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1 Introduction

Following the seminal works of Dolev, Dwork and Naor [DDN00] and Feige and Shamir [FS90] from
the early 90’s, concurrent security of cryptographic protocols has been an active area of research.
In this tutorial, we focus on concurrent security of zero-knowledge proof systems. Zero-knowledge
(ZK) proofs, introduced by Goldwasser, Micali and Rackoff [GMR89] are paradoxical constructs
that allow one player P (called the Prover) to convince another player V (called the Verifier) of
the validity of a mathematical statement x ∈ L, while providing zero additional knowledge to the
Verifier. This is formalized by requiring the existence of an efficient (i.e., polynomial-time) simulator
Sim that can indistinguishably emulate the view of any malicious Verifier V ∗ in its interaction with
the Prover P ; thus, anything the Verifier V ∗ learns in a “real” interaction with the Prover, could
have been generated by the Verifier “on-its-own”, and as a consequence, the Verifier did not learn
anything new.

Soon after their conception, zero-knowledge proofs for all of NP were demonstrated by Goldre-
ich, Micali and Wigderson [GMW91]; subsequently, Brassard , Crépeau and Yung [BCY91], Feige
and Shamir [FS90] and Goldreich and Kahan [GK96a] demonstrated the existence of constant-round
zero-knowledge protocols with negligible soundness error for all of NP.

Beyond being fascinating in their own right, ZK proofs and arguments (i.e., proofs that only
are computationally sound) have numerous cryptographic applications and are one of the most
fundamental cryptographic building blocks. As such (and as we shall also discuss below), techniques
developed in the context of ZK often extend to more general types of interactions (most notably,
general secure computations [Yao86, GMW87, BGW88].)

Concurrent ZK. The notion of Concurrent ZK, first introduced and achieved by Dwork, Naor
and Sahai [DNS04], considers the execution of zero-knowledge proofs in an asynchronous and con-
current setting. More precisely, we consider a single adversary Verifier that participates in multiple
concurrent executions—called sessions—of a ZK proof. The same ZK protocol is used in all the
sessions, but the adversarial Verifier is communicating with multiple independent instances of the
Prover. At first sight it may seem like every ZK protocol also remains ZK in such a setting, but
as shown by Feige and Shamir [FS90] and Goldreich and Krawczyk [GK96b], this turns out to be
false: there are ZK arguments that reveal the whole witness being used in the proof if a Verifier
performs a coordinated attack on just two simultaneous protocols!

Roughly speaking (following [FS90]), one can come up with a ZK protocol where the Verifier
can select between two modes of operation: In Mode 1, the Verifier requests to hear a standard
ZK proof of the statement x ∈ L, whereas in Mode 2, the Verifier may instead attempt to prove
x to the Prover using the same type of ZK proof, and if the proof succeeds, the Prover simply
reveals the witness w to x (and otherwise aborts). It is not hard to see that such a protocol is ZK
in isolation, assuming L has unique witnesses: In Mode 1, this follows by definition, and in Mode
2, this follows from the fact that the Prover only gives the witness w to the Verifier if the Verifier
already knows it! (Actually, the ZK protocol employed needs to be a so-called proof of knowledge
[FS90, BG92] to ensure that the Verifier must convince the Prover that it actually knows w before
the Prover hands it out.) On the other hand, a malicious Verifier participating in two concurrent
executions can use Mode 1 in the first session, and Mode 2 in the second session, and then simply
forward the Mode 1 proof provided by the Prover in session 1 as its Mode 2 proof in the session
2, and thereby get the Prover to reveal the witness in the session 2. So, by participating in two
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sessions of a ZK proof, the malicious Verifier learns a witness for x (even thought it may not have
known one before the interaction). In fact, by adding dummy message, one can obtain a protocol
that no longer is zero-knowledge even when two instances of the protocol are repeated in parallel
(i.e., the two instances proceed in a lockstep fashion).

What makes Concurrent ZK hard? Of course, the above construction is clearly artificial—it
was designed to break down under concurrent executions. One could have hoped that more “natural”
constructions of ZK protocols retain their ZK property under concurrent sessions. Indeed, the
constant-round protocols of [FS90, GK96a] are known to preserve their zero-knowledge property
under parallel composition (i.e., when we have an unbounded number of parallel sessions) [FS90,
Gol02].

However, it is still unknown whether these protocol remain zero-knowledge under concurrent
executions (where the Verifier may decide the scheduling of the messages in the different sessions).
Even though concrete attacks are not known against these protocols, we also do not know how to
prove them secure. The problem is that the standard simulation method fails in the concurrent
setting. For concreteness, consider the constant-round ZK protocol of Feige and Shamir [FS90] (we
are using this protocol as our example as the ideas underlying it will be useful to us in the sequel).
Roughly speaking, the protocol for proving a statement x ∈ L proceeds in two stages:

• In Stage 1, the Verifier samples a different statement x̃ and witness w̃ from some hard-on-the
average language and next proves to the Prover that it knows a witness to the statement x̃
using a, so-called, Witness Hiding [FS90] proof system which does not reveal the witness w̃.

• In Stage 2, the Prover next provides a proof that it either knows a witness for the true
statement x, or that it knows a “fake” witness to the other statement x̃; this second stage
proof needs to be Witness Indistinguishable [FS90] so that it does not reveal whether the
Prover is using a witness for x or x̃.

Each of these subprotocols (for Stage 1 and 2) can be implemented in just 3 communication rounds
using Blum’s Hamiltonicity protocol [Blu86].1 We will refer to the Stage 1 messages as (α1, α2, α3)
and depict them using (single) arrows, and to simply our illustrations, refer to the whole Stage 2
protocol as α4 and depict it as a double arrow; see Figure 1 for an illustration.

