proof. In Section 5, we give
a multi-hop AB-CPRE scheme as an extension from our single-hop one. Finally,
Section 6 concludes this paper.

2 Preliminaries

In this paper, we use a lower-case bold letter to denote a column vector a,
while an upper-case bold letter to denote a matrix A. The (centered) discrete
Gaussian distribution over L with parameter σ is denoted Dσ(L). For vector
u, we let ‖u‖ denote its `2 norm. For matrix R ∈ Zk×m, we denote by ‖R‖
the maximum length of column vector of R. ‖R‖GS := ‖R̃‖ where R̃ is the
Gram-Schmidt(GS) orthogonalization of R, and ‖R‖2 := sup‖e‖=1 ‖Re‖. Then,

we have ‖R‖GS ≤ ‖R‖ ≤ ‖R‖2 ≤
√
k‖R‖ and ‖RS‖2 ≤ ‖R‖2 · ‖S‖2. Moreover,

we denote horizontal concatenation of vectors and/or matrices using a vertical
bar, e.g., [A|B], and vertical concatenation of vectors and/or matrices using a
semicolon, e.g., [A; B].

2.1 Lattice Background

We use m-dimensional full-rank integers lattices Λ, which are discrete additive
subgroups of Zm. A q-ary integer lattice and a “shift” integer lattice are defined
as follows.

Definition 1. (q-ary Lattices) Given a matrix A ∈ Zn×mq for some positive
integers n,m, q and a vector u ∈ Znq . We define the lattices as:

Λ⊥q (A) = {x ∈ Zm : Ax = 0 mod q}.
Λu
q (A) = {x ∈ Zm : Ax = u mod q}.

Definition 2. A noise distribution χ over Z is B-bounded, if Pr
x←χ

[|x| ≥ B] ≤

2−Ω̃(n).

Definition 3. (Decisional learning with errors) Given integers n, q ≥ 1 , m ≥
O(n log q), and a noise distribution χ over integers, the LWEn,q,χ problem is to
distinguish the following two distributions:

(A,AT s + e) and (A,u)

where A← Zn×mq , s← Znp , e← χm,u← Zmq are sampled independently.
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Theorem 1. ( [8, 26, 27]) If there exists an efficient algorithm for deciding the
LWEn,q,χ problem for some B = B(n), q/B ≥ 2n

ε

,m = poly(n), then there is an
efficient quantum algorithm for SIV Pγ and a classical algorithm for GapSV Pγ
for γ = 2Ω(nε) in the worst case.

Corollary 1. (Hermite normal form [4]) There exists a useful transformation
that reduces LWEn,q,χ problem into one where the secret is chosen from its noise
distributions χ, which illustrates that distinguish the following two distributions
is no easier than solving LWEn,q,χ problem.

(A,AT s + e) and (A,u)

where A← Zn×mq , s← χn, e← χm,u← Zmq are sampled independently.

Corollary 2. ( [20]) Applying standard hybrid argument, these distributions
below are computational indistinguishable. Otherwise, there exists an efficient
algorithm to solve LWEn,q,χ problem.

– (A,AX + E) and (A,U), where A ← Zn×mq ,X ← χm×`,E ← χn×`,U ←
Zn×`q .

– (A,D,AX + E,DX + E′) and (A,D,AX + E,DX′ + E′) where A,D ←
Zn×mq ,X,X′,E,E′ ← χn×m

– (A, {AXi+Ei}i∈[t]) and (A, {Ui}i∈[t]), where A← Zn×mq ,Xi ← χn×m,Ei ←
χn×`,Ui ← Zn×`q for all i ∈ [t], t = poly(n).

Lemma 1. ( [1]) Given q > 2 and m > (n+1) log q+ω(log n), for some polyno-
mial k = k(n), choose three uniformly random matrices U ∈ {−1, 1}m×k , A ∈
Zn×mq , and B ∈ Zn×kq . For all vectors r ∈ Zmq , the distributions (A,AU,UT r)

and (A,B,UT r) are statistically indistinguishable.

2.2 Trapdoor and Sampling

The following lemmas show the properties of lattice trapdoor and efficient Gaus-
sian preimage sampling respectively.

Definition 4. (Gadget matrix [6, 24] ) For integers q ≥ 2 and n ≥ 1, there
is a special, structured matrix G = In ⊗ gT ∈ Zn×knq where k = dlog(q)e,g =

(1, 2, ..., 2k−1) ∈ Zkq .

– The lattice Λ⊥q (G) has a public known basis TG ∈ Zkn×kn with ‖TG‖GS ≤√
5.

– For any m ≥ kn, G ∈ Zn×knq can be extended to a matrix Ḡn×m
q by adding

zero columns on the right of G.

Lemma 2. ( [1, 6, 10]) Given n ≥ 1 , q ≥ 2 and m ≥ d6n log qe, we have the
following polynomial-time algorithms:
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– There is a randomized algorithm TrapGen(1n, 1m, q) that outputs a full-
rank matrix A ∈ Zn×mq and a short basis TA ∈ Zm×m for Λ⊥q (A) such that

A is statistically close to uniform and ‖TA‖GS = O(
√
n log q), with all but

negligible probability in n.
– There is a deterministic algorithm ExtendRight(A,TA,B) that given ma-

trices A,B ∈ Zn×mq and a basis TA of Λ⊥q (A) outputs a basis TA|B of

Λ⊥q (A|B) such that ‖TA|B‖GS = ‖TA‖GS.
– There is a deterministic algorithm ExtendLeft(A,G,TG,S) that given

full-rank matrices A,G ∈ Zn×mq and a basis TG of Λ⊥q (G) outputs a basis

TA|AS+G of Λ⊥q (A|AS+G) such that ‖TA|AS+G‖GS ≤ ‖TG‖GS ·(1+‖S‖2).

Lemma 3. ( [2,10,13]) Given integers n, q > 2 and m > n. Let A ∈ Zn×mq and

TA be a basis for Λ⊥q (A), for any σ ≥ ‖TA‖GS · ω(
√

logm). We have

– A random vector x sampled from Dσ(Λu
q (A)) has `2 norm less than σ

√
m

all but with negiligible probability in m.
– There is a randomized algorithm SamplePre(A,TA,D, σ), which outputs

a random matrix X ∈ ΛD
q (A) such that AX = D from a distribution that is

statistically close to Dσ(ΛD
q (A)).

– There is a randomized algorithm RandBasis(A,TA, σ), which outputs a
random basis T′A of Λ⊥q (A) sampled from a distribution that is statistically

close to Dσ(ΛD
q (A)).

2.3 Key Homomorphism and Vector Decomposition

Let us recall some notions, used in fully homomorphic encryption.

Definition 5. For any positive integers `, d, we define the family of functions
F`,d = {f : {0, 1}` → {0, 1}}, where f is a boolean circuit of depth ≤ d.

Lemma 4. ( [6, 21]) Given positive integers n, q, `, d,m where m ≥ dn log(q)e
and a B-bounded noise distribution χ, for any matrices B1, ...,B` ∈ Zn×mq , any

boolean circuit f ∈ F`,d and any x ∈ {0, 1}`, if

∀i ∈ [`] : ci = (xiG + Bi)
T s + ei

where s← Znq , ei ← χm for i ∈ [`], then we have,

– A deterministic algorithm Evalpk(f, {Bi}i∈[`]) that given a circuit f and `
matrices {Bi}i∈[`], outputs a matrix Bf .

