
R-SWAP: Relay based atomic cross-chain swap
protocol

1st Léonard Lys
LIP6, Sorbonne Université

PALO IT
Paris, France

llys@palo-it.com

2nd Arthur Micoulet
PALO IT

Paris, France
amicoulet@palo-it.com

3rd Maria Potop-Butucaru
LIP6, Sorbonne Université

Paris, France
maria.potop-butucaru@lip6.fr

Abstract—In this paper, we consider the problem of cross-chain
transactions where parties that do not trust each other safely
exchange digital assets across blockchains. Open blockchains
models are decentralized ledgers that keep records of transac-
tions. They are comparable with distributed account books. While
they have proven their potential as a store of value, exchanging
assets across several blockchains remains a challenge. Our paper
proposes a new protocol, R-SWAP, for cross-chain swaps that
outperforms existing solutions. Our protocol is built on top of
two abstractions: relays and adapters that we formalize for the
first time in this paper. Furthermore, we prove the correctness
of R-SWAP and analytically evaluate its performances, in terms
of cost and latency. Moreover, we evaluate the performances
of R-SWAP in two case studies showing the generality of our
approach: atomic swaps between Ethereum and Bitcoin (two
popular permissionless blockchains) and atomic swaps between
Ethereum and Tendermint (one permissionless and one permis-
sioned blockchain).

Index Terms—Blockchain, atomic swap, cross chain transac-
tions, relays

I. INTRODUCTION

With the raise of digital assets hosted on blockchain systems
came the need for exchanging them across chains. Today,
most of the cross-chain exchanges are achieved with the help
of a trusted third party, most often an exchange platform.
Centralized exchange platforms (CEX’s) don’t support peer-
to-peer cross-chain transactions between users. Instead, users
deposit their funds inside the platform’s digital wallets and
the transactions are handled by the platform’s system. Most
of the transactions are not even published to the chain.
Platforms keep a separate record of their clients assets; the
only transactions that are written to the blockchain are deposits
and withdraws. This is not a satisfactory solution, because as
stated in Bitcoin’s white paper [1] all benefits of blockchain
technologies are void if a centralized financial institution is
required. Indeed, trusting a centralized third party comes with
all the flaws of centralization: attractive target for attackers [2],
governance issues [3], platform commissions, etc. Thus there
is a need for solutions that allow users to perform trust-less,
cross-chain, peer-to-peer, atomic transactions.

Atomic cross-chain swaps are a solution to this problem.
They are distributed protocols where several parties exchange
assets across chains. An Atomic cross-chain swap protocol
must ensure safety and liveness, i.e., no participant complying

with the protocol will lose money and if both participants
abide by the protocol, they eventually get their payoffs or get
refunded.

a) Hash time locking: A proposed strategy for atomic
cross-chain swaps relies on hash time locking [4]. This tech-
nique consists of locking some digital assets inside a smart
contract or script and set the release condition to both a
time condition and the revelation of a cryptographic hash pre-
image. Herlihy’s protocol [5] for instance, makes use of this
technique. The protocol is as follows: Alice has X assets of
chain BCa, Bob Y assets of chain BCb and they are willing to
exchange one for the other. They agreed on the exchange rate
trough off-chain communication channels (1). Alice creates a
random secret s and computes its hash h = H(s) (2). She
publishes a contract SC1 on blockchain BCa where she locks
her assets and set the release condition to the revelation of the
pre-image of h or the expiration of a time lock ∆1 (3). Bob
learns h from SC1 and sets up a similar contract on BCb with
a time lock ∆2 < ∆1 (4). Alice redeems SC2 by revealing s
and by doing so triggers the transfer of Y from SC2 to her
address (5). Bob learns about s from this transaction and can
now proceed to redeem X from SC1 (6). If for some reason,
a participant stops in the process, they can safely wait for the
time lock to expire and proceed to refund.

Current proposed protocols that use the hash time locking
technique such as [5] are subject to several limitations. They
suffer from a potential safety violation, they may be econom-
ically unfair and have bad ergonomics [6], [7]. Indeed, after
stage (5), if for some reason Bob is unable to broadcast his
redeem transaction message (client’s crash, DDOS attack on
the client or network, packet loss, etc.), Alice can wait for
the time lock to expire, send a refund transaction message
and retrieve both assets, causing a safety violation. Another
weakness is that after stage (3), Bob can choose not to publish
a contract SC2, causing Alice’s assets to be locked until the
expiration of ∆1 [8]. This is not a proper liveness violation,
but in an highly competitive market such as crypto-assets
trading, having an adversary’s funds locked up for a certain
amount of time is a great advantage. Furthermore, the cost of
such an attack is null for Bob given that at no point he had
to prove ownership of assets. Finally, this protocol has poor
ergonomics; it requires both participants to stay online during



the swap, to run two blockchain clients each and to perform
auditing tasks and transactions on both chains.