The idea for why this protocol is ZK is that (a) clearly, the Verifier cannot learn anything from
the Stage 1 protocol, as here it is actually the Verifier who provides a proof to the Prover, and (b)
since the Verifier first proves to the Prover that is knows a “fake” witness w̃, it can indistinguishably
simulate Stage 2 on its own using this fake witness (due to the fact that the Stage 2 protocol is
witness indistinguishable). A bit more precisely, to provide the actual simulation, the simulator will
need to “extract” out the fake witness from the Stage 1 proof, and can later use this fake witness to
complete the simulation of Stage 2.

In more detail, to simulate the view of a malicious Verifier V ∗, the simulator honestly emulates
the first 3 rounds (α1, α2, α3) of the protocol, and then “rewinds” the Verifier, resending different
second messages α′2 until it gets a second accepting third message α′3 from the Verifier in order
to extract out the fake witness which can be used to complete the simulation. (Technically, the
proof-of-knowledge property of the Stage 1 protocol we here rely on is called “special-soundness”

1As we shall see shortly, the reason why we are relying on Blum’s protocol as opposed to, say, [GMW87], is that
Blum’s protocol satisfies a strong proof-of-knowledge property which will simplify the analysis.
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Figure 1: A standard ZK simulation.

[CDS94]; it stipulates that a valid witness w̃ for x̃ can be computed in polynomial time from any
two accepting proof transcripts (α1, α2, α3), (α1, α

′
2, α
′
3) for the statement x̃ with the same first

message α1 but different second messages α2 6= α′2. Blum’s Hamiltonicity protocol [Blu86] satisfies
this this property.) We refer to the second and third message pair (α2, α3) as a slot, and rewinding
this slot is the key tool that enables simulation; see Figure 1.

This method no longer works in the concurrent setting. More precisely, a concurrent Verifier
V ∗ may nest the concurrent sessions—putting session 1 inside the slot for session 2, and session 2
inside the slot for session 3, etc, and may generate its randomness for the different sessions as some
function of the prefix of the execution up to this point. Then:

• Simulating the “innermost” session (i.e. session 1) will require running the Verifier twice (just
as in the stand-alone simulation);

• simulating session 2 (which includes session 1 inside it) requires running the simulation of
session 1 twice, since every time we rewind session 2, session 1 restarts with new randomness;

• simulation session 3 (which includes session 2 and 2 inside it) requires running the simulation of
session 2 twice (since every time we rewind session 3, session 2 restarts with new randomness),
and which in turn requires running the simulation of session 1 four times;

• and so on and so forth.

Thus, if we have n sessions, the running-time becomes exponential in n (and the simulator can no
longer be a polynomial-time algorithm). See Figure 2 for an illustration for a simulation with just
two sessions.

To overcome this exponential blow-up, we instead need to come up with new protocols and
analyses. These protocols are significantly harder to construct and analyze than “stand-alone” ZK
protocols [GMR89, GMW91, FS90, GK96a].

Benign Schedulings and Set-up Assumptions. To overcome the above obstacle, the original
protocol by Dwork, Naor and Sahai [DNS04] relied on so-called “timing assumptions”: informally
speaking, the timing model assumes that every party has a local clock, that all these local clocks
are roughly synchronized, and that all parties know a (pessimistic) upper-bound ∆ on the time it
takes to deliver a message on the network. In such a timing model, the Prover can use delays and
time-outs to prevent “bad schedulings”. Improved Concurrent ZK protocols in the timing model
were presented in [Gol02, PTV10]; the idea behind these works is to identify more expressive classes
of schedulings that can be handled and next to use timing contraints to restrict the attacker to those
scheduling. For instance, the work of Goldreich [Gol02] demonstrates that the original constant-
round stand-alone ZK protocol of Goldreich-Kahan [GK96a] remains ZK under the more “benign”
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Figure 2: A simulation for 2 nested concurrent sessions.

schedulings of parallel composition and bounded-simultaneity (where we have only a constant number
of sessions running at the same time), and next uses timing constraints to ensure that a combination
of the simulation techniques used for those special cases of schedulings suffice to get a concurrent
ZK protocol in the timing model. Whereas the protocols of [DNS04, Gol02] required imposing
delays/slowdowns that were longer than the upper bound on the message delivery time, ∆, [PTV10]
showed that the slowdown can be significantly smaller than ∆; moreover, the slowdown can be done
adaptively so that only sessions that are slow anyways get “penalized” with delays.

Various other concurrent ZK protocols were also obtained based on different set-up assumptions
(e.g., [DS98, Dam00, CGGM00b]). In this tutorial, however, our focus will be on the “standard
model” without any set-up assumption.

Black-box Impossibilities. In the standard model (without any timing assumptions), Canetti,
Kilian, Petrank and Rosen [CKPR01] (building on earlier works by [KPR98, Ros00, GK96b]) showed
that concurrent ZK protocols for non-trivial languages, with so called “black-box” simulators (i.e.,
simulators that simply use the Verifier as a black-box but may rewind it), require at least Ω̃(log n)
number of communication rounds, where n is the length of the instance being proved; see also
[CPT12] for a simplified (and generalized) analysis of the impossibility result from [CKPR01]. Thus,
if we restrict to black-box ZK, the original constant-round ZK protocols (e.g., [GK96a, FS90])
cannot be concurrently secure (but it is still open whether non-black-box techniques can be used to
prove security of them).

Feasibility of Concurrent ZK. Richardson and Kilian [RK99] constructed the first concurrent
ZK argument in the standard model without any set-up assumptions. Their protocol, which uses a
black-box simulator, requires O(nε) number of rounds; see also the work of Canetti, Goldreich, Gold-
wasser and Micali [CGGM00b] for a somewhat different and more detailed analysis of this protocol.
Subsequent works by Kilian and Petrank [KP01], Prabhakaran, Rosen and Sahai [PRS02] improved
the round-complexity to Õ(log n); see also [PTV14] for a simplified and generalized analysis of such
more round-efficient concurrent ZK proofs.