– A deterministic algorithm Evalct(f, {(xi,Bi, ci)}i∈[`]) that given a circuit f ,

a vector x ∈ {0, 1}` , ` matrices {Bi}i∈[`] and ` vectors {ci}i∈[`], outputs a
vector cf , satisfying

cf = (f(x)G + Bf )T s + ef

where Bf = Evalpk(f, {Bi}i∈[`]) and ‖ef‖ ≤ B
√
m(m + 1)d with all but

negligible probability.
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– For all i ∈ [`] it holds that Bi = ASi − x∗iG where x∗ ∈ {0, 1}`,Si ∈
{−1, 1}m×m. There exists a deterministic Evalsim(f, {x∗i ,Si}i∈[`],A) that

given a circuit f , a vector x∗ ∈ {0, 1}` , ` matrices {Si}i∈[`] and a matrix
A, outputs a matrix Sf satisfying

ASf − f(x∗) = Bf

where Bf = Evalpk(f, {Bi}i∈[`]) and ‖Sf‖2 ≤ 20
√
m(m + 1)d with all but

negligible probability.

Definition 6. (Vector Decomposition [3, 7]) We define the function mapping
vectors to their bit representations as below:

– A deterministic function Bitsq(v) that given a vector v ∈ Znq , let vi ∈
{0, 1}n be such that v =

∑dlog qe−1
i=1 2ivi, outputs a vector ṽ ∈ {0, 1}n·dlog qe,

where ṽ = (v0; . . . ; vdlog qe−1).
– A deterministic function Power2q(X) that given a matrix X ∈ Zn×mq , out-

puts a matrix X ∈ Zndlog qe×mq , where X = [X; 2X; . . . ; 2dlog qe−1X].
– For all positive integers q, n,m ∈ Z , a vector v ∈ Znq and a matrix X ∈

Zn×m, it holds that vTX = Bitsq(v)T ·Power2q(X) = ṽTX ∈ Z1×m
q .

3 Model of Attribute-based CPRE

In this section, we present the formalization of unidirectional AB-CPRE and
its corresponding security notation. We start with multi-hop AB-CPRE, which
includes single-hop AB-CPRE.

3.1 Multi-hop AB-CPRE

Definition 7. (Multi-hop AB-CPRE) A unidirectional multi-hop attribute-based
conditional proxy re-encryption scheme comprises the following six algorithms:

– Setup(n): the setup algorithm is run by a semi-trusted agent. Given a se-
curity parameter n as input, outputs the public parameters pp.

– KeyGen(pp, α): the key generation algorithm is run by a user in the sys-
tem. Given the public parameters pp , generates the public/private key pair
(pkα, skα) for user α.

– Enc(pp, pkα,µ,x): the encryption algorithm, takes as input the public pa-
rameters pp, a public key pkα, a plaintext µ, and an attribute vector x. It
outputs a ciphertext CTα associated with x under public key pkα.

– Dec(pp, skα, CTα): the decryption algorithm, takes as input the public pa-
rameters pp, a private key skα and a ciphertext CTα under public key pkα.
It outputs a message µ.

– ReKeyGen(pp, skα, pkβ , f,y): the re-encryption key generation algorithm
is run by user α, takes as input the public pararmeters pp, the private key skα
for user α, the public key pkβ for another user β, a control policy/function f
and an attribute vector y. It outputs a re-encryption key rkα,f→β,y associated
with f .
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– ReEnc(pp, CTα, rkα,f→β,y): the re-encryption algorithm run by the proxy,
takes as input a ciphertext CTα associated with x under a public key pkα for
user α, a public key pkβ for user β and a re-encryption key rkα,f→β,y. It
outputs a ciphertext CTβ associated with y under the public key pkβ when
f(x) = 0 holds, otherwise outputs ⊥.

Notice. In Enc, ReKeyGen, and ReEnc algorithms, attribute vector y or x
can be a null vector. Besides, a ciphertext with null attribute cannot be re-
encrypted. For simplification, if the attribute vector is a null vector, we will
omit it, e.g., rkα,f→β ← ReKeyGen(pp, skθ, pkβ , f).

Correctness. In a unidirectional multi-hop attribute-based proxy re-encryption
scheme. We require the correctness for encryption and re-encryption as follows,

– For any key pair (pkα, skα) ← KeyGen(pp, α), any attribute vector x and
any message µ, it holds that

Pr[Dec(pp, skα,Enc(pp, pkα,x,µ)) = µ] = 1− negl(n)

– For any attribute vector y1...yt, any key pairs (pkβ1
, skβ1

)...(pkβt
, skβt

), and
any message µ, for all i ∈ {2, ..., t− 1}, fi−1(yi−1) = 0, it holds that

rkβi−1,fi−1→βi,yi
= ReKeyGen(pp, skβi−1

, pkβi
, fi−1,yi),

CT
(i−1)
βi

= ReEnc(pp, CT
(i−2)
βi−1

, rkβi−1,fi−1→βi,yi
),

Pr[Dec(pp, skβi
, CT

(i−1)
βi

) = µ] = 1− negl(n).

where t = poly(n), CT
(0)
β1

= Enc(pp, pkβ1
,y1,µ)

3.2 Single-hop AB-CPRE

Unidirectional single-hop AB-CPRE, whose ciphertext can be transformed at
most once, can be viewed as a weak concept of unidirectional multi-hop AB-
CPRE. CPRE scheme does not require the attribute vector (or conditional vec-
tor) as an input to decrypt the transformed ciphertext. Thus, different from
multi-hop one, single-hop AB-CPRE does not require delegator to set an at-
tribute vector y in ReKeyGen and ReEnc algorithms. Particularly, in single-
hop scheme, we would call the ciphertext with attributes as original ciphertext,
and the ciphertext with null attribute as transfromed ciphertext.

3.3 Security Notation

In this section, we concentrate on formulating the universal security notation
for unidirectional AB-CPRE. Before proceeding, we define the notations used in
security definitions.
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– Delegation chain. Suppose in an unidirectional AB-CPRE scheme there
is a re-encryption key set RK = {rkβ1,f1→β2,y2

, ..., rkβt−1,ft−1→βt,yt
} ,or

RK ′ = {rkβ1,f1→β2,y2 , ..., rkβt−2,ft−2→βt−1,yt−1 , rkβt−1,ft−1→βt}, where t ≥ 2
and fi(yi) = 0 for all i ∈ {1, ..., t − 1}. Specially, we can learn that users
β1, β2, ..., βt are able to decrypt the ciphertext with y1 for user β1. Thus, we
say that there exists a delegation chain under (β1,y1) from user β1 to user
βt. For convenience, we denote this delegation chain as (y1, β1, ..., βt).

– Uncorrupted/corrupted user. If the private key of a user is comprised
by an adversary, then we consider this user as a corrupted user. Otherwise,
this user is an uncorrputed user.

– Uncorrupted/corrupted delegation chain. Suppose there exists a del-
egation chain (y1, β1, ..., βt). If all users on the chain are uncorrputed users,
then it is an uncorrputed chain. Otherwise, it is a corrupted chain, which
implies at least one corrupted user could decrypt all ciphertexts with y for
user β1.

Notice. In single-hop AB-CPRE, the delegation chain at most contains two users.
Whereas, in multi-hop one, the delegation chain could contain O(n) users.

sIND-CPA Game. The selective security of AB-CPRE on ciphertext is defined
through the following security game between a challenger C and an adversary A.

Init Adversary A announces an attributes vector x∗ before seeing public
parameters pp.

Setup Challenger C runs the Setup algorithm to generate public parameters
pp, and then executes KeyGen algorithm with a random user identity
θ to get a key pair (pkθ, skθ). Finally, the challenger passes pp and pkθ
to the adversary A.

