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Abstract
The Signal protocol is a secure instant messaging protocol that underlies the security of numerous

applications such as WhatsApp, Skype, Facebook Messenger among many others. The Signal protocol
consists of two sub-protocols known as the X3DH protocol and the double ratchet protocol, where the
latter has recently gained much attention. For instance, Alwen, Coretti, and Dodis (Eurocrypt’19)
provided a concrete security model along with a generic construction based on simple building blocks
that are instantiable from versatile assumptions, including post-quantum ones. In contrast, as far as we
are aware, works focusing on the X3DH protocol seem limited.

In this work, we cast the X3DH protocol as a specific type of authenticated key exchange (AKE)
protocol, which we call a Signal-conforming AKE protocol, and formally define its security model based
on the vast prior work on AKE protocols. We then provide the first efficient generic construction of a
Signal-conforming AKE protocol based on standard cryptographic primitives such as key encapsulation
mechanisms (KEM) and signature schemes. Specifically, this results in the first post-quantum secure
replacement of the X3DH protocol on well-established assumptions. Similar to the X3DH protocol, our
Signal-conforming AKE protocol offers a strong (or stronger) flavor of security, where the exchanged key
remains secure even when all the non-trivial combinations of the long-term secrets and session-specific
secrets are compromised. Moreover, our protocol has a weak flavor of deniability and we further show how
to strengthen it using ring signatures. Finally, we provide a full-fledged, generic C implementation of our
(weakly deniable) protocol. We instantiate it with several Round 3 candidates (finalists and alternates) to
the NIST post-quantum standardization process and compare the resulting bandwidth and computation
performances. Our implementation is publicly available.

1 Introduction
Secure instant messaging (SIM) ensures privacy and security by making sure that only the person you are
sending the message to can read the message, a.k.a. end-to-end encryption. With the ever-growing awareness
against mass-surveillance of communications, people have become more privacy-aware and the demand for
SIM has been steadily increasing. While there have been a range of SIM protocols, the Signal protocol [SIG]
is widely regarded as the gold standard. Not only is it used by the Signal app1, the Signal protocol is also

1The name Signal is used to point to the app and the protocol.
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used by WhatsApp, Skype, Facebook Messenger among many others, where the number of active users is
well over 2 billions. One of the reasons for such popularity is due to the simplicity and the strong security
properties it provides, such as forward secrecy and post-compromise secrecy, while simultaneously allowing
for the same user experience as any (non-cryptographically secure) instant messaging app.

The Signal protocol consists of two sub-protocols: the X3DH protocol [MP16b] and the double ratchet
protocol [MP16a]. The former protocol can be viewed as a type of key exchange protocol allowing two parties
to exchange a secure initial/session key. The latter protocol is executed after the X3DH protocol and it allows
two parties to perform a secure back-and-forth message delivery. Below, we briefly recall the current affair of
these two protocols.
The Double Ratchet Protocol. The first attempt at a full security analysis of the Signal protocol was made
by Cohn-Gordon et al. [CGCD+17, CGCD+20]. They considered the Signal protocol as one large protocol
and analyzed the security guarantees in its entirety. Since the double ratchet protocol was understood
to be the root of the complexity, many subsequent works aimed at further abstracting and formalizing
(and in some cases enhancing) the security of the double ratchet protocol by viewing it as a stand-alone
protocol [BSJ+17, PR18, ACD19, DV19, JMM19a, JMM19b]. Under these works, our understanding of the
double ratchet protocol has much matured. Notably, Alwen et al. [ACD19] fully abstracted the complex
Diffie-Hellman based double ratchet protocol used by Signal and provided a concrete security model along
with a generic construction based on simple building blocks. Since these blocks are instantiable from versatile
assumptions, including post-quantum ones, their work resulted in the first post-quantum secure double ratchet
protocol. Here, we elucidate that all the aforementioned works analyze the double ratchet protocol as a
stand-alone primitive, and hence, it is assumed that any two parties can securely share an session key, for
instance, by executing a “secure” X3DH protocol.
The X3DH Protocol. In contrast, other than the white paper offered by Signal [MP16b] and those
indirectly considered by Cohn-Gordon et al. [CGCD+17, CGCD+20], works focusing on the X3DH protocol
seems to be limited. As far as we are aware, there is one recent work that studies the formalization [BFG+20]
and a few papers that study one of the appealing security properties, known as (off-line) deniability, claimed
by the X3DH protocol [VGIK20, UG15, UG18].

Brendel et al. [BFG+20] abstract the X3DH protocol and provides the first generic construction based
on a new primitive they call a split key encapsulation mechanism (KEM). However, so far, instantiations of
split KEMs with strong security guarantees required for the X3DH protocol are limited to Diffie-Hellman
style assumptions. In fact, the recent result of Guo et al. [GKRS20] implies that it would be difficult
to construct them from one of the promising post-quantum candidates: lattice-based assumptions (and
presumably coded-based assumptions). On the other hand, Vatandas et al. [VGIK20] study one of the
security guarantees widely assumed for the X3DH protocol called (off-line) deniability [MP16b, Section 4.4]
and showed that a strong knowledge-type assumption would be necessary to formally prove it. Unger and
Goldberg [UG15, UG18] construct several protocols that can be used as a drop-in replacement of the X3DH
protocol that achieves a strong flavor of (on-line) deniability from standard assumptions, albeit by making
a noticeable sacrifice in the security against key-compromise attacks: a type of attack that exploits leaked
secret information of a party. For instance, while the X3DH protocol is secure against key-compromise
impersonation (KCI) attacks [BWJM97],2 the protocols of Unger and Goldberg are no longer secure against
such attacks.3

Motivation. In summary, although we have a rough understanding of what the X3DH protocol offers [MP16b,
CGCD+17, CGCD+20], the current state of affairs is unsatisfactory for the following reasons, and making
progress on these issues will be the focus of this work:

- It is difficult to formally understand the security guarantees offered by the X3DH protocol or to make
a meaningful comparison among different protocols achieving the same functionality as the X3DH
protocol without a clearly defined security model.

2Although [MP16b, Section 4.6] states that the X3DH protocol is susceptible to KCI attacks, this is only because they
consider the scenario where the session-specific secret is compromised. If we consider the standard KCI attack scenario where
the long-term secret is the only information being compromised [BWJM97], then the X3DH protocol is secure.

3Being vulnerable against KCI attacks seems to be intrinsic to on-line deniability [UG15, UG18, MP16b].
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- The X3DH protocol is so far only instantiable from Diffie-Hellman style assumptions [BFG+20] and it
is unclear whether such assumptions are inherent to the Signal protocol.

- Ideally, similarly to what Alwen et al. [ACD19] did for the double ratchet protocol, we would like to
abstract the X3DH protocol and have a generic construction based on simple building blocks that can
be instantiated from versatile assumptions, including but not limited to post-quantum ones.

- No matter how secure the double ratchet protocol is, we cannot completely secure the Signal protocol if
the initial X3DH protocol is the weakest link in the chain (e.g., insecure against state-leakage and only
offering security against classical adversaries).

1.1 Our Contribution
In this work, we cast the X3DH protocol (see Figure 1) as a specific type of authenticated key exchange (AKE)
protocol, which we call a Signal-conforming AKE protocol, and define its security model based on the vast
prior work on AKE protocols. We then provide an efficient generic construction of a Signal-conforming AKE
protocol based on standard cryptographic primitives: an (IND-CCA secure) KEM, a signature scheme, and a
pseudorandom function (PRF). Since all of these primitives can be based on well-established post-quantum
assumptions, this results in the first post-quantum secure replacement of the X3DH protocol. Similarly to
the X3DH protocol, our Signal-conforming AKE protocol offers a strong flavor of key-compromise security.
Borrowing terminologies from AKE-related literature, our protocol is proven secure in the strong Canetti-
Krawczyk (CK) type security models [CK01, Kra05, FSXY12, LLM07], where the exchanged session key
remains secure even if all the non-trivial combinations of the long-term secrets and session-specific secrets
of the parties are compromised. In fact, our protocol is more secure than the X3DH protocol since it is
even secure against KCI-attacks where the parties’ session-specific secrets are compromised (see Footnote 2).
4 We believe the level of security offered by our Signal-conforming AKE protocol aligns with the level of
security guaranteed by the double ratchet protocol where (a specific notion of) security still holds even when
such secrets are compromised. Moreover, while our Signal-conforming AKE already provides a weak form
of deniability, we can strengthen its deniability by using a ring signature scheme or/and a non-interactive
zero-knowledge proof of knowledge. Likewise to the X3DH protocol [VGIK20] although our construction
seemingly offers (off-line) deniability, the formal proof relies on a strong knowledge-type assumption. However,
relying on such assumptions seems unavoidable considering that all known deniable AKE protocols secure
against key-compromise attacks, including the X3DH protocol, rely on them [DGK06, YZ10, VGIK20]. We
consider deniability against semi-honest and malicious adversaries and note that we only achieve classical
security against the latter type of adversary.

We implemented our (weakly deniable) Signal-conforming AKE protocol in C, building on the open source
libraries PQClean and LibTomCrypt. Our implementation is fully generic and can thus be instantiated with
a wide range of KEMs and signature schemes. The code is available at [Kwi20]. We instantiate it with
several Round 3 candidates (finalists and alternates) to the NIST post-quantum standardization process, and
compare the bandwidth and computation costs that result from these choices. Our protocol performs best
with “balanced” schemes, for example most lattice-based schemes. The isogeny-based scheme SIKE offers
good bandwidth performance, but entails a significant computation cost. Finally, schemes with large public
keys (Classic McEliece, Rainbow, etc.) do not seem to be a good match for our protocol, since these keys are
transferred at each run of the protocol.

1.2 Technical Overview
We now briefly recall the X3DH protocol and abstract its required properties by viewing it through the lens
of AKE protocols. We then provide an overview of how to construct a Signal-conforming AKE protocol from
standard assumptions.

4The X3DH can be made secure against leakge of session-specific secrets by using NAXOS trick [LLM07], but it requires
additional computation. Because it affects efficiency, we do not consider AKE protocols using NAXOS trick (e.g., [FSXY12,
KF14, YCL18]).
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Recap on the X3DH Protocol. At a high level, the X3DH protocol allows for an asynchronous key
exchange where two parties, say Alice and Bob, exchange a session key without having to be online at
the same time. Even more, the party, say Bob, that wishes to send a secure message to Alice can do so
without Alice even knowing Bob. For instance, imagine the scenario where you send a friend request and a
message at the same time before being accepted as a friend. At first glance, it seems what we require is a
non-interactive key exchange (NIKE) since Bob needs to exchange a key with Alice who is offline, while Alice
does not yet know that Bob is trying to communicate with her. Unfortunately, solutions based on NIKEs are
undesirable since they either provide weaker guarantees than standard (interactive) AKE or exhibit inefficient
constructions [Ber06, CKS08, FHKP13, PS14].

The X3DH protocol circumvents this issue by considering an untrusted server (e.g., the Signal server)
to sit in the middle between Alice and Bob to serve as a public bulletin board. That is, the parties can
store and retrieve information from the server while the server is not assumed to act honestly. A simplified
description of the X3DH protocol, which still satisfies our purpose, based on the classical Diffie-Hellman (DH)
key exchange is provided in Figure 1.5 As the first step, Alice sends her DH component gx ∈ G to the server6

and then possibly goes offline. We point out that Alice does not need to know who she will be communicating
with at this point. Bob, who may ad-hocly decide to communicate with Alice, then fetches Alice’s first
message from the server and uploads its DH component gy to the server. As in a typical DH key exchange,
Bob computes the session key kB using the long-term secret exponent b ∈ Zp and session-specific secret
exponent y ∈ Zp. Since Bob can compute the session key kB while Alice is offline, he can begin executing the
subsequent double ratchet protocol without waiting for Alice to come online. Whenever Alice comes online,
she can fetch whatever message Bob sent from the server.

Alice: (lpkA = ga, lskA = a) Server Bob: (lpkB = gb, lskB = b)

x←$Zp

Store x
Upload gx to server
–- go offline –-

gx Store
(Alice, gx)

gx

Fetch (Alice, gx)
y ←$Zp

kB := KDF((gx)b,

(ga)y , (gx)y)
Upload gy to server
Erase y

–- come online –-

Fetch ((Alice, Bob), gy)

kA := KDF((gb)x, (gy)a, (gy)x)

gy
Store
((Alice,Bob),

gy)

gy

Figure 1: Simplified description of the X3DH Protocol. Alice and Bob have the long-term key pairs (lpkA, lskA)
and (lpkB, lskB), respectively. Alice and Bob agree on a session key kA = kB, where KDF denotes a key
derivation function.

Casting the X3DH Protocol as an AKE Protocol. It is not difficult to see that the X3DH protocol
can be cast as a specific type of AKE protocol. In particular, we can think of the server as an adversary
that tries to mount a man-in-the-middle (MIM) attack in a standard AKE protocol. Viewing the server as
a malicious adversary, rather than some semi-honest entity, has two benefits: the parties do not need to
put trust in the server since the protocol is supposed to be secure even against a malicious server, while the
server or the company providing the app is relieved from having to “prove” that it is behaving honestly. One
distinguishing feature required by the X3DH protocol when viewed as an AKE protocol is that it needs to be
a two-round protocol where the initiator message is generated independently from the receiver. That is, Alice

5We assume Alice and Bob know each other’s long-term key. In practice, this can be enforced by “out-of-bound” authentica-
tions (see [MP16b, Section 4.1]).

6In the actual protocol, Alice also signs gx sent to the server (i.e., signed pre-keys). We ignore this subtlety as it does not
play a crucial role in the analysis of security. See Remark 4.3 for more detail. Also, we note that in practice, Bob may initiate
the double ratchet protocol using kB and send his message to Alice along with gy to the server before Alice responds.
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needs to be able to store her first message to the server without knowing who she will be communicating
with. In this work, we define an AKE protocol with such functionality as a Signal-conforming AKE protocol.

Regarding the security model for a Signal-conforming AKE protocol, we base it on the vast prior works
on AKE protocols. Specifically, we build on the recent formalization of [GJ18, CCG+19] that study the
tightness of efficient AKE protocols (including a slight variant of the X3DH protocol) and strengthen the
model to also incorporate state leakage compromise; a model where an adversary can obtain session-specific
information called session-state. Since the double ratchet protocol considers a very strong form of state
leakage security, we believe it would be the most rational design choice to discuss the X3DH protocol in
a security model that captures such leakage as well. Informally, we consider our Signal-conforming AKE
protocol in the Canetti-Krawczyk (CK) type security model [CK01, Kra05, FSXY12, LLM07], which is a
strengthening of the Bellare-Rogaway security model [BR94] considered by [GJ18, CCG+19]. A detailed
discussion and comparison between ours and the numerous other security models of AKE protocols are
provided in Section 3.
Lack of Signal-Conforming AKE Protocol. The main feature of a Signal-conforming AKE protocol is
that the initiator’s message does not depend on the receiver. Although this seems like a very natural feature
considering DH-type AKE protocols, it turns out that they are quite unique (see Brendel et al. [BFG+20] for
some discussion). For instance, as far as we are aware, the only other assumption that allows for a clean
analog of the X3DH protocol is based on the gap CSIDH assumption recently introduced by De Kock et
al. [dKGV20] and Kawashima et al. [KTAT20]. Considering the community is still in the process of assessing
the concrete parameter selection for standard CSIDH [BS20, Pei20], it would be desirable to base the X3DH
protocol on more well-established and versatile assumptions. On the other hand, when we turn our eyes to
known generic construction of AKE protocols [FSXY12, FSXY13, XLL+18, HKSU20, XAY+20] that can
be instantiated from versatile assumptions, including post-quantum ones, we observe that none of them is
Signal-conforming. That is, they are all either non-2-round or the initiator’s message depends on the public
key of the receiver.
Our Construction. To this end, in this work, we provide a new practical generic construction of a Signal-
conforming AKE protocol from an (IND-CCA secure) KEM and a signature scheme. We believe this may be
of independent interest in other scenarios where we require an AKE protocol that has a flavor of “receiver
obliviousness.”7 The construction is simple: The construction is simple: Let us assume Alice and Bob’s long-
term key consist of KEM key pairs (ekA, dkA) and (ekB, dkB) and signature key pairs (vkA, skA) and (vkB, skB),
respectively. The Signal-conforming AKE protocol then starts by Alice (i.e., the initiator) generating a
session-specific KEM key (ekT , dkT ) and sending ekT to Bob (i.e., the receiver).8 Here, observe that Alice’s
message does not depend on who she will be communicating with. Bob then constructs two ciphertexts:
one using Alice’s long-term key (KA,CA) ← KEM.Encap(ekA) and another using the session-specific key
(KT ,CT )← KEM.Encap(ekT ). It then signs these ciphertext M := (CA,CT ) as σB ← SIG.Sign(skB,M), where
we include other session-specific components in M in the actual construction. Since sending σB in the clear
may serve as public evidence that Bob communicated with Alice, Bob will hide this. To this end, he derives
two keys, a session key kAKE and a one-time pad key kOTP, by running a key derivation function on input the
random KEM keys (KA,KT ). Bob then sends (CA,CT , c := σB ⊕ kOTP) to Alice and sets the session key as
kAKE. Once Alice receives the message from Bob, she decrypts the ciphertexts (CA,CT ), derives the two keys
(kAKE, kOPT), and checks if σ := c⊕ kOTP is a valid signature of Bob’s. If so, she sets the session key as kAKE.
At a high level, Alice (explicitly) authenticates Bob through verifying Bob’s signature and Bob (implicitly)
authenticates Alice since Alice is the only party that can decrypt both ciphertexts (CA,CT ). We turn this
intuition into a formal proof and show that our scheme satisfies a strong flavor of security where the shared
session key remains pseudorandom even to an adversary that can obtain any non-trivial combinations of
the long-term private keys (i.e., dkA, dkB, skA, skB) and session-specific secret keys (i.e., dkT ). Notably, our
protocol satisfies a stronger notion of security compared to the X3DH protocol since it prevents an adversary
to impersonate Alice even if her session-specific secret key is compromised [MP16b, Section 4.6].

7This property has also been called as post-specified peers [CK02] in the context of Internet Key Exchange (IKE) protocols.
8As we briefly commented in Footnote 6, Alice can sign her message ekT as in the X3DH protocol. This will only make our

protocol more secure. See Remark 4.3 for more detail.