The key idea for overcoming the above-mentioned blow-up in the running-time of the simulator
is to construct a protocol with many sequential slots, such that only one of the slots needs to be
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rewound to ensure that the rest of the session can be simulated. Then, intuitively, the above-
mentioned nesting attack can no longer be performed—an attacker would need to nest sessions
within all of the slots, but since it can only start polynomially many sessions, the nesting depth can
never become too big and thus, intuitively, the running-time of the simulation remains polynomial.
Formalizing this, however, turned out to be quite complex and subtle.

Towards Constant-round Concurrent ZK. The question of whether constant-round concur-
rent ZK protocols exist still remains an intriguing problem: A breakthrough result in this direction
was obtained by Barak in 2001 [Bar01]; Barak presented a constant-round ZK protocol for NP
(based on standard cryptographic hardness assumptions) which remains secure under an a priori
bounded number of concurrent instances—a.k.a. bounded concurrency. More precisely, for any m
(polynomial in the security parameter), Barak demonstrates the existence of a ZK protocol which
remains secure as long as the number of concurrent sessions is bounded by m. (On the flipside,
however, the communication complexity of his protocol grows linearly with m.) Intriguingly, the
black-box impossibility results of [CKPR01] for constant-round concurrent ZK actually applies also
to bounded-concurrency, and indeed Barak develops a new non-black-box simulation [Bar01] to
obtain his result. Note that bounded-concurrent ZK is different from concurrent ZK in that for
the latter, we require the same protocol to be secure under any polynomial number of concurrent
sessions.

Towards getting a constant-round concurrent ZK protocol, in [CLP13, CLP15], the existence of
constant-round concurrent ZK arguments were shown assuming the existence of certain types of “del-
egation of computation schemes” for P (as well as standard cryptographic hardness assumptions—
namely collision-resistant hash functions and one-way permutations); additionally, in [CLP15] it was
shown that such delegation schemes can be based on the existence of indistinguishability obfuscation
(iO) [BGI+01, GGH+16] (as well as one-way permutations). Although iO is an extremely intriguing
concept in its own right, constructions of iO under standard assumptions are still not known, and
thus the question of basing constant-round concurrent ZK on “standard” assumptions still remains
open.

Public-coins v.s. Private-coins. Whereas the original ZK protocols of [GMR89, GMW91,
Blu86] are public-coin—i.e., the Verifier’s messages are its random coin-tosses—all of the aforemen-
tioned parallel or concurrent ZK protocols use private coins. Indeed, Goldreich and Krawczyk
[GK96b] showed that only trivial languages can have constant-round public-coin (stand-alone)
black-box ZK protocols with negligible soundness error, let alone the question of parallel com-
position. Their result implies that (unless NP ⊆ BPP), the constant-round ZK protocols of e.g.,
[GMW91, Blu86] with constant soundness error cannot be black-box ZK under parallel repeti-
tion (as this would yield a constant-round black-box ZK protocol with negligible soundness error).
More recently, Pass, Tseng and Wikström [?] showed that no public-coin protocol (even those with
a polynomial number of rounds) for a non-trivial language can be black-box ZK under parallel
composition.

These black-box barriers can be overcome: Pass, Rosen and Tseng [PRT13] show the existence of
a constant-round public-coin ZK protocol for NP (with negligible soundness error) which remains
secure under (unbounded) parallel composition with a non-black-box simulator (based on standard
cryptographic hardness assumptions), and Goyal [Goy13] demonstrates a (polynomial-round) public-
coin protocol that remains secure even under (unbounded) concurrent composition.
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Concurrency Beyond ZK: Secure Computation and Black-box Impossibilites. As one
may expect, techniques developed for concurrent ZK enable reasoning about concurrent security of
other types of cryptographic protocols:

• [Lin03, PR03, Pas04] show how to extend Barak’s simulation technique to develop general
secure computation protocols [Yao86, GMW87, BGW88] that remain secure under bounded
concurrency.

• [CLP10] shows how to get general secure computation protocols satisfying a relaxed notion
of concurrent “super-polynomial-time” (SPS) security [Pas03, PS04, BS05, CLP10] based on
standard assumptions using simulation techniques similar to those employed by Richardson
and Kilian [RK99]. It is known that concurrent secure computation satisfying the standard
notion of “polynonomial-time simulation” is impossible [CF01, Lin04] and thus going for a
relaxed notion of security such as SPS is needed here. (See also [GLP+15] for a protocol with
improved round-complexity).

But perhaps more surprisingly, techniques developed for establishing the feasibility of concurrent
ZK protocols turned out to also be useful for developing impossibility results for seemingly unrelated
tasks:

• As we showed in [Pas11], concurrent simulation techniques are important also when trying to
show black-box separations: [Pas11] shows that black-box security reductions cannot be used
to base the security of several “paradoxical” protocols (such as e.g., Schnorr’s identification
scheme, commitment schemes secure against selective openings, Chaum Blind Signatures,
etc.) on “standard assumptions”. As a black-box reduction may invoke multiple (concurrent)
sessions of the adversary, dealing with concurrency (and nested sessions) is a key technical
challenge in establishing such impossibility results.

And conversely, techniques developed to establish black-box impossibility results for concurrent ZK
turned out to be useful in establishing the feasibility of other primitives:

• In [COPV13], it was shown that black-box impossibility results for concurrent ZK due to
[CKPR01, CPT12] can be used to develop so-called “resettably-sound” ZK protocols [BGGL01]
based on minimal assumptions.

As we hope to have conveyed, understanding concurrent ZK is important beyond just ZK—
whether it is to study concurrent security of more general secure computations protocols, or to
establish black-box impossibility results for other tasks. Furthermore, the question of whether
constant-round concurrent ZK exists is linked to other intriguing open questions in the context of
delegation of computation and program obfuscation.