Phase 1 Challenger C initializes three empty collections Ψu, Ψc, and Ψrk. Then,
C inserts (pkθ, skθ) into Ψu. A sends queries q1, ..., qt to C. Each query
is one of the following:

1) Uncorrupted key generation query Ou(β): C first runs algorithm
KeyGen(pp, β) to get a key pair (pkβ , skβ), and then inserts it
into collection Ψu. Finally, output a public key pkβ .

2) Corrupted key generation query Oc(β): C first executes algorithm
KeyGen(pp, β) to get a key pair (pkβ , skβ), and then inserts it
into collection Ψc. Finally, output a key pair (pkβ , skβ).

3) Re-encryption key query Ork(pkα, pkβ , f,y): If pkα /∈ Ψu ∪ Ψc or
pkβ /∈ Ψu ∪ Ψc, then C outputs ⊥. C generates a re-encryption key
rkα,f→β,y by executing ReKeyGen(pp, skα, pkβ , f,y). If there ex-
ists a corrupted chain (x∗, θ, ...) in Ψrk ∪ {rkα,f→β,y}, then C out-
puts ⊥. Otherwise, C inserts rkα,f→β,y into Ψrk and then outputs
rkα,f→β,y.

4) Re-encryption query Ore(CTα, rkα,f→,β,y): If rkα,f→,β,y ∈ Ψrk,
then C outputs ReEnc(pp, CTα, rkα,f→β,y). Otherwise, C outputs
⊥.
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Challenge Adversary A submits two equal-length messages µ∗0 and µ∗1. C flips
a random coin b ∈ {0, 1}, executes CT ∗ ← Enc(pp, pkθ,x

∗,µ∗b), and
returns the original ciphertext CT ∗ to A.

Phase 2 The same as Phase 1.
Guess A outputs a bit b′, which is a guess on b.

sKP-CPA Game. The selective security of AB-CPRE on re-encryption key is
the same as sIND-CPA game, except the Challenge phase.

Challenge Adversary A submits two equal-length messages µ∗0 and µ∗1, a cor-
rupted user’s key pair (pkβ , skβ) and a policy f . C tosses a random
coin b ∈ {0, 1}, outputs a re-encryption key rkβ,f→θ by executing
ReKeyGen(pp, skβ , pkθ, f) if b = 1, or returns random re-encryption
key rk∗ if b = 0.

Definition 8. (sIND-CPA Security) An attribute-based CPRE scheme is selec-
tive secure against chosen plaintext attack if for any PPT adversary A, it holds
that Pr[b′ = b] = 1/2 + negl(n) in sIND-CPA game, where negl is a negligible
function.

Definition 9. (sKP-CPA security) An attribute-based CPRE scheme is selec-
tive key privacy under chosen plaintext attack if for any PPT adversary A, it
holds that Pr[b′ = b] = 1/2 + negl(n) in sKP-CPA game, where negl is a negli-
gible function.

4 Single-hop AB-CPRE Scheme

In this section, we propose the single-hop AB-CPRE scheme. Firstly, we intro-
duce the core techniques and the main idea behind our scheme. Then, we present
our concrete scheme, its correctness as well as security proof.

4.1 Technique Review

We start with a brief overview of fully key-homomorphic public-key encryp-
tion(FKHE) [6] and key switching [3], which are the core techniques of our
scheme.

In [6], Boneh et al. put forward a kind of FKHE. For any boolean circuit
f : {0, 1}` → {0, 1} and its ` bits input x ∈ {0, 1}`, there exist three efficient
algorithms Evalpk , Evalct and Evalsim (See Lemma 4 for more details).

Applying FKHE, a KP-ABE system can be constructed. The master public
key contains ` attribute matrices {Bi}i∈[`] and two matrices A,D. The master

secret key is a short basis T for lattice Λ⊥(A).

– For a user with policy f , use T to extract a secret key Rf such that
[A|Bf ]Rf = −D, where Bf = Evalpk(f, {Bi}i∈[`]).

– For the ciphertext (AT s+ein,D
T s+eout+bq/2cµ, {(xiG+Bi)

T s+ei}i∈[`]
) for a message µ with an attribute vector x, the user can execute the Evalct
to assemble a ciphertext cf = (Bf + f(x)G)T s + ef . The user can recover
the message µ correctly by secret key Rf if his policy f satisfies f(x) = 0.
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First attempt. Easily, we can construct a naive AB-CPRE scheme by
FKHE. Firstly, a random matrix D and ` attribute matrices {Bi}i∈[`] are cho-
sen and shared among users. Then, each user chooses his public key A and the
corresponding private key T, the short basis of lattice Λ⊥(A). At last, if user α
wants to delegate the decryption right with policy f to user β, user α could use
Tα to extract the re-encryption key Rα,f→β such that [Aα|Bf ]Rα,f→β = Aβ .

Although this naive scheme seems to work, there is no formal proof to show
the indistinguishability under chosen plaintext attack. The FKHE system of [6]
only achieves selective IND-CPA secure. In other words, in FKHE system, A
would announce an attribute vector x∗ in the beginning, and C does not need to
answer the query on function f such that f(x∗) = 0. But the security notation
of AB-CPRE needs C to answer the query on Ork(pkθ, pkβ , f). In the case that
f(x∗) = 0 and pkβ ∈ Ψu, C cannot generate the corresponding re-encryption key
by ExtendLeft, and then abort.

To address the constrain in the naive scheme, we have to apply the key-
switching technique, which was originally used in fully homomorphic encryp-
tion [7]. Aono et al. [3] constructed an interactive PRE with key privacy using
key-switching. Easily, we can convert it into a non-interactive one as follows,

– For user α, the public key is a pair of LWE instance (Aα,Dα) while the
private key is Sα, where Dα = Rα −AαSα and Rα,Sα are sampled from
error distribution.

– The re-encryption key is a matrix Qα→β as below,

Qα→β =

[
E1Aβ + E2 E1Dβ + E3 + Power2q(Sα)

0 I

]
where E1,E2,E3 are chosen from error distribution.

– In transformation process, the proxy converts user α’s ciphertext (cin, cout)
into (Bitsq(cin), cout) and then returns [Bits(cin)T |cTout]Qα→β as trans-
formed ciphertext (Power2q and Bitsq are defined as Definition 6 ).

Combining key-switching technique with our naive scheme, we propose a
provable secure single-hop AB-CPRE scheme. The main idea is showed as fol-
lows,

– ` attribute matrices {Bi}i∈[`] are chosen uniformly at random and shared
among users.

– Each user chooses two matrices A,D as their public key, and the short basis
T for lattice Λ⊥(A) as their private key.

– Ciphertext of message µ with attribute vector x under pkα is CTα = (ct, cc),

ct = (AT
αs + ein,D

T
αs + eout + bq/2cµ) , cc = {(xiG + Bi)

T s + ei}i∈[`]
where Aα,Dα is the public key of user α and s is selected uniformly at
random.

– Since user α has the short basis Tα, only ct is needed in decryption process.
Whereas cc only works for delegation of decryption.

– If user α wants to delegate the decryption right with policy f to user β, then
user α extracts a matrix Rα,f with small norm such that (Aα|Bf )Rα,f =
−Dα and returns a matrix Qα,f→β as re-encryption key.
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4.2 Construction

Before giving our AB-CPRE scheme, we list the parameters that will be used.

– (n, q,m, χ) - lattice parameters, where m ≥ d6n log(q)e , q/4 ≥ B ·(m+1)O(d)

and χ is a B-bounded (B ≥
√
n · ω(log n) ) distribution.

– ` - number of attributes.
– d - the maximum depth of the boolean circuit.
– σ - Gaussian parameter, where σ = ω((m+ 1)d+1) · ω(

√
logm)

Our scheme works for `, d, q = poly(n).