5



Finally, our Signal-conforming AKE protocol already satisfies a limited form of deniability where the
publicly exchanged messages do not directly leak the participant of the protocol. However, if Alice at
a later point gets compromised or turns malicious, she can publicize the signature σB sent from Bob to
cryptographically prove that Bob was communicating with Alice. This is in contrast to the X3DH protocol
that does not allow such a deniability attack. We, therefore, show that we can protect Bob from such attacks
by replacing the signature scheme with a ring signature scheme. In particular, Alice now further sends a
session-specific ring signature verification key vkT , and Bob signs to the ring {vkT , vkB}. Effectively, when
Alice outputs a signature from Bob σB,T , she cannot fully convince a third party whether it originates from
Bob since she could have signed σB,T using her signing key skT corresponding to vkT . Although the intuition
is clear, it turns out that turning this into a formal proof is quite difficult. Similar to all previous works on
AKE protocols satisfying a strong flavor of key-compromise security [DGK06, YZ10] (including the X3DH
protocol [VGIK20]), the proof of deniability must rely on a strong knowledge-type assumption. We leave it
as future work to investigate the deniability of our Signal-conforming AKE protocols from more standard
assumptions.

2 Preliminaries
In this section, we review the basic notations and definitions of cryptographic primitives used in this paper.
Notation. The operator ⊕ denotes bit-wise “XOR”, and ‖ denotes string concatenation. For n ∈ N, we write
[n] to denote the set [n] := {1, . . . , n}. For j ∈ [n], we write [n\j] to denote the set [n\j] := {1, . . . , n} \ {j}.
We denote by x←$S the sampling of an element x uniformly at random from a finite set S. PPT (resp.
QPT) stands for probabilistic (resp. quantum) polynomial time.
Cryptographic Primitives.

2.1 Key Encapsulation Mechanisms
Definition 2.1 (KEM Schemes). A key encapsulation mechanism (KEM) scheme with session key space
KS consists of the following four PPT algorithms ΠKEM = (Setup,KeyGen,Encap,Decap):

Setup(1κ)→ pp: The setup algorithm takes the security parameter 1κ as input and outputs a public parameter
pp. In the following, we assume pp is provided to all the algorithms and may omit it for simplicity.

KeyGen(pp)→ (ek, dk): The key generation algorithm takes a public parameter pp as input and outputs a
pair of keys (ek, dk).

Encap(ek)→ (K,C): The encapsulation algorithm takes an encapsulation key ek as input and outputs a session
key K ∈ KS and a ciphertext C.

Decap(dk,C)→ K: The decapsulation algorithm takes a decapsulation key dk and a ciphertext C as input and
outputs a session key K ∈ KS.

Definition 2.2 ((1− δ)-Correctness). We say a KEM scheme ΠKEM is (1− δ)-correct if for all κ ∈ N and
pp ∈ Setup(1κ),

(1− δ) ≤ Pr
[
Decap(dk,C) = K : (ek, dk)← KeyGen(pp);

(K,C)← Encap(ek)

]
.

Definition 2.3 (IND-CPA and IND-CCA Security). Let κ be a security parameter, ΠKEM = (Setup,KeyGen,
Encap,Decap) be a KEM scheme and A = (A1,A2) be an adversary. For ATK ∈ {CPA,CCA}, we define the
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advantage of A as

AdvIND-ATK
KEM (A) :=

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
Pr


b = b′ :

pp← Setup(1κ);
(ek∗, dk∗)← KeyGen(pp);
state← AOATK

1 (pp, ek∗);
b←$ {0, 1};

(K∗0,C∗0)← Encap(ek∗);
K∗1←$KS;

b′ ← AOATK
2 (pp, ek∗, (K∗b ,C∗0), state)


− 1

2

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
,

where

OATK =
{
⊥ ATK = CPA
ODecap(dk∗, ·) ATK = CCA

.

When ATK = CCA, A2 is not allowed to make an oracle query containing the challenge ciphertext C∗0. We
say ΠKEM is IND-ATK secure for security parameter κ if the advantage AdvIND-ATK

KEM (A) is negligible for any
QPT adversary A.

Definition 2.4 (Min-Entropy of KEM Encapsulation Key). We say a KEM scheme ΠKEM has ν-high
encapsulation key min-entropy if for all κ ∈ N and pp ∈ Setup(1κ),

ν ≤ − log2

(
max
ek∗

Pr [ek = ek∗ : (ek, dk)← KeyGen(pp)]
)
.

Definition 2.5 (Min-Entropy of KEM Ciphertext). We say a KEM scheme ΠKEM has χ-high ciphertext
min-entropy if for all κ ∈ N and pp ∈ Setup(1κ),

χ ≤ − log2

(
E
[
max

C∗
Pr [C = C∗ : (K,C)← Encap(ek)]

])
,

where the expectation is taken over the randomness used to sample (ek, dk)← KeyGen(pp).

2.2 Digital Signatures
Definition 2.6 (Signature Schemes). A signature scheme with message spaceM consists of the following
four PPT algorithms ΠSIG = (Setup,KeyGen,Sign,Verify):

Setup(1κ)→ pp: The setup algorithm takes a security parameter 1κ as input and outputs a public parameter
pp. In the following, we assume pp is provided to all the algorithms and may omit it for simplicity.

KeyGen(pp)→ (vk, sk): The key generation algorithm takes a public parameter pp as input and outputs a
pair of keys (vk, sk).

Sign(sk,M)→ σ: The signing algorithm takes a signing key sk and a message M ∈M as input and outputs a
signature σ.

Verify(vk,M, σ)→ 1/0: The verification algorithm takes a verification key vk, a message M and a signature σ
as input and outputs 1 or 0.

Definition 2.7 ((1− δ)-Correctness). We say a signature scheme ΠSIG is (1− δ)-correct if for all κ ∈ N,
all messages M ∈M and all pp ∈ Setup(1κ),

(1− δ) ≤ Pr [Verify(vk,M, σ) = 1 : (vk, sk)← KeyGen(pp), σ ← Sign(sk,M)] .
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Definition 2.8 (EUF-CMA Security). Let κ be a security parameter, ΠSIG = (Setup,KeyGen,Sign,Verify)
be a signature scheme and A be an adversary. We define the advantage of A as

AdvEUF-CMA
SIG (A) := Pr

 Verify(vk∗,M∗, σ∗) = 1
∧M∗ /∈M∗ :

pp← Setup(1κ);
(vk∗, sk∗)← KeyGen(pp);

(M∗, σ∗)← AOSign(sk∗,·)(pp, vk∗)


where OSign is the signing oracle andM∗ is the set of messages that A submitted to the signing oracle. We
say ΠSIG is EUF-CMA secure for security parameter κ if the advantage AdvEUF-CMA

SIG (A) is negligible for any
QPT adversary A.

2.3 Pseudo-Random Functions
Let F : FK ×D → R be a function family with key space FK, domain D and finite range R. We define a
pseudo-random function as follows. Below, we note that the adversary A is only allowed to make classical
queries to the oracles.
Definition 2.9 (Pseudo-Random Function Family). Let A be an adversary that is given oracle access
to either FK(·) := F(K, ·) for K←$FK or a truly random function RF : D → R. We define the advantage of
A as

AdvPRF
F (A) :=

∣∣∣Pr
[
1← AFK(·)(1κ)

]
− Pr

[
1← ARF(·)(1κ)

]∣∣∣ .
We say F is a pseudo-random function (PRF) family if AdvPRF

F (A) is negligible for any QPT adversary A.

2.4 Strong Randomness Extractors
The statistical distance between random variables X,Y over a finite domain S is defined by

SD(X,Y ) := 1
2
∑
s∈S
|Pr [X = s]− Pr [Y = s]| .

Definition 2.10 (Strong Randomness Extractors). Let Ext : S × D → R be a family of efficiently
computable functions with set S, domain D and range R, all with finite size. A function family Ext is a strong
(λ, εExt)-extractor if for any random variable X over D with Pr [X = x] ≤ 2−λ (i.e., X has min-entropy
at least λ), if s and R are chosen uniformly at random from S and R, respectively, the two distributions
(s,Exts(X)) and (s, R) are within statistical distance εExt, that is

SD((s,Exts(X)), (s, R)) ≤ εExt.

3 Security Model for Signal-Conforming AKE Protocols
In this section, we define a security model for a Signal-conforming authenticated key exchange (AKE)
protocol; AKE protocols that can be used as a drop-in replacement of the X3DH protocol. We first provide
in Sections 3.1 to 3.3 a game-based security model building on the recent formalization of [GJ18, CCG+19]
targeting general AKE protocols. We then discuss in Section 3.4 the modifications needed to make it
Signal-conforming. A detailed comparison and discussion between ours and other various security models for
AKE protocols are provided in Section 3.5.

3.1 Execution Environment
We consider a system of µ parties P1 , . . . ,Pµ. Each party Pi is represented by a set of ` oracles

{
π1
i , . . . , π

`
i

}
,

where each oracle corresponds to a single execution of a protocol, and ` ∈ N is the maximum number of
protocol sessions per party. Each oracle is equipped with fixed randomness but is otherwise deterministic.
Each oracle πsi has access to the long-term key pair (lpki, lski) of Pi and the public keys of all other parties,
and maintains a list of the following local variables:
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• randsi is the randomness hard-wired to πsi ;

• sidsi (“session identifier”) stores the identity of the session as specified by the protocol;

• Pidsi (“peer id”) stores the identity of the intended communication partner;

• Ψs
i ∈ {⊥, accept, reject} indicates whether oracle πsi has successfully completed the protocol execution

and “accepted” the resulting key;

• ksi stores the session key computed by πsi ;

• statesi holds the (secret) session-state values and intermediary results required by the session;

• rolesi ∈ {⊥, init, resp} indicates πsi ’s role during the protocol execution.

For each oracle πsi , these variables, except the randomness, are initialized to ⊥. An AKE protocol is executed
interactively between two oracles. An oracle that first sends a message is called an initiator (role = init)
and a party that first receives a message is called a responder (role = resp). The computed session key is
assigned to the variable ksi if and only if πsi reaches the accept state, that is, ksi 6= ⊥ ⇐⇒ Ψs

i = accept.
Partnering. To exclude trivial attacks in the security model, we need to define a notion of “partnering” of
two oracles. Intuitively, this dictates which oracles can be corrupted without trivializing the security game.
We define the notion of partnering via session-identifiers following the work of [CK01, dFW20]. Discussions
on other possible choices of the definition for partnering is provide in Section 3.5.

Definition 3.1 (Partner Oracles). For any (i, j, s, t) ∈ [µ]2 × [`]2 with i 6= j, we say that oracles πsi and
πtj are partners if (1) Pidsi = j and Pidtj = i; (2) rolesi 6= roletj; and (3) sidsi = sidtj.

For correctness, we require that two oracles executing the AKE protocol faithfully (i.e., without adversarial
interaction) derive identical session-identifiers. We also require that two such oracles reach the accept state
and derive identical session keys except with all but a negligible probability. We call a set S ⊆ ([µ]× [`])2 to
have a valid pairing if the following properties hold:

• For all ((i, s), (j, t)) ∈ S, we have i ≤ j.

• For all (i, s) ∈ [µ]× [`], there exists a unique (j, t) ∈ [µ]× [`] such that i 6= j and either ((i, s), (j, t)) ∈ S
or ((j, t), (i, s)) ∈ S.

In other words, a set with a valid pairing S partners off each oracle πsi and πtj in a way that the pairing is
unique and no oracle is left out without a pair. We define correctness of an AKE protocol as follows.

Definition 3.2 ((1− δ)-Correctness). An AKE protocol ΠAKE is (1− δ)-correct if for any set with a valid
pairing S ⊆ ([µ]× [`])2, when we execute the AKE protocol faithfully between all the oracle pairs included in
S, it holds that

(1− δ) ≤ Pr
[
πsi and πtj are partners ∧Ψs

i = Ψt
j = accept

∧ksi = ktj 6= ⊥ for all ((i, s), (j, t)) ∈ S

]
,

where the probability is taken over the randomness used in the oracles.

3.2 Security Game
We define security of an AKE protocol via the following game, denoted by GΠAKE(µ, `), played between an
adversary A and a challenger C. The security game is parameterized by two integers µ (the number of honest
parties) and ` (the maximum number of protocol executions per party), and is run as follows:

Setup: C first chooses a secret bit b←$ {0, 1}. Then C generates the public parameter of ΠAKE and µ
long-term key pair {(lpki, lski) | i ∈ [µ]}, and initializes the collection of oracles {πsi | i ∈ [µ], s ∈ [`]}. C
runs A providing the public parameter and all the long-term public keys {lpki | i ∈ [µ]} as input.
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Phase 1: A adaptively issues the following queries any number of times in an arbitrary order:

• Send(i, s,m): This query allows A to send an arbitrary message m to oracle πsi . The oracle will
respond according to the protocol specification and its current internal state. To start a new oracle,
the message m takes a special form:
〈START : role, j〉; C initializes πsi in the role role, having party Pj as its peer, that is, C sets Pidsi := j
and rolesi := role. If πsi is an initiator (i.e., role = init), then C returns the first message of the
protocol.9

• RevLTK(i): For i ∈ [µ], this query allows A to learn the long-term secret key lski of party Pi . After
this query, Pi is said to be corrupted.
• RegisterLTK(i, lpki): For i ∈ N \ [µ], this query allows A to register a new party Pi with public key

lpki. We do not require that the adversary knows the corresponding secret key. After the query,
the pair (i, lpki) is distributed to all other oracles. Parties registered by RegisterLTK are corrupted
by definition.
• RevState(i, s): This query allows A to learn the session-state statesi of oracle πsi . After this query,

statesi is said to be revealed.
• RevSessKey(i, s): This query allows A to learn the session key ksi of oracle πsi .

Test: Once A decides that Phase 1 is over, it issues the following special Test-query which returns a real or
a random key depending on the secret bit b.

• Test(i, s): If (i, s) /∈ [µ]× [`] or Ψs
i 6= accept, C returns ⊥. Else, C returns kb, where k0 := ksi and

k1←$K (where K is the session key space).

After this query, πsi is said to be tested.

Phase 2: A adaptively issues queries as in Phase 1.

Guess: Finally, A outputs a guess b′ ∈ {0, 1}. At this point, the tested oracle must be fresh. Here, an oracle
πsi with Pidsi = j10 is fresh if all the following conditions hold:

1. RevSessKey(i, s) has not been issued;
2. if πsi has a partner πtj for some t ∈ [`], then RevSessKey(j, t) has not been issued;
3. Pi is not corrupted or statesi is not revealed;
4. if πsi has a partner πtj for some t ∈ [`], then Pj is not corrupted or statetj is not revealed;
5. if πsi has no partner oracle, then Pj is not corrupted.

If the tested oracle is not fresh, C aborts the game and outputs a random bit b′ on behalf of A. Otherwise,
we say A wins the game if b = b′.

The advantage of A in the security game GΠAKE(µ, `) is defined as

AdvAKE
ΠAKE

(A) :=
∣∣∣∣Pr [b = b′]− 1

2

∣∣∣∣ .
Definition 3.3 (Security of AKE Protocol). An AKE protocol ΠAKE is secure if AdvAKE

ΠAKE
(A) is negligible

for any QPT adversary A.
9Looking ahead, when the first message is independent of party Pj (i.e., C can first create the first message without knowledge

of Pj and then set Pids
i := j), we call the scheme receiver oblivious. See Section 3.4 for more details.

10Note that by definition, the peer id Pids
i of a tested oracle πs

i is always defined.
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3.3 Security Properties
In this section, we explain the security properties captured by our security model. Comparison between other
protocols is differed to Section 3.5.

The freshness clauses Items 1 and 2 imply that we only exclude the reveal of session keys for the tested
oracle and its partner oracles. This captures key independence; if the revealed keys are different from the
tested oracle’s key, then such keys must not enable computing the session key. Note that key independence
implies resilience to “no-match attacks” presented by Li and Schäge [LS17]. This is because revealed keys
have no information on the tested oracle’s key. Moreover, the two items capture implicit authentication
between the involved parties. This is because an oracle π that computes the same session key as the tested
oracle but disagrees on the peer would not be a partner of the tested oracle, and hence, an adversary can
obtain the tested oracle’s key by querying the session key computed by π. Specifically, our model captures
resistance to unknown key-share (UKS) attacks [BWM99]; a successful UKS attack is a specific type of attack
that breaks implicit authentication where two parties compute the same session key but have different views
on whom they are communicating with.

The freshness clauses Items 3 to 5 indicate that the game allows the adversary to reveal any subset of
the four secret information — the long-term secret keys and the session-states of the two parties (where one
party being the party defined by the tested oracle and the other its peer) — except for the combination
where both the long-term secret key and session-state of one of the party is revealed. These clauses capture
weak forward secrecy [Kra05]: the adversary can obtain the long-term secret keys of both parties if it has
been passive in the protocol run of the two oracles. Another property captured by our model is resistance
to key-compromise impersonation (KCI) attacks [BWJM97]. Recall that KCI attacks are those where the
adversary uses a party Pi ’s long-term secret key to impersonate other parties towards Pi . This is captured by
our model because the adversary can learn the long-term secret key of a tested oracle without any restrictions.
Most importantly, our model captures resistance to state leakage [CK01, Kra05, LLM07, FSXY12] where an
adversary is allowed to obtain session-states of both parties. We point out that our security model is strictly
stronger than the recent models [GJ18, CCG+19] that do not allow the adversary to learn sessions-states.
More discussion on state leakage is provided in Section 3.5.

3.4 Property for Signal-Conforming AKE: Receiver Obliviousness
In this work, we care for a specific type of (two-round) AKE protocol that is compatible with the X3DH
protocol [MP16b] used by the Signal protocol [SIG]. As explained in Section 1.2, the X3DH protocol can
be viewed as a special type of AKE protocol where the Signal server acts as an (untrusted) bulletin board,
where parties can store and retrieve information from. More specifically, the Signal server can be viewed
as an adversary for an AKE protocol that controls the communication channel between the parties. When
casting the X3DH protocol as an AKE protocol, one crucial property is that the first message of the initiator
is generated independently of the communication partner. This is because, in secure messaging, parties are
often offline during the initial key agreement so if the first message depended on the communication partner,
then we must wait until they become online to complete the initial key agreement. Since we cannot send
messages without agreeing on an initial key, such an AKE protocol where the first message depends on the
communication partner cannot be used as a substitute for the X3DH protocol.

We abstract this crucial yet implicit property achieved by the X3DH protocol as receiver obliviousness.11

Definition 3.4 (Receiver Obliviousness / Signal-Conforming). An AKE protocol is receiver oblivious
(or Signal-conforming) if it is two-rounds and the initiator can compute the first-message without knowledge
of the peer id and long-term public key of the communication peer.

Many Diffie-Hellman type AKE protocols (e.g., the X3DH protocol used in Signal and some CSIDH-based
AKE protocols [dKGV20, KTAT20]) can be checked to be receiver oblivious. In contrast, known generic
AKE protocols such as [FSXY12, FSXY13, XLL+18, HKSU20, XAY+20] are not receiver oblivious since the
first message requires the knowledge of the receiver’s long-term public key.