A Simple Concurrent ZK. Despite improvements, simplifications and generalizations, the anal-
yses of concurrent ZK protocols remain very complex and subtle. In the remainder of this tutorial,
we aim to present a concurrent ZK protocol with a simple analysis: we do not try to minimize
rounds, or assumptions—the protocol requires O(nε) rounds (just as the original work by Richard-
son and Kilian), and relies on the existence of one-way permutations—but our hope is that this
analysis may make it feasible to teach the wonders of concurrent ZK in a graduate class on Cryp-
tography.
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Our analysis follows simulation techniques from [CLP10, Pas11] (and is also closely related to
a technique from [DGS09]) developed for concurrent simulation of more general interaction, but as
far as we know, these simulation techniques were not previously brought back to concurrent ZK.

A Personal Note: ZK proofs are, in my opinion, one of the deepest, intriguing and most sur-
prising concepts in computer science. The fact that one can convince someone of the validity of
some statement without revealing anything else beyond it, just seems impossible. Yet ZK proofs
enable it! It was this notion that made me fall in love with Cryptography: I had decided to go back
to graduate school and Johan Håstad handed me the paper “Resettable Zero-Knowledge” by Canetti,
Goldreich, Goldwasser and Micali [CGGM00a], and said “this is a paper by some of my friends, it
may be fun”. At this point, I had no background in crypto and had never read a research paper. So
“fun” it was not. It took me months to get even the most basic understanding of this paper—a core
technical component was a detailed analysis of Richardson and Kilian’s concurrent zero-knowledge
protocol—but, even though I didn’t understand the details, I had become obsessed by ZK and even
more so by the notion of Concurrent Zero-knowledge: How could it be that something gave “zero
knowledge” when executed in isolation, but no longer did so if one provided many concurrent proofs.
How can 0+0 not be 0? Over a decade later, I am still as obsessed with this notion, and it is an
honor to contribute a piece on Concurrent Zero-Knowledge in this tribute to Shafi’s and Silvio’s
work.

2 Preliminaries

We assume familiarity with probability ensembles, indistinguishability and interactive proofs [GMR89]
and arguments [BCC88]; recall that in interactive proof, soundness holds with respect to all compu-
tationally unbounded malicious provers, whereas in an interactive argument, soundness only needs
to hold with respect to computationally bounded (i.e., non-uniform polynomial-time) provers. .

2.1 Black-box Concurrent Zero-Knowledge

Let (P, V ) be an interactive proof/argument for a language L. An m-session concurrent adversarial
verifier V ∗ is a probabilistic polynomial time machine that, on common input x and auxiliary input
z, interacts with m(|x|) independent copies—called sessions—of some prover P (x,w). There are
no restrictions on how V ∗ schedules the messages among the different sessions, and V ∗ may choose
to abort some sessions but not others. Let View

P (x,w)
V ∗ (x, z) be the random variable that denotes

the view of V ∗(x, z) in an interaction with P (x,w) (this includes the random coins of V ∗ and the
messages received by V ∗). A black-box simulator S is a probabilistic expected polynomial-time
machine that is given black-box access to V ∗ (written as SV ∗). Roughly speaking, we require that
for every instance x ∈ L, and every auxiliary input z, the simulator SV ∗(x,z)(x) (having only access
to V ∗(x, z), but not the prover P (x,w)) can generate the view of V ∗(x, z) in an interaction with
P (x,w). Since we provide V ∗ with an auxiliary input, we can without loss of generality restrict our
attention to deterministic V ∗ (as V ∗ can always receive its random coins as auxiliary advice).

Definition 1 (Black-Box Concurrent Zero-Knowledge [DNS04]). Let (P, V ) be an interactive
proof/argument for a language L ∈ NP with witness relation RL. (P, V ) is black-box concur-
rent zero-knowledge if for all polynomials m, there exists a black-box simulator Sm such that for
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every common input x and auxiliary input z, and every deterministic m-session concurrent ad-
versary V ∗, SV

∗(x,z)
m (x) runs in time polynomial in |x|. Furthermore, the following ensembles are

computationally indistinguishable:

•
{

View
P (x,w)
V ∗ (x, z)

}
x∈L,w∈RL(x),z∈{0,1}∗

•
{
S
V∗(x,z)
m (x)

}
x∈L,w∈RL(x),z∈{0,1}∗

It is worth noting that the definition of black-box concurrent ZK allows for a different simulator
for every polynomial bound m on the number of sessions (whereas the standard definition of black-
box ZK does not need a different simulator for each polynomial that bounds the verifier’s running
time). The reason for this is that we need to allow the simulator to run in polynomial time in m
even just to read all the messages sent by an m-session verifier.

2.2 Other Primitives

Witness-indistinguishable (WI) Proofs [FS90]. Roughly speaking, an interactive proof is
witness indistinguishable if the verifier’s view is “independent” of the witness used by the prover for
proving the statement.

Definition 2 (Witness-indistinguishability). Let (P, V ) be an interactive proof system for a lan-
guage L ∈ NP with witness relation RL. We say that (P, V ) is witness-indistinguishable (WI)
for RL if for every probabilistic polynomial-time adversarial V ∗ and for every two sequences of
witnesses {w1

x}x∈L and {w2
x}x∈L satisfying w1

x, w
2
x ∈ RL(x), the following two probability ensembles

are computationally indistinguishable:

•
{

View
P (w1

x)
V ∗ (x, z)

}
x∈L,z∈{0,1}∗

•
{
V iew

P (w2
x)

V ∗ (x, z)
}
x∈L,z∈{0,1}∗

If, further, the above probability ensembles are identically distributed, we say that (P, V ) is perfectly
witness indistinguishable.

Proofs and arguments of knowledge (POK, AOK) [FS90, BG92]. An interactive proof
(resp. argument) is a proof (resp. argument) of knowledge if the prover convinces the verifier that
it possesses, or can feasibly compute, a witness for the statement proved. Given two interactive
machine, A,B, let 〈A,B〉 (x) be a random variable denoting the output of B in an interaction with
A given the common input x.