b) Relays: An other strategy to achieve atomic cross-
chain swaps relies on relays [4], [9], [10]. Relays are abstrac-
tions (in general a smart contract or a script) hosted on some
chain BCa that has light client like verification capabilities
over chain BCb. For each new block appended to chain BCa,
the block header is passed on to the relay on chain BCb. The
relay itself implements the standard verification procedure of
chain BCa’s consensus algorithm and can therefore verify the
validity of the block. Once the proof of work has been verified,
in the case of a Proof of Work (or PoW) blockchain, or the
two-thirds of validators signatures, in the case of a Byzantine
Fault Tolerant (or BFT) blockchain, it is possible to verify any
transaction of chain BCa from chain BCb. With light client
like verification capabilities of chain BCa from chain BCb,
we can imagine the following scenario. Bob has X assets of
chain BCb. He is willing to exchange them for Y assets of
chain BCa. Bob sets up a smart contract SC1 and locks his
assets in it (1). This smart contract SC1 is set to release the
assets to anyone providing the proof that they made a payment
of Y assets of chain BCa to Bob’s address. Alice, who is
interested in this trade, transfers Y assets to Bob’s address (2).
She retrieves the transaction hash tx and provide it to SC1 (3).
SC1 calls the relay and asks for verification of transaction tx
(4). The relay verifies that the transfer has taken place and if
so, returns ok to SC1 (5). On receiving the answer from the
relay, SC1 transfers the X assets of BCb to Alice’s address.

Though this approach seems like a reasonable solution to
achieve atomic cross-chain swaps, it has several flaws that
can lead to safety violation, liveness violation and commercial
unfairness. The potential safety violation comes from a race
condition type of attack. Indeed at stage (2), it is possible
that an other person, for instance Carol, is interested in the
swap and sends some assets to Bob’s address. Alice and Carol
will only see the other one’s transfer when the next block is
mined. Therefore there is no way for them to coordinate their
transfers. Bob will end up with twice the assets he wanted and
he has no incentive to refund the loosing party. The potential
liveness violation comes from the fact that after stage (1) Bob
has absolutely no guarantee that someone will take the swap.
Therefore his assets could be locked up forever leading to a
liveness violation. Finally the protocol is commercially unfair.
Indeed, after stage (1) the rate of the swap is fixed and the
assets locked up. With the high volatility of cryptocurrency
markets, Alice can safely wait for the price to evolve in a
direction that is profitable to her and then decide to perform
the swap or not. This is commercially unfair to Bob.

c) Cryptocurrency-backed assets: The most recent pro-
posed strategy for cross-chain swap is cryptocurrency-backed
assets (or CBAs) such as [7]. Cryptocurrency-backed assets
are tokens issued by a smart contract on chain I that are
backed at a one to one ratio by assets locked on chain B.
Thus each token i(b) hosted on chain I represents a unit
of asset of chain B. Each token i(b) is backed by an asset
on chain B held in custody. In order to issue a token i(b),

one must provide a proof that a unit of asset of chain B has
been locked in a vault (the custody) . The proof, the locking
transaction, is then verified thanks to a blockchain relay. Once
the proof is verified, the token i(b) is issued. As they now exist
in the same self-contained blockchain system, i(b) tokens can
be atomically swapped with assets of chain I (like ERC-20
tokens). In order to recover the assets locked on chain B, one
must burn an equivalent amount of token i(b). This proof-
of-burn is then submitted to the vault, that will redeem the
assets. To ensure that the vault behaves honestly and redeems
the assets, it must lock assets of chain I in the smart contract
as collateral. A single vault will only be able to issue as much
i(b) tokens as it has locked assets of I in collateral, times the
exchange rate. If the exchange rate ε between assets of I and
B becomes critical (i.e., if the collateral value is too low to
reimburse the token owners), the collateral is liquidated and
sent to the token owners as payback.

Although protocols such as [7] show good performance,
reasonable costs and allow asset portability across chains,
they do not solve the problem of atomic cross chain swaps.
Such protocols can be assimilated with sidechain pegging
like in [11]. The ownership of the assets of chain B is not
transferred. Instead, a token of equal fiat value is issued on
chain I . Moreover strong assumptions are made on the price
oracle. It is assumed in the model that the exchange rate ε
between assets of B and I given by the oracle is correct.
Under weaker assumptions (i.e, if the exchange rate returned
by the oracle is not correct), a safety violation could occur.
The liquidation of the collateral is triggered by the exchange
rate ε given by the price oracle. If an attacker is able to achieve
an ”Oracle poisoning attack”, he could trigger liquidation of
the collateral and lead to a safety violation. Such attacks have
already happened [12], [13]. Our proposal does not suffer from
this kind of risks because price oracles are not involved.