11This property has also been called as post-specified peers [CK02] in the context of Internet Key Exchange (IKE) protocols.
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3.5 Relation to Other Security Models
In the literature of AKE protocols, many security models have been proposed: the Bellare-Rogaway (BR)
model [BR94], the Canetti-Krawczyk (CK) model [CK01], the CK+ model [Kra05, FSXY12], the extended CK
(eCK) model [LLM07], and variants therein [CF12, BHJ+15, GJ18, CCG+19, HKSU20, JKRS20]. Although
many of these security models are built based on similar motivations, there are subtle differences. We point
out the notable similarities and differences between our model and the models listed above.
Long-Term Key Reveal. We first compare the models with respect to the secret information the adversary
is allowed to obtain. All models including ours allow the adversary to obtain the party’s long-term secret
key {lski | i ∈ [µ]}. In some models such as the BR model [BR94] and it’s variants (e.g., [BHJ+15, GJ18,
CCG+19])12, this will be the only information given to an adversary. Although this may be a restricted
model, it often serves as an initial step in proving the security of an AKE protocol.
Session-State Reveal. We can also consider a stronger and more realistic security model where the
adversary is allowed to obtain the secret session-states of the parties. Unlike a party’s long-term secret key
where the definition is clear from context, the notion of secret session-states is rather unclear, and this is
one of the main reasons for the various incomparable security models. In the original CK model [CK01], the
session-state can depend arbitrary on the long-term secret and the randomness used by the party. More
formally, using the terminology from Section 3.1, an adversary can query an oracle πsi for a secret session-state
f(lski, randsi ) for an arbitrary function f , where randsi is the randomness hardwired to the oracle πsi , and we
say the AKE protocol is secure with respect to the session-state defined by f .13 The eCK model [LLM07]
and the CK+ model [Kra05, FSXY12] made the CK model more accessible by only considering a specific
but natural set of functions.14 The eCK model defines the secret session-state as the randomness used by
the oracle (i.e., f(lski, randsi ) := randsi ). On the other hand, the CK+ model defines the session-state to
be what we called session-state in Section 3.1. More specifically, the model allows the adversary to obtain
the session-state statesi (defined at the implementation level) for all oracles except for the tested oracle and
allows the adversary to only obtain the randomness rands

∗

i∗ of the tested oracle. As Cremers [Cre11, Cre09])
points out, depending on how we define the function f , statesi , and randsi , these notions provide incomparable
security guarantees. For instance, we can always artificially modify the scheme so that statesi := randsi but
this usually results in an unnatural and less efficient implementation. Recent works [HKSU20, JKRS20]
consider an arguably more simple and natural definition compared to the CK+ model where the adversary
can obtain all the session-state statesi including the tested oracle. This seems to be in align with the type of
state leakage considered by the double ratchet protocol and we choose to follow this formalization in our
work.
Partnering. Another point of difference is how to define the partnering of two oracles, where recall that this
was used to capture attacks that trivialize the security game. One popular method to define partnering of
two oracles is by the so-called matching conversations used for instance by [BR94, Kra05, FSXY12, LLM07,
CF12, BHJ+15, CCG+19, HKSU20, JKRS20]. As the name indicates, two oracles are partnered when
the input-output (i.e., the conversation between the two oracles) matches. One benefit of using matching
conversations is that they are simple to handle; given a particular instantiation of an AKE protocol, a
matching conversation is uniquely defined. However, it was recently observed by Li and Schäge [LS17] that
some protocols using matching conversations are vulnerable against no-match attacks, where two oracles
compute the same session key but do not have matching conversations. A protocol with a no-match attack
allows the adversary to trivially win the security game since it can query the oracle that is not a partner of
the tested oracle but computes the same session key as the tested oracle. It was noted by Li and Schäge
that this is only a hypothetical attack that takes advantage of the security model and has no meaningful
consequence in the real-world. Therefore, in this work, we chose to use a more robust definition based

12We note that the subsequent variants differ from the original BR model [BR94] as they also model forward secrecy and KCI
attacks.

13Note that the meaning of the session-state is different from those we defined in Section 3.1 (i.e., states
i ). In the CK model, a

“session-state” is only defined in the security model and does not capture the states
i specified by the implementation.

14These variants also strengthen the CK model by allowing the adversary to obtain the session-state of the tested oracle and
further modeling KCI attacks.
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on session-identifiers [CK01, dFW20]. Unlike matching conversations, session-identifiers must be explicitly
defined for each AKE protocol and we note that if a session-identifier is defined to be the concatenation
of sent and received messages, then defining partnering via session-identifiers and matching conversations
become equivalent. Finally, we note that Li and Schäge [LS17] proposed another method to define partnering
called original-key partnering. This has been used in [GJ18]. The original-key of two oracles is defined as the
session key that is computed when the oracles are executed faithfully. Then, in the security game (i.e., in
the presence of an adversary), if two oracles compute their original-key, they are said to be partners. The
original-key partnering is conceptually cleaner but arguably harder to handle since we need to consider two
session keys for each oracle: the original-key and the actual key, in the security game. Therefore, in this work,
we use partnering based on session-identifiers.
Number of Test-query. Finally, we allow the adversary to issue only one Test-query in the security game.
This single-challenge setting has been widely used in the literature. However, recently, in order to evaluate
the tightness of the security proof, [BHJ+15, GJ18, CCG+19, JKRS20] consider the multi-challenge setting,
where an adversary is allowed to make multiple Test-queries.

Remark 3.5 (Key Indistinguishability and Authenticity). As standard in the AKE literature, we capture both
key indistinguishability and authenticity of the session keys in a single security game. In contrast, the recent
work by de Saint Guilhem et al. [dFW20] consider these two properties separately and defined two security
games: one for key indistinguishability and the other for authenticity.

Remark 3.6 (Implicit and Explicit Authentication). Our model captures implicit authentication, where each
party is assured that no other party aside from the intended peer can gain access to the session key. Here,
note that implicit authentication does not guarantee that the intended peer holds the same key. What it
guarantees is that although your intended peer may be computing a different key, that peer is the only
possible party that can have information on your computed session key. On the other hand, the property that
also guarantees that the intended peer has computed the same session key is called explicit authentication. In
(mutual) explicit authentication protocols, if both parties reach the accept state, then they are guaranteed
to share the same session key. In practice, the distinction between implicit and explicit authentication is a
minor issue since we can always add a key confirmation step to enhance an implicit authentication AKE
protocol into an explicit one [Yan14, CCG+19, dFW20]. For instance, we can send encrypted messages or
MACs under the established session key to check if the peer computed the same key without compromising
security.

4 Generic Construction of Signal-Conforming AKE ΠSC-AKE

In this section, we propose a Signal-conforming AKE protocol ΠSC-AKE that can be used as a drop-in
replacement for the X3DH protocol. Unlike the X3DH protocol, our protocol can be instantiated from
post-quantum assumptions, and moreover, it also provides stronger security against state leakage. The
protocol description is presented in Figure 2. Details follow.
Building Blocks. Our Signal-conforming AKE protocol ΠSC-AKE consists of the following building blocks.

• ΠKEM = (KEM.Setup,KEM.KeyGen,KEM.Encap,KEM.Decap) is a KEM scheme that is IND-CCA secure
and assume we have (1− δKEM)-correctness, νKEM-high encapsulation key min-entropy and χKEM-high
ciphertext min-entropy.

• ΠwKEM = (wKEM.Setup,wKEM.KeyGen,wKEM.Encap,wKEM.Decap) is a KEM schemes that is IND-CPA
secure (and not IND-CCA secure) and assume we have (1−δwKEM)-correctness, νwKEM-high encapsulation
key min-entropy, and χwKEM-high ciphertext min-entropy. In the following, for simplicity of presentation
and without loss of generality, we assume δwKEM = δKEM, νwKEM = νKEM, χwKEM = χKEM.

• ΠSIG = (SIG.Setup,SIG.KeyGen,SIG.Sign,SIG.Verify) is a signature scheme that is EUF-CMA secure and
(1− δSIG)-correctness. We denote d as the bit length of the signature generated by SIG.Sign.
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Common public parameters: (s, ppKEM, ppwKEM, ppSIG)

Initiator Pi Responder Pj

lpki = (eki, vki), lski = (dki, ski) lpkj = (ekj , vkj), lskj = (dkj , skj)

(ekT , dkT )← wKEM.KeyGen(ppwKEM)
statei := dkT

K← KEM.Decap(dki,C)
KT ← wKEM.Decap(dkT ,CT )
K1 ← Exts(K); K2 ← Exts(KT )
sidi := Pi‖Pj‖lpki‖lpkj‖ekT ‖C‖CT

ki‖k̃ ← FK1 (sidi)⊕ FK2 (sidi)

σ ← c⊕ k̃

SIG.Verify(vkj , sidi, σ) ?= 1
Output the session key ki

ekT

C,CT , c

(K,C)← KEM.Encap(eki)
(KT ,CT )← wKEM.Encap(ekT )
K1 ← Exts(K); K2 ← Exts(KT )
sidj := Pi‖Pj‖lpki‖lpkj‖ekT ‖C‖CT

kj‖k̃ ← FK1 (sidj)⊕ FK2 (sidj)
σ ← SIG.Sign(skj , sidj)

c← σ ⊕ k̃
Output the session key kj

Figure 2: Our Signal-conforming AKE protocol ΠSC-AKE.

• F : FK × {0, 1}∗ → {0, 1}κ+d is a pseudo-random function family with key space FK.

• Ext : S × KS → FK is a strong (γKEM, εExt)-extractor.

Public Parameters. All the parties in the system are provided with the following public parameters
as input: (s, ppKEM, ppwKEM, ppSIG). Here, s is a random seed chosen uniformly from S, and ppX for X ∈
{KEM,wKEM,SIG} are public parameters generated by X.Setup.
Long-Term Public and Secret Keys. Each party Pi runs (eki, dki) ← KEM.KeyGen(ppKEM) and
(vki, ski)← SIG.KeyGen(ppSIG). Party Pi ’s long-term public key and secret key are set as lpki = (eki, vki) and
lski = (dki, ski), respectively.
Construction. A key exchange between an initiator Pi in the s-th session (i.e., πsi ) and responder Pj in the
t-th session (i.e., πtj) is executed as in Figure 2. More formally, we have the following.

1. Party Pi sets Pidsi := j and rolesi := init. Pi computes (dkT , ekT )← wKEM.KeyGen(ppwKEM) and sends
ekT to party Pj . Pi stores the ephemeral decapsulation key dkT as the session-state i.e., statesi := dkT .15

2. Party Pj sets Pidtj := i and roletj := resp. Upon receiving ekT , Pj first computes (K,C) ←
KEM.Encap(eki) and (KT ,CT ) ← wKEM.Encap(ekT ). Then Pj derives two PRF keys K1 ← Exts(K),
K2 ← Exts(KT ). It then defines the session-identifier as sidtj := Pi‖Pj‖lpki‖lpkj‖ekT ‖C‖CT and com-
putes kj‖k̃ ← FK1(sidj) ⊕ FK2(sidj), where kj ∈ {0, 1}κ and k̃ ∈ {0, 1}d, and sets the session key as
ktj := kj . Pj then signs σ ← SIG.Sign(skj , sidtj) and encrypts it as c← σ ⊕ k̃. Finally, it sends (C,CT , c)
to Pi and sets Ψj := accept. Here, note that Pj does not require to store any session-state, i.e.,
statetj = ⊥.

3. Upon receiving (C,CT , c), Pi first decrypts K← KEM.Decap(dki,C) and KT ← wKEM.Decap(dkT ,CT ),
and derives two PRF keys K1 ← Exts(K) and K2 ← Exts(KT ). It then sets the session-identifier as
sidsi := Pi‖Pj‖lpki‖lpkj‖ekT ‖C‖CT and computes ki‖k̃ ← FK1(sidi)⊕ FK2(sidi), where kj ∈ {0, 1}κ and
k̃ ∈ {0, 1}d. Pi then decrypts σ ← c⊕ k̃ and checks whether SIG.Verify(vkj , sidsi , σ) = 1 holds. If not,
Pi sets (Ψi, ksi , statei) := (reject,⊥,⊥) and stops. Otherwise, it sets (Ψi, ksi , statei) := (accept, ki,⊥).
Here, note that Pi deletes the session-state statesi = dkT at the end of the key exchange.

15Notice the protocol is receiver oblivious since the first message is computed independently of the receiver.
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Remark 4.1 (A Note on Session-State). The session-state of the initiator Pi contains the ephemeral decryption
key dkT and Pi must store it until the peer responds. Any other information that is computed after receiving
the message from the peer is immediately erased when the session key is established. In contrast, the responder
Pj has no session-state because the responder directly computes the session key after receiving the initiator’s
message and does not have to store any session-specific information. That is, all states can be erased as soon
as a session key is computed.

Remark 4.2 (Acquiring Long Term Keys). We assume without loss of generality that the users know each
others long-term public keys required to initiate the Signal-conforming AKE protocol. In the Signal protocol,
the initiator sends its long-term public key with the first message and the responder sends its long-term
key with the second message. Then, these public keys are authenticated by means outside of the Signal
protocol such as relying on “out-of-bound” authentications. We assume the same procedure is performed for
our Signal-conforming AKE protocol as well. See the white paper for the X3DH protocol [MP16b, Section
4.1] for a brief discussion.

Remark 4.3 (Signed Prekeys). In the X3DH protocol, the initiator sends the first message with a signature
attached called signed prekey. Informally, this allows Bob to explicitly authenticate Alice, while otherwise
without the signature, Bob can only implicitly authenticate Alice. Moreover, this signature enhances the
X3DH protocol to be perfect forward secret rather than being only weak forward secret, where the former
allows the adversary to be active in the protocol run of the two oracles. Indeed, according to [MP16b], the
X3DH is considered to have perfect forward secrecy. We observe that adding such signature in our protocol
has the same effect as long as the added signature is not included in the session-identifier. This is due to
Li and Schäge [LS17, Appendix D], who showed that adding new messages to an already secure protocol
cannot lower the security as long as the derived session keys and the session-identifiers remain the same as
the original protocol. Here, note the latter implies that the partnering relation remains the same. Similarly,
Cremers and Feltz [CF12] show that adding a signature to the exchanged messages can enhance weak forward
secrecy to perfect forward secrecy for natural classes of AKE protocols.

Security. The following theorems establish the correctness and security of our protocol ΠSC-AKE.

Theorem 4.4 (Correctness of ΠSC-AKE). Assume ΠKEM and ΠwKEM are (1 − δKEM)-correct and ΠSIG is
(1− δSIG)-correct. Then, ΠSC-AKE is (1− µ`(δSIG + 2δKEM)/2)-correct.

Proof. It is clear that an initiator oracle and a responder oracle become partners when they execute the protocol
faithfully. Moreover, if no correctness error occurs in the underlying KEM and signature schemes, the partner
oracles compute an identical session key. Since each oracle is assigned to uniform randomness, the probability
that a correctness error occurs in one of the underlying schemes is bounded by δSIG + 2δKEM. Since there are
at most µ`/2 responder oracles, the AKE protocol is correct except with probability µ`(δSIG + 2δKEM)/2.

Theorem 4.5 (Security of ΠSC-AKE). For any QPT adversary A against the security of ΠSC-AKE with µ
parties that establishes at most ` sessions per party, there exist QPT algorithms B1 breaking the IND-CPA
security of ΠwKEM, B2 and B4 breaking the IND-CCA security of ΠKEM, B3 breaking the EUF-CMA security of
ΠSIG, and D1, . . . ,D3 breaking the security of PRF F such that

AdvAKE
ΠSC-AKE (A) ≤ max


µ2`2 · (AdvIND-CPA

wKEM (B1) + AdvPRF
F (D1) + εExt),

µ2` · (AdvIND-CCA
wKEM (B2) + AdvPRF

F (D2) + εExt) + µ`2 ·
(

1
22χKEM + 1

2νKEM

)
,

µ · AdvEUF-CMA
SIG (B3),

µ2` ·
(
AdvIND-CCA

KEM (B4) + AdvPRF
F (D3) + εExt

)
+ µ`2 · 1

2χKEM


+ µ`

2 · (δSIG + 2δKEM),

where νKEM (resp. χKEM) is the encapsulation key (resp. ciphertext) min-entropy of ΠwKEM and ΠKEM. The
running time of B1, . . . ,B4 and D1, . . . ,D3 are about that of A.

The full proof of Theorem 4.5 can be found in Appendix B. Here, we provide an overview of the proof.
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Strategy Role of tested oracle Partner oracle lskinit stateinit lskresp stateresp

Type-1 init or resp Yes 3 7 3 7
Type-2 init or resp Yes 3 7 7 3
Type-3 init or resp Yes 7 3 3 7
Type-4 init or resp Yes 7 3 7 3
Type-5 init No 3 7 7 -
Type-6 init No 7 3 7 -
Type-7 resp No 7 - 3 7
Type-8 resp No 7 - 7 3

Table 1: The strategy taken by the adversary in the security game when the tested oracle is fresh. “Yes” means
the tested oracle has some (possibly non-unique) partner oracles and“No” means it has none. “3” means the
secret-key/session-state is revealed to the adversary, “7” means the secret-key/session-state is not revealed. “-” means
the session-state is not defined.

Proof sketch. Let A be an adversary that plays the security game GΠSC-AKE(µ, `). We distinguish between all
possible strategies that can be taken by A. Specifically, A’s strategy can be divided into the eight types of
strategies listed in Table 1. Here, each strategy is mutually independent and covers all possible (non-trivial)
strategies. We point out that for our specific AKE construction we have stateresp := ⊥ since the responder
does not maintain any states (see Remark 4.1). Therefore, the Type-1 (resp. Type-3, Type-7) strategy is
strictly stronger than the Type-2 (resp. Type-4, Type-8) strategy. Concretely, for our proof, we only need to
consider the following four cases and to show that A has no advantage in each cases: (a) A uses the Type-1
strategy; (b) A uses the Type-3 strategy; (c) A uses the Type-5 or Type-6 strategy; (d) A uses the Type-7
strategy.

In cases (a), (b) and (d), the session key is informally protected by the security properties of KEM, PRF,
and randomness extractor. In case (a), since the ephemeral decapsulation key dkT is not revealed, KT is
indistinguishable from a random key due to the IND-CPA security of ΠwKEM. On the other hand, in case (b)
and (d), since the initiator’s decapsulation key dkinit is not revealed, K is indistinguishable from a random
key due to the IND-CCA security of ΠKEM. Here, we require IND-CCA security because there are initiator
oracles other than the tested oracle that uses dkinit, which the reduction algorithm needs to simulate. This
is in contrast to case (a) where dkT is only used by the tested oracle. Then, in all cases, since either KT or K
has sufficient high min-entropy from the view of the adversary, Ext on input KT or K outputs a uniformly
random PRF key. Finally, we can invoke the pseudo-randomness of the PRF and argue that the session key
in the tested oracle is indistinguishable from a random key.