Definition 3 (Proofs and arguments of knowledge [BG92]). An interactive protocol (P, V ) is a
proof of knowledge (resp. argument of knowledge) of language L with respect to witness relation RL
if (P, V ) is an interactive proof (resp. argument) for L, and additionally, there exists a polynomial
q, a negligible function ν, and a probabilistic oracle machine E, such that for every interactive
machine P ∗ (resp. for every polynomially-sized machine P ∗) and every x ∈ L, the following holds:
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If Pr[〈P ∗, V 〉 (x) = 1] > ν(|x|), then on input x and oracle access to P ∗(x), machine E
outputs a string from RL(x) within an expected number of steps bounded by

q(|x|)
Pr[〈P ∗, V 〉 (x) = 1]− ν(|x|)

The machine E is called the knowledge extractor.

Special-Sound Proofs [CDS94]. Special-sound proofs are proofs of knowledge with a very rigid
and useful structure.

Definition 4 (Special soundness). A 3-round interactive proof (P, V ) for language L ∈ NP with
witness relation RL is special sound with respect to RL if:

• (P, V ) is public-coin (i.e., the verifier message is its random tape), and the length of the verifier
message (a.k.a. the “challenge”) on input x is |x|.2

• there exists a deterministic polynomial-time extraction procedure E such that for any x ∈ L,
all α, β, β′, γ, γ′ such that β 6= β′, and (α, β, γ) and (α, β′, γ′) are both accepting transcripts
of (P, V ) on input x, the extractor E(x, (α, β, γ), (α, β′, γ′)) outputs a witness w ∈ RL(x) for
x.

2.3 Known Protocols

In our construction of concurrent zero-knowledge arguments we use:

• A WI special-sound proof for NP; this can be instantiated by a parallel repetition of the
Blum’s Hamiltonicity protocol [Blu86] based on one-way permutations.

• For every ε > 0, an O(nε)-round perfectly WI argument of knowledge for NP. This can be
instantiated with a variant of Blum’s Hamiltonicity protocol using an O(nε)-round perfectly
hiding (as opposed to perfectly binding) commitment, which also can be based on one-way
permutations [NOVY98].

Both of these primitives can, for instance, be based on the hardness of the discrete logarithm problem
[Gol01].

3 Black-Box Concurrent Zero-Knowledge Arguments of Knowledge

In this section, we prove the following theorem.

Theorem 1. For any ε > 0, assume the existence of a WI special-sound proof for NP, and
an O(nε)-round perfectly-WI argument of knowledge for NP. Then, there exists an O(nε)-round
concurrent black-box ZK argument of knowledge for NP.

2For most applications, including ours, it suffices that that the length of the challenge is ω(log |x|), but for
notational simplicity, we simply require the length of the challenge to be |x|.
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3.1 The Protocol

Our concurrent ZK protocol ConcZKArg (also used in [PV08, PTV14]) is a slight variant of the
precise ZK protocol of [MP06], which in turn is a generalization of the Feige-Shamir protocol
[FS90]. Given a common input statement x ∈ {0, 1}n, a “round-parameter” k = nε, the protocol for
language L proceeds in three stages,

Init Stage: The verifier V picks two random strings r1, r2 ∈ {0, 1}n and sends their images c1 =
f(r1) and c2 = f(r2) under a one-way function f to the prover. Next, V then initiates k
repetitions of a WI special-sound proof of the NP statement “c1 or c2 is in the image set of
f ” (a witness here would be a pre-image of either c1 or c2), and sends the prover P the first
messages (α1, . . . , αk) for each of these k instances.

Stage 1: k message exchanges occur in Stage 1. In the j’th iteration, the prover P sends βj ∈
{0, 1}n, a random “challenge” for the j’th special-sound proof, and V replies with the third
message γj of the special-sound proof. These k iterations are referred to as slots. A slot is
convincing if V produces an accepting proof. If there is ever an unconvincing slot, P aborts
the whole session.

Stage 2: The prover provides a perfectly-WI argument of knowledge of the statement “x ∈ L, or
either c1 or c2 is in the image set of f ”.

Completeness and soundness/proof of knowledge follows directly from the proof of Feige and
Shamir [FS90]; in fact, the protocol is an “instantiation” of theirs. Intuitively, to cheat in the
protocol a prover must “know” an inverse to c1 or c2 (since Stage 2 is an argument of knowledge),
which requires inverting the one-way function f (due to the WI property of Stage 1). A formal
description of protocol ConcZKArg is shown in Figure 3.

3.2 The Simulator Algorithm

We will show that the protocol is black-box concurrent ZK when k = nε. To simplify notation,
let ñ = nε/2, and thus the number of slots k = ñ2. We construct a simulator Sim = SimV ∗(x,z)(x)
that given as input an instance x ∈ L and black-box access to V ∗(x, z), outputs a view that is
statistically close from the “real view” of V ∗(x, z) in a multi-session interaction with P (x,w), for
any w ∈ RL(x).

On a high-level, the simulation follows that of Richardson and Kilian [RK99]. The simulator
simulates the Init Stage and Stage 1 of the protocol by following the honest prover strategy, and
attempts to “rewind” one of the slots (i.e. the last two messages of the special-sound proofs provided
by V ∗). If the simulator manages to successfully rewind some slot (i.e., obtain two accepting
responses to the slot), it can use the special-soundness extractor to extract a “fake witness” r such
that f(r) = c1 or c2. This fake witness can then be used to simulate Stage 2 of the protocol by
straight-forward emulation. The crux of the simulation is to provide a method for rewinding slots
that ensures the following two properties:

Property 1: Whenever the simulator reaches Stage 2 of the protocol in any of the concurrent
sessions, at least one of the slots for that session has been “successfully rewound” (and thus
the simulator has a fake witness that can be used to complete Stage 2). We refer to such a
session as being solved.
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Protocol ConcZKArg:

Common Input: an instance x ∈ {0, 1}n of a language L with witness relation RL.