d) Our contribution: Our contributions are as follows:
we propose a new protocol for atomic cross-chain swap, that
does not suffer from the limitations of the previous protocols
in the literature (e.g. safety violation as in the case of [5] or
unfairness issues [6], [7]). Moreover, we propose a formal-
isation and correctness proof of our protocol. Furthermore,
we evaluate analytically its cost and latency. Furthermore, we
evaluate the performances of our protocol considering two
case studies: atomic swaps between Bitcoin and Ethereum
and atomic swaps between Tendermint and Ethereum. Inter-
estingly, our protocol builds on top of two abstractions that we
formalized for the first time: blockchain relays and adapters.
These abstractions can be of independent interest.

e) Paper roadmap: Section II introduces the system
model. In Section III we propose a formalisation for the atomic
cross-chain swap, blockchain adapter and relay abstractions.
In Section IV and Section V we propose a detailed description
of our R-SWAP protocol altogether with its correctness proof.
Furthermore, in Section VI we analytically evaluate the per-
formances of our protocol. Finally Section VII presents some
conclusions and discussions.



II. MODEL AND DEFINITIONS

A. System model
In this paper, we consider open blockchain systems such

as Bitcoin, Ethereum or Cosmos. Each blockchain system is
composed of an arbitrary finite set of processes Π namely
Π = {p1, p2, ...}. The size of the set Π is not known.
Moreover processes can crash, leave or join the network at
any moment.

a) Communication: Processes exchange messages
trough peer-to-peer, bi-directional communication channels.
Each process pi is connected to a subset of peers Πp ⊂ Π . The
system uses a gossip protocol for message broadcasting. When
a process pi wants to broadcast a message msg, he sends it to
each process of subset Πp. Each correct process forwards the
message to its own subset of neighbors Πp′ , until eventually
every correct processes of Π delivered the message. To
simplify, we introduce a primitive BROADCAST(TAG,msg),
where TAG is the type of message and msg the actual
message. Processes invoke the DELIVERY primitive to
receive messages. We assume that when a correct process
invokes the BROADCAST(TAG,msg) primitive, every correct
process eventually delivers it. However, as messages can be
delayed for an arbitrary long time, we assume asynchronous
communication.

b) Authentication: Each processes in the system pos-
sesses a pair of public/private keys. Messages are authenticated
by digital signature. We consider that it is impossible to forge
the signature.

c) Failure model: The size of the set Π is not known.
Moreover processes can crash, leave or join the network
at any moment. We say that a process exhibits Byzantine
behaviour when it behaves arbitrarily [14]; for example not
relaying messages, delaying them or broadcasting inconsistent
messages. A Byzantine process is said to be faulty, otherwise
it is a correct process. We assume that there can be as much
as f < n/3 faulty processes.

B. Distributed Ledger Model
A distributed ledger (a.k.a. blockchain) BC is an append-

only list of blocks chained together. Each block bi somehow
contains a list of transactions as well as a variable pointing
to the previous block bi−1, hence the name blockchain. The
blockchain supports two types of operations READ(BC) and
APPEND(BC, bi).

We consider two types of processes, miners and clients.
Miners manage a local copy of the blockchain, they participate
in the gossip protocol and they produce new blocks. Clients
can maintain a copy of the blockchain or synchronise it with
a miner. As the system is distributed, the ”global” state is
composed of the sum of all ”local” states of each miner [15].
By listening to incoming transaction messages, miners build
a pool of transactions that have not been included in a block
yet.

If at time τ a miner process pi has been selected
to produce a new block bi, he broadcasts it by invok-
ing BROADCAST(BLOCK, bi). The consensus mechanism is

such that, if pi is correct, at time τ ′ > τ eventually every
READ(BC) operation on a correct miner will return BC where
bi ⊂ BC.

a) Ledger conflict: A ledger conflict (or fork) is an event
during which two concurrent blocks have been found at the
same height h. Due to the system being asynchronous, if two
miners find respectively blocks b and b′ nearly at the same
time, then both b and b′ will propagate, resulting in a network
partition. A partition P that appended b to their copy of the
blockchain and another P ′ that appended b′. A fork is resolved
when subsequent block(s) are found. The network will choose
the longest chain (in terms of height). Any block that is not in
this longest chain will be abandoned. For example if partition
P that has appended b finds a new block at height h+1 before
partition b′ can do so, then members of P ′ will abandon b′

and replace it with b (and any subsequent blocks found by P ).
b) k-safety: The parameter k is the depth at which the

probability of a fork or ledger conflict is sufficiently low to
consider that the risk of this block being abandoned is null.
Indeed, because the system is asynchronous, it is difficult for
a node to determine if the network is currently partitioned or
not (i.e., if a fork or ledger conflict has happened). Thankfully,
forks tend to resolve as new blocks are mined. So the deeper a
block is, the safer it is to assume that it is in the others node’s
copy of the chain. After k new blocks, it is safe to consider
that no forks occurred prior to the said block. The parameter
k depends on the blockchain you are using and the level of
safety your system requires. For example most Bitcoin clients
consider k = 6 to be safe, but some old versions would require
as much as k=120, because at that time the risk of fraudulent
fork (e.g 51% attack) was higher.