– Setup(n): Choose ` random uniform matrices B1, ...,B` ← Zn×mq and an er-
ror sampling algorithm χ, which is a B-bounded distribution. Return public
parameters pp := ({Bi}i∈[`], χ)

– KeyGen(pp, α): Select a matrix Dα ← Zn×mq uniformly at random and
generate a pair (Aα,Tα)← TrapGen(1n, 1m, q). Then run

Rα ← SamplePre(Aα,Tα,−Dα, σ) s.t. AαRα = −Dα.

Output public key pkα = (Aα,Dα) and private key skα = (Tα,Rα)
– Enc(pp, pkα,µ,x): Given pp = ({Bi}i∈[`], χ), pkα = (Aα,Dα), a plaintext

µ ∈ {0, 1}m and an attribute vector x = {xi}i∈[`]. Choose a random vector
s← Znq and error vectors ein, eout ← χm. Compute ct = (cin, cout) as

cin = AT
αs + ein, cout = DT

αs + eout + bq/2cµ.
If x is none or null, then set cc = ∅. Otherwise, choose ` uniformly random
matrices Si ← {−1, 1}m×m and compute

cc = ({ci = (xiG + Bi)
T s + STi ein}i∈[`]) ∈ Z`mq .

Output ciphertext CTα := (ct, cc).
– Dec(pp, skα, CTα): Parse skα = (Tα,Rα) and CTα = (ct, cc). Let ct =

(cin, cout), then compute

µ̂ =
[
cTin cTout

]
·
[

Rα

Im×m

]
.

For j ∈ [m], set µj = 1 if |µ̂j − bq/2c| < q/4, otherwise set µj = 0. Finally,
output µ ∈ {0, 1}m

– ReKeyGen(pp, skα, pkβ , f): Given pp = ({Bi}i∈[`], χ) , skα = (Tα,Rα),
pkβ = (Aβ ,Dβ) and a policy f ∈ F`,d. Let Bf = Evalpk(f, {Bi}i∈[`]) and
F = (Aα|Bf ) ∈ Zn×2m. To construct Rα,f , build the basis Tα,f for F as
Tα,f ← ExtendRight(Aα,Tα,Bf ). Then run SamplePre(F,Tα,f ,−Dα, σ)
to generate Rα,f ← such that FRα,f = −Dα where Rα,f ∈ Z2m×m. Set
Rα,f = Power2q(Rα,f ), sample matrices E1 ← χ2km×n,E2,E3 ← χ2km×m

and build matrix

Q =

[
E1Aβ + E2 E1Dβ + E3 + Rα,f

0m×m Im×m

]
∈ Z(2km+m)×2m

q

Output rkα,f→β = Q as re-encryption key.
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– ReEnc(pp, rkα,f→β , CTα): Parse pp = ({Bi}i∈[`], χ), rkα,f→β = Q, and
CTα = (ct, cc). If f(x) 6= 0 or cc = ∅ then⊥, otherwise let ct = (cin, cout), cc =
{ci}i∈[`], set cf = Evalct(f, {(xi,Bi, ci)}i∈[`]) and c̃in,f = Bitsq([cin; cf ])

(c′Tin|c′Tout) = [c̃Tin,f |cTout] ·Q

Output CTβ = (ct′ = (c′in, c
′
out), cc

′ = ∅) as transformed ciphertext.

4.3 Correctness

According to the parameters given at the beginning, the correctness is as follows.

Original Ciphertext. (cin, cout) is the cc of ciphertext under pkα as follows,

cin = AT
αs + ein, cout = DT

αs + eout + bq/2cµ.

Since, Aα · Rα = Dα where ‖Rα‖2 ≤ mσ with overwhelming probability.
Therefore, we have[

cTin cTout
]
·
[

Rα

Im×m

]
= eTinRα + eTout + bq/2cµT

where ‖eTinRα + eTout‖ ≤ m
√
mσB +

√
mB ≤ B · (m + 1)O(d) ≤ q/4 with

overwhelming probability, which ensures correct decryption of µ.

Transformed Ciphertext. (cc = (cin, cout), ct = ({ci}i∈[`])) is the original ci-
phertext associated with attribute vector x under pkα. rkα,f→β is a re-encryption
key, where f(x) = 0. By Lemma 6 and Lemma 4, we have

c̃Tin,f ·Rα,f = (sT [Aα|Bf ] + [eTin|eTf ])Rα,f = −sTDα + [eTin|eTf ]Rα,f

where Rα,f ≤
√

2mσ and ‖ef‖ ≤ B
√
m(m + 1)d with overwhelming proba-

bility. Then, the transformed ciphertext is computed as follows,

[c′Tin|c′Tout] =[c̃Tin,f |cTout]
[
E1Aβ + E2 E1Dβ + E3 + Rα,f

0 I

]
=[c̃Tin,f (E1Aβ + E2) | c̃Tin,f (E1Dβ + E3) + [eTin|eTf ]Rα,f + eTout + bq/2cµ]

where Aβ and Dβ is public key of user β, ‖E1‖ ≤
√

2kmB, ‖E2‖ ≤
√

2kmB

and ‖E3‖ ≤
√

2kmB with overwhelming probability. Therefore, we have

[c′Tin|c′Tout] ·
[
Rβ

I

]
= c̃Tin,fE2Rβ + c̃Tin,fE3 + [eTin|eTf ]Rα,f + eTout + bq/2cµ

where ‖c̃Tin,fE2Rβ+c̃Tin,fE3+[eTin|eTf ]Rα,f+eTout‖ ≤ 2km2
√
mσB+2km

√
mB+

2m
√
m(m+1)dσB+

√
mB ≤ B(m+1)O(d) ≤ q/4 with overwhelming probability,

which means that decryption of µ is correct.
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4.4 Security Proof

In this section, we show that our AB-CPRE scheme is sIND-CPA secure and
sKP-CPA secure in standard model.

Theorem 2. Our single-hop AB-CPRE scheme is sIND-CPA secure and sKP-
CPA secure in standard model under LWEq,n,χ assumption.

The full proof can be found in Appendix A. Here, we outline our proof sketch
only. Our security proof employs proof idea from [1,6]. We build a challenger C,
who solves LWEn,q,χ problem by invocating a PPT adversary A.

Given a random matrix [Aθ|Dθ], C will be given a uniform vector u or an
LWE instance [Aθ|Dθ]

T s + e, where e is sampled from error distribution χ.
Then A announces a challenge attribute vector x∗ ∈ {0, 1}` before C selects
the public parameters and the specific public key. After receiving x∗, C gen-
erates ` matrices {S∗i }i∈[`] with small norm uniformly at random, computes
{Bi = AθS

∗
i − x∗iG}i∈[`] , sets ({Bi}i∈[`], χ) as the public parameters pp and

sets (Aθ,Dθ) as the specific public key pkθ. When adversary A makes a queries
on Ork(pkθ, pkβ , f) such that f(x∗) 6= 0, challenger C would check whether there
exists a corrupted chain (x∗, θ, ..., π) where π ∈ Ψrk, executes Evalsim, defined
as Lemma 4, produces a short basis Tθ,f for lattice Λ⊥(Aθ|Bf ) by ExtendLeft
and then compute a re-encryption key rkθ,f→β = Q. In Challenge phase, chal-
lenger C assembles a challenge ciphertext by LWE instance [Aθ|Dθ]

T s + e or a
uniform vector u. Finally, challenger C outputs adversary A’s answer as result.

However, adversaryAmay make a query onOrk(pkθ, pkβ , f) where f(x∗) = 0
and pkβ ∈ Ψu. In this case, Bf = AθSf , challenger C cannot generate the
corresponding short basis Tθ,f by ExtendLeft, which will make C abort.