Auxiliary Input for Prover: a witness w, such that w ∈ RL(x).

Init Stage:

V uniformly chooses r1, r2 ∈ {0, 1}n.
V → P : c1 = f(r1) and c2 = f(r2) for a one-way function f .

V → P : the first messages α1, . . . , αk for k WI special-sound proof of the statement (c1, c2)
with respect to the witness relation:

Rf (c1, c2) = {r : f(r) = c1 or f(r) = c2}

Note that V acts as the prover in these special-sound proofs.

Stage 1: For j = 1 to k repeat the following slots:

P → V : The second message (a.k.a. the “challenge”) βj of the j’th special-sound proof

V → P : The last message (a.k.a. the “response”) γj of the j’th special-sound proof

Stage 2:

P ↔ V : a perfectly-WI argument of knowledge from P to V of the statement (c1, c2, x) with
respect to the witness relation:

Rf∨L(c1, c2, x) = {(r, w) : r ∈ Rf (c1, c2) or w ∈ RL(x)}

Figure 3: Concurrent ZK argument of knowledge for NP with round parameter k(·).

Property 2: The rewindings can be done in a way that does not “blow-up” the running-time of the
simulation. In particular, to ensure Property 1, the simulator will have to recursively rewind
the verifier, and will need to carefully select which slot to rewind to ensure to ensure timely
termination.

Description of Sim. Given some statement x, let n = |x|, and let m = m(n) be an upper bound
on the number of concurrent sessions invoked by V ∗ and T = T (n) be a bound on the total number
of messages exchanged to be exchanged with V ∗; note that T = mk = poly(n). Recall that by
the definition of black-box simulation, we need only consider deterministic malicious verifiers V ∗;
therefore the view of V ∗(x, z) is just the transcript of its interaction with the honest prover.

As mentioned above, our simulator Sim starts by honestly simulating the Init Stage and Stage
1 for V ∗ (i.e., by replying just like the honest prover). We say that a slot (of one of the sessions)
“opens” when V ∗ receives a “ challenge” βj from Sim (i.e., when it receives the first message of the
slot), and that the slot “closes” when V ∗ sends back its response to Sim. Formally, the opening of a
slot is a partial view v of V ∗ immediately after which the slot opens. In the sequel, we identify a
slot simply by its opening (i.e., the partial view after which it opens). Analogously, the closing of a
slot s is a partial view v immediately after which s closes.

By definition, a slot can never close before opening. But what makes our life complicated is
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that V ∗ may send lots of other messages (and start other sessions) before responding to a slot (i.e.,
it can nest sessions as in Figure 2). Thus, we may never see the closing of a slot unless we can
simulate all the messages V ∗ expects to see before closing the slot.

Once a slot closes, we would like to “rewind” it by sending a new slot opening (i.e., a new
challenge) and waiting for the slot to close again (so that we can solve the session). But this
requires simulating all the messages within the slot again: we do this by recursively invoking the
simulator. The problem, of course, is that if the recursive depth (i.e., the number of nested recursive
calls) becomes large, the running time of the simulation will blow up. Our goal is to ensure that
the recursive (i.e., nesting) depth is some constant D: this will intuitively ensure that the expected
running time will be poly(n)D (as the expected number of rewindings for each slot is 1 and there
are at most poly(n) slots).

On a high-level, we achieve this goal by carefully selecting which slots to rewind (intuitively, ones
that is “light” to simulate). The malicious verifier V ∗ may abort in the rewinding, in which case we
simply rewind the slot again. Furthermore, although the slot was “light” in the initial simulation,
V ∗ may change its scheduling in the rewinding to make the slot “heavy”! Whenever, this happens,
we artificially abort the rewinding and restart with a new one. Sim continues rewinding in this
fashion until the session gets solved.

More precisely, Sim honestly emulates the Init Stage and Stage 1 for V ∗ until a slot s closes for
which the following property holds:

• Between the time when the slot s opened, and the time that it closed, the number of other
slots that opened is “small”, where “small” will be defined shortly based on the recursive depth
of the simulator.

Whenever this happens, Sim rewinds V ∗ back until the point where s opened, and recursively invokes
itself to simulate the messages within the slot s one more time; additionally, if the number of slots
s′ that V ∗ opens up in this rewinding (i.e., within slot s) no longer is “small”, the rewinding is
cancelled. Sim continues rewinding V ∗ until it gets another accepting closing of the slot s, and can
now use the special-soundness extractor to recover a fake witness to use in Stage 2. (We remark that
in contrast to the simulation technique of [RK99], we do not decide what slot to rewind based on the
number of sessions that start within the slot, but rather, following [DGS09, CLP10, Pas11], decide
what slot to rewind based on the total number of slots within the slot (regardless of sessions).)

It remains to specify what “small” means. Note that the recursive depth of the simulation
corresponds to the number of “nested rewindings” in the simulation. Recall that we want to make
sure that the maximal depth (i.e., maximal number of nested rewindings) becomes a constant so
that the running-time of the simulation stays polynomial. To do this, the definition of “small” will
need to vary based on the recursive depth d of the simulation. Given the (partial) view τ of V ∗:

• We say that a prefix ρ of τ is d-good if the number of slots that open in τ after ρ is less than
T
ñd (recall that T is an upper bound on the total number of messages);

• We say that a slot s is d-good in τ if s (i.e, the opening of s) is a d-good prefix of τ . (In other
words, a slot s is d-good if the number of new slots that opened since its opening is less than
T
ñd ).

Now, at recursive level d, whenever a slot s closes, we will only rewind it if it is (d+ 1)-good; thus,
when we are “deeper” in the recursion (i.e., at a higher recursive depth), we will only rewind slots
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that have fewer slots inside them (and this ensures that the recursive depth of the simulation is a
constant). In more detail, the simulation proceeds as follows.

