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Abstract. This paper presents method for transformation of algebraic
equations of symmetric cipher into the QUBO problem. After trans-
formation of given equations f1, f2, . . . , fn to equations over integers
f ′
1, f

′
2, . . . , f

′
n, one has to linearize each, obtaining f ′

lini
= lin(f ′

i), where
lin denotes linearization operation. Finally, one can obtain problem in
the QUBO form as

(
f ′
lin1

)2
+ · · · +

(
f ′
linn

)2
+ Pen, where Pen denotes

penalties obtained during linearization of equations and n is the number
of equations.

In this paper, we show examples of the transformation of some block ci-
phers to the QUBO problem. What is more, we present the results of the
transformation of the full AES-128 cipher to the QUBO problem, where
the number of variables of equivalent QUBO problem is equal to 237, 915,
which means, at least theoretically, that problem may be solved using
the D-Wave Advantage quantum annealing computer. Unfortunately, it
is hard to estimate the time this process would require.

Keywords: Cryptanalysis, AES, symmetric ciphers, algebraic attacks,
quantum annealing

1 Introduction

This paper presents method for transformation of algebraic equations of symmet-
ric cipher into the QUBO problem. After such transformation, obtained QUBO
problem may be solved using quantum annealing approach, especially on D-
Wave computer. At first, algebraic equations of cipher have to be obtained.
The idea here is the same as in the case of algebraic attacks. After obtaining
Boolean equations of given cipher in algebraic normal form, each equation f has
to be transformed to equation of Boolean variables with integer coefficients as
f ′ = f − 2k, where k is an integer, k ≤ b fmax

2 c and fmax is maximal value poly-
nomial f can take. Moreover, k has to be written as sum of Boolean variables

k =
∑bl(fmax)−1

i=0 2iki + fmax + 1 − 2bl(fmax−1), where bl(x) denotes bit-length
of integer x. These ideas may be found in [2]. After transformation of given
equations, one has to linearize each, obtaining f ′lini

= lin(f ′i), where lin denotes
linearization operation. Finally, one can obtain problem in the QUBO form as
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f ′lin1

)2
+ · · · +

(
f ′linn

)2
+ Pen, where Pen denotes penalties obtained during

linearization of equations and n is the number of equations.
In this paper, we present the results of the transformation of the complete

AES-128 cipher to the QUBO problem, where the number of variables of equiva-
lent QUBO problem is equal to 237, 915, which means, at least theoretically, that
problem may be solved using the D-Wave Advantage computer. Unfortunately,
it is hard to estimate the time this process would require.

2 The idea of Algebraic Attacks

Algebraic attacks [1], [5], [4], [3] (rather than statistical like differential and
linear cryptanalysis) in nature exploit the internal algebraic structure of the
algorithm. The general idea is quite simple. First, obtain a representation of
the cipher as a system of equations. Then try to solve it to recover unknowns
which are secret key bits. In theory, most modern (block and stream) ciphers
can be described by a system of multivariate polynomials over a finite field.
For the majority of the ciphers, such systems are too complex for any practical
solving method. The term Algebraic Attack typically refers to the technique of
expressing the whole cryptosystem as a large system of multivariate polynomial
equations. We have to include linear equations from the diffusion layer and key
addition, non-linear equations from the substitution layer, and Key Schedule
equations to obtain a polynomial system from a block cipher. For the non-linear
equations, we distinct two cases: explicit equations which are equations of the
form yi = fi (x0, x1, . . . , xn−1), and implicit equations which are equations of the
form g (x0, , xn−1; y0, , ym−1) = 0. We usually consider algebraic attacks when
these equations have a small degree. When mounting an algebraic attack for each
non-linear component of the cipher, we usually attempt to obtain as many low-
degree, linearly independent equations as possible. That over defined systems
are generally easier to solve. In its general form, an algebraic attack is mounted
by expressing the whole cipher operation as a system of low-degree multivariate
equations, involving the (known) plaintext and ciphertext values, the secret key,
and a large number of intermediate variables arising in the cipher operations.
It results in huge systems (typically over GF (2)). Attack usually requires only
one single plaintext/ciphertext pair. The solution of the system is equivalent to
key recovery. It means that for algebraic attacks, we need efficient algorithms for
solving algebraic systems. So, the methods for solving polynomials systems are
the essential ingredients of algebraic attacks and have recently started receiving
special attention from the cryptographic community. To most common methods
used in cryptology, we may include Linearisation principle, XL and variants,
Groebner Basis algorithms (e.g., Buchberger, F4, F5), SAT-solvers, and others.
Linearization is a well-known technique for solving large systems of multivariate
polynomial equations, which we used in this paper. We consider all monomials
in the system as independent variables and solve the system using linear algebra
techniques (i.e., Gaussian reduction). The effectiveness of the method depends
on the number of linearly independent polynomials in the system. In the case