To fix such a problem, we have to use key-switching technique to avoid to gen-
erate Tθ,f , where f(x∗) = 0. By LWE assumption, E1Dβ+E3+Power2q(Rα,f )
is computational indistinguishable from uniform matrix M. As a result, we will
sample a random M instead of computing E1Dβ + E3 + Power2q(Rα,f ) when
asking for rkθ,f→β , f(x∗) = 0 and β ∈ Ψu.

5 Extension: Multi-hop AB-CPRE Scheme

In this section, we construct a multi-hop AB-CPRE scheme from the single-hop
scheme in Section 4.

Let us show transformed ciphertext CTβ = (ct, cc = ∅) in single-hop AB-
CPRE, detailedly,

ctT =[c̃Tin,f |cout]
[
E1Aβ + E2 E1Dβ + E3 + Rα,f )

0 I

]
≈(c̃Tin,fE1) ·

[
Aβ + error |Dβ + error′] + [ 0 | bq/2cµ

]
∈ Zn×2mq

Method 1 Obviously, ct is in the form of dual Regev’s ciphertext [13]. Thus,
we can apply key-switching to generate a re-encryption key rkβ→π from user
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β to user π (mentioned in Section 4.1). However, in such way, once the proxy
obtains a re-encryption key rkβ→π , the proxy could transform all ciphertext of
user β to user π without any discrimination.

Method 2 Compared to original ciphertext, transformed ciphertext does
not contain any cc = {(xiG + Bi)

T s + ei}i∈[`], which plays an important role
in delegation. Thus, we can make subtle change in ReKeyGen algorithm to
achieve multi-hop capacity. ReKeyGen would return a re-encryption key in
single-hop AB-CPRE together with an extra matrix,

P = [E1(y1G + B1) + EB1
|...|E1(y`G + B`) + EB`

]

where y is the attribute vector set by user α , E1 is the same as in ReKeyGen
and the elements of EBi are chosen from error distribution χ. With extra matrix
P, the proxy could compute the new cc,

ccT = [c1; ...; c`]
T = c̃Tin,fP

= c̃Tin,f · [E1(y1G + B1) + EB1
|...|E1(y`G + B`) + EB`

]

Therefore, the transformed ciphertext (ct, cc) would be associated with a new
attribute vector y set by delegator.

5.1 Construction

The parameters are the same as in section 4, and our scheme works for `, d, q =
poly(n),m ≥ d6n log(q)e, q/4 ≥ B · (m+ 1)O(d), σ = ω((m+ 1)d+1) · ω

√
log(m).

– Setup(n): the same as Setup(n) in Section 4.

– Enc(pp, pkα,µ,x): the same as Enc(pp, pkα,µ,x) in Section 4.

– Dec(pp, skα, CTα): the same as Dec(pp, skα, CTα) in Section 4.

– ReKeyGen(pp, skα, pkβ , f,y): Parse pp = ({Bi}i∈[`], χ) , skα = (Tα,Rα),
pkβ = (Aβ ,Dβ), a policy f ∈ F`,d and an attribute vector y = {yi}i∈[`].
Let Bf = Evalpk(f, {Bi}i∈[`]) and F = (Aα|Bf ) ∈ Zn×2m. To construct
Rα,f , build the basis Tα,f for F as Tα,f ← ExtendRight(Aα,Tα,Bf ). Then
run Rα,f ← SamplePre(F,Tα,f ,−Dα, σ) s.t. FRα,f = −Dα where Rα,f ∈
Z2m×m. Set Rα,f = Power2q(Rα,f ), sample matrices E1 ← χ2km×n,E2,E3 ←
χ2km×m and build matrix

Q =

[
E1Aβ + E2 E1Dβ + E3 + Rα,f

0m×m Im×m

]
∈ Z(2km+m)×2m

q

If y is none or null, then set P as a null matirx. Otherwise, samples ` matrices
EBi from error distribution χ2km×m and compute,

P = [(E1(yiG + B1) + EB1) | ... | (E1(yiG + B`) + EB`
)] ∈ Z2km`×m

q

Output rkα,f→β,y = (Q,P) as re-encryption key.
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– ReEnc(pp, rkα,f→β,y, CTα): Parse pp = ({Bi}i∈[`], χ), rkα,f→β = (Q,P),
and CTα = (ct, cc). If f(x) 6= 0 or cc = ∅ then ⊥, otherwise let ct =
(cin, cout), cc = {ci}i∈[`], set cf = Evalct(f, {(xi,Bi, ci)}i∈[`]) and c̃in,f =
Bitsq([cin; cf ]), then compute

(c′Tin|c′Tout) = [c̃Tin,f |cTout] ·Q

If P is a null matrix, then set cc′ = ∅. Otherwise, compute

[c′1; ...; c′`]
T = c̃Tin,f ·P

and then set cc′ = {c′i}i∈[`]. Output CTβ = (ct′ = (c′in, c
′
out), cc

′) as trans-
formed ciphertext.

5.2 Correctness and Security Proof

Theorem 3. Our multi-hop scheme supports O(n) times transformations.

Suppose t = O(n) and (ct(t) = (c
(t)
in , c

(t)
out), cc

(t) = {c(t)i }i∈[`]) is the ciphertext

that has been transformed t times, then we have ‖e(t)
out‖ ≤

√
mB+ 2km

√
mBt+

2
√

2km2(m+1)dσBt and ‖e(t)
in ‖ ≤ 2km

√
mB (See Appendix B for more details).

Therefore, ‖e(t)
in

T
Rα + e

(t)
out

T
‖ ≤ 2km2

√
mσB +

√
mB + 2km

√
mB ·O(n) +

2
√

2km2(m + 1)dσB · O(n) ≤ B · (m + 1)O(d) ≤ q/4 holds with overwhelming
probability, which ensures the correctness.

Theorem 4. Our multi-hop AB-CPRE scheme is sIND-CPA secure and sKP-
CPA secure in standard model under LWEq,n,χ assumption.

Due to the space limitations, we just outline our proof sketch here. Our proof
idea is similar to single-hop one. The difference between multi-hop scheme and
single-hop scheme is the form of re-encryption key. In single-hop scheme, the

re-encryption key rkθ,f→β contains a matrix Q ∈ Z(2km+m)×2m
q . Whereas, in

the multi-hop scheme, the re-encryption key rkθ,f→β,y would contain an extra
P ∈ Z2k`m×m

q . Thus, in the sequence of sIND-CPA game or sKP-CPA game, C
would generate an extra matrix P honestly, when asking for a re-encryption key
(see Appendix C for more details).

6 Conclusion

In this paper, we propose two LWE-based AB-CPRE schemes against quantum-
attack. Single-hop one is unidirectional, and supports fine-grained delegation of
control as polynomial-deep circuit. Multi-hop one, an extension of single-hop
scheme, is the first multi-hop AB-CPRE scheme. No matter how many trans-
formation are performed, the ciphertext of multi-hop AB-CPRE is in constant
size. Besides, we prove that both of our schemes are sIND-CPA and sKP-CPA
without relying on random oracle.

At last, we leave two open problems. One is to construct an IND-CCA secure
AB-CPRE scheme from lattices. Another is to construct a multi-hop lattice-
based IND-CPA secure AB-CPRE scheme in adaptive model.
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A Full Proof for Single-hop AB-CPRE

In this section, we will present the full proof of single-hop AB-CPRE scheme.
To make our proof more clear, the simulator algorithms are defined as follows,
which will replace the original algorithms of AB-CPRE scheme gradually in the
sequences of games.