c) k-Valid block: A block that has been appended to the
chain and that is now at a depth equal or greater than k. Each
new block appended to the chain after the block of interest is
called a confirmation.

d) Confirmed transaction: A transaction that has been
included in a block. A confirmed transaction is not necessarily
valid yet.

e) k-Valid transaction.: A transaction is said to be k-
valid when it is included in a k-valid block, i.e it is included
in a block that has received k confirmations.

f) Simple Payment Verification (SPV): Simple payment
verification is a process that allows a client to verify the
validity of a transaction without having to maintain a full copy
of the blockchain. Instead, the client only needs a list of block
headers. Implementation of this process may vary depending
on the blockchain.

g) Block time: The block time is the average block
creation time. It is calculated by dividing a large period of
time by the number of blocks produced during this period.
This parameter is specific to each blockchain. Because block
creation is probabilistic in PoW consensus blockchain, block
creation time can vary from one block to the other. Average
block time is obtained by adjusting the difficulty [15]. In
Bitcoin for example, the target block time is 10 minutes. BFT



consensus blockchains are deterministic, hence they have a
fixed block time [16].

h) Transaction validation time: Let process p broad-
cast a transaction tx via the primitive BROADCAST(<
transaction >, tx) at time tbroadcast. Let tvalid be the time
when the transaction tx appears to be k-valid to p. Then we
define the transaction validation time as:

∆validation = tvalid − tbroadcast (1)

C. Asset model
a) Blockchain asset: As of today, blockchain asset refers

to anything on the blockchain that serves as store of value
or medium of exchange. It can be coins such as Bitcoins
and Ethers, or it can be tokens such as ERC-20 tokens.
Nevertheless blockchain assets share the following properties;
A blockchain asset belongs to a public/private key pair. Asset
ownership can be transferred trough transactions. Asset trans-
fers are recorded to the chain. To transfer the ownership of an
asset, one must sign the transaction with the private key.

b) Asset locking: An asset on a blockchain is said to be
locked when it is not possible to transact it without meeting
some conditions. Accessing the said conditions would unlock
the asset and allow the user to transact it. Assets are locked
thanks to scripts or smart contracts.

c) Time locking: An asset is time locked when the
condition required to transact the asset is a time condition.

d) Hash locking: An asset is hash locked when the
condition required to transact the asset is the revelation of
the preimage of a cryptographic hash (hash key).

e) Acceptable Payoff: When trading an asset for another,
the payoff is said to be acceptable when it is equal to the
amount of asset sent times the exchange rate agreed upon,
minus the transaction fees.

III. TIME LOCKED ATOMIC CROSS-CHAIN SWAP

In this section we define the time locked atomic cross-chain
swap problem.

A. Problem specification
A time locked atomic cross-chain swap protocol uses time

locking in order to ensure termination of the protocol. At the
expiration of the time lock, both participants have received an
acceptable payoff.

Definition 1 (time locked atomic cross-chain swap) A
time locked atomic cross-chain swap protocol should
satisfy the following properties:
• Safety. No participant abiding by the protocol can

lose more money than the transaction fees.
• Time-bounded termination. No asset can be locked

for more than a period of time γ and if an asset is
locked, γ is known prior to locking.

• Liveness. Upon lock time expiration, if all partici-
pants abided by the protocol and no failures occurred
then they received their payoffs.

B. Abstractions for implementing R-SWAP

a) Blockchain adapters: A Blockchain adapter is a piece
of software that allows to send transaction and query several
blockchain systems. In addition to its multiple-blockchain
client capabilities, it can perform off-chain computation and
storage. It is able to store private information such as private
keys and credentials [17]. A blockchain adapter can be hosted
by several instances. The systems goals of a blockchain
adapter are:

• Client capabilities: A blockchain adapter should be able
to read the state of at least two blockchains, as well as
broadcasting transactions.

• Off-chain computation: A blockchain adapter should be
able to perform off-chain computations, such as generat-
ing a random value and computing its hash.

• Wallet safety: A blockchain adapter should be able to
store private credentials and key, without the person
running it being able to extract those private data.

• Decentralization: A blockchain adapter should be repli-
cated over several nodes

b) Blockchain Relay: A blockchain relay Ra←b is an
abstraction (smart contract or script) on chain BCa that can
receive verification requests of transactions on chain BCb. It
receives block headers of chain BCb and performs the standard
verification for blocks of BCb (1). It stores block headers of
chain BCb (2). It can perform Simplified Payment Verification
over transactions on chain BCb and either returns true if the
transaction is valid or false if it is not (3).