3

of Boolean functions with m variables, the total number of monomials of degree
d is M =

∑d
i=1

(
m
i

)
. The complexity of Gaussian reduction is O(M3). We may

theoretically write O(Mω), where ω ≈ 2+ε if the matrix of the linearized system
is sparse. Note that the problem of estimating the rank of the linearized system
is challenging. In order to apply the linearization method, the number of linear
equations in the system needs to be approximately the same as the number of
monomials in the system. When this is not the case, several proposed techniques
attempt to generate enough linear equations.

3 Quantum computing

Quantum computing is one of the most promising approaches used to crypt-
analysis of many cryptographic algorithms. The first major paper in this field
was a paper written by Peter W. Shor [10], where he described a quantum al-
gorithm for factorization and discrete logarithm computation. Since that time,
many efforts have been made to construct a quantum computer, which would
break algorithms used in real worlds applications. However, the progress in this
field is huge, and till now, the biggest quantum computer made by Google has
72 working qubits [8]. It is still too little to break real-world algorithms.

In the last few years, the second approach of quantum computing has gained
much popularity. This approach is quantum annealing, and such computers
are built by the D-Wave company. Unfortunately, such computers may solve
only Ising problems. Of course, other problems as QUBO (Quadratic Uncon-
strained Binary Optimization) and DQM (Discrete Quadratic Model) may be
transformed to the Ising problem.

The Quantum annealing approach allowed us to gain some success in fac-
torization, where for some time, the quantum factorization record had belonged
to the D-Wave computer. Using transformation of integer factorization to the
QUBO problem, Dridi and Alghassi [7] were able to factorize integer 200, 099,
which result was later beaten by Jiang et al. [9], and by Wang et al. [11], who
factorized 20-bit integer 1, 028, 171. Such transformation of factorization prob-

lem to the QUBO problem requires approximately n2

4 logical qubits, where n is
the bit-length of factorized integer.

Moreover, it is also possible to transform discrete logarithm problem over

prime fields to the QUBO problem [12], where approximately n3

2 logical qubits
are necessary, where n is the bit-length of p.

These all arguments make that quantum annealing may be used in crypt-
analysis of cryptographic algorithms.

4 QUBO problem [6]

QUBO (Quadratic Unconstrained Binary Optimization) [6] is a significant prob-
lem with many real-world applications. One can express the QUBO model by
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the following optimization problem:

min
x∈{0,1}n

xTQx, (1)

where Q is an N ×N upper-diagonal matrix of real weights, and x is a vector of
binary variables. Moreover, diagonal terms Qi,i are linear coefficients, and the
nonzero off-diagonal terms are quadratic coefficients Qi,j .

QUBO problem may be also viewed as problem of minimizing the function

f(x) =
∑
i

Qi,ixi +
∑
i<j

Qi,jxixj . (2)

4.1 Linearization for the QUBO problem

Now we will show how the resulting 2-local terms may be reduced to 1-local
terms. Let us note that each penalty monomial of the form xixj will be trans-
formed, according to [9], in the following way

xixj → uk + 2(xixj − 2uk(xi + xj) + 3uk). (3)

It means that

xixj = uk + 2(xixj − 2uk(xi + xj) + 3uk), (4)

if xixj = uk and

xixj < uk + 2(xixj − 2uk(xi + xj) + 3uk), (5)

if xixj 6= uk.
It results in that xixj term may be transformed to linear form by replacing

xixj with uk. Additionally, one has to add a constraint, given by penalty term:

min(xixj) = min (uk + 2(xixj − 2uk(xi + xj) + 3uk)) . (6)

5 Transformation of multivariate polynomial equations
from block ciphers to QUBO problem

The D-Wave computers using quantum annealing have limited resources, so in
our work, we focus primarily on the number of equations, the number of variables,
and the number of monomials. Therefore, the equations generated for block
ciphers are of degree two or less.