– SetupSIM (n,x∗): Let x∗ = {x∗i }i∈[`] to be the attribute vector selected by
adversary A. Sample a uniform matrix Dθ ← Zn×mq and generate a ran-
dom identity’s public key Aθ ← Zn×mq , then choose ` random matrices
S∗1, ...,S

∗
` ← {−1, 1}m×m. Set Bi = AθS

∗
i − x∗iG for all i ∈ [`]. Select an

error sampling algorithm χ, which is a B−bounded distribution. Keep ma-
trices {S∗i }i∈[`] as secret and return public parameter pp := ({Bi}i∈[`], χ)
and specific public key pkθ := (Aθ,Dθ)

– EncSIM (pp, pkθ,µb,x
∗): Let pp = ({Bi}i∈[`], χ), pkθ = (Aθ,Dθ), a chal-

lenge message µb ∈ {0, 1}m, and a selected attribute vector x∗ = ({x∗i }i∈[`]).
Choose a random vector s ← Znq and two error vectors ein, eout ← χm.
Compute ct = (cin, cout) as

cin = (Aθ)
T s + ein, cout = (Dθ

T )s + eout + bq/2cµb.

Use {S∗i }i∈[`] chosen in SetupSIM instead of uniform matrices in {−1, 1}m×m
and then assemble cc∗ = ({ci = (x∗iG+Bi)

T s+(S∗i )
Tein}i∈[`]) ∈ Z`mq . Out-

put a challenge ciphertext CT ∗ = (ct∗, cc∗)

– ReKeyGenSIM−1(pp, pkβ , f): Parse pp = ({Bi}i∈[`], χ) , pkβ = (Aβ ,Dβ),
and a policy f ∈ F`,d. Let Bf = Evalpk(f, {Bi}i∈[`]) and a policy F =
(Aθ|Bf ) ∈ Zn×2m. To construct Rθ,f , build the basis Tθ,f for F by execut-
ing ExtendRight(Aθ,Tθ,Bf ). Then run SamplePre(F,Tθ,f ,−Dθ, σ) to
generate Rθ,f ∈ Z2m×m such that FRθ,f = −Dθ.
1) In the case that f(x∗) 6= 0, Set Rα,f = Power2q(Rα,f ), sample matrices

E1 ← χ2km×n,E2,E3 ← χ2km×m and build matrix

Q =

[
E1Aβ + E2 E1Dβ + E3 + Rθ,f )

0m×m Im×m

]
∈ Z(2km+m)×2m

q

2) In the case that f(x∗) = 0, Set Rα,f = Power2q(Rα,f ), sample matrices
E1,E

′
1 ← χ2km×n,E2,E3 ← χ2km×m and build matrix

Q =

[
E1Aβ + E2 E′1Dβ + E3 + Rθ,f )

0m×m Im×m

]
∈ Z(2km+m)×2m

q

Output rkθ,f→β = Q as re-encryption key.

– ReKeyGenSIM−2(pp, pkβ , f): Parse pp = ({Bi}i∈[`], χ) , pkβ = (Aβ ,Dβ),
and a policy f ∈ F`,d. Let Bf = Evalpk(f, {Bi}i∈[`]) and a policy F =
(Aθ|Bf ) ∈ Zn×2m. To construct Rθ,f , build the basis Tθ,f for F by execut-
ing ExtendRight(Aθ,Tθ,Bf ). Then run SamplePre(F,Tθ,f ,−Dθ, σ) to
generate Rθ,f ∈ Z2m×m such that FRθ,f = −Dθ.
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1) In the case that f(x∗) 6= 0, Set Rα,f = Power2q(Rα,f ), sample matrices
E1 ← χ2km×n,E2,E3 ← χ2km×m and build matrix

Q =

[
E1Aβ + E2 E1Dβ + E3 + Rθ,f )

0m×m Im×m

]
∈ Z(2km+m)×2m

q

2) In the case that f(x∗) = 0, Set Rα,f = Power2q(Rα,f ), sample ma-
trices E1 ← χ2km×n,E2,E3 ← χ2km×m, choose a matrix M ∈ Z2km×m

q

uniformly at random, and build matrix

Q =

[
E1Aβ + E2 M + Rθ,f )

0m×m Im×m

]
∈ Z(2km+m)×2m

q

Output rkθ,f→β = Q as re-encryption key.

– ReKeyGenSIM−3(pp, pkβ , f): Parse pp = ({Bi}i∈[`], χ) , pkβ = (Aβ ,Dβ),
and a policy f ∈ F`,d. Let S∗f = Evalsim(f, (x∗i ,S

∗
i )i∈[`],Aθ).

1) In the case that f(x∗) 6= 0, let Bf = AθS
∗
f − f(x∗)G and set F =

[Aθ|Bf − f(x∗)G] ∈ Zn×2m. Compute the basis Tθ,f for F as Tθ,f ←
ExtendLeft(Aθ,G,TG,Sf ). Then generate a matrix Rθ,f ∈ Z2m×m

such that FRθ,f = −Dθ by executing SamplePre(F,Tθ,f ,−Dθ, σ), set
Rα,f = Power2q(Rα,f ), sample E1 ← χ2km×n,E2,E3 ← χ2km×m and
compute

Q =

[
E1Aβ + E2 E1Dβ + E3 + Rθ,f )

0m×m Im×m

]
∈ Z(2km+m)×2m

q .

2) In the case that f(x∗) = 0,sample two matrices E1 ← χ2km×n,E2 ←
χ2km×m, choose a matrices M′ ← Z2km×m uniformly at random, and
compute

Q =

[
E1Aβ + E2 M′

0m×m Im×m

]
∈ Z(2km+m)×2m

q .

Output rkθ,f→β = Q as re-encryption key.

A.1 sIND-CPA

We now give a security proof of sIND-CPA as a sequence of games below.

Game 0 This is the real sIND-CPA securtiy game.
Game 1 Modify Phase 1 and Phase 2 in Game 0. When adversary A access

to key generation query Ork(pkθ, pkβ , f), where pkβ ∈ Ψu, f(x∗) = 1,
the challenger C would execute ReKeyGenSIM−1 to generate a re-
encryption key rkθ,f→β instead.

Game 2 This game is same as Game 1 except that in Phase 1 and Phase 2.
When C receives a re-encryption key query Ork(pkθ, pkβ , f) where
f(x∗) = 0 and pkβ ∈ Ψu, then C generates a re-encryption key rkθ,f→β
by executing ReKeyGenSIM−2 instead.
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Game 3 We now continue to change Phase 1 and Phase 2 in Game 2. When A
access to Ork(pkθ, pkβ , f), C would use ReKeyGenSIM−3 algorithm
to generate re-encryption key rkθ,f→β .

Game 4 Modify Setup phase in Game 2. Using SetupSIM algorithm instead
to generate the public parameters pp and the specific identity’s public
key (Aθ,Dθ).

Game 5 We now change how challenge ciphertext is generated. In Challenge
phase, challenger would use EncSIM to generate the challenge ci-
phertext.

Game 6 This game is identitcal to Game 4 except that the challenge ciphertext
CT ∗ = (ct∗, cc∗) ∈ Z(`+2)m is chosen uniformly at random in Z(`+2)m.
Since challenge ciphertext is a random element in ciphertext space,
which is independent of µ∗0 and µ∗1, A’s advantage in this game is
zero.

Theorem 5. Our scheme is sIND-CPA secure under LWEn,q,χ assumption.

Proof. Combine the following Lemma 5 , 6 , 7 , 8, 9 and 10 together, then we
could prove that our scheme is sIND-CPA secure.

Lemma 5. Game 0 is computational indistinguishable from Game 1.