Definition 2 (Blockchain Relay) A blockchain relay must
satisfy the following properties:
• k-Validity. A blockchain relay returns true if the

submitted transaction is a k-valid transaction of
blockchain BCb, otherwise it returns false.

• Eventual Persistent Storage. Every valid block
header of chain BCb eventually ends up being in-
cluded in a block appended to BCa.

A blockchain relay hosted on BCa that performs verifica-
tion over blockchain BCb is noted Ra←b.

Algorithm 1 Blockchain Relay smart contract class
1: bytes [] blocks . Table to store block headers
2: procedure STOREBLOCKHEADER(blockHeader)
3: requires(VALIDATEPOW(blockHeader))
4: THIS.BLOCKS.APPEND(blockHeader) . If the block

is valid, store block
5: end procedure
6: procedure VERIFYTX(tx, k)
7: return VALIDATESPV(tx.txid, tx.root, tx.proof ,
tx.index, k)

8: end procedure



Algorithm 1 is a possible interface for a blockchain re-
lay. It presents the main functions of such a software. The
function VALIDATEPOW (line 3) implements the Proof of
Work verification algorithm of the relayed blockchain. It
returns true if the provided block header is valid and false
otherwise. The function VALIDATESPV (line 7) implements
the simple payment verification of provided transaction. It
returns true if it is a valid transaction and false otherwise. The
parameter k in function VERIFYTX(tx, k) is the safety factor.
It specifies at what height the block containing the transaction
tx must be in the relay’s data store to consider the transaction
as valid. Complete implementation of VALIDATEPOW and
VALIDATESPV can be found in [18].

c) Blockchain Relay latency: We define blockchain re-
lay latency ∆relay as the time difference between the moment
a new block bi is mined on chain BCb and the moment
a verification request for txi ⊂ bi to the relay Ra←b with
safety parameter k will return true. Let tmined be the time at
which a relayer process p of blockchain BCb delivers a block
bi via the primitive DELIVER. Let tvalid be the time when
VERIFYTX(txi, k) will return true. Then the blockchain relay
latency is given by:

∆relay = tvalid − tmined (2)

IV. R-SWAP PROTOCOL

This section presents R-SWAP, a protocol that achieves time
locked atomic cross-chain swaps.

A. Protocol Overview

The R-SWAP protocol relies on three software bricks; hash
time locked contracts (Algorithm provided in appendix E),
blockchain relays (Algorithm 1) and blockchain adapters. Each
participant has an instance of an adapter. Each adapter is
able to send transactions on both blockchain BCa and BCb.
The unfolding of R-SWAP resembles a hash time locked
contract (HTLC) atomic swap protocol but with two major
improvements. With HTLC swaps, the users were responsible
for contract and blockchain auditing. In R-SWAP this is
done thanks to the relay’s cross-chain verification capabilities.
HTLC based swap required the user to perform complex
tasks such as generating hash locks, time locks and sending
several transactions on both chains. R-SWAP uses adapters
that automate all those tasks. With R-SWAP the number of
user actions is limited to one.

In a first phase, participants will commit to the swap by
locking their assets with smart contracts. In a second phase,
participants will receive their payoffs or refunds.

B. Phase 1: Commitment phase

When Alice wants to execute an atomic cross-chain swap
with the R-SWAP protocol, she will request her adapter to lock
up funds inside a hash time locked contract SC1. This contract
SC1 exists in one of five states: Invalid, PreCommitted,
Committed, Redeemed and Refunded. State changes and the
corresponding asset transfers are triggered by the following
functions: PRECOMMIT, COMMIT, REDEEM, REFUND. State

Fig. 1. High level overview of the R-SWAP components and interactions

changes are unidirectional, thus SC1 can be seen as a directed
acyclic graph where each state is a node and each vertex a state
change function (see Figure 3 Appendix A).

Alice only specifies to the adapter the exchange rate and
the amount. The adapter will be responsible for generating a
random secret s and to compute its hash h = H(s). Then the
adapter will lock up the funds inside SC1 hosted on chain
BCa by calling the PRECOMMIT function.

At this point, the hash lock has been specified, but not the
time lock. Hence the assets are not locked, because Alice can
ask for a refund at any moment. The PRECOMMIT state serves
as a proof of ownership.

It is possible to implement an interface that would list
all contracts in PreCommitted state and hence build a de-
centralized trading platform. This platform would list open
swaps and their parameters hashlock, amount and exchange
rate. Bob, a participant interested in the swap, would just
have to retrieve the parameters from the decentralized trading
plateform and request his adaptor to set up a mirror contract
SC2 on blockchain BCb.