In case (c), the session key is informally protected by the security property of the signature scheme. More
concretely, in case (c), the tested oracle is an initiator and the signing key skresp included in the long-term
public key of its peer is not revealed. Then, due to the EUF-CMA security of ΠSIG, A cannot forge the
signature for the session-identifier of the tested oracle sidtest. In addition, since the tested oracle has no partner
oracles, no responder oracle ever signs sidtest. Therefore, combining these two, we conclude that the tested
oracle cannot be in the accept state unless A breaks the signature scheme. In other words, when A queries
Test, the tested oracle always returns ⊥. Thus the session key of the tested oracle is hidden from A.

5 Instantiating Post-Quantum Signal-Conforming AKE ΠSC-AKE

In this section, we present the implementation details of our post-quantum Signal-conforming AKE proto-
col ΠSC-AKE. We take existing implementations of post-quantum KEMs and signature schemes submitted for
the NIST PQC standardization. To instantiate our Signal-conforming AKE we pair variants of KEMs and
signature schemes corresponding to the same security level. We consider security levels 1, 3 and 5 as defined
by NIST for the PQC standardization. With more than 30 variants of KEM and 13 variants of signature
schemes, we can create at least 128 different instantiations of post-quantum Signal-conforming AKE protocols.
The provided implementation simulates post-quantum, weakly deniable authenticated key exchange between
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two entities. We study the efficiency of our instantiations through two metrics — the total amount of data
exchanged between parties and run-time performance. Our implementation is available at [Kwi20].

5.1 Instantiation details
Our implementation is instantiated with the following building blocks:

• s: (pseudo)-randomly generated 32 bytes of data calculated at session initialization phase,

• Exts: uses HMAC-SHA256 as a strong randomness extractor. As an input message we use a key KT
prepended with byte 0x02 which works as a domain separator (since we also use HMAC-SHA256 as a
PRF). Security of using HMAC as a strong randomness extractor is studied in [FPZ08],

• PRF: uses HMAC-SHA256 as a PRF. The session-specific sid is used as an input message to HMAC,
prepended with byte 0x01. An output from Exts is used as a key. Security of using HMAC as a PRF is
studied in [Bel06],

• b: depends on the security level of the underlying post-quantum KEM scheme, where b ∈ {128, 192, 256},

• d: depends on the byte length of the signature generated by the post-quantum signature scheme ΠSIG,

• ΠKEM, ΠwKEM, ΠSIG: to instantiate ΠSC-AKE, implementation uses pairs of KEM and signature schemes.
List of the schemes used can be found in the table below. We always use the same KEM scheme for
ΠKEM and ΠwKEM.

NIST
security level KEM Signature

1
SABER, CLASSIC-MCELIECE, KYBER, NTRU

HQC, SIKE, FRODOKEM, BIKE
RAINBOW, FALCON, DILITHIUM

SPHINCS, PICNIC

3
SABER, NTRU, CLASSIC-MCELIECE, KYBER,

SIKE, HQC, BIKE, FRODOKEM
DILITHIUM, RAINBOW

PICNIC, SPHINCS

5
SABER, CLASSIC-MCELIECE, NTRU, KYBER

FRODOKEM, SIKE, HQC
FALCON, RAINBOW
PICNIC, SPHINCS

Table 2: Considered KEM and signature schemes under NIST security level 1, 3, and 5.

At a high level, the implementation is split into 3 main parts. The initiator’s ephemeral KEM key
generation (offer function), the recipient’s session key generation (accept function), and initiator’s session
key generation (finalize function). Additionally there is an initialization part which performs the generation
and exchange of the long-term public keys as well as dynamic initialization of memory. To evaluate
the computational cost of ΠSC-AKE, we instantiate it with concrete parameters as described above. The
implementation runs 3 main functions in a loop for a fixed amount of time. We do not include the time spent
in the initialization phase, hence the cost of key generation and memory initialization has no impact on the
results.

Finally, we use an implementation of post-quantum algorithms that can be found in libOQS16. We also
use LibTomCrypt17 which provides an implementation of the building blocks HMAC, HKDF and SHA-256.

16https://github.com/open-quantum-safe/liboqs
17https://github.com/libtom/libtomcrypt
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5.2 Efficiency Analysis
In this subsection, we provide an assessment of the costs related to running the concrete instantiation of
ΠSC-AKE. We provide two metrics:

• Communication cost: the amount of data exchanged between two parties trying to establish a session
key

• Computational cost: number of CPU cycles spent in computation during session establishment by both
parties

The computational cost of the protocol depends on the performance of the cryptographic primitives
used. More precisely, the most expensive operations are those done by the post-quantum schemes. ΠSC-AKE
performs 7 such operations during a session agreement: the initiator runs a KEM key generation, two KEM
decapsulations and one signature verification, and the recipient performs two KEM encapsulations and one
signing.

For benchmarking, we modeled a scenario in which two parties try to establish a session key. Alice
generates and makes her long-term public key lpkA and ephemeral KEM key ekT publicly available. Bob
retrieves the pair (lpkA, ekT ) and uses it to perform his part of the session establishment. Namely, Bob
generates the triple (C,CT , c) and sends it to Alice along with its long-term public key lpkB. Upon receipt,
Alice finalizes the process by computing the session key on her side. We note that in the case of the Signal
protocol, both parties communicate with a server (e.g., the Signal server), and not directly. For simplicity, we
abstract this fact out of our scenario. Further note that in the Signal protocol, the long-term public keys lpk
must be fetched from the server as the parties do not store the keys lpk corresponding to those that they
have not communicated with before.18

Table 3 provides the results for Round 3 candidates of the NIST PQC standardization process.19 The
CPU cycles column is related to the computational cost. It is the number of cycles needed on both the
initiator and responder side to run the protocol for a given instantiation. We run benchmarking on the Intel
Xeon E3-1220v3 @3.1GhZ with Turbo Boost disabled. The last four columns relate to communication cost.
They contain the byte size of the data exchanged during session key establishment. In particular, the lpk
column contains the size of the long-term public key. The ekT column contains the size of the ephemeral KEM
key. The (C,CT , c) column is the size of the triple generated by Bob. Here, the amount of data transferred
from Alice to Bob is the sum of lpk and ekT , while the amount of data transferred from Bob to Alice is the
sum of lpk and C,CT , c. Finally, the column Total contains the total size of data exchanged between Alice
and Bob.

In a scenario as described above, instantiations with Falcon, Dilithium, Saber and Kyber schemes seem to
be the most promising when it comes to computational cost. The communication cost can be minimized by
using the SIKE scheme as ΠKEM and ΠwKEM, but this significantly increases the computational cost.

We note that the computational cost is far less absolute as it depends on the concrete implementation
of the post-quantum schemes. Our implementation is biased by the fact that it uses unoptimized, portable
C code. There are two reasons for such a choice. First, our goal was to show the expected results on a
broad number of platforms. Second, the libOQS library that we used does not provide hardware-assisted
optimizations for all schemes, hence enabling those optimizations only for some algorithms would provide
biased results.

Our implementation is based on open-source libraries, which makes it possible to perform fine-tuning and
further analysis. For example, one could imagine a scenario for IoT devices that knows in advance which
devices it may communicate with. Then, the long term keys of the devices can be exchanged prior to the
session key establishment. In such a scenario, schemes with larger public keys may become more attractive
since transferring long-term public keys could be done ahead of time.

18The X3DH protocol assumes the parties authenticate the long-term public keys through some authenticated channel [MP16b,
Section 4.1].

19The results for all 128 instantiations can be found at [Kwi20]
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Scheme CPU cycles lpk ekT (C,CT , c) Total
NIST security level 1

Dilithium2/Saber Light 2770622 1856 672 3516 7900
Dilithium2/Kyber512 3059898 1984 800 3516 8284
Falcon512/NTRU hps2048509 28830055 1596 699 2088 5979
SPHINCS-SHAKE256-128f-s/Saber Light 269464814 704 672 18448 20528

NIST security level 3

Dilithium4/Saber 4204171 2752 992 5542 12038
Dilithium4/NTRU hps2048677 24513381 2690 930 5226 11536
SPHINCS-SHAKE256-192f-s/Kyber768 337783175 1232 1184 37840 41488
Dilithium4/SIKE p610 790625496 2222 462 4338 9244

NIST security level 5

Falcon1024/Saber Fire 37423092 3105 1312 4274 11796
Falcon1024/Kyber1024 37875710 3361 1568 4466 12756
Falcon1024/SIKE p751 356918904 2357 564 2522 7800
SPHINCS-SHAKE256-256f-s/SIKE p751 1041010995 628 564 50408 52228

Table 3: Computational and communication cost of running ΠSC-AKE instantiated with various post-quantum
schemes.

Note on Low Quality Network Links. We anticipate ΠSC-AKE to be used with handheld devices and areas
with a poor quality network connection. In such cases, larger key, ciphertext and signature sizes generated
may negatively impact the quality of the connection. Network packet loss is an additional factor which should
be considered when choosing schemes for concrete instantiation.

Data on the network is exchanged in packets. The maximum transmission unit (MTU) defines the maximal
size of a single packet, usually set to 1500 bytes. Ideally, the size of data sent between participants in a single
pass is less than MTU. Network quality is characterized by a packet loss rate. When a packet is lost, the
TCP protocol ensures that it is retransmitted, where each retransmission causes a delay. A typical data loss
on a high-quality network link is below 1%, while data loss on a mobile network depends on the strength of
the network signal.

Depending on the scheme used, increased packet loss may negatively impact session establishment time
(see [PST19]). For example, a scheme instantiated with Falcon512/NTRU hps2048509 requires exchange
of npacks = 7 packets over the network, where instantiation with SPHINCS-SHAKE256-128f-simple/Saber
Light requires 16. Assuming increased packet rate loss of 5%, the probability of losing a packet in the former
case is 1 − (1 − rate)npacks = 30%, where in the latter it is 56%. In the latter case, at the median, every
other session key establishment will experience packet retransmission and hence a delay.

6 Adding Deniability to Our Signal-Conforming AKE ΠSC-AKE

In this section, we provide a theory-oriented discussion on the deniability aspect of our Signal-conforming
AKE protocol ΠSC-AKE. In the following, we first informally show that ΠSC-AKE already has a very weak
form of deniability that may be acceptable in some applications. We then show that we can slightly modify
ΠSC-AKE to satisfy a more stronger notion of deniability. As it is common with all deniable AKE protocols
secure against key-compromise attacks [DGK06, YZ10, VGIK20], we prove deniability by relying on strong
knowledge-type assumptions, including a variant of the plaintext-awareness (PA) for the KEM scheme
[BR95, BDPR98, BP04].
Weak Deniability of ΠSC-AKE. Our Signal-conforming AKE protocol ΠSC-AKE already satisfies a weak notion
of deniability, where the communication transcript does not leave a trace of the two parties if both parties
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honestly executed the AKE protocol. Namely, an adversary that is passively collecting the communication
transcript cannot convince a third party that communication between two parties took place. Informally, this
can be observed by checking that all the contents in the transcript can be simulated by the adversary on its
own. This notion of weak deniability may suffice for some particular applications when the two engaging
parties fully trust each other for the correct execution of the protocol, and if they are fine by assuming that
corruption will not occur. However, in other cases, we may want to guarantee deniability even in the case the
communicating peer may be compromised, or even worse, acting maliciously. We discuss this stronger notion
of deniability next.

6.1 Definition of Deniability and Tool Preparation
We follow a simplified definition of deniability for AKE protocols introduced by Di Raimondo et al. [DGK06].
Discussion on the simplification is provided in Remark 6.3. Let Π be an AKE protocol and KeyGen be
the key generation algorithm. That is, for any integer µ = µ(κ) representing the number of parties in the
system, define KeyGen(1κ, µ) → (pp,

−→
lpk,
−→
lsk), where pp is the public parameter used by the system and

−→
lpk := {lpki | i ∈ [µ]} and

−→
lsk := {lski | i ∈ [µ]} are the corresponding long-term public and secret keys of the

µ parties, respectively.
LetM denote an adversary that engages in an AKE protocol with µ-honest parties in the system with

long-term public keys
−→
lpk, acting as either an initiator or a responder. M may run individual sessions against

an honest party in a concurrent manner and may deviate from the AKE protocol in an arbitrary fashion. The
goal ofM is not to impersonate someone to an honest party P but to collect (cryptographic) evidence that
an honest party P interacted withM. Therefore, whenM interacts with P, it can use a long-term public key
lpkM that can be either associated to or not toM’s identity (that may possibly be generated maliciously).
We then define the view of the adversaryM as the entire sets of input and output ofM and the session keys
computed in all the protocols in whichM participated with an honest party. Here, we assume in case the
session is not completed byM, the session key is defined as ⊥. We denote this view as ViewM(pp,

−→
lpk,
−→
lsk).

In order to define deniability, we consider a simulator SIM that simulates the view of honest parties (both
initiator and responder) to the adversaryM without knowledge of the corresponding long-term secret keys
−→
lsk of the honest parties. Specifically, SIM takes as input all the input given to the adversaryM (along with
the description ofM) and simulates the view ofM with the real AKE protocol Π. We denote this simulated
view as SIMM(pp,

−→
lpk). Roughly, if the view simulated by SIMM is indistinguishable from those generated by

ViewM, then we say the AKE protocol is deniable sinceM could have run SIMM (which does not take any
secret information as input) to generate its view in the real protocol. More formally, we have the following.

Definition 6.1 (Deniability). We say an AKE protocol Π with key generation algorithm KeyGen is deniable,
if for any integer µ = poly(κ) and PPT adversary M, there exist a PPT simulator SIMM such that the
following two distributions are (computationally) indistinguishable for any PPT distinguisher D:

FReal := {pp,
−→
lpk,ViewM(pp,

−→
lpk,
−→
lsk) : (pp,

−→
lpk,
−→
lsk)← KeyGen(1κ, µ)},

FSim := {pp,
−→
lpk,SIMM(pp,

−→
lpk) : (pp,

−→
lpk,
−→
lsk)← KeyGen(1κ, µ)}.

WhenM is semi-honest (i.e., it follows the prescribed protocol), we say Π is deniable against semi-honest
adversaries. WhenM is malicious (i.e., it takes any efficient strategy), we say Π is deniable against malicious
adversaries.

Remark 6.2 (Including Public Information and Session Keys). It is crucial that the two distributions FReal and
FSim include the public information (pp,

−→
lpk). Otherwise, SIMM can simply create its own set of (pp′,

−→
lpk′,
−→
lsk′)

and simulate the view toM. However, this does not correctly capture deniability in the real-world since
M would not be able to convince anybody with such a view using public information that it cooked up on
its own. In addition, it is essential that the value of the session key is part of the output of SIMM. This
guarantees that the contents of the sessions authenticated by the session key can also be denied.
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Remark 6.3 (Comparison between Prior Definition). Our definition is weaker than the deniability notion
originally proposed by Di Raimondo et al. [DGK06]. In their definition, an adversaryM (and therefore the
simulator SIMM) is also provided as input some auxiliary information aux that can depend non-trivially on
(pp,
−→
lpk,
−→
lsk).20 For instance, this allows to capture information thatM may have obtained by eavesdropping

conversations between honest parties (which is not modeled by ViewM). Since our goal is to provide a
minimal presentation on the deniability of our protocol, we only focus on the weaker definition whereM does
not obtain such auxiliary information. We leave it as future work to prove our protocol deniable in the sense
of Di Raimondo et al. [DGK06]. We also note that stronger forms of deniability are known and formalized in
the universally composable (UC) model [DKSW09, UG15, UG18], however, AKE protocols satisfying such a
strong deniability notion are known to achieve weaker security guarantees. For instance, as noted in [UG18],
an AKE protocol cannot be on-line deniable while also being secure against KCI attacks.

Remark 6.4 (Extending to Malicious Quantum Adversaries). We only consider classical deniability above.
Although we can show deniability for semi-honest quantum adversaries, we were not able to do so for malicious
quantum adversaries. This is mainly due to the fact that to prove deniability against malicious classical
adversaries, we require a strong knowledge type assumption (i.e., plaintext-awareness for KEM) that assumes
an extractor can invoke the adversary multiple of times on the same randomness. We leave it as an interesting
problem to formally define a set of tools that allow to show deniability even against malicious quantum
adversaries.

Required Tools. To argue deniability in the following section we rely on the following tools: ring signature,
plaintext-aware (PA-1) secure KEM scheme, and a non-interactive zero-knowledge (NIZK) argument.We
use standard notions of ring signatures and NIZK arguments and we provide the formal definitions in
Appendices A.1 and A.3. On the other hand, we use a slightly stronger variant of PA-1 secure KEM schemes
than those originally defined in [BR95, BDPR98, BP04]. Informally, a KEM scheme is PA-1 secure if for any
adversaryM that outputs a valid ciphertext C, there is an extractor ExtM that outputs the matching session
key K. In our work, we require PA-1 security to hold even whenM is given multiple public keys rather than
a single public key [MSs12]. We note that although Di Raimondo et al. [DGK06] considered the standard
notion of PA-1 security, we observe that their proof only works in the case where multiple public keys are
considered. Finally, we further require the extractor ExtM to be efficiently computable givenM. The formal
definition is provided in Appendix A.2.

6.2 Deniable Signal-Conforming AKE ΠSC-DAKE against Semi-Honest Adversaries
We first provide a Signal-conforming AKE protocol ΠSC-DAKE that is deniable against semi-honest adversaries.
The construction of ΠSC-DAKE is a simple modification of ΠSC-AKE where a standard signature is replaced by a
ring signature. In the subsequent section, we show how to modify ΠSC-DAKE to a protocol that is deniable
against malicious adversaries by relying on further assumptions. The high-level idea presented in this section
naturally extends to the malicious setting. An overview of ΠSC-DAKE and Π′SC-DAKE is provided in Figure 3.
Building Blocks. Our deniable Signal-conforming AKE protocol ΠSC-DAKE against semi-honest adversaries
consists of the following building blocks.

• ΠKEM = (KEM.Setup,KEM.KeyGen,KEM.Encap,KEM.Decap) is a KEM scheme that is IND-CCA secure
and assume we have (1− δKEM)-correctness, νKEM-high encapsulation key min-entropy and χKEM-high
ciphertext min-entropy.

• ΠwKEM = (wKEM.Setup,wKEM.KeyGen,wKEM.Encap,wKEM.Decap) is a KEM schemes that is IND-CPA
secure (and not IND-CCA secure) and assume we have (1−δwKEM)-correctness, νwKEM-high encapsulation
key min-entropy, and χwKEM-high ciphertext min-entropy. In the following, for simplicity of presentation
and without loss of generality, we assume δwKEM = δKEM, νwKEM = νKEM, χwKEM = χKEM.