We will explain the transformation of Boolean block cipher equations into
the QUBO problem using a very small block cipher created for this article, called
SmallCipher.

The overall structure of SmallCipher is shown in the Figure 1. The plaintext
is processed with 4-bit blocks using a 4-bit round key. The result of processing
a single block is a 4-bit ciphertext block. In the example, encryption is performed
in one round (Figure 1.a) and two (Figure 1.b).
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Fig. 1. Structure of the SmallCipher, a) one-round cipher, b) two-round cipher.

The encryption algorithm consists of three separate functions: add key (AK),
substitution (S), and permutation (P). Thus, encryption can be presented as
a superposition of the following functions:

P ◦ S ◦AK

The key addition function is the bitwise XOR of 4-bit plaintext with a 4-bit
round key.

The substitution function consists of two S-boxes, mapping two input bits to
two output bits, according to the table:

IN 0 1 2 3
OUT 2 0 3 1

The permutation is a linear layer of this cipher, which is implemented according
to the relationship: (1, 3, 2, 4).

5.1 Overview of our approach

To obtain implicit equations of degree two or less, a list of Boolean polynomi-
als satisfying the S-box is derived. There are seven polynomials for the S-box
of SmallCipher: x1y0, x0 + y1, x0y1 + x0, x1 + y0 + 1, x0x1 + x1y1, x0x1 + x0 +
y0y1, x0x1 + x0y0 + x0,
where xi is the input bits and yi is the output bits of the S-box.
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One-round SmallCipher The first example will be for a one-round Small-
Cipher with one round key. Figure 2 shows the variables that are needed to
generate the equations. The number of variables is twelve.

Fig. 2. Necessary variables for a one-round SmallCipher.

Since S-box satisfies seven polynomials, the number of equations (n) for one
round of SmallCipher is 14, and the number of monomials in all equations is 68.
The resulting equations are:
f1 = x0 + x4 + x10,
f2 = x1 + x5 + x8 + 1,
f3 = x0x1 + x0x5 + x0x8 + x0 + x1x4 + x4x5 + x4x8 + x4,
f4 = x0x10 + x0 + x4x10 + x4,
f5 = x1x8 + x5x8,
f6 = x0x1 + x0x5 + x1x4 + x1x10 + x4x5 + x5x10,
f7 = x0x1 + x0x5 + x0 + x1x4 + x4x5 + x4 + x8x10,
f8 = x2 + x6 + x11,
f9 = x3 + x7 + x9 + 1,
f10 = x2x3 + x2x7 + x2x9 + x2 + x3x6 + x6x7 + x6x9 + x6,
f11 = x2x11 + x2 + x6x11 + x6,
f12 = x3x9 + x7x9,
f13 = x2x3 + x2x7 + x3x6 + x3x11 + x6x7 + x7x11,
f14 = x2x3 + x2x7 + x2 + x3x6 + x6x7 + x6 + x9x11.

During linearization, the number of variables increases, but the number of
monomials does not change. Therefore, after transformation into an equation
of Boolean variables with integer coefficients (f ′i), the next step is to perform
the linearization of the above equations, during which the penalty is determined
by the formula (4). The determined penalty is multiplied by a large integer
constant c. After linearization, the number of variables increased to 38. The
linearized equations are as follows:



7

f ′lin1
= x0 + x4 + x10,

f ′lin2
= x1 + x5 + x8 + 1,

f ′lin3
= x0 + x4 + x12 + x13 + x14 + x15 + x16 + x17,

f ′lin4
= x0 + x4 + x18 + x19,

f ′lin5
= x20 + x21,

f ′lin6
= x12 + x13 + x14 + x15 + x22 + x23,

f ′lin7
= x0 + x4 + x12 + x13 + x14 + x15 + x24,

f ′lin8
= x2 + x6 + x11,

f ′lin9
= x3 + x7 + x9 + 1,

f ′lin10
= x2 + x6 + x25 + x26 + x27 + x28 + x29 + x30,

f ′lin11
= x2 + x6 + x31 + x32,

f ′lin12
= x33 + x34,

f ′lin13
= x25 + x26 + x27 + x28 + x35 + x36,

f ′lin14
= x2 + x6 + x25 + x26 + x27 + x28 + x37.