Once the funds are hash locked in SC2 trough PRECOMMIT
function, Bob will request that the contract SC1 sets him as
the receiver and define a time lock. To do so, Bob’s adapter
will call the COMMIT function of SC1, with as parameter, the
transaction hash of SC2’s PRECOMMIT. Indeed before setting
Bob as receiving party, SC1 needs the proof that some funds
have been locked up in parallel on BCb. SC1 will call the
verifyTx function of the relay Ra←b, with as a parameter, the
PRECOMMIT transaction of SC2 provided by Bob’s adaptor.
If the transaction is valid, Ra←b will return the parameters of
the transaction.

Here the relay Ra←b serves as a bridge between BCa and
BCb. It allows contract auditing to be made directly on chain
by SC1 and SC2. The authenticity of the data is ensured and
hence the safety of the protocol improved. Once SC1 has
verified SC2’s parameters, it can safely set Bob as the receiver,
∆1 as time lock and change state to Committed. SC1 sends
back the transaction details to Bob’s adapter, that redirects it



to SC2. SC2 calls Rb←a to verify SC1’s commitment, and if
so commits with Alice as a receiver and ∆2 as time lock.

Here is a sum up of the commitment phase.

1) Alice calls her adapter’s PRECOMMIT function with
target network, value and exchange rate

2) Alice’s adapter generates secret s and computes h =
H(s)

3) Alice’s adapter calls SC1 PRECOMMIT function
4) Alice’s adapter runs a daemon
5) Bob calls the PRECOMMIT function of his adapter with

Alice’s mirror parameters
6) Bob’s adapter calls SC2 PRECOMMIT function
7) Bob’s adapter calls SC1 COMMIT function
8) SC1 calls the relay Ra←b to verify that SC2 is in state

PreCommitted
9) On receiving the proof that SC2 is in state PreCom-

mitted SC1 changes its state to Committed sets Bob as
receiver and ∆1 as time lock

10) On receiving proof that SC1 is Committed, Bob’s
adapter calls SC2 COMMIT function.

11) SC2 calls the relay Rb←a to verify that SC1 is in
Committed state

12) On receiving the proof that SC1 is on Committed
state, SC2 changes its state to Committed sets Alice as
receiver and ∆2 as time lock

13) Bob’s adapter runs a daemon

C. Phase 2: Contracts redeem/refund

a) Daemon: At stage 4 and 13 each adapters have run
a daemon. Those daemons are awaiting for a state change
of SC2, before they move on to the redeem/refund phase.
For each new block of BCb Alice’s daemon will check if
Bob’s contract SC2 has changed from state PreCommitted to
Committed. This would mean that Bob has committed to the
swap and thus that she can move on to the redeem phase.
For each new block of blockchain BCb Bob’s daemon will
check if SC2 has changed from state Committed to Redeemed.
This would mean that Alice has redeemed, and by doing so,
revealed the secret key. Bob can now move on to the redeem
phase.

Those daemons also handles the cases where some party
would stop abiding by the protocol. They have stored the time
lock values and a REFUND transaction call is scheduled at the
expiration of the time lock.

Here is a sum up of the second phase, if participants abide
by the protocol:

1) Alice’s adapter calls SC1 CHECKSTATE function
2) If state is Committed call SC2 CHECKSTATE function
3) If state is Committed Alice’s adapter calls REDEEM

function of SC2 with s, triggering the asset transfer to
her address

4) Bob’s adapter calls SC2 CHECKSECRETKEY function
5) If key is revealed Bob’s adapter calls SC1’s REDEEM

function with the secret s he just learned, triggering the
asset transfer to his address

If one of the participant does not abide by the protocol, the
daemon will simply call REFUND at the expiration of their
respective smart contract’s time lock expiration.

V. R-SWAP PROTOCOL CORRECTNESS

A. Time lock value determination

Choosing the right value for the time locks is essential.
A time lock value that is too short could lead to a safety
violation. Conversely, a time lock value that is too long could
be commercially unfair, as prices are very volatile.

Consider a swap executed via the relays swap protocol. The
swap is executed between blockchains BCa and BCb. ka resp.
kb is the k parameter of BCa resp. BCb (see k-safety in
Section II-B0b). ζa is the target block time of BCa and ζb
of BCb. There are two time locks values to be chosen; ∆1 for
SC1 and ∆2 for SC2.

The first value of interest is the difference between ∆1 and
∆2. This difference has to be long enough for the participant to
call the redeem function and for this transaction to be included
in a valid block. If not long enough this could lead to a safety
violation. ∆1 and ∆2 are strongly dependent on parameters
specific to each blockchain. A naive estimation of the minimal
value for the difference between time locks could be:

∆1 −∆2 = (ζbkb) (3)

Assuming synchronous communication, this should be long
enough for the redeem transaction to be included in a valid
block. But as stated in the model, the block time is not
necessarily fixed and blocks can be delayed for an arbitrarily
long time, leading to potential safety violations.

Therefore for the rest of this paper, we will assume that
there is a time λ, specific to each blockchain, within which a
broadcast transaction will be included in a block and receive k
confirmations with a probability ε. Thus ∆1−∆2 ≥ λb is the
first constraint to satisfy the safety property, where λb is the
upper bound on transaction validation for blockchain BCb.