20Although in [DGK06, Definition 2], aux is defined as fixed information thatM cannot adaptively choose, we observe that in
their proof they implicitly assume that aux is sampled adaptively from some distribution dependent on (pp,

−→
lpk,
−→
lsk). Such a

definition of aux is necessary to invoke PA-2 security of the underlying encryption scheme.
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Common public parameters: (s, ppKEM, ppwKEM, ppRS , crs )

Initiator Pi Responder Pj

lpki = (eki, vki ), lski = (dki, ski ) lpkj = (ekj , vkj ), lskj = (dkj , skj )

(ekT , dkT )← wKEM.KeyGen(ppwKEM)

(vkT , skT )← RS.KeyGen(ppRS; randT )

XT ← (ppRS, vkT ); WT ← (skT , randT )

πT ← NIZK.Prove(crs,XT ,WT )

statei := dkT

K← KEM.Decap(dki,C)
KT ← wKEM.Decap(dkT ,CT )
K1 ← Exts(K); K2 ← Exts(KT )
sidi := Pi‖Pj‖lpki‖lpkj‖ekT ‖vkT ‖C‖CT

ki‖k̃ ← FK1 (sidi)⊕ FK2 (sidi)

σ ← c⊕ k̃

RS.Verify({vkT , vkj} , sidi, σ) ?= 1

Output the session key ki

ekT , vkT , πT

C,CT , c

XT ← (ppRS, vkT )

NIZK.Verify(crs,XT , πT ) ?= 1

(K,C)← KEM.Encap(eki)
(KT ,CT )← wKEM.Encap(ekT )
K1 ← Exts(K); K2 ← Exts(KT )
sidj := Pi‖Pj‖lpki‖lpkj‖ekT ‖vkT ‖C‖CT

kj‖k̃ ← FK1 (sidj)⊕ FK2 (sidj)

σ ← RS.Sign(skj , sidj , {vkT , vkj})

c← σ ⊕ k̃
Output the session key kj

Figure 3: Deniable Signal-conforming AKE protocol ΠSC-DAKE and Π′SC-DAKE. The components that differ
from the non-deniable protocol ΠSC-AKE is indicated by a box. The protocol with (resp. without) the gray
and dotted-box component satisfies deniability against malicious (resp. semi-honest) adversaries.
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• ΠRS = (RS.Setup,RS.KeyGen,RS.Sign,RS.Verify) is a ring signature scheme that is anonymous and
unforgeable. We denote d as the bit length of the signature generated by RS.Sign.

• F : FK × {0, 1}∗ → {0, 1}κ+d is a pseudo-random function family with key space FK.

• Ext : S × KS → FK is a strong (γKEM, εExt)-extractor.

Public Parameters. All the parties in the system are provided the following public parameters as
input: (s, ppKEM, ppwKEM, ppRS). Here, s is a random seed chosen uniformly from S, and paramsX for
X ∈ {KEM,wKEM,RS} are public parameters generated by X.Setup.
Long-Term Public and Secret Keys. Each party Pi runs (eki, dki) ← KEM.KeyGen(ppKEM) and
(vki, ski)← RS.KeyGen(ppRS). Party Pi ’s long-term public key and secret key are set as lpki = (eki, vki) and
lski = (dki, ski) , respectively.
Construction. A key exchange between an initiator Pi in the s-th session (i.e., πsi ) and responder Pj in the
t-th session (i.e., πtj) is executed as in Figure 2. More formally, we have the following.

1. Party Pi sets Pidsi := j and rolesi := init. Pi computes (dkT , ekT ) ← wKEM.KeyGen(ppwKEM) and
(vkT , skT ) ← RS.KeyGen(ppRS), and sends (ekT , vkT ) to party Pj . Pi erases the signing key skT and
stores the ephemeral decapsulation key dkT as the session-state i.e., statesi := dkT .21

2. Party Pj sets Pidtj := i and roletj := resp. Upon receiving (ekT , vkT ), Pj first computes (K,C) ←
KEM.Encap(eki) and (KT ,CT )← wKEM.Encap(ekT ) and derives two PRF keys K1 ← Exts(K), K2 ←
Exts(KT ). It then defines the session-identifier as sidtj := Pi‖Pj‖lpki‖lpkj‖ekT ‖vkT ‖C‖CT and computes
kj‖k̃ ← FK1(sidj)⊕ FK2(sidj), where kj ∈ {0, 1}κ and k̃ ∈ {0, 1}d. Pj sets the session key as ktj := kj . Pj

then signs σ ← RS.Sign(skj , sidtj , {vkT , vkj}) and encrypts it as c← σ⊕ k̃. Finally, it sends (C,CT , c) to
Pi and sets Ψj := accept. Here, note that Pj does not require to store any session-state, i.e., statetj = ⊥.

3. Upon receiving (C,CT , c), Pi first decrypts K← KEM.Decap(dki,C) and KT ← wKEM.Decap(dkT ,CT ),
and derives two PRF keys K1 ← Exts(K) and K2 ← Exts(KT ). It then sets the session-identifier as
sidsi := Pi‖Pj‖lpki‖lpkj‖ekT ‖vkT ‖C‖CT and computes ki‖k̃ ← FK1(sidi)⊕ FK2(sidi), where ki ∈ {0, 1}κ

and k̃ ∈ {0, 1}d. Pi then decrypts σ ← c ⊕ k̃ and checks whether RS.Verify({vkT , vkj} , sidsi , σ) = 1
holds. If not, Pi sets (Ψi, ksi , statei) := (reject,⊥,⊥) and stops. Otherwise, Pi sets (Ψi, ksi , statei) :=
(accept, ki,⊥). Here, note that Pi deletes the session-state statesi = dkT at the end of the key exchange.

Security. We first check that ΠSC-DAKE is correct and secure as a standard AKE protocol. Since the proof is
similar in most parts to the non-deniable protocol ΠSC-AKE, we defer the details to Appendix C. The main
difference from the security proof of ΠSC-AKE is that we have to make sure that using a ring signature instead
of a standard signature does not allow the adversary to mount a key-compromise impersonation (KCI) attack
(see Section 3.3 for the explanation on KCI attacks).

Theorem 6.5 (Correctness of ΠSC-DAKE). Assume ΠKEM and ΠwKEM are (1 − δKEM)-correct and ΠRS is
(1− δRS)-correct. Then, the Signal-conforming AKE protocol ΠSC-DAKE is (1− µ`(δRS + 2δKEM)/2)-correct.

Theorem 6.6 (Security of ΠSC-DAKE). For any QPT adversary A against the security of ΠSC-DAKE with µ
parties that establishes at most ` sessions per party, there exist QPT algorithms B1 breaking the IND-CPA
security of ΠwKEM, B2 and B4 breaking the IND-CCA security of ΠKEM, B3 breaking the unforgeability of ΠRS,
and D1, . . . ,D3 breaking the security of PRF F such that

AdvAKE
ΠSC-DAKE (A) ≤max


µ2`2 · (AdvIND-CPA

wKEM (B1) + AdvPRF
F (D1) + εExt),

µ2` · (AdvIND-CCA
wKEM (B2) + AdvPRF

F (D2) + εExt) + µ`2 ·
(

1
22χKEM + 1

2νKEM

)
,

AdvUnf
RS (B3),

µ2` ·
(
AdvIND-CCA

KEM (B4) + AdvPRF
F (D3) + εExt

)
+ µ`2 · 1

2χKEM .


+ µ`

2 · (δRS + 2δKEM),

21Notice the protocol is receiver oblivious since the first message is computed independently of the receiver.
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where νKEM is the encapsulation key min-entropy of ΠwKEM and ΠKEM, and χKEM is the ciphertext min-entropy
of ΠwKEM and ΠKEM. The running time of B1, . . . ,B4 and D1, . . . ,D3 are about that of A.

The following guarantees deniability of our protocol ΠSC-DAKE against semi-honest adversaries.

Theorem 6.7 (Deniability of ΠSC-DAKE against Semi-Honest Adversaries). Assume ΠRS is anonymous.
Then, the Signal-conforming protocol ΠSC-DAKE is deniable against semi-honest adversaries.

Proof. Let M be any PPT semi-honest adversary. We explain the behavior of the simulator SIMM by
considering three cases: (a)M initializes an initiator Pi , (b)M queries the initiator Pi on message (C,CT , c),
and (c) M queries the responder Pj on message (ekT , vkT ). In case (a), SIMM runs the honest initiator
algorithm and returns (ekT , vkT ) as specified by the protocol. In case (b), sinceM is semi-honest, we are
guaranteed that it runs the honest responder algorithm to generate (C,CT , c). In particular, since M is
run on randomness sampled by SIMM, SIMM gets to learn the key K that was generated along with C.
Therefore, SIMM runs the real initiator algorithm except that it uses K extracted from M rather than
computing K← KEM.Decap(dki,C). Here, note that SIMM cannot run the latter since it does not know the
corresponding dki held by an honest initiator party Pi . In case (c), similarly to case (b), SIMM learns dkT
and skT used byM to generate ekT and vkT . Therefore, SIMM runs the honest responder algorithm except
that it runs σ ← RS.Sign(skT , sidj , {vkT , vkj}) instead of running σ ← RS.Sign(skj , sidj , {vkT , vkj}) as in the
real protocol. Here, note that SIMM cannot run the latter since it does not know the corresponding skj held
by an honest responder party Pj .

Let us analyze SIMM. First, for case (a), the output by SIMM is distributed exactly as in the real transcript.
Next, for case (b), the only difference between the real distribution and SIMM’s output distribution (which is
the derived session key k) is that SIMM uses the KEM key K output by KEM.Encap to compute the session
key rather than using the KEM key decrypted using KEM.Decap with the initiator party Pi ’s decryption key
dki. However, by (1− δKEM)-correctness of ΠKEM, these two KEM keys are identical with probability at least
(1− δKEM). Hence, the output distribution of SIMM and the real view are indistinguishable. Finally, for case
(c), the only difference between the real distribution and SIMM’s output distribution (which is the derived
session key and the message sent (C,CT , c)) is how the ring signature is generated. While the real protocol
uses the signing key skj of the responder party Pj , the simulator SIMM uses skT . However, the signatures
outputted by these two distributions are computationally indistinguishable assuming the anonymity of ΠRS.
Hence, the output distribution of SIMM and the real view are indistinguishable.

Combining everything together, we conclude the proof.

6.3 Deniable Signal-Conforming AKE Π′SC-DAKE against Malicious Adversaries
We discuss security of our Signal-conforming AKE protocol Π′SC-DAKE against malicious adversaries. As
depicted in Figure 3, to achieve deniability against malicious adversaries, we modify the protocol so that the
initiator party adds a NIZK proof attesting to the fact that it constructed the verification key of the ring
signature vkT honestly. Formally, we require the following additional building blocks.
Building Blocks. Our deniable Signal-conforming AKE protocol Π′SC-DAKE against malicious adversaries
requires the following primitives in addition to those required by ΠSC-DAKE in the previous section.

• ΠKEM = (KEM.Setup,KEM.KeyGen,KEM.Encap,KEM.Decap) is an IND-CCA secure KEM scheme as in
the previous section that additionally satisfies PAµ-1 security with an efficiently constructible extractor,
where µ is the number of parties in the system.

• ΠNIZK = (NIZK.Setup,NIZK.Prove,NIZK.Verify) is a NIZK argument system for the relation RRS where
(X,W) ∈ RRS if and only if the statement X = (pp, vk) and witness W = (sk, rand) satisfy (vk, sk) =
RS.KeyGen(pp; rand).
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Additional Assumption. We require a knowledge-type assumption to prove deniability against malicious
adversaries. Considering that all of the previous AKE protocols satisfying a strong form of security and
deniability require such knowledge-type assumptions [DGK06, YZ10, VGIK20], this seems unavoidable. On
the other hand, there are protocols achieving a strong form of deniability from standard assumptions [DKSW09,
UG15, UG18], however, they make a significant compromise in the security such as being vulnerable to KCI
attacks and state leakages.

The following knowledge assumption is defined similarly in spirit to those of Di Raimondo et al. [DGK06]
that assumed that for any adversaryM that outputs a valid MAC, then there exists an extractor algorithm
Ext that extracts the corresponding MAC key. Despite it being a strong knowledge-type assumption in the
standard model, we believe it holds in the random oracle model if we further assume the NIZK comes with an
online knowledge extractor22 like those provided by Fischlin’s NIZK [Fis05]. We leave it to future works to
investigate the credibility of the following assumption and those required to prove deniability of the X3DH
protocol [VGIK20].

Assumption 6.8 (Key-Awareness Assumption for Π′SC-DAKE). We say that Π′SC-DAKE has the key-awareness
property if for all PPT adversariesM interacting with a real protocol execution in the deniability game as in
Definition 6.1, there exists a PPT extractor ExtM such that for any choice of (pp,

−→
lpk,
−→
lsk) ∈ KeyGen(1κ, µ),

whenever M outputs a ring signature verification key vk and a NIZK proof π for the language LRS, then
ExtM taking input the same input as M (including its randomness) outputs a signing key sk such that
(vk, sk) ∈ RS.KeyGen(ppRS) for any ppRS ∈ RS.Setup(1κ).

With the added building blocks along with the key-awareness assumption, we prove the following theorem.
The high-level approach is similar to the previous proof against semi-honest adversaries, however, the concrete
proof is rather involved. The main technicality is when invoking the PAµ-1 security: if we do the reduction
naively, the extractor needs the randomness used to sample the ring signature key pairs of the honest party
but the simulator of the deniability game does not know such randomness. We circumvent this issue by
hard-wiring the verification key of the ring signature used by the adversary and by considering PAµ-1 security
against a non-uniform adversary.

Theorem 6.9 (Deniability of Π′SC-DAKE against Malicious Adversaries). Assume ΠKEM is PAµ-1 secure
with an efficiently constructible extractor, ΠRS is anonymous, ΠNIZK is sound,23 and the key-awareness
assumption in Assumption 6.8 holds. Then, the Signal-conforming protocol Π′SC-DAKE with µ parties is deniable
against malicious adversaries.

Proof. The high-level idea of the proof is similar to those of Theorem 6.7. Below, we consider a sequence of
simulators SIMM,i where the first and last simulators SIMM,0 and SIMM,3 simulate the real and simulated
protocols, respectively. That is, SIMM,3 is the desired simulator SIMM. We define Fi to be the distribution
of (pp,

−→
lpk) along with the output of SIMM,i. Our goal is to prove that F0 and F3 are indistinguishable.

SIMM,0: It is given (pp,
−→
lpk,
−→
lsk) as input and simulates the interaction with the adversaryM following the

protocol description of the real-world. Here, note thatM is invoked by SIMM,0 on input (pp,
−→
lpk) with

uniform randomness. By definition FReal := F0.

SIMM,1: This is the same as SIMM,0 except that wheneverM queries an honest responder party Pj on input
(ekT , vkT , πT ), SIMM,1 extracts the corresponding secret ring signature signing key skT . More formally,
due to the key-awareness assumption of Π′SC-DAKE, for any PPT M, there exists a PPT extractor
ExtM such that wheneverM outputs a ring signature verification key vkT and a NIZK proof πT for
the language LRS, then ExtM taking input the same input asM (including its randomness) outputs
a signing key skT such that (vkT , skT ) ∈ RS.KeyGen(ppRS). Since SIMM,1 knows all the input and
randomness fed toM, it can run ExtM. Namely, wheneverM makes the above query, SIMM,1 invokes
ExtM on input fed to M until that point along with its initial randomness and extracts skT . Since

22This roughly guarantees that the witness from a proof can be extracted without rewinding the adversary.
23We note that this is redundant since it is implicitly implied by the key-awareness assumption. We only include it for clarity.
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the output of SIMM,1 is unaltered, the distribution F1 is identical to the previous game. Below, for
simplicity, we assume thatM always outputs skT whenever it queries an honest responder party Pj on
input (ekT , vkT , πT ). This is without loss of generality since we can combineM and ExtM and view it
as another adversary against the deniability game.

SIMM,2: This is the same as SIMM,1 except that whenM queries an honest responder party Pj on input
(ekT , vkT , skT , πT ), SIMM,1 responds as in the real protocol except that it runs σ ← RS.Sign(skT , sidj , {vkT , vkj})
instead of running σ ← RS.Sign(skj , sidj , {vkT , vkj}). Due to the anonymity of the ring signature ΠRS,
the distributions F1 and F2 are indistinguishable.

Before explaining the next simulator, notice that we can view the combined algorithm (SIMM,2,M) as a
ciphertext creator C for the PAµ-1 security of the KEM scheme ΠKEM. Formally, we decompose SIMM,2 into two
algorithms: SIM′M,2 and Odec, where SIM′M,2 is identical to SIMM,2 except that it outsources the decapsulation
of ciphertexts corresponding to those of honest initiator parties to Odec. That is, SIM′M,2 proceeds as SIMM,2
except that whenM queries the honest initiator Pi on message (C,CT , c), it queries (i,C) to Odec to receive
the corresponding KEM key K. Since SIM′M,2 no longer requires the secret KEM keys {dki | i ∈ [µ]} of the
honest initiator parties, we can assume that SIM′M,2 only takes as input (pp, {eki | i ∈ [µ]}). Here, we also
assume it has µ-ring signature verification keys {vki | i ∈ [µ]} hard-wired rather than SIM′M,2 generating it
on its own. At this point, it is clear that the combined algorithm (SIM′M,2,M) can be viewed as a valid
ciphertext creator C that outputs the view ofM as the string v, where Odec corresponds to the decapsulation
oracle KEM.Decap run by the challenger in Expdec

C,D. Then, by the PAµ-1 security, there must exist an extractor
EC that simulates Odec that only takes as input (pp, (eki)i∈[µ], randC), where randC is the randomness used by
C (i.e., by (SIM′M,2,M)). Moreover, such an extractor EC is efficiently constructible given the description of
C. Here, note that randC does not include the randomness used to generate the µ-ring signature verification
keys since we hard-wire these to the description of SIM′M,2. In particular, EC does not require randomness
used to generate

−→
lpk to be executed. We are now ready to define the next simulator.

SIMM,3 := SIMM: This is the same as SIMM,2 except that it constructs the extractor EC and when M
queries the honest initiator Pi on message (C,CT , c) it runs EC(i,C) instead of Odec(dki,C). Notice that
SIMM,3 no longer requires any long-term secret key

−→
lsk to simulateM. Due to the PAµ-1 security of

the KEM scheme ΠKEM, the two distributions F2 and F3 := FSim are indistinguishable.

This completes the proof.

Finally, it remains to show that the Π′SC-DAKE is correct and secure as a standard Signal-conforming AKE
protocol. Due to the correctness of ΠNIZK, the correctness of Π′SC-DAKE follows from Theorem 6.5. Moreover,
the security of Π′SC-DAKE follows almost immediately from the proof of Theorem 6.6. The only difference is
that in the proof of Lemma C.1 (which is a sub-lemma used to prove Theorem 6.6), the reduction algorithm
that does not know the corresponding signing key skT of the verification key vkT invokes the zero-knowledge
simulator to simulate the proof πT . The rest of the proof is identical.
Acknowledgement. The second author was supported by JST CREST Grant Number JPMJCR19F6. The
third and fourth authors were supported by the Innovate UK Research Grant 104423 (PQ Cybersecurity).
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A Omitted Preliminaries
In this section, we provide the definitions of standard cryptographic primitives used throughout the main
body.