Proof. Recalling that the difference between Game 0 and Game 1 is how the
re-encryption key is generated. When β ∈ Ψu and f(x∗) = 0 are held, the re-
encryption keys rkθ,f→β are showed as follows,

rkθ,f→β =



[
E1Aβ + E2 E1Dβ + E3 + Rθ,f )

0m×m Im×m

]
in Game 0

[
E1Aβ + E2 E′1Dβ + E3 + Rθ,f )

0m×m Im×m

]
in Game 1

By Corollary 2, we can learn that under LWE assumption, Game 0 is com-
putational indistinguishable from Game 1.

Lemma 6. Game 1 is computational indistinguishable from Game 2, otherwise
there exists an efficient algorithm to solve LWEn,q,χ problem.

Proof. When f(x) = 0 and pkβ ∈ Ψu are held, in Game 1, the re-encryption
key is generated by ReKeyGenSIM−1 algorithm. In the meanwhile, in Game 2,
re-encryption key is produced by ReKeyGenSIM−2. We show the re-encryption
key rkθ,f→β in detail:

rkθ,f→β =



[
E1Aβ + E2 E1Dβ + E3 + Rθ,f )

0m×m Im×m

]
in Game 1

[
E1Aβ + E2 M + Rθ,f )

0m×m Im×m

]
in Game 2
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where M ← Z2km×m,E1 ← χ2km×n,E2,E3 ← χ2km×m. Noted that, matrix
Dβ is selected uniformly at random, which means that (Dβ ,E1Dβ + E3) ∈
Zn×mq ×Z2km×m

q is an LWE pair in Hermite normal form. Then, if A can distin-
guish Game 1 and Game 2, we can construct an Algorithm 1 to solve LWEn,q,χ
problem.

Algorithm 1

Input: ({Yβ ,Zβ,1, ...,Zβ,t}β∈[t])
Output: Distinguish whether ({Yβ ,Zβ,1, ...,Zβ,t}β∈[t]) is LWE pair.
1: Execute the Init and Setup phases in real sIND-CPA game.
2: Answer A’s queries as Game 1. But in Phase 1 and Phase 2,

1) When A submits a query qj on Ou(β), execute TrapGen algorithm to
get a matrix Aβ , set Dβ = Yβ , then outputs (Aβ ,Dβ) as user β’s public
key.

2) When A submits a query qj on Ork(pkθ, pkβ , f) such that f(x∗) = 0 and
pkβ ∈ Ψu, sample matrices E1 ← χ2km×n,E2 ← χ2km×m, set M = Zβ,j ,
and then assemble the re-encryption key as following:

Q =

[
E1Aβ + E2 M + Rθ,f )

0m×m Im×m

]
∈ Z(2km+m)×m

q

3: return A’s answer.

If M = Zβ,j = E′1Yβ + E3 = E′1Dβ + E3, then Algorithm 1 is exactly act as
Game 1. Otherwise, it act as Game 2 when f(x∗) = 0 and pkβ ∈ Ψu are held.
In short, by Corollary 2, under LWEn,q,χ assumption, Game 1 is computational
indistinguishable from Game 2.

Lemma 7. Game 2 is statistically indistinguishable from Game 3.

Proof. Considering that in Game 3, whenA query a function f such that f(x∗) =
1, which means Bf = AθSf − f(x∗)G, we could use ExtendLeft algorithm to
generate a trapdoor for Bf . Since, Gaussian parameter σ is the same in both
games, by Lemma 3, Rθ,f in Game 2 and Game 3 are statistically close to
Dσ(ΛDq (Aθ|Bf )). Hence, Game 2 is statistically indistinguishable from Game 3.

Lemma 8. Game 3 is statistically indistinguishable from Game 4.

Recalling that public matrices {Bi}i∈[`] in Game 3 are chosen uniformly, whereas
in Game 4 public matrices are {Bi = AθS

∗
i−x∗iG}i∈[`]. By lemma 1, we can learn

that AθS
∗
i is statistically indistingushable from uniform in Zn×mq . Therefore,

Game 3 is statistically indistinguishable from Game 4.

Lemma 9. Game 4 is statistically indistinguishable from Game 5.
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Proof. In Game 5, matrices S∗i in EncSIM share the randomness with S∗i in
SetupSIM . However, through sIND-CPA game, encryption algorithm is only
executed once by challenger to generate the challenge ciphtertext. So we have
Game 4 is statistically indistinguishable from Game 5.

Lemma 10. Game 5 is computational indistinguishable from Game 6, otherwise
there exists an efficient algorithm to solve LWEn,q,χ problem.

Proof. We show the challenge ciphertext in Game 5.

cin = (Aθ)
T s + ein, cout = (Dθ)

T s + eout + bq/2cµ∗b .
cc = {ci = (x∗iG + Bi)

T s + (S∗i )
Tein}i∈[`]).

Then, by Bi = AθS
∗
i − x∗iG, we have that[

cT1 |......|cT`
]

=
[
sTAθS

∗
1 + eTinS∗1|......|sTAθS

∗
` + eTinS∗`

]
= (sTAθ + eTin)

[
S∗1|......|S∗`

]
.

We build an Algorithm 2 that uses A to solve LWEn,q,χ problem. Algorithm
2 is given an LWE instance (Y,b) ∈ Zn×2mq × Z2m

q , answers whether (Y,b) are

selected randomly or b = YT s + e is held for some noise e ∈ χm

Algorithm 2

Input: (Y, z)
Output: Distinguish whether (Y, z) is LWE pair.
1: let [Aθ|Dθ] := Y
2: Using LWE instance and SetupSIM to generate the public parameter pp =

({Bi = AθS
∗
i − x∗iG}i∈[`], χ) and public key pk := (Aθ,Dθ)

3: Answer A’s queries as in Game 4.
4: In the challenger phase, generate the challenge ciphertext by LWE instance

[cin; cout] := z[
cT1 |...|cT`

]
= cTin

[
S∗1|...|S∗`

]
5: return A’s answer.

In the case that, z = [cin; cout] = YT s + e = [Aθ|Dθ]
T s + [ein; eout], where

Y ← Zn×2mq , s← Znq and e← χ2m. The challenge ciphertext is the same distri-
bution in Game 5. In the other case, if Y and z are chosen uniformly, by leftover
hash lemma [15], the challenge ciphertext is statistically indistinguishable from
uniform.

In other words, if A can distinguish Game 5 and Game 6, then there exists an
efficient Algorithm 2 to solve LWEn,q,2m,χ problem, which have demonstrated
that Game 5 is computational indistinguishable from Game 6.
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A.2 sKP-CPA

This proof is barely based on sIND-CPA game sequences. We make some subtle
changes in Challenge phase from Game 3 to complete our security proof. The
securtiy proof of sKP-CPA is done through a sequence of games below.

Game 0’ This is the real sKP-CPA game.
Game 1’ Modify Setup phase in Game 0’. Using SetupSIM algorithm to gener-

ate the public parameters pp and the specific identity’s public key Aθ.
Besides, in Phase 1 and Phase 2, challenger use ReKeyGenSIM−3 to
generate the re-encryption keys.

Game 2’ In Challenge phase, challenger would generate a random re-encryption
key in re-encryption key space as challenge re-encryption key. In this
game, A’s advantage is zero.

Theorem 6. Our AB-CPRE scheme is sKP-CPA secure under LWEq,n,χ as-
sumption.

Proof. Combining the following Lemma 11 and 12 together, then we proof that
our scheme is sKP-CPA secure.

Lemma 11. Game 0’ is computational indistinguishable from Game 1’.

Proof. It is the same as proofing that Game 0 is computational indistinguishable
from Game 3. By lemma 5 , 6 and 7, we proof that Game 0’ is computational
indistinguishable from Game 1’.