The second constraint does not concern safety, but com-
mercial fairness. Bob will not call the COMMIT function of
SC2 unless he is sure that SC1 is Committed. He needs the
guarantee that Alice’s commitment is a valid transaction. If
it is not yet, in the fear of a safety violation, Bob should
chose not to COMMIT and instead call REFUND on SC2. Alice
would end up having her assets locked for at least λb, which
is commercially unfair for her. Thus, for the swap to be fair,
time-locks should be chosen such that ∆1 ≥ ∆2 + λa.

We obtain the following:

∆1 ≥ ∆2 +max{λa, λb} (4)

Now that we found the minimal value for ∆1, we want
to find a minimal value for ∆2. We want to minimize the
duration of the swap for commercial fairness. If ∆2 = 0,
Bob can call for a REFUND on SC2 at any moment. Yet
he cannot ask for REDEEM on SC1 either he doesn’t know
s. Alice’s adapter has been triggered by Bob’s COMMIT and
proceeds to call REDEEM on SC2. This REDEEM transaction



contains s in plain text as a parameter. At this point this
redeem transaction is not confirmed yet, but still waiting in
the mempool. As transactions are public, it is possible for Bob
to run a transaction sniffer that would extract s from Alice’s
unconfirmed REDEEM transaction. Then he would send two
transaction: REFUND on SC2 and REDEEM on SC1 with the
secret s he just sniffed, leading to a safety violation. He could
even increase its chances of success by setting high transaction
fees.

Therefore it is necessary that ∆2 be long enough for Alice
to call REDEEM on SC2 and for this transaction to be included
in a valid block. Thus we have:

∆2 ≥ λb (5)

a) Relay latency: Cross chain transaction verification
requires that, for each new block bi produced on chain BCb,
a relayer submits bi to the relay Ra←b. Thus, between the
time a block bi is produced on chain BCb and the time
VERIFYTX(tx), tx ⊂ bi to the relay Ra←b will return true,
there is a maximum delay given by [7].

∆relay = λb +∆submit + 2λa (6)

λa and λb being the upper bound on transaction validation time
of blockchain BCa resp. BCb. ∆submit is the delay between
the moment a block is produced and the moment a relayer
submits the block to the relay.

In the R-SWAP protocol, each relay Ra←b and Rb←a is
called once. SC1 calls VERIFYTX(tx, k) at stage 8 to verify
that SC2 is in state PreCommitted. SC2 calls the relay Rb←a
at stage 11 to verify that SC1 is in state Committed.

Let tx1com be the commitment transaction of SC1. There
is a latency ∆relay during which the relay Rb←a will
not consider tx1com as a valid transaction. Thus calling
VERIFYTX(tx1com, k) on Rb←a during this period of time
might return false. Thus the time lock value ∆1 of contract
SC1, must be such that ∆1 ≥ ∆relay . Considering relay’s
delay we must now ensure that ∆1 is large enough for the
commit transaction of SC1 to be valid regarding the relay:

∆1 ≥ ∆2 +∆relay (7)

or
∆1 ≥ ∆2 + λa +∆submit + 2λb (8)

Finally we obtain the following system of inequalities for
the time lock values:{

∆1 ≥ ∆2 + λa +∆submit + 2λb

∆2 ≥ λb
(9)

B. Proof of correctness

In this section, we prove the correctness of the protocol,
i.e., that it satisfies the properties of safety, time bounded
termination and liveness of a time locked atomic cross chain
swap, defined in Section III-A.

Lemma V.1. Assuming Bob’s adapter is correct and that
there is an upper bound on transaction validation time λ,

the R-SWAP protocol satisfies the γ time-bounded termination
property of a time locked atomic cross-chain swap.

Proof. Consider a time bounded atomic cross-chain swap
executed via the R-SWAP protocol and assume there is a
violation of the time bounded termination property. A violation
of the time bounded termination property implies that the asset
is locked, thus excluding all set of states prior to PreCom-
mitted/PreCommitted, PreCommitted/PreCommitted included.
Indeed, prior to be in state Committed, contracts are only
hash-locked and thus can be refunded. Given the possible
set of states in Figure 4 appendix B, subsequent possible
states are Committed/PreCommitted, PreCommitted/Refunded
and Refunded/PreCommitted. Those two last set of states don’t
imply a violation of the time bounded termination property
since asset are refunded, or will be able to be refunded when
the time lock elapse, so the only case to consider is the set
Committed/PreCommitted.

In order to transition to this set, SC1 must commit. It does
so by calling the COMMIT internal function with as a parameter
∆1. ∆1’s value is hard coded in the contract thus a value
unknown or superior to γ is impossible. The result of the
SC1’s commitment is a transaction tx.