A.1 Ring Signatures
Definition A.1 (Ring Signature Schemes). A ring signature scheme consists of four PPT algorithms
ΠRS = (Setup,KeyGen,Sign,Verify):

Setup(1κ)→ pp : The setup algorithm takes as input a security parameter 1κ and outputs a public parameters
pp used by the scheme.

KeyGen(pp)→ (vk, sk) : The key generation algorithm on input the public parameters pp outputs a pair of
public and secret keys (vk, sk).

Sign(sk,M,R)→ σ : The signing algorithm on input a secret key sk, a message M, and a list of public keys,
i.e., a ring, R = {vk1, . . . , vkN}, outputs a signature σ.

Verify(R,M, σ)→ 1/0 : The verification algorithm on input a ring R = {vk1, . . . , vkN}, a message M, and a
signature σ, outputs either 1 or 0.

Definition A.2 ((1 − δ)-Correctness). We say a ring signature scheme ΠRS is (1 − δ)-correct if for all
κ ∈ N, N = poly(κ), j ∈ [N ], and every message M,

(1− δ) ≤ Pr

 Verify(R,M, σ) = 1

∣∣∣∣∣∣∣∣
pp← Setup(1κ);

(vki, ski)← KeyGen(pp) ∀i ∈ [N ];
R := (vk1, · · · , vkN );
σ ← Sign(skj ,M,R).

 .
Definition A.3 (Anonymity). We say a ring signature scheme ΠRS is anonymous if, for any κ ∈ N,
pp ∈ Setup(1κ), (vk0, sk0), (vk1, sk1) ∈ KeyGen(pp), and message M, and any PPT distinguisher A, the two
distributions Db := {σ : σ ← Sign(skb,M, {vk0, vk1})} for b ∈ {0, 1} are indistinguishable.

Definition A.4 (Unforgeability). We say a ring signature scheme ΠRS is unforgeable if, for all κ ∈ N and
N = poly(κ), any PPT adversary A has at most negligible advantage in the following game played against a
challenger.

(i) The challenger runs pp← Setup(1κ) and generates key pairs (vki, ski) = KeyGen(pp; ri) for all i ∈ [N ]
using random coins ri. It sets VK := {vki | i ∈ [N ]} and initializes two empty sets SL and CL.

(ii) The challenger provides pp and VK to A;

(iii) A can make signing and corruption queries an arbitrary polynomial number of times:

– (sign, i,M,R): The challenger checks if vki ∈ R and if so it computes the signature σ ←
Sign(ski,M,R). The challenger provides σ to A and adds (i,M,R) to SL;
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– (corrupt, i): The challenger adds vki to CL and returns ri to A.

(iv) A outputs (R∗,M∗, σ∗). If R∗ ⊂ VK\CL, (·,M∗,R∗) 6∈ SL, and Verify(R∗,M∗, σ∗) = 1, then we say the
adversary A wins.

The advantage of A is defined as AdvUnf
RS (A) = Pr[A wins].

A.2 Plaintext-Awareness
We define plaintext-awareness (PA) for KEM schemes [BR95, BP04] where multiple keys are considered
[MSs12]. We observe that the standard PA security defined for a single key does not immediately imply a
multi-key variant and that the original proof of deniability by Di Raimondo et al. [DGK06, Theorem 2 and
3] crucially relies on the multi-key variant. Furthermore, below we consider strengthening of the (already
strong) PA security where the efficient extractor EC for the ciphertext creator C can be constructed efficiently
given the description of C. This is required in the deniability proof as the simulator must construct such EC
given the description of the adversaryM.

Definition A.5 (Plaintext-Awareness). Let t = t(κ) be an integer. We say a KEM scheme ΠKEM is
plaintext-aware (PAt-1) secure if for all κ ∈ N and (non-uniform) PPT ciphertext creator C, there exists a
PPT extractor EC such that for any PPT distinguisher D, the following two experiments Expdec

C,D and Expext
C,EC,D

are indistinguishable:
Expdec
C,D(1κ):

(i) The challenger runs pp← Setup(1κ) and (eki, dki)← KeyGen(pp) for i ∈ [t]. It then runs C on input
(pp, (eki)i∈[t]) with uniform randomness randC.

(ii) When C queries an index-ciphertext pair (i,C) to the challenger, the challenger returns KEM.Decap(dki,C).
Here, C can query the challenger polynomially many times in an arbitrary manner.

(iii) C finally outputs a string v.

(iv) The experiment outputs D(v)→ b ∈ {0, 1}.

Expext
C,EC,D(1κ):

(i) The challenger runs pp← Setup(1κ) and (eki, dki)← KeyGen(pp) for i ∈ [t]. It then runs C on input
(pp, (eki)i∈[t]) with uniform randomness randC, and runs EC on input (pp, (eki)i∈[t], randC).

(ii) C can adaptively query an index-ciphertext pair C polynomially many times to the challenger. When the
challenger receives (i,C), it returns EC(query, (i,C), randC).24

(iii) C finally outputs a string v.

(iv) The experiment outputs D(v)→ b ∈ {0, 1}.

Moreover, we say the extractor EC is efficiently constructible if the description of EC can be efficiently computed
from the description of C.

A.3 Non-Interactive Zero-Knowledge
Let R ⊆ {0, 1}∗ × {0, 1}∗ be a polynomial time recognizable binary relation. For (x,w) ∈ R, we call x as
the statement and w as the witness. Let L be the corresponding NP language L = {x | ∃w s.t. (x,w) ∈ R}.
Below, we define non-interactive zero-knowledge arguments for NP languages.

24We assume algorithms C and EC are stateful.
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Definition A.6 (NIZK Arguments). A non-interactive zero-knowledge (NIZK) argument ΠNIZK for the
relation R consists of PPT algorithms (Setup,Prove,Verify).

Setup(1κ)→ crs: The setup algorithm takes as input the security parameter 1κ and outputs a common
reference string crs.

Prove(crs, x, w)→ π: The prover’s algorithm takes as input a common reference string crs, a statement x,
and a witness w and outputs a proof π.

Verify(crs, x, π)→ > or ⊥: The verifier’s algorithm takes as input a common reference string, a statement x,
and a proof π and outputs > to indicate acceptance of the proof and ⊥ otherwise.

Definition A.7 (Correctness). We say a NIZK argument ΠNIZK is correct if for all pairs (x,w) ∈ R, if
we run crs← Setup(1κ), then we have

Pr[π ← Prove(crs, x, w) : Verify(crs, x, π) = >] = 1.

Definition A.8 (Soundness). We say a NIZK argument ΠNIZK is sound if for all PPT adversaries A, if
we run crs← Setup(1κ), then we have

Pr[(x, π)← A(1κ, crs) : x 6∈ L ∧ Verify(crs, x, π) = >] = negl(κ).

Definition A.9 (Zero-Knowledge). We say a NIZK argument ΠNIZK is zero-knowledge if for all PPT
adversaries A, there exists a PPT simulator Sim = (Sim1,Sim2) such that if we run crs ← Setup(1κ) and
(crs, τ̄)← Sim1(1κ), then we have∣∣∣Pr[AO0(crs,·,·)(1κ, crs) = 1]− Pr[AO1(c̄rs,τ̄ ,·,·)(1κ, crs) = 1]

∣∣∣ = negl(κ),

where O0(crs, x, w) outputs Prove(crs, x, w) if (x,w) ∈ R and ⊥ otherwise, and O1(crs, τ̄ , x, w) outputs
Sim2(crs, τ̄ , x) if (x,w) ∈ R and ⊥ otherwise.

B Omitted Proofs for Signal-conforming AKE ΠSC-AKE

We prove the security of our Signal-conforming AKE protocol ΠSC-AKE.

Proof of Theorem 4.5. Let A be an adversary that plays the security game GΠSC-AKE(µ, `) with the challenger
C with advantage AdvAKE

ΠSC-AKE
(A) = ε. In order to prove Theorem 4.5, we distinguish between the strategy that

can be taken by the A. Specifically, A’s strategy can be divided into the eight types of strategies listed in
Table 1. Here, each strategy is mutually independent and covers all possible (non-trivial) strategies.25 We
point out that for our specific AKE construction we have stateresp := ⊥ since the responder does not maintain
any states (see Remark 4.1). Therefore, the Type-1 (resp. Type-3, Type-7) strategy is strictly stronger than
the Type-2 (resp. Type-4, Type-8) strategy. We only include the full types of strategies in Table 1 as we
believe it would be helpful when proving other AKE protocols, and note that our proof implicitly handles
both strategies at the same time.

For each possible strategy taken by A, we construct an algorithm that breaks one of the underlying
assumptions by using such an adversary A as a subroutine. More formally, we construct seven algorithms
B1, . . . ,B4 and D1, . . . ,D3 satisfying the following:

1. If A uses the Type-1 (or Type-2) strategy, then B1 succeeds in breaking the IND-CPA security of ΠwKEM
with advantage ≈ 1

µ2`2 ε or D1 succeeds in breaking the security of PRF F with advantage ≈ 1
µ2`2 ε.

25We note that although we can consider an adversary A that makes no reveal queries (i.e., all lsk and state are either 7 or
“-”), we can exclude them without loss of generality since such A can always be modified into an adversary A′ that follows one of
the strategies listed in Table 1.
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2. If A uses the Type-3 (or Type-4) strategy, then B2 succeeds in breaking the IND-CCA security of ΠKEM
with advantage ≈ 1

µ2`ε or D2 succeeds in breaking the security of PRF F with advantage ≈ 1
µ2`ε.

3. If A uses the Type-5 or Type-6 strategy, then B3 succeeds in breaking the EUF-CMA security of ΠSIG
with advantage ≈ 1

µε.

4. If A uses the Type-7 (or Type-8) strategy, then B4 succeeds in breaking the IND-CCA security of ΠKEM
with advantage ≈ 1

µ2`ε or D3 succeeds in breaking the security of PRF F with advantage ≈ 1
µ2`ε.

We present a security proof structured as a sequence of games. Without loss of generality, we assume that
A always issues a Test-query. In the following, let Sj denote the event that b = b′ occurs in game Gj and let
εj := |Pr [Sj ]− 1/2| denote the advantage of the adversary in game Gj . Regardless of the strategy taken by
A, all proofs share a common game sequence G0-G1 as described below.
Game G0. This game is identical to the original security game. We thus have

ε0 = ε.

Game G1. This game is identical to G0, except that we add an abort condition. Let Ecorr be the event that
there exist two partner oracles πsi and πtj that do not agree on the same session key. If Ecorr occurs, then C
aborts (i.e., sets A’s output to be a random bit) at the end of the game.

There are at most µ`/2 responder oracles and each oracle is assigned uniform randomness. From
Theorem 4.4, the probability of error occurring during the security game is at most µ`(δSIG + 2δKEM)/2.
Therefore, Ecorr occurs with probability at most µ`(δSIG + 2δKEM)/2. We thus have

|Pr [S0]− Pr [S1]| ≤ µ`

2 · (δSIG + 2δKEM).

In the following games we assume no decryption error or signature verification error occurs.
We now divide the game sequence depending on the strategy taken by the adversary A. Regardless of A’s

strategy, we prove that ε1 is negligible, which in particular implies that ε is also negligible. Formally, this is
shown in Lemmata B.1 to B.4 provided in their respective subsections below. We first complete the proof of
the theorem. Specifically, by combining all the lemmata together, we obtain the following desired bound:

AdvAKE
ΠSC-AKE (A) ≤ max


µ2`2 · (AdvIND-CPA

wKEM (B1) + AdvPRF
F (D1) + εExt),

µ2` · (AdvIND-CCA
wKEM (B2) + AdvPRF

F (D2) + εExt) + µ`2 ·
(

1
22χKEM + 1

2νKEM

)
,

µ · AdvEUF-CMA
SIG (B3),

µ2` ·
(
AdvIND-CCA

KEM (B4) + AdvPRF
F (D3) + εExt

)
+ µ`2 · 1

2χKEM


+ µ`

2 · (δSIG + 2δKEM)

Here, the running time of the algorithms B1, . . . ,B4 and D1, . . . ,D3 consist essentially the time required to
simulate the security game for A once, plus a minor number of additional operations.

It remains to prove Lemmata B.1 to B.4.
Proof of Lemma B.1: Against Type-1 or Type-2 Adversary.

Lemma B.1. For any QPT adversary A using the Type-1 or Type-2 strategy, there exist QPT algorithms B1
breaking the IND-CPA security of ΠwKEM and D1 breaking the security of PRF F such that

ε1 ≤ µ2`2 ·
(

AdvIND-CPA
wKEM (B1) + AdvPRF

F (D1) + εExt

)
.

Proof of Lemma B.1. We present the rest of the sequence of games from game G1.
Game G2. In this game, at the beginning of the game, C chooses an initiator oracle πŝı̂ and a responder
oracle πt̂̂ uniformly at random from the µ` oracles. Let EtestO be the event that the tested oracle is neither
πŝı̂ nor πt̂̂, or πŝı̂ and πt̂̂ are not partner. Since EtestO is an efficiently checkable event, C aborts as soon as it
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detects that event EtestO occurs.26 C guesses the choice made by A correctly with probability at least 1/µ2`2,
so we have

ε2 ≥
1

µ2`2
ε1.

Game G3. In this game, we modify the way the initiator oracle πŝı̂ responds on its second invocation. In
particular, when πŝı̂ is invoked (on the second time) on input (C,CT , c), it proceeds as in the previous game
except that it uses the key KT that was generated by the responder oracle πt̂̂ rather than using the key
obtained through decrypting CT . Here, conditioned on EtestO not occurring, we are guaranteed that the
responder oracle πt̂̂ generated CT by running (KT ,CT )← wKEM.Encap(ekT ), where ekT is the encapsulation
key that πŝı̂ outputs on the first invocation. This is because otherwise, the oracles πŝı̂ and πt̂̂ will not be
partner oracles. Conditioning on event Ecorr (i.e., decryption failure) not occurring, the two games G2 and G3
are identical. Hence,

ε3 = ε2.

Game G4. In this game, we modify the way the responder oracle πt̂̂ responds. When the responder
oracle πt̂̂ is invoked on input ekT , the game samples a random key KT ←$KSwKEM instead of computing
(KT ,CT )← wKEM.Encap(ekT ). Note that when the initiator oracle πŝı̂ is invoked (on the second time) on
input (C,CT , c), it uses this random key KT . We claim G3 and G4 are indistinguishable assuming the IND-CPA
security of ΠwKEM. To prove this, we construct an algorithm B1 breaking the IND-CPA security as follows.
B1 receives a public parameter ppwKEM, a public key ek∗, and a challenge (K∗,C∗) from its challenger. B1

sets up the public parameter of ΠSC-AKE using ppwKEM and computes (lpki, lski) for all i ∈ [µ] by running the
protocol honestly, and samples (̂ı, ̂, ŝ, t̂) uniformly random from [µ]2 × [`]2. It then invokes A on the public
parameter of ΠSC-AKE and {lpki | i ∈ [µ]} and answers queries made by A as follows:

• Send(i, s, 〈START : role, j〉): If (i, s, j) = (̂ı, ŝ, ̂), then B1 returns ek∗ to A and implicitly sets statesi := dk∗.
Otherwise, B1 responds as in G4.

• Send(j, t,m = ekT ): Let i := Pidtj . Depending on the values of (j, t, i), it performs the following:

– If (j, t) = (̂, t̂) and i 6= ı̂, then πŝı̂ and πt̂̂ cannot be partner oracles. Therefore, since event EtestO
is triggered B1 aborts.

– If (j, t, i) = (̂, t̂, ı̂), then B1 checks if ekT = ek∗. If not, event EtestO is triggered so it aborts.
Otherwise, it proceeds as in G4 except that it sets KT = K∗ and CT = C∗ rather than sampling
them on its own. It then returns the message (C,CT , c).

– If (j, t, i) 6= (̂, t̂, ı̂), then B1 responds as in G4.

• Send(i, s,m = (C,CT , c)): Let j := Pidsi . Depending on the values of (i, s, j), it performs the following:

– If (i, s) = (̂ı, ŝ) and j 6= ̂, then πŝı̂ and πt̂̂ cannot be partner oracles. Therefore, since event EtestO
is triggered B1 aborts.

– If (i, s, j) = (̂ı, ŝ, ̂), then B1 checks if CT = C∗. If not, event EtestO is triggered so it aborts.
Otherwise, it responds as in G4.

– If (i, s, j) 6= (̂ı, ŝ, ̂), then B1 responds as in G4.

• RevLTK(i), RegisterLTK(i), RevState(i, s), RevSessKey(i, s): B1 proceeds as in the previous game. Here,
note that since A follows the Type-1 or Type-2 strategy, B1 can answer all the RevState-query. Namely,
A never queries RevState(̂ı, ŝ) (i.e., stateŝı̂ := dk∗) conditioning on EtestO not occurring, which is the
only query that B1 cannot answer.

26For example, C can efficiently notice if the two oracles πŝ
ı̂ and πt̂

̂ become non-partners even before A makes a Test-query by
checking the input-output of each oracles.
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• Test(i, s): B1 responds as in G4. Here, in case (i, s) 6∈
{

(̂ı, ŝ), (̂, t̂)
}
, then event EtestO is triggered so it

aborts.

Finally, if A outputs a guess b′, B1 outputs b′. It can be checked that B1 perfectly simulates game G3
(resp. G4) to A when the challenge K∗ is the real key (resp. a random key). Thus we have

|Pr [S3]− Pr [S4]| ≤ AdvIND-CPA
wKEM (B1).

Game G5. In this game, we modify how the PRF key K2 is generated by the tested oracle and its partner
oracle. Instead of computing K2 ← Exts(KT ), both oracles use the same randomly sampled K2←$FK. Due
to the modification we made in the previous game, KT is chosen uniformly at random from KSwKEM so KT
has log2(|KSwKEM|) ≥ γKEM min-entropy. Then, by the definition of the strong (γKEM, εExt)-extractor Ext, we
have

|Pr [S4]− Pr [S5]| ≤ εExt.

Game G6. In this game, we modify how the session key k is generated by the tested oracle. Instead of
computing k‖k̃ ← FK1(sid)⊕ FK2(sid), the tested oracle (which is either πŝı̂ or πt̂̂ conditioned on event EtestO

not occurring) computes the session key as k‖k̃ ← FK1(sid)⊕ x, where x is chosen uniformly at random from
{0, 1}κ+d. Since K2 is chosen uniformly and hidden from the views of the adversary A, games G5 and G6 are
indistinguishable by the security of the PRF.27 In particular, we can construct a PRF adversary D1 that uses
A as a subroutine such that

|Pr [S5]− Pr [S6]| ≤ AdvPRF
F (D1).