• On recursive level d ≥ 0, starting from a view V, Sim honestly emulates the prover strategy
for V ∗, until a slot s that opened inside the view V closes and the slot is (d+ 1)-good for the
current view v. Whenever this happens, it rewinds V ∗ back to the point when s opened, and
invokes itself recursively at level d+ 1 to simulate the slot once more. If the slot closes after
this “rewinding”, Sim applies the special soundness extractor X to extract a fake witness; if
the extractor outputs a valid witness r (to the statement c1, c2 currently proved by V ∗), the
pair (c1, c2, r) is stored. If the simulation in the rewinding fails (the condition under which it
fails will be defined shortly), Sim simply attempts another rewinding of the slot, and continues
doing so until it encounters a closing of the slot.

• At each recursive level d ≥ 1 (i.e., on all recursive levels except the first one), if V ∗ aborts
in V, or V is not a d-good prefix of the current view v (i.e., if the number of new openings
of slots becomes T

ñd ), the recursive procedure halts outputting a fail symbol ⊥ (returning to
the earlier recursive call); this ensures that all rewindings are “cut-off” if V ∗ attempts to open
more slots in the rewinding.

• Finally, whenever V ∗ is expecting to hear a Stage 2 proof for session j for a statement (cj1, c
j
2, x),

Sim checks whether a “fake witness” r for (cj1, c
j
2, x) has been extracted; if so, it honestly

completes Stage 2 using this witness, and otherwise halts outputting fail.

3.3 A Formal Description of Sim

We proceed to a formal description of the procedure Sim, and analyze its running-time and success
probability. Sim = SimV ∗(x,z)(x) starts by invoking the recursively-defined procedure SIM (which
we assume has oracle access to V ∗ = V ∗(x, z)), described in Figure 4, on input (x, 0, ∅).

Let us start by showing that the running time of Sim is bounded in expectation.

Proposition 2. There exists some polynomial t(·) such that for every x ∈ L, Sim(x) runs in expected
time bounded by t(|x|).

Proof. Intuitively, the proposition is based on the following observations:

• The maximal recursive depth is bounded by a constant D = dlogñ T e, as on level D, SIM
returns ⊥ if it encounters T

ñD ≤ 1 new slots, so no new recursive calls can be made at level D.

• The expected number of rewindings to solve each slot is 1, as by the perfect witness indistin-
guishability property of Stage 2, the rewinding of a slot is simulated using exactly the same
distribution as the original simulation of the slot.

• Since the total number of slots at each recursive level is bounded by T , the expected number
of recursive calls at each level is bounded by T , from which we can conclude that expected
running time of the simulator is bounded by poly(TD).

We proceed to a formal proof. To simplify the analysis, let us consider a slight variant of Sim
that never gets “stuck”—instead of ever halting outputting fail, let us assume that Sim has access
to a witness w for x, which it can use in Stage 2 if Sim is ever is required to provide a witness for
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Procedure SIM(x, d,V):

On input a statement x, the recursive level d and the partial view V of V ∗, proceeds as follows.
Let v = V. Repeat the following:

• If V ∗(v) is expecting to hear any Init Stage or Stage 1 message, honestly generate it and
append it to v.

• If d > 0 and v is the closing of the slot opened at V, return v.

• If d > 0 and the partial view v is not d-good, or if V ∗(v) aborts (i.e., sends an invalid
message or simply terminates), return ⊥.

• If v is the closing of a slot s that opened after V and that is (d+ 1)-good for v, repeat:

– v′ = SIM(x, d+ 1, s)

until v′ 6= ⊥.
Next, apply the special soundness extractor X on the transcripts corresponding to the
special-soundness proofs in the two views v, v′. If X succeeds in finding a witness r for the
statement (c1, c2) proved, store (c1, c2, r).

• If V ∗(v) is expecting to hear a Stage 2 proof for a statement (c1, c2, x), check if a tuple pair
(c1, c2, r) has been stored. If so, use the “fake witness” r to honestly provide the Stage 2
proof (one message at a time), and append the prover message v; otherwise halt outputting
fail.

• Finally, if d = 0 and V ∗(v) aborts (i.e., sends an invalid message or simply terminates),
return v.

Figure 4: Pseudo-code for the recursive simulation strategy employed by Sim.

a statement (c1, c2, x) for which it has not recovered a fake witness. Clearly this change can only
increase Sim’s running-time.

Note that the recursive depth is bounded by D = dlogñ T e, which is a constant (since T is
polynomial in n and thus also in ñ). Secondly, at each recursive level d, there are at most T possible
points from which we can rewind. As we shall argue, from each of these points (i.e., partial views),
the expected number of rewindings is bounded by 1. Recall that for every view V, the execution
of SIM(x, d,V), Sim only starts “rewinding” a slot s if 1) the slot s opened after V, 2) the slot s
closes in the current view v (which extends V), and 3) the slot s is (d+ 1)-good for v. Furthermore,
in each of the rewindings, the simulated view of the adversary on the recursive level d + 1 (i.e., in
the execution of SIM(x, d + 1, s)) is identically distributed to its view in the execution on level d;
note that we here rely on the the assumption that Sim never gets “stuck”, and the fact that the
Stage 2 proof is perfectly witness indistinguishable. Thus, the probability that the slot s becomes
(d+1)-good for some view v′ in the recursive call on level d+1 (i.e., that the rewinding is successful)
is at least the probability that the slot was (d + 1)-good on level d.3 Since Sim rewinds the slot
until it gets another accepting closings, the expected number of rewindings from each partial view

3The probability might actually be larger, since on level d we might also abort if the current view is no longer
d-good.
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is thus at most 1.
So, for any recursive level d, and any view V, in the execution of SIM(x, d,V), the expected

number of rewindings (i.e., recursive invocations of SIM(x, d + 1,V ′) for some view V ′) is bounded
by T . It follows using a standard induction that for each recursive level d ≤ D, and every view V,
the expected number of messages sent by SIM(x, d,V) (and its recursive sub-routine calls) to V ∗

is bounded by TD+1−d—note that we here rely on the fact that the upper-bound on the expected
number of rewindings inside SIM(x, d + 1,V ′) is independent of the starting view V ′, and thus the
expectations can be multiplied.