and the penalty is equal to:
Pen = c ·(x0x1 +x2x3 +x1x4 +x0x5 +x4x5 +x3x6 +x2x7 +x6x7 +x0x8 +x1x8 +
x4x8 + x5x8 + x2x9 + x3x9 + x6x9 + x7x9 + x0x10 + x1x10 + x4x10 + x5x10 +
x8x10 + x2x11 + x3x11 + x6x11 + x7x11 + x9x11 − 2x0x12 − 2x1x12 − 2x1x13 −
2x4x13−2x0x14−2x5x14−2x4x15−2x5x15−2x0x16−2x8x16−2x4x17−2x8x17−
2x0x18−2x10x18−2x4x19−2x10x19−2x1x20−2x8x20−2x5x21−2x8x21−2x1x22−
2x10x22 − 2x5x23 − 2x10x23 − 2x8x24 − 2x10x24 − 2x2x25 − 2x3x25 − 2x3x26 −
2x6x26−2x2x27−2x7x27−2x6x28−2x7x28−2x2x29−2x9x29−2x6x30−2x9x30−
2x2x31−2x11x31−2x6x32−2x11x32−2x3x33−2x9x33−2x7x34−2x9x34−2x3x35−
2x11x35 − 2x7x36 − 2x11x36 − 2x9x37 − 2x11x37 + 3x12 + 3x13 + 3x14 + 3x15 +
3x16 + 3x17 + 3x18 + 3x19 + 3x20 + 3x21 + 3x22 + 3x23 + 3x24 + 3x25 + 3x26 +
3x27 + 3x28 + 3x29 + 3x30 + 3x31 + 3x32 + 3x33 + 3x34 + 3x35 + 3x36 + 3x37).

The next step is to find the integer ki, which is determined for each linearized
equation f ′lini

and depends on the number of monomials in the equation. The ki
values presented by the following variables are as follows:

k1 = x38,
k2 = x39 + x40,
k3 = x41 + 2x42 + x43,
k4 = x44 + x45,
k5 = x46,

k6 = x47 + 2x48,
k7 = x49 + 2x50,
k8 = x51,
k9 = x52 + x53,
k10 = x54 + 2x55 + x56,

k11 = x57 + x58,
k12 = x59,
k13 = x60 + 2x61,
k14 = x62 + 2x63,

the number of variables has increased to 64.
The last step is to find the sum of the squares (f ′lin1

−2k1)2 +(f ′lin2
−2k2)2 +

· · ·+(f ′lin14
−2k14)2+Pen. Additionally, since variables are binary, then x2i = xi.

Finally, the problem considered in the form of QUBO consists of 375 monomials
and 64 variables.

Two-round SmallCipher The second example will be for a two-round Small-
Cipher with three round key. Figure 3 shows the variables that are needed to
generate the equations. For the number of rounds greater than one, each inter-
mediate state needs separate variables.
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Fig. 3. Necessary variables for a two-round SmallCipher.

The number of Boolean equations generated for the two-round SmallCipher is
28, and these equations contain 24 variables and 162 monomials.
Assuming for now that the variables of the round keys are independent, lineariza-
tion was performed for the Boolean equations. Since there are 74 monomials of
degree two in the equations, the number of variables after linearization increased
to 98, and the penalty includes 296 monomials. The next 60 variables were used
to represent 28 values of k. Finally, after determining the sum of squares and
adding a penalty, we obtain a polynomial of degree two, with 1, 091 monomials
and 158 binary variables.

Block ciphers use round keys generated with the key generation algorithm,
therefore, for this example, a very simple round key generation algorithm was
designed, based on the AES key expansion. A 4-bit key is grouped into two 2-bit
words and then expanded to the form of six words, as shown in figure 4. The
first two words are a copy of the primary key, and the next four are calculated
according to the following formulas:

w2 = w0 ⊕ S(swap(w1)),
w3 = w1 ⊕ w2,
w4 = w2 ⊕ S(swap(w3)),
w5 = w3 ⊕ w4,
where S is a substitution with S-box and swap is a bit-swap function.
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Fig. 4. Necessary variables for a round key generation algorithm.