In G6, the session key in the tested oracle is uniformly random. Thus, even an unbounded adversary A
cannot have distinguishing advantages. Therefore, Pr [S6] = 1/2. Combining everything together, we have

ε1 ≤ µ2`2 ·
(

AdvIND-CPA
wKEM (B1) + AdvPRF

F (D1) + εExt

)
.

Proof of Lemma B.2: Against Type-3 or Type-4 Adversary.

Lemma B.2. For any QPT adversary A using the Type-3 or Type-4 strategy, there exist QPT algorithms B2
breaking the IND-CCA security of ΠKEM and D2 breaking the security of PRF F such that

ε1 ≤ µ2` ·
(

AdvIND-CCA
KEM (B2) + AdvPRF

F (D2) + εExt

)
+ µ`2 ·

(
1

22χKEM
+ 1

2νKEM

)
.

Proof of Lemma B.2. We present the rest of the sequence of games from game G1.
Game G2. This game is identical to G1, except that we add another abort condition. Let Euniq be the event
that there exists an oracle that has more than one partner oracles. If Euniq occurs, then C aborts. Since G1
and G2 proceed identically unless Euniq occurs, we have

|ε1 − ε2| ≤ Pr [Euniq] .

We claim
Pr [Euniq] ≤ µ`2 ·

(
1

22χKEM
+ 1

2νKEM

)
.

Fix j ∈ [µ] and consider the set of oracles Sj = {πsi | Pidsi = j}. For any πsi ∈ Sj , if there exist two oracles πtj
and πt′j with t 6= t′ ∈ [`] that are partners of πsi , then sidsi = sidtj = sidt

′

j holds. We distinguish between the
following cases.

27We note that for Lemma B.1 we do not require the full power of the PRF; a pseudorandom generator (PRG) would have
sufficed since the key K2 is used nowhere else in the game.
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Case 1. We first consider the case πsi is an initiator and πtj and πt
′

j are responders. Let ekT be the
ephemeral encapsulation key generated by πsi . In this case, Euniq occurs if the responder oracles πtj and
πt
′

j generate the same ciphertext with respect to eki and ekT . Since eki and ekT are independently and
honestly generated by the game and each responder oracle is assigned uniform randomness, the probability
of a ciphertext collision is upper bounded by `2/22χKEM , where recall χKEM is the ciphertext min-entropy of
ΠwKEM and ΠKEM. Taking the union bound over all j ∈ [µ], we conclude that Case 1 occurs with probability
at most µ`2/22χKEM .

Case 2. We next consider the case πsi is a responder and πtj and πt′j are initiators. In this case, Euniq

occurs if the initiator oracles πtj and πt′j generate the same ephemeral encapsulation key. Since each initiator
oracle samples an encapsulation key independently, the probability of an encapsulation key collision is upper
bounded by `2/2νKEM , where recall νKEM is the encapsulation key min-entropy of ΠwKEM. Taking the union
bound over all j ∈ [µ], we conclude that Case 2 occurs with probability at most µ`2/2νKEM .

The claim can be shown by combining the two probabilities from Case 1 and Case 2. In the following
games we assume every oracle has a unique partner oracle if it exists.
Game G3. In this game, at the beginning of the game, C chooses a random party Pı̂ from the µ parties and
a random responder oracle πt̂̂ from the µ` oracles. Let EtestO be the event where ¬EtestO denotes the event
that either the tested oracle is πŝı̂ for some s ∈ [`] and its partner oracle is πt̂̂, or the tested oracle is πt̂̂ and
its peer is Pı̂. Since EtestO is an efficiently checkable event, C aborts as soon as it detects that event EtestO
occurs. C guesses the choice made by A correctly with probability 1/µ2`, so we have

ε3 = 1
µ2`

ε2.

Game G4. In this game, we modify the way the initiator oracle πsı̂ for any s ∈ [`] responds on its second
invocation. Let (K,C) be the ΠKEM key-ciphertext pair generated by oracle πt̂̂. Then, when πsı̂ is invoked
(on the second time) on input (C′,CT , c), it first checks if C′ = C. If so, it proceeds as in the previous game
except that it uses the key K that was generated by πt̂̂ rather than using the key obtained through decrypting
C′. Otherwise, if C′ 6= C, then it proceeds exactly as in the previous game. Conditioning on event Ecorr (i.e.,
decryption failure) not occurring, the two games G3 and G4 are identical. Hence,

ε4 = ε3.

Game G5. In this game, we modify the way the responder oracle πt̂̂ responds. When the responder oracle πt̂̂
is invoked on input ekT , it samples a random key K←$KSKEM instead of computing (K,C)← KEM.Encap(ekı̂).
Note that due to the modification we made in the previous game, when the initiator oracle πsı̂ for any s ∈ [`]
is invoked (on the second time) on input (C′,CT , c) for C′ = C, it uses the random key K generated by oracle
πt̂̂. We claim G4 and G5 are indistinguishable assuming the IND-CCA security of ΠKEM. To prove this, we
construct an algorithm B2 breaking the IND-CCA security as follows.
B2 receives a public parameter ppKEM, a public key ek∗, and a challenge (K∗,C∗) from its challenger.

B2 then samples a random (̂ı, ̂, t̂)←$ [µ]2 × [`], sets up the public parameter of ΠSC-AKE using ppKEM, and
generates the long-term key pairs as follows. For party Pı̂, B2 runs (vkı̂, skı̂)← SIG.KeyGen(ppSIG) and sets
the long-term public key as lpkı̂ := (ek∗, vkı̂) and implicitly sets the long-term secret key as lskı̂ := (dk∗, skı̂),
where note that B2 does not know dk∗. For all the other parties i ∈ [µ\ı̂], B2 computes the long-term key
pairs (lpki, lski) as in G5. Finally, B2 invokes A on input the public parameter of ΠSC-AKE and {lpki | i ∈ [µ]}
and answers the queries made by A as follows:

• Send(i, s, 〈START : role, j〉): B2 responds as in G5.

• Send(j, t,m = ekT ): Let i := Pidtj . Depending on the values of (j, t, i), it performs the following:

– If (j, t, i) = (̂, t̂, ı̂), then B2 responds as in G5 except that it sets (K,C) := (K∗,C∗) rather than
generating them on its own. It then returns the message (C∗,CT , c).

37



– If (j, t, i) 6= (̂, t̂, ı̂), then B2 responds as in G5.

• Send(i, s,m = (C,CT , c)): Depending on the value of i, it performs the following:

– If i = ı̂, then B2 checks if C = C∗. If so, it responds as in G5 except that it sets K := K∗. Otherwise,
if C 6= C∗, then it queries the decapsulation oracle on C and receives back K′. B2 then responds as
in G5 except that it sets K := K′.

– If i 6= ı̂, then B2 responds as in G5.

• RevLTK(i), RegisterLTK(i), RevState(i, s), RevSessKey(i, s): B2 responds as in G5. Here, note that since
A follows the Type-3 or Type-4 strategy, B2 can answer all the RevLTK-query. Namely, A never queries
RevLTK(̂ı) (i.e., lskı̂ := (dk∗, skı̂)) conditioning on EtestO not occurring, which is the only query that B2
cannot answer.

• Test(i, s): B2 responds to the query as the definition. Here, in case i 6= ı̂ or (i, s) 6= (̂, t̂), then event
EtestO is triggered so it aborts.

If A outputs a guess b′, B2 outputs b′. It can be checked that B2 perfectly simulates game G4 (resp. G5)
to A when the challenge K∗ is the real key (resp. a random key). Thus we have

|Pr [S4]− Pr [S5]| ≤ AdvIND-CCA
KEM (B2).

Game G6. In this game, whenever we need to derive K∗1 ← Exts(K∗), we instead use a uniformly and
randomly chosen PRF key K∗1←$FK (fixed once and for all), where K∗ is the KEM key chosen by oracle πt̂̂.
Due to the modification we made in the previous game, K∗ is chosen uniformly at random from KSKEM so K
has log2(|KSKEM|) ≥ γKEM min-entropy. Then, by the definition of the strong (γKEM, εExt)-extractor Ext, we
have

|Pr [S5]− Pr [S6]| ≤ εExt.

Game G7. In this game, we sample a random function RF and whenever we need to compute FK∗1 (sid) for any
sid, we instead compute RF(K∗1, sid). Due to the modification we made in the previous game, K∗1 is sampled
uniformly from FK. Therefore, the two games can be easily shown to be indistinguishable assuming the
pseudo-randomness of the PRF. In particular, we can construct a PRF adversary D2 such that

|Pr [S6]− Pr [S7]| ≤ AdvPRF
F (D2).

It remains to show that the session key output by the tested oracle in the game G7 is uniformly random
regardless of the challenge bit b ∈ {0, 1} chosen by the game. We consider the case where b = 0 and prove that
the honestly generated session key by the tested oracle is distributed uniformly random. First conditioning
on event EtestO not occurring, it must be the case that the tested oracle (and its partner oracle) prepares the
session key as k∗‖k̃ ← RF(K∗1, sid

∗)⊕ FK2(sid∗) for some sid∗. That is, K∗1 sampled by the responder oracle
πt̂̂ is used to compute the session key. Next, conditioning on event Euniq not occurring, the only oracles
that share the same sid∗ must be the tested oracle and its partner oracle since otherwise it would break the
uniqueness of partner oracles. Therefore, we conclude that RF(K∗1, sid

∗) is only used to compute the session
key of the tested oracle and its partner oracle. Since the output of RF is distributed uniformly random for
different inputs, we conclude that Pr [S7] = 1/2. Combining all the arguments together, we obtain

ε1 ≤ µ2` ·
(

AdvIND-CCA
KEM (B2) + AdvPRF

F (D2) + εExt

)
+ µ`2 ·

(
1

22χKEM
+ 1

2νKEM

)
.

Proof of Lemma B.3: Against Type-5 or Type-6 Adversary.
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Lemma B.3. For any QPT adversary A using the Type-5 or Type-6 strategy, there exists a QPT algorithm
B3 breaking the EUF-CMA of ΠSIG such that

ε1 ≤ µ · AdvEUF-CMA
SIG (B3).

Proof of Lemma B.3. We present the rest of the sequence of games from game G1.
Game G2. In this game, at the beginning of the game, C chooses a party P̂ uniformly at random from the
µ parties. Let EtestO be the event that the peer of the tested oracle is not P̂. If event EtestO occurs, C aborts.
Since C guesses the choice made by A correctly with probability 1/µ, we have

ε2 = 1
µ
ε1.

Game G3. This game is identical to G2, except that we add an abort condition. Let S be a list of
message-signature pairs that P̂ generated as being a responder oracle. That is, every time πt̂ for some t ∈ [`]
is invoked as a responder, it updates the list S by appending the message-signature pair (sidt̂, σt̂) that it
generates. Then, when an initiator oracle πsi for any (i, s) ∈ [µ]× [`] is invoked on input (C,CT , c) from party
P̂ (i.e., Pidsi = ̂), it first computes sidsi and σ as in the previous game and checks if SIG.Verify(vk̂, sidsi , σ) = 1
and (sidsi , σ) ∈ S. If not, the game aborts. Otherwise, it proceeds as in the previous game. We call the event
that abort occurs as Esig. Since the two games are identical until abort, we have

|Pr [S2]− Pr [S3]| ≤ Pr [Esig] .

Before, bounding Pr [Esig], we finish the proof of the lemma. We show that no adversary A following the
Type-5 or Type-6 strategy has winning advantage in game G3, i.e., Pr[S3] = 1/2. To see this, first let us
assume A issued Test(i∗, s∗) and received a key that is not a ⊥. That is πs∗i∗ is in the accept state. Due to
the modification we made in game G2 and by the definition of the Type-5 or Type-6 strategy, πs∗i∗ has no
partner oracle πt̂ for any t ∈ [`] conditioning on EtestO not occurring. On the other hand, if πs∗i∗ is in the
accept state, then event Esig must have not triggered. Consequently, there exists some oracle πt̂ that output
(sids

∗

i∗ , σ
∗). Parsing sids

∗

i∗ as Pi∗‖P̂‖lpki∗‖lpk̂‖ek∗T ‖C∗‖C∗T , this implies that πt̂ and πs
∗

i∗ are partner oracles.
Since this forms a contradiction, A can only receive ⊥ when it issues Test(i∗, s∗). Hence, since the challenge
bit b is statistically hidden from A, we have Pr[S3] = 1/2.

It remains to bound Pr [Esig]. We do this by constructing an algorithm B3 against the EUF-CMA security
of ΠSIG. The description of B3 follows: B3 receives the public parameter ppSIG and the challenge verification
key vk∗. B3 sets up the public parameter of ΠSC-AKE as in G2 using ppSIG. B3 then samples ̂ randomly from
[µ], runs (dk̂, ek̂)← KEM.KeyGen(ppKEM), and sets the long-term public key of party P̂ as lpk̂ := (ek̂, vk∗).
The long-term secret key is implicitly set as lsk̂ := (dk̂, sk∗), where sk∗ is unknown to B3. For the rest of the
parties Pi for i ∈ [µ\̂], B3 generates (lpki, lski) as in G2. Finally, B3 invokes A on input the public parameter
of ΠSC-AKE and {lpki | i ∈ [µ]} and answers the queries by A as follows:

• Send(i, s, 〈START : role, j〉): B3 responds as in G2.

• Send(j, t,m = ekT ): Depending on the value of j, it performs the following:

– If j = ̂, then B3 prepares sidt̂ as in G2, and then sends sidt̂ to its signing oracle and receives back
a signature σ′ for message sidt̂ under sk∗. B3 then responds as in G2 except that it sets σ := σ′.

– If j 6= ̂, then B3 responds as in G2.

• Send(i, s,m = (C,CT , c)): B3 responds as in G2.

• RevLTK(i), RegisterLTK(i), RevState(i, s), RevSessKey(i, s): B3 responds as in G2. Here, note that since
A follows the Type-5 or Type-6 strategy, B3 can answer all the RevLTK-query. Namely, A never queries
RevLTK(̂) (i.e., lsk̂ := (dk̂, sk∗)) conditioning on EtestO not occurring, which is the only query that B3
cannot answer.
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• Test(i, s): B3 responds as in G2. Here, in case Pidsi 6= ̂, then event EtestO is triggered so it aborts.

It is clear that B3 perfectly simulates the view of game G2 to A. Below, we analyze the probability that B3
breaks the EUF-CMA security of ΠSIG and relate it to Pr[Esig].

We assume A issues Test(i∗, s∗). Let the message sent by the initiator oracle πs∗i∗ be ek∗T and the message
received by πs∗i∗ be (C∗,C∗T , c∗). Let σ∗ be the signature recovered from c∗. Then, by the definition of the
Type-5 or Type-6 strategy and conditioned on EtestO not occurring, the tested oracle πs∗i∗ satisfies the following
conditions:

• roles
∗

i∗ = init and Pids
∗

i∗ = ̂,

• πs∗i∗ is in the accept state. This implies SIG.Verify(vk∗,Pi∗‖P̂‖lpki∗‖lpk̂‖ek∗T ‖C∗‖C∗T , σ∗) = 1 holds,

• P̂ is not corrupted,

• πs∗i∗ has no partner oracles.

Since πs∗i∗ has no partner oracles, there exists no responder oracle πt̂ that has received ek∗T from Pi∗ that sent
(C∗,C∗T ). In other words, there is no oracle πt̂ that has signed on the message Pi∗‖P̂‖lpki∗‖lpk̂‖ek∗T ‖C∗‖C∗T .
Notice that this is exactly the event Esig; an initiator oracle πs∗i∗ receives a signature that was not signed by
an oracle πt̂ for any t ∈ [`]. Therefore, we have Pr[Esig] = AdvEUF-CMA

SIG (B3). Combining everything together,
we conclude

ε1 ≤ µ · AdvEUF-CMA
SIG (B3).

Proof of Lemma B.4: Against Type-7 or Type-8 Adversary.

Lemma B.4. For any QPT adversary A using the Type-7 or Type-8 strategy, there exist QPT algorithms B4
breaking the IND-CCA security of ΠKEM and D3 breaking the security of PRF F such that

ε1 ≤ µ2` ·
(

AdvIND-CCA
KEM (B4) + AdvPRF

F (D3) + εExt

)
+ µ`2 · 1

2χKEM
.

Proof of Lemma B.4. We present the rest of the sequence of games from game G1.
Game G2. This game is identical to G1, except that we add another abort condition. Let Ecoll be the event
that there exists two responder oracles πtj and πt

′

j for any j ∈ [µ] and t 6= t′ ∈ [`] such that they output the
same ΠKEM ciphertext. That is, there exists two oracles πtj and πt′j that output (C,CT , c) and (C′,C′T , c′)
such that C = C′. Here, we only consider the case where Pidtj and Pidt

′

j correspond to parties generated by
the game (and not parties added by the adversary). If Ecoll occurs, then C aborts. Since G1 and G2 proceed
identically unless Ecoll occurs, we have

|ε1 − ε2| ≤ Pr [Ecoll] .

We claim
Pr [Ecoll] ≤ µ`2 ·

1
2χKEM

.

Since each oracles πtj are initialized with uniform random and independent randomness and eki is honestly
generated, where i = Pidtj , each ciphertext C output by oracle πtj has χKEM-min entropy due to the χKEM-high
ciphertext min-entropy of ΠKEM. Fixing on one j ∈ [µ], the probability of a collision occurring is upper
bounded by µ2/2χKEM . Then, taking the union bound on all the parties, we obtain the claimed bound.
Game G3. In this game, before starting the game, C chooses a responder oracle πt̂̂ and a party Pı̂ uniformly
at random from µ` oracles and µ parties, respectively. Let EtestO be the event that the tested oracle is not πt̂̂
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or the peer of the tested oracle is not Pı̂. Since EtestO is an efficiently checkable event, C aborts as soon as it
detects that event EtestO occurs. C guesses the choice made by A correctly with probability 1/µ2`, so we have

ε3 = 1
µ2`

ε2.

The following games G4 to G7 is almost identical to those of proof in Lemma B.2. The subtle difference is
that the tested oracle does not have a partner oracle. We include the game transition for completeness.
Game G4. In this game, we modify the way the initiator oracle πsı̂ for any s ∈ [`] responds on its second
invocation. Let (K,C) be the ΠKEM key-ciphertext pair generated by oracle πt̂̂. Then, when πsı̂ is invoked
(on the second time) on input (C′,CT , c), it first checks if C′ = C. If so, it proceeds as in the previous game
except that it uses the key K that was generated by πt̂̂ rather than using the key obtained through decrypting
C′. Otherwise, if C′ 6= C, then it proceeds exactly as in the previous game. Conditioning on event Ecorr (i.e.,
decryption failure) not occurring, the two games G3 and G4 are identical. Hence,

ε4 = ε3.