Let us now argue that Sim generates a view that is statistically close to the real view. First,
note that if we consider a variant ˜Sim of Sim that (1) never halts outputting fail, and (2) always
uses the real witnesses for x in Stage 2, then the view output by ˜Sim is identically distributed to
a real view: This directly follows from the fact that ˜Sim honestly emulates Init Stage, Stage 1 and
Stage 2 messages, and only uses rewindings to learn a “fake witness”, which is not even used by ˜Sim.

Next, consider a variant Sim′ of Sim that proceeds just as Sim but never fails and instead uses
a real witness in Stage 2 for any session for which it fails to extract a fake witness; for all other
sessions (i.e., those for which a fake witness is extracted), it still uses the fake witness in Stage 2.
It follows directly from the perfect witness indistinguishability property of Stage 2 that the view
output by Sim′ is identically distributed to the view output by ˜Sim (and thus also a real view).

Finally, note that Sim and Sim′ behave identically except in the event that Sim outputs fail.
Below, we show that Sim outputs fail only with negligible probability which concludes the proof of
the correctness of the simulation.

Proposition 3. There exists a negligible function µ such that for all x ∈ L, the probability that
Sim(x) outputs fail is bounded by µ(|x|).

Proof. Intuitively, the proposition is based on the following observations:

• Whenever the simulator reaches Stage 2 of some session j, it is the case that ñ2 slots for that
session have closed. Since the maximal recursive depth is some constant D, at least ñ2/D > ñ
(for sufficiently large n) of these slots closed in one invokation of SIM on some particular
recursive depth d̃.

• As there can be at most a total of M = T

nd̃
slots that opened up in that invokation of SIM

(or else SIM would abort returning ⊥), we are guaranteed that there is at least one slot for
session j that has less than M

ñ slots inside it, and this slot must thus be (d̃+ 1)-good and will
be rewound.

• Since a slot is rewound until it closes again, we are guaranteed that a witness can be extracted
for session j as long as the special-soundness extractor does not fail to extract a witness.
But the special-soundness extractor only fails if the challenge (i.e., slot opening) in the two
transcript we feed him are the same. This happens with negligible probability as the length
of the challenge is n and the expected running time of the simulator is polynomial (as shown
in Proposition 2).

We proceed to a formal proof. Let us consider the following two events:

• Let E1 denote the event that Sim is required to provide a Stage 2 proof for some instance
(c1, c2, x) without having previously “rewound” at least one slot for a proof of (c1, c2).
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• Let E2 denote the event that the special soundness extractor X fails to output a valid witness
in the execution by Sim.

Note that if neither E1 nor E2 happen, there always exists some slot that is rewound for which the
special-soundness extractor succeeds, which means that Sim can never fail.

We show below that the these events can happen only with negligible probability, and thus by
a union bound, the probability that either of them happens is also negligible, which concludes the
proof.

Claim 3.1. For sufficiently large x ∈ L, the probability that E1 happens in the execution of Sim(x)
is 0.

Proof. Assume for contradiction that Sim reaches Stage 2 of some session and is required to provide
a proof for (c1, c2, x), yet none of the slots for (c1, c2) were rewound. Fix some random tape for Sim
for which this happens—in the sequel of the proof, we will be considering the execution of Sim with
this fixed random tape. Let ṽ, d̃ be the view and recursive level for which this happened. To reach
Stage 2, Sim must thus have previously encountered k = ñ2 slots for (c1, c2). These slots may not
necessarily have opened on recursive level d̃, but may instead have opened on some earlier recursive
level d < d̃—formally, we say that a slot s opened up on recursive level d if the opening of the slot
was generated by SIM(x, d, v) in the execution by Sim (with the fixed random tape), where v is
a prefix of ṽ. Since the recursive depth of Sim is bounded by some constant D = dlogñ T e, there
nevertheless must exist some recursive level d such that at least k/D = ñ2/D of those slots opened
on recursive level d. For sufficiently large n, ñ2/D > ñ and thus there is exists more than ñ such
slots. Additionally, by the recursive construction of the simulator, there exist a single partial view
v such that all those ñ slots opened within the execution of SIM(x, d, v).

Since the total number of slots that can open up during the execution of SIM(x, d, v) is bounded
by M = T

ñd (for d = 0, this follows by the definition of T ; and for d > 0, this follows since by
definition of SIM, the simulation at recursive level d is cancelled if more than T

ñd slots open), there
exists at least 1 slot that contains less than M

ñ = T
ñd+1 slots; this slot is thus (d+ 1)-good and would

have been rewound, which is a contradiction.

Claim 3.2. There exists some negligible function µ(·), such that for every x ∈ L, the probability
that E2 happens in the execution of Sim(x) is bounded by µ(|x|).

Proof. Assume for contradiction that there exists some polynomial p(·) such that E2 happens in
the execution of Sim(x) with probability 1

p(|x|) for infinitely many x. Recall that by Proposition 2,
the expected running time of Sim is bounded by some polynomial t(·). By the Markov inequality,
it follows follows that the probability that Sim’s running time exceeds t′(|x|) = t(|x|) · 2p(|x|) steps
is at most 1

2p(|x|) . Thus, by the union bound, we have that the probability that E2 happens while
Sim takes less than t′(|x|) steps is at least 1

2p(|x|) (i.e., inverse polynomial).
Next, note that the special-soundness extractor can only fail to extract a witness if the simulator

sent the same verifier challenge in the two views v, v′. Since the length of the verifier challenges
is |x|, the probability that this happens for any given pair v, v′ is 2−|x|. Consequently, it follows
by a union bound that E2 can happen with probability at most t′(|x|)2−|x| (i.e., with negligible
probability) when Sim takes at most t′(|x|) steps, which is a contradiction.
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