In the presented algorithm for generating round keys, an S-box is used, therefore,
to obtain equations of degree two or less, polynomials satisfying the S-box are
used. For the bits of the word passing through the S-box, seven equations are
generated, in addition, for the remaining words that are only bitwise XOR,
the number of generated equations is equal to their bit-length. Therefore, in
this example, the number of generated equations is 18, including 12 variables.
These equations will be appended to the equations generated for the cipher. The
generated Boolean equations for the round keys are as follows:

f29 = x1 + x3 + x5,
f30 = x0 + x2 + x4 + 1,
f31 = x0x3 + x2x3 + x3x4 + x3,
f32 = x1x3 + x3x5 + x3,
f33 = x0x2 + x2x4,
f34 = x1x2 + x2x3 + x2x5,
f35 = x0x1 + x2x3 + x1x4 + x0x5+
+x4x5 + x3,
f36 = x2 + x4 + x6,
f37 = x3 + x5 + x7,

f38 = x5 + x7 + x9,
f39 = x4 + x6 + x8 + 1,
f40 = x4x7 + x6x7 + x7x8 + x7,
f41 = x5x7 + x7x9 + x7,
f42 = x4x6 + x6x8,
f43 = x5x6 + x6x7 + x6x9,
f44 = x4x5 + x6x7 + x5x8 + x4x9+
+x8x9 + x7,
f45 = x6 + x8 + x10,
f46 = x7 + x9 + x11.

After joining the round key equations to the cipher equations, there are
92 monomials of degree two among the 224 monomials. After linearization, the
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number of variables increased to 116, and the determined penalty is a polynomial
consisting of 368 monomials. Then 46 k values were determined using the next
84 variables. Finally, after computing the sum of the squares and adding the
penalty, the computed polynomial consists of 1, 324 monomials and 200 binary
variables.

5.2 An attack example

For a one-round SmallCipher, for an example of a plaintext - ciphertext pair,
we made an attack using a simple D-Wave computer simulator. We randomly
selected plaintext and a key: P = [1, 0, 0, 1],K = [1, 0, 1, 1], and a ciphertext
C = [1, 1, 0, 1] was generated for the selected parameters.

After substituting bits of the plaintext and ciphertext for the appropriate
variables and naming the variables with the key: K = [x0, x1, x2, x3], we gen-
erated the following 13 equations (one equation was reduced to zero) with four
variables and 28 monomials:

f1 = x0 + 1,
f2 = x1,
f3 = x0x1 + x1,
f4 = x0 + 1,
f5 = x1,

f6 = x0x1 + x1,
f7 = x0x1 + x0 + x1 + 1,
f8 = x2 + 1,
f9 = x3 + 1,
f10 = x2x3 + x2,

f11 = x3 + 1,
f12 = x2x3 + x2 + x3 + 1,
f13 = x2x3 + 1.

After linearization, the number of variables increased to 6 in the following
equations:

f ′lin1
= x0 + 1,

f ′lin2
= x1,

f ′lin3
= x1 + x4,

f ′lin4
= x0 + 1,

f ′lin5
= x1,

f ′lin6
= x1 + x4,

f ′lin7
= x0 + x1 + x4 + 1,

f ′lin8
= x2 + 1,

f ′lin9
= x3 + 1,

f ′lin10
= x2 + x5,

f ′lin11
= x3 + 1,

f ′lin12
= x2 + x3 + x5 + 1,

f ′lin13
= x5 + 1,

and with the following penalty:
Pen : c · (x0x1 + x2x3 − 2x0x4 − 2x1x4 − 2x2x5 − 2x3x5 + 3x4 + 3x5),
where c = 1000.

The k values for the above equations were presented using the next 13 vari-
ables: k1 = x6, k2 = 0, k3 = x7, k4 = x8, k5 = 0, k6 = x9, k7 = x10+x11, k8 = x12,
k9 = x13, k10 = x14, k11 = x15, k12 = x16 + x17, k13 = x18.

Finally, the problem in the QUBO form consist of 42 monomials and 19
variables:
1002x0x1 + 1002x2x3 − 1998x0x4 − 1994x1x4 − 1996x2x5 − 1998x3x5 − 4x0x6 −
4x1x7 − 4x4x7 − 4x0x8 − 4x1x9 − 4x4x9 − 4x0x10 − 4x1x10 − 4x4x10 − 4x0x11 −
4x1x11 − 4x4x11 + 8x10x11 − 4x2x12 − 4x3x13 − 4x2x14 − 4x5x14 − 4x3x15 −
4x2x16−4x3x16−4x5x16−4x2x17−4x3x17−4x5x17 +8x16x17−4x5x18 +9x0 +
7x1 + 7x2 + 9x3 + 3005x4 + 3007x5 + 4x7 + 4x9 + 4x14 + 8.
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Using the D-Wave simulator, we recovered the values of nineteen binary
variables, including the key bits:
x0 = 1, x1 = 0, x2 = 1, x3 = 1, x4 = 0, x5 = 1, x6 = 1, x7 = 0, x8 = 1, x9 = 0,
x10 = 1, x11 = 0, x12 = 1, x13 = 1, x14 = 1, x15 = 1, x16 = 1, x17 = 1, x18 = 1.