Game G5. In this game, we modify the way the responder oracle πt̂̂ responds. When the responder oracle πt̂̂
is invoked on input ekT , it samples a random key K←$KSKEM instead of computing (K,C)← KEM.Encap(ekı̂).
Note that due to the modification we made in the previous game, when the initiator oracle πsı̂ for any s ∈ [`]
is invoked (on the second time) on input (C′,CT , c) for C′ = C, it uses the random key K generated by oracle
πt̂̂. We claim G4 and G5 are indistinguishable assuming the IND-CCA security of ΠKEM. To prove this, we
construct an algorithm B4 breaking the IND-CCA security as follows.
B4 receives a public parameter ppKEM, a public key ek∗, and a challenge (K∗,C∗) from its challenger.

B4 then samples a random (̂ı, ̂, t̂)←$ [µ]2 × [`], sets up the public parameter of ΠSC-AKE using ppKEM, and
generates the long-term key pairs as follows. For party Pı̂, B4 runs (vkı̂, skı̂)← SIG.KeyGen(1κ) and sets the
long-term public key as lpkı̂ := (ek∗, vkı̂) and implicitly sets the long-term secret key as lskı̂ := (dk∗, skı̂),
where note that B4 does not know dk∗. For all the other parties i ∈ [µ\ı̂], B4 computes the long-term key
pairs (lpki, lski) as in G5. Finally, B4 invokes A on input the public parameter of ΠSC-AKE and {lpki | i ∈ [µ]}
and answers the queries made by A as follows:

• Send(i, s, 〈START : role, j〉): B4 proceeds as in G5.

• Send(j, t,m = ekT ): Let i := Pidtj . Depending on the values of (j, t, i), it performs the following:

– If (j, t, i) = (̂, t̂, ı̂), then B4 responds as in G5 except that it sets (K,C) := (K∗,C∗) rather than
generating them on its own. It then returns the message (C∗,CT , c).

– If (j, t, i) 6= (̂, t̂, ı̂), then B4 responds as in G5.

• Send(i, s,m = (C,CT , c)): Depending on the value of i, it performs the following:

– If i = ı̂, then B4 checks if C = C∗. If so, it responds as in G5 except that it sets K := K∗. Otherwise,
if C 6= C∗, then it queries the decapsulation oracle on C and receives back K′. B4 then responds as
in G5 except that it sets K := K′.

– If i 6= ı̂, then B4 responds as in G5.

• RevLTK(i), RegisterLTK(i), RevState(i, s), RevSessKey(i, s): B4 responds as in G5. Here, note that since
A follows the Type-7 or Type-8 strategy, B4 can answer all the RevLTK-query. Namely, A never queries
RevLTK(̂ı) (i.e., lskı̂ := (dk∗, skı̂)) conditioning on EtestO not occurring, which is the only query that B4
cannot answer.

• Test(i, s): B4 responds to the query as the definition. Here, in case (i, s) 6= (̂, t̂), then event EtestO is
triggered so it aborts.
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If A outputs a guess b′, B4 outputs b′. It can be checked that B4 perfectly simulates game G4 (resp. G5)
to A when the challenge K∗ is the real key (resp. a random key). Thus we have

|Pr [S4]− Pr [S5]| ≤ AdvIND-CCA
KEM (B4).

Game G6. In this game, whenever we need to derive K∗1 ← Exts(K∗), we instead use a uniformly and
randomly chosen PRF key K∗1←$FK (fixed once and for all), where K∗ is the KEM key chosen by oracle πt̂̂.
Due to the modification we made in the previous game, K∗ is chosen uniformly at random from KSKEM so K
has log2(|KSKEM|) ≥ γKEM min-entropy. Then, by the definition of the strong (γKEM, εExt)-extractor Ext, we
have

|Pr [S5]− Pr [S6]| ≤ εExt.

Game G7. In this game, we sample a random function RF and whenever we need to compute FK∗1 (sid) for any
sid, we instead compute RF(K∗1, sid). Due to the modification we made in the previous game, K∗1 is sampled
uniformly from FK. Therefore, the two games can be easily shown to be indistinguishable assuming the
pseudo-randomness of the PRF. In particular, we can construct a PRF adversary D3 such that

|Pr [S6]− Pr [S7]| ≤ AdvPRF
F (D3).

The only difference from the proof of Lemma B.2 is how we argue Pr[S7] = 1/2. Details follow.
It remains to show that the session key outputted by the tested oracle in the game G7 is uniformly

random regardless of the challenge bit b ∈ {0, 1} chosen by the game. We consider the case where b = 0
and prove that the honestly generated session key by the tested oracle is distributed uniformly random.
First conditioning on event EtestO not occurring, it must be the case that the tested oracle πt̂̂ prepares the
session key as k∗‖k̃ ← RF(K∗1, sid

∗)⊕ FK2(sid∗) for some sid∗. Here, recall K∗1 is the random PRF key sampled
by the oracle πt̂̂ (see game G6). Next, since the tested oracle has no partner oracle (by definition of the
Type-7 and Type-8 strategy), there are no oracles πsi such that i 6= i that runs RF(K∗1, ·) on input sid∗.
Moreover, conditioning on event Ecoll not occurring, no oracles πtı̂ for t 6= t̂ run RF(K∗1, ·) on input sid∗ as well
since (C,CT ) output by these oracles must be distinct from what πt̂̂ outputs. Therefore, we conclude that
RF(K∗1, sid

∗) is only used to compute the session key of the tested oracle and used nowhere else. Since the
output of RF is distributed uniformly random for different inputs, we conclude that Pr [S7] = 1/2. Combining
all the arguments together, we obtain

ε1 ≤ µ2` ·
(

AdvIND-CCA
KEM (B2) + AdvPRF

F (D2) + εExt

)
+ µ`2 · 1

2χKEM
.

C Omitted Proofs for Deniable Signal-Conforming AKE ΠSC-DAKE

In this section, we provide the proofs of the correctness and security of our deniable Signal-conforming AKE
protocol ΠSC-DAKE.

C.1 Correctness of Deniable Signal-Conforming AKE ΠSC-DAKE

We prove the correctness of our deniable Signal-Conforming AKE protocol ΠSC-DAKE.

Proof of Theorem 6.5. This proof is similar to the proof of Theorem 4.4. It is clear that an initiator oracle
and a responder oracle become partners when they execute the protocol faithfully. Moreover, if no correctness
error occurs in the underlying KEM schemes and ring signature scheme, the partner oracles compute an
identical session key. Since each oracle is assigned to uniform randomness, the probability that a correctness
error occurs in one of the underlying schemes is bounded by δRS + 2δKEM. Since there are at most µ`/2
responder oracles, the AKE protocol is correct except with probability µ` · (δRS + 2δKEM)/2.
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C.2 Security of Deniable Signal-Conforming AKE ΠSC-DAKE

We prove the security of our deniable Signal-Conforming AKE protocol ΠSC-DAKE.

Proof of Theorem 6.6. Let A be an adversary that plays the security game GΠSC-DAKE(µ, `) with the challenger
C with advantage AdvAKE

ΠSC-DAKE
(A) = ε. The bulk of the proof is identical to the proof of Theorem 4.5 for the

(non-deniable) protocol ΠSC-AKE. Namely, we divide the strategy that can be taken by A (listed in Table 1)
and we construct an algorithm that breaks one of the underlying assumptions by using such an A as a
subroutine. Formally, we construct seven algorithms B1, . . . ,B4 and D1, . . . ,D3 satisfying the following:

1. If A uses the Type-1 (or Type-2) strategy, then B1 succeeds in breaking the IND-CPA security of ΠwKEM
with advantage ≈ 1

µ2`2 ε or D1 succeeds in breaking the security of PRF F with advantage ≈ 1
µ2`2 ε.

2. If A uses the Type-3 (or Type-4) strategy, then B2 succeeds in breaking the IND-CCA security of ΠKEM
with advantage ≈ 1

µ2`ε or D2 succeeds in breaking the security of PRF F with advantage ≈ 1
µ2`ε.

3. If A uses the Type-5 or Type-6 strategy, then B3 succeeds in breaking the unforgeability of ΠRS with
advantage ≈ ε.

4. If A uses the Type-7 (or Type-8) strategy, then B4 succeeds in breaking the IND-CCA security of ΠKEM
with advantage ≈ 1

µ2`ε or D3 succeeds in breaking the security of PRF F with advantage ≈ 1
µ2`ε.

We present a security proof structured as a sequence of games. Without loss of generality, we assume that
A always issues a Test-query. In the following, let Sj denote the event that b = b′ occurs in game Gj and let
εj := |Pr [Sj ]− 1/2| denote the advantage of the adversary in game Gj . Regardless of the strategy taken by
A, all proofs share a common game sequence G0-G1 as described below. Although they are identical to those
of Theorem 4.5, we provide them for completeness.
Game G0. This game is identical to the original security game. We thus have

ε0 = ε.

Game G1. This game is identical to G0, except that we add an abort condition. Let Ecorr be the event that
there exist two partner oracles πsi and πtj that do not agree on the same session key. If Ecorr occurs, then C
aborts (i.e., sets A’s output to be a random bit) at the end of the game.

There are at most µ`/2 responder oracles and each oracle is assigned uniform randomness. From Theo-
rem 6.5, the probability of error occurring during the security game is at most µ`(δRS + 2δKEM)/2. Therefore,
Ecorr occurs with probability at most µ`(δRS + 2δKEM)/2. We thus have

|Pr [S0]− Pr [S1]| ≤ µ`

2 · (δRS + 2δKEM).

In the following games we assume no decryption error or signature verification error occurs.
We now divide the game sequence depending on the strategy taken by the adversary A. Regardless of A’s

strategy, we prove that ε1 is negligible, which in particular implies that ε is also negligible. Formally, this is
shown in Lemmata C.1 to C.4 provided below. We first complete the proof of the theorem. Specifically, by
combining all the lemmata together, we obtain the following desired bound:

AdvAKE
ΠSC-DAKE (A) ≤ max


µ2`2 · (AdvIND-CPA

wKEM (B1) + AdvPRF
F (D1) + εExt),

µ2` · (AdvIND-CCA
wKEM (B2) + AdvPRF

F (D2) + εExt) + µ`2 ·
(

1
22χKEM + 1

2νKEM

)
,

AdvUnf
RS (B3),

µ2` ·
(
AdvIND-CCA

KEM (B4) + AdvPRF
F (D3) + εExt

)
+ µ`2 · 1

2χKEM


+ µ`

2 · (δRS + 2δKEM).

Here, the running time of the algorithms B1, . . . ,B4 and D1, . . . ,D3 consist essentially the time required to
simulate the security game for A once, plus a minor number of additional operations.
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It remains to prove Lemmata C.1 to C.4. Since the proof of Lemmata C.2 to C.4 is a direct consequence of
the proof of the corresponding Lemmata B.1, B.2 and B.4 of Theorem 4.5,28 we focus on proving Lemma C.1
below.

Lemma C.1. For any QPT adversary A using the Type-5 or Type-6 strategy, there exists a QPT algorithm
B3 breaking the unforgeability of ΠRS such that

ε1 ≤ AdvUnf
RS (B3).

Proof of Lemma C.1. We present the rest of the sequence of games from game G1.
Game G2. This game is identical to G1, except that we add an abort condition. Let Sj be a list of message-
signature pairs that Pj generated as being a responder oracle. That is, every time πtj for some t ∈ [`] is invoked
as a responder, it updates the list Sj by appending the message-signature pair (sidtj , σtj) that it generates.
Then, when an initiator oracle πsi for any (i, s) ∈ [µ]× [`] is invoked on input (C,CT , c) from party Pj (i.e.,
Pidsi = j), it first computes sidsi and σ as in the previous game and checks if RS.Verify({vkT , vkj} , sidsi , σ) = 1
and (sidsi , σ) ∈ Sj . If not, the game aborts. Otherwise, it proceeds as in the previous game. We call the event
that abort occurs as Esig. Since the two games are identical until abort, we have

|Pr [S2]− Pr [S3]| ≤ Pr [Esig] .

Before, bounding Pr [Esig], we finish the proof of the lemma. We show that no adversary A following the
Type-5 or Type-6 strategy has winning advantage in game G2, i.e., Pr[S2] = 1/2. To see this, first let us
assume A issued Test(i∗, s∗) and received a key that is not a ⊥. In other words, πs∗i∗ is in the accept state.
By the definition of the Type-5 or Type-6 strategy, πs∗i∗ has no partner oracle πtj for any (j, t) ∈ [µ] × [`].
On the other hand, if πs∗i∗ is in the accept state, then event Esig must have not triggered. Consequently,
there exists some oracle πtj that output (sids

∗

i∗ , σ
∗). Parsing sids

∗

i∗ as Pi∗‖Pj‖lpki∗‖lpkj‖ek∗T ‖vk∗T ‖C∗‖C∗T , this
implies that πtj and πs

∗

i∗ are partner oracles. Since this forms a contradiction, A can only receive ⊥ when it
issues Test(i∗, s∗). Hence, since the challenge bit b is statistically hidden from A, we have Pr[S2] = 1/2.

It remains to bound Pr [Esig]. We do this by constructing an algorithm B3 against the unforgeability
of ΠRS. The description of B3 follows: B3 receives the public parameter ppRS and µ+ µ` verification keys
vk1, . . . , vkµ and vk1

1, . . . , vk`µ. B3 sets up the public parameter of ΠSC-DAKE as in game G2 using ppRS. B3
then runs (dki, eki)← KEM.KeyGen(ppKEM) and sets the long-term public key of party Pi as lpki := (eki, vki).
The long-term secret key is implicitly set as lski := (dki, ski), where ski is unknown to B3. Finally, B3 invokes
A on input the public parameter of ΠSC-DAKE and {lpki | i ∈ [µ]} and answers the queries by A as follows:

• Send(i, s, 〈START : role, j〉): B3 responds as in G1 except that it sets vkT := vksi .

• Send(j, t,m = (ekT , vkT )): B3 responds as in G1 except that rather than constructing the signature
σ on its own, it sends (sign, j, sidtj , {vkT , vkj}) to its signing oracle and uses the signature σ′ that it
receives.

• Send(i, s,m = (C,CT , c)): B3 responds as in G1.

• RevLTK(i): B3 sends (corrupt, i) to its corruption oracle and receives back a signing key sk′i. B3 then
sets ski := sk′i and returns lski = (dki, ski).

• RevState(i, s), RevSessKey(i, s): B3 responds as in G1.

• Test(i, s): B3 responds as in G1.

It is clear that B3 perfectly simulates the view of game G2 to A. Below, we analyze the probability that B3
breaks the unforgeability of ΠRS and relate it to Pr[Esig].

We assume A issues Test(i∗, s∗). Let the message sent by the initiator oracle πs∗i∗ be (ek∗T , vk∗T ) and the
message received by πs∗i∗ be (C∗,C∗T , c∗). Let σ∗ be the signature recovered from c∗. Then, by the definition
of the Type-5 or Type-6 strategy, the tested oracle πs∗i∗ satisfies the following conditions:

28Note that Lemma C.2 (resp. Lemma C.3, Lemma C.4) corresponds to Lemma B.1 (resp. Lemma B.2, Lemma B.4).
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• roles
∗

i∗ = init,

• Pj is not corrupted where Pids
∗

i∗ = j and j ∈ [µ],

• πs∗i∗ is in the accept state. This implies RS.Verify({vk∗T , vkj} ,Pi∗‖Pj‖lpki∗‖lpkj‖ek∗T ‖vk∗T ‖C∗‖C∗T , σ∗) =
1 holds,

• πs∗i∗ has no partner oracles.

Since Pj is not corrupted, A has never queried RevLTK(j)-query. Moreover, since an honest initiator
discards sk∗T on generation, B3 never uses them for simulation. These two facts imply that (corrupt, j) and
(corrupt, (i, T )) has never been queried, where (corrupt, (i, T )) is a query regarding the verification key vks

∗

i∗ . In
particular, the ring {vk∗T , vkj} consists of non-corrupted verification keys. Moreover, since πs∗i∗ has no partner
oracles, there exists no responder oracle πtj that has received (ek∗T , vk∗T ) from Pi∗ and sent (C∗,C∗T ). In other
words, there is no oracle πtj that has signed on the message Pi∗‖Pj‖lpki∗‖lpkj‖ek∗T ‖vk∗T ‖C∗‖C∗T . Notice that
this is exactly the event Esig; an initiator oracle πs∗i∗ receives a signature that was not signed by an oracle πtj
for any t ∈ [`]. Therefore, we have Pr[Esig] = AdvUnf

RS (B3).
Combining everything together, we conclude

ε1 ≤ AdvUnf
RS (B3).

For completeness, we state the remaining Lemmata C.2 to C.4 and provide a proof sketch.

Lemma C.2. For any QPT adversary A using the Type-1 or Type-2 strategy, there exist QPT algorithms B1
breaking the IND-CPA security of ΠwKEM and D1 breaking the security of PRF F such that

ε1 ≤ µ2`2 ·
(

AdvIND-CPA
wKEM (B1) + AdvPRF

F (D1) + εExt

)
.

Lemma C.3. For any QPT adversary A using the Type-3 or Type-4 strategy, there exist QPT algorithms B2
breaking the IND-CCA security of ΠKEM and D2 breaking the security of PRF F such that

ε1 ≤ µ2` ·
(

AdvIND-CCA
KEM (B2) + AdvPRF

F (D2) + εExt

)
+ µ`2 ·

(
1

22χKEM
+ 1

2νKEM

)
.

Lemma C.4. For any QPT adversary A using the Type-7 or Type-8 strategy, there exist QPT algorithms B4
breaking the IND-CCA security of ΠKEM and D3 breaking the security of PRF F such that

ε1 ≤ µ2` ·
(

AdvIND-CCA
KEM (B4) + AdvPRF

F (D3) + εExt

)
+ µ`2 · 1

2χKEM
.

Proof Sketch of Lemmata C.2 to C.4. The only difference between ΠSC-DAKE and ΠSC-AKE is that the former
uses a ring signature and the first message sent by the initiator includes the ephemeral verification key vkT .
However, it can be easily verified that this modification brings no advantage to the adversary following the
strategies in the statement. Specifically, the proofs are identical to the proofs of Lemmata B.1, B.3 and B.4.

In slightly more detail, notice the session key derivation step in ΠSC-DAKE is exactly the same as those in
ΠSC-AKE. Namely, the value of the derived session key is independent of the signature conditioning on the
signature being valid. Further notice the proofs of Lemmata B.1, B.3 and B.4 only relies on the security
properties of the KEM, PRF, and extractor. That is, the proof does not hinge on the security offered by the
signature scheme and this holds even if replace the signature scheme with a ring signature scheme. Here, we
note that the validity of the ephemeral ring signature verification key never comes in play in the security
proof. Therefore, the proofs of Lemmata B.1, B.3 and B.4 follow.
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