Lemma 12. Game 1’ is computational indistinguishable from Game 2’.

Proof. Compare the challenge re-encryption key in Game 1’ and Game 2’.

Q =



[
E1Aθ + E2 E1Dθ + E3 + Rβ,f ′)

0m×m Im×m

]
in Game 1’

[
N M

0m×m Im×m

]
in Game 2’

Given (Hermite normal form of) LWE instance [Aθ|Dθ] := Y , [N|M] := Z,
if N = E1Aθ + E2 and M = E1Dθ + E3 are held, where the elements of
E1,E2,E3 are sampled from noise distribution χ. Then it is exactly acting as in
Game 1’. Otherwise, N,M are sampled uniformly at random, then M + Rβ,f ′)
is statistically from uniform, which is exactly in Game 2’.

B Correctness for Multi-hop AB-CPRE

The correstness of original ciphertext is the same as the correctness in Section 4.
Then the correctness of transformed ciphertext is presented as follows,



AB-CPRE in the standard model under LWE 25

Transformed Ciphertext. (ct(t−1) = (c
(t−1)
in , c

(t−1)
out ), cc(t−1) = {c(t−1)i }i∈[`])

is the ciphertext which has been transformed t − 1 times and associated with
attribute vector x under pkα. We show (cc(t−1), ct(t−1)) in detail as following;

c
(t−1)
in = s(t−1)

T
Aα + e

(t−1)
in , c

(t−1)
out = s(t−1)

T
Dα + e

(t−1)
out + bq/2cµ

{c(t−1)i = s(t−1)
T

(xiG + Bi) + e
(t−1)
i }i∈[`]

For convenience, rkα,f→β,y = (Q,P) is the re-encryption key, where f(x) =

0. Set c̃
(t−1)
in,f = Bitsq([c

(t−1)
in ; c

(t−1)
f ]) and Rα,f = Power2q(Rα,f ). Then the t

times transformed ciphertext (ct(t), cc(t)) is as following;

c′in = s(t)
T
Aα + e

(t)
in = (c̃

(t−1)
in,f )TE1Aβ + (c̃

(t−1)
in,f )TE2

c′out = s(t)
T
Dα + e

(t)
out + bq/2cµ

= (c̃
(t−1)
in,f )TE1Dα + (c̃

(t−1)
in,f )TE3 + [e

(t−1)
in

T
|e(t−1)
f

T
]Rα,f + e

(t−1)
out + bq/2cµ

{c′i = s(t)
T

(yiG + Bi) + e
(t)
i = (c̃

(t−1)
in,f )TE1(yiG + Bi) + (c̃

(t−1)
in,f )TEBi

}i∈[`]

Obviously, for any t > 0, we can learn that,

‖e(t)
in ‖ ≤ ‖(c̃

(t−1)
in,f )TE2‖ ≤ 2km

√
mB

‖e(t)
out‖ ≤ ‖(c̃

(t−1)
in,f )TE3‖+ ‖[e(t−1)

in

T
|e(t−1)
f

T
]Rα,f‖+ ‖e(t−1)

out ‖

‖e(t)
i ‖ ≤ ‖(c̃

(t−1)
in,f )TEBi‖ ≤ 2km

√
mB

Because ‖e(0)
out‖ ≤

√
mB, ‖e(t)

f ‖ ≤
√

2mkB(m+ 1)d, then we have,

‖e(t)
out‖ ≤ ‖e

(0)
out‖+ t‖(c̃(t−1)in,f )TE3‖+ t‖[e(t)

in

T
|e(t)
f

T
]Rα,f‖

≤
√
mB + 2km

√
mBt+ 2

√
2km2(m+ 1)dσBt

Therefore, for the t times transformed ciphertext (ct(t), cc(t)),[
c
(t)
in

T
c
(t)
out

T
]
·
[

Rα

Im×m

]
= e

(t)
in

T
Rα + e

(t)
out

T
+ bq/2cµT

where ‖e(t)
in

T
Rα+e

(t)
out

T
‖ ≤ ‖e(t)

in

T
‖·‖Rα‖+‖e(t)

out

T
‖ ≤ 2km2

√
mσB+

√
mB+

2km
√
mBt+ 2

√
2km2(m+ 1)dσBt ≤ B · (m+ 1)O(d) ≤ q/4 with overwhelming

probability, which ensures the correctness.

C Simulator Algorithms for Multi-hop AB-CPRE

The proof idea is quite similar to the proof of single-hop AB-CPRE. For the sake
of breifness, simulator algorithms are showed as follows,
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– SetupSIM (n,x∗): Let x∗ = {x∗i }i∈[`] to be the attribute vector selected by
adversary A. Sample a uniform matrix Dθ ← Zn×mq and generate a ran-
dom identity’s public key Aθ ← Zn×mq , then choose ` random matrices
S∗1, ...,S

∗
` ← {−1, 1}m×m. Set Bi = AθS

∗
i − x∗iG for all i ∈ [`]. Select an

error sampling algorithm χ, which is a B−bounded distribution. Keep ma-
trices {S∗i }i∈[`] as secret and return public parameter pp := ({Bi}i∈[`], χ)
and specific public key pkθ := (Aθ,Dθ)

– EncSIM (pp, pkθ,µb,x
∗): Let pp = ({Bi}i∈[`], χ), pkθ = (Aθ,Dθ), a chal-

lenge message µb ∈ {0, 1}m, and a selected attribute vector x∗ = ({x∗i }i∈[`]).
Choose a random vector s ← Znq and two error vectors ein, eout ← χm.
Compute ct = (cin, cout) as

cin = (Aθ)
T s + ein, cout = (Dθ

T )s + eout + bq/2cµb.

Use {S∗i }i∈[`] chosen in SetupSIM instead of uniform matrices in {−1, 1}m×m
and then assemble cc∗ = ({ci = (x∗iG+Bi)

T s+(S∗i )
Tein}i∈[`]) ∈ Z`mq . Out-

put a challenge ciphertext CT ∗ = (ct∗, cc∗)

– ReKeyGenSIM (pp, pkβ , f,y): Parse pp = ({Bi}i∈[`], χ) , pkβ = (Aβ ,Dβ),
a policy f ∈ F`,d and an attribute vector y = {yi}i∈[`]. Compute S∗f
by executing Evalsim(f, (x∗i ,S

∗
i )i∈[`],Aθ), sample matrices E1 ← χ2km×n,

E2,E3 ← χ2km×m.
1) In the case that f(x∗) 6= 0, let Bf = AθS

∗
f − f(x∗)G and set F =

[Aθ|Bf − f(x∗)G] ∈ Zn×2m. Compute the basis Tθ,f for F as Tθ,f ←
ExtendLeft(Aθ,G,TG,Sf ). Then generate a matrix Rθ,f ∈ Z2m×m

such that FRθ,f = −Dθ by executing SamplePre(F,Tθ,f ,−Dθ, σ), set
Rα,f = Power2q(Rα,f ), and compute

Q =

[
E1Aβ + E2 E1Dβ + E3 + Rθ,f )

0m×m Im×m

]
∈ Z(2km+m)×2m

q .

2) In the case that f(x∗) = 0, choose a matrices M ← Z2km×m uniformly
at random, and compute

Q =

[
E1Aβ + E2 M

0m×m Im×m

]
∈ Z(2km+m)×2m

q .

If y is none or null, then set P as a null matrix. Otherwise, samples ` matrices
EBi

from error distribution χ2km×m and compute,

P = [(E1(yiG + B1) + EB1
) | ... | (E1(yiG + B`) + EB`

)] ∈ Z2km`×m
q

Output rkθ,f→β = (Q,P) as re-encryption key.
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