6 The transformation of the AES-128 cipher equations
into the QUBO problem

Another cipher we considered is the AES-128 standard, which requires 128 bits
of plaintext and 128 bits of the master key. After 10 rounds, the plaintext block
is encrypted and returns a 128-bit ciphertext.

6.1 One-round AES-128

First, we focused on one round of the AES-128 cipher, consisting of key addition,
S-box byte substitution, shift rows, and mix columns.

The number of Boolean equations generated for one round of the AES-128
cipher is 624, consisting of a total of 283, 568 monomials of degree at most
two. During the linearization of 16, 576 various monomials, the degree of two
was replaced with successive binary variables. After linearization, the number of
variables increased to 16, 960. During linearization, we also determined a penalty
that consists of at most 66, 304 monomials. In the next step, we presented 624
integer ki values with 5024 new binary variables.

Finally, after calculating the sum of squares and adding the penalty, one
round of the AES-128 cipher was presented in the form of the QUBO problem
using 21, 984 binary variables and at most 227, 947, 152 monomials.

6.2 Full AES-128

In the full AES-128 cipher, due to a large number of equations and monomials,
the final transformation parameters of the equations to the QUBO problem will
be estimated.

To generate Boolean equations of degree at most two, we need 128 variables
for the plaintext, 128 variables for the ciphertext, 1, 408 variables for eleven
round keys, and 1, 152 variables for intermediate states, and we need a total of
2, 816 binary variables. The number of Boolean equations of degree two or less
needed to represent the encryption algorithm of the AES-128 cipher is 6, 240.
Since separate variables represent the intermediate states of each round and the
round keys, there are variables from two adjacent intermediate states in the
single-round equations. So each round produces equations with the same num-
ber of monomials. Hence, considering the results from the previously described
case of the one-round AES-128 cipher, the number of different monomials in
all equations is 169, 610. Among these monomials, there are 165, 760 monomials
of degree two, which new variables will replace during the linearization. Hence
the number of variables increased to 168, 576. Since the number of monomials
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in the corresponding equations between rounds is the same, the values of inte-
gers ki between rounds should also be the same. It means that the number of
variables needed for ki values in each round is the same. Therefore, the number
of variables needed to represent the values of all ki is 50, 240. Finally, 218, 816
binary variables are needed for the AES-128 cipher encryption algorithm.

Next, we considered the algorithm for generating round keys. The relation-
ships between the variables of the round keys can be represented by 2, 520
Boolean equations, of degree two or less. These equations consist of 11, 121
different monomials, among which there are 9, 712 monomials of degree two.
During linearization, these monomials were replaced with new variables. Then,
we have determined ki values for each equation that 9, 387 binary variables can
represent.

In summary, 237, 915 binary variables are needed to present the AES-128
cipher equations as the QUBO problem.

7 Conclusion

In this paper approach of algebraic attacks using quantum annealing was pre-
sented. We showed the practical attack for SmallCipher, which was performed
using a D-Wave simulator. We also estimated the total number of variables re-
quired to solve the full AES-128 cipher using the transformation of its algebraic
equations to the QUBO problem. The total number of variables, in this case,
is equal to 237, 915 and is much smaller than the total number of variables
necessary for breaking RSA-3072, which ensures a similar level of security (ap-
proximately 128 bits). The total number of variables, in this case, is equal to ap-
proximately 2.36·106. In the discrete logarithm problem over the 3072-bits prime
field, the total number of necessary variables is approximately 1.4 · 1010. From
this point of view, the presented approach of transformation of block ciphers
to the QUBO problem and then solving this problem using D-Wave computer
seems to be the most promising application of quantum annealing to cryptanal-
ysis of cryptographic algorithms. Unfortunately, it is hard to estimate the time
this process would require.
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