Subsequently, three sets of state are possible:
• Refunded/PreCommitted: Since ∆1 is known and finite,
SC1 will eventually be able to move to Refunded, not
leading to a violation of the time bounded termination
property.

• Committed/Committed: To proceed to state Committed,
SC2 calls Rb←a to verify tx. If the relay returns true then
SC2 extracts ∆1 from tx. It then proceeds to call it’s own
COMMIT function with as a parameter ∆2 = λb. Yet a
violation of the time bounded termination property would
imply that the time lock value was unknown, leading to
a contradiction.

• Committed/Refunded: Since its asset was not locked, SC2

can be refunded. But since ∆1 is known and finite, SC1
will eventually be able to move to Refunded, not leading
to a violation of the time bounded termination property.

Out of those three sets of states, the only one of interest is
Committed/Committed, as the other two involve SC1 being
able to call REFUND. Since ∆1 is known and inferior to γ,
SC1 will be able to call REFUND at the expiration of ∆1.
Thus, from now on, the potential violation of the time bounded
termination property only concerns SC2. From the set of state
Committed/Committed two set of states are possible:
• Committed/Redeemed: Since Bob has extracted h from

Alice’s COMMIT transaction tx, she can call the REDEEM
function of SC2 with the secret s. By doing so she
triggers the asset transfer from SC2 to her address. As
she has revealed s to Bob, if Bob’s adapter is correct
it will automatically call the REDEEM function of SC1,
triggering the asset transfer from SC1 to Bob’s address.
Since the transaction has a high probability of being
included prior to ∆2’s expiration, the protocol satisfies
the γ time bounded termination property.



• Refunded/Committed: If Alice has been refunded, it
means that ∆1 has expired. If Bob’s adapter is correct, it
would have called the REFUND function of SC2 right af-
ter the publication of the block containing Alice’s refund
transaction. Since ∆1 ≥ ∆2 + ∆relay, Bob’s REFUND
transaction will be included with a high probability,
leading to a contradiction. Thus the protocol satisfies the
γ time bounded termination property.

Lemma V.2. Assuming Bob’s adapter is correct and that there
is an upper bound on transaction validation time λ, the R-
SWAP protocol satisfies the safety property of a time locked
atomic cross-chain swap.

Proof. Consider an atomic cross-chain swap executed via the
R-SWAP protocol and assume the safety of the transaction has
been violated. This safety violation implies that there exist two
smart contracts SC1 and SC2 one being in state Redeemed
and the other Refunded. Indeed, given the graph in Figure 4
appendix B, any other set of state is impossible or doesn’t
imply a safety violation. We also exclude the case of an asset
being locked forever because of the time bounded termination
property.
SC1 being redeemed and SC2 refunded, imply that Bob has

found the secret s because SC1 is programmed to change state
to redeemed only if provided s. This lead to a contradiction
because it is impossible to calculate s from h.
SC1 being redeemed and SC2 being refunded imply that

Alice has called the redeem function of SC2. By doing so she
has revealed the secret s. But given that the adapter checks
the state of SC2 at every new block, and given that the block
time is << ∆2, at the time Alice will be allowed to call
refund, SC1 will already be in state Redeemed, leading to a
contradiction.

Lemma V.3. Assuming Bob’s adapter is correct and that there
is an upper bound on transaction validation time λ, the R-
SWAP protocol satisfies the liveness property of an atomic
cross-chain with high probability.

Proof. Consider a time locked atomic cross-chain swap exe-
cuted via the R-SWAP protocol and assume there is a violation
of the liveness property. A violation of the liveness property
implies that upon lock time expiration both contract are in state
Redeemed but one or more of the participant have not received
their payoffs. Since SC1 and SC2 are programmed to transfer
the assets prior to transition to state Redeemed, a violation of
the liveness property implies that the receiver address provided
during the commit transaction tx1com of SC1 resp. tx2com of
SC2 was not Bob resp. Alice.

When calling SC1 COMMIT function, Bob’s adapter has
provided the details of the PRECOMMIT transaction tx2pre of
SC2. Then the COMMIT function of SC1 has called Ra←b
to verify tx2pre. If the transaction is valid, SC1 proceed to
extract Bob’s address from tx2pre, set him as receiver and
changes its state to Committed. Yet a violation of the liveness

property would suppose that this address was something else,
leading to a contradiction.
SC2 COMMIT function works the same way, but instead

of providing the PRECOMMIT transaction, Alice’s adapter
provides the COMMIT transaction details tx1com. Prior to
committing, SC2 calls Rb←a to verify tx1com. If it was a
valid transaction, SC2 extracts Alice’s address from tx1com
and calls its own COMMIT function with the address previously
extracted as a parameter. Yet a violation of the liveness prop-
erty would suppose that the address provided was something
else, leading to a contradiction.

a) Note on non-deterministic blockchains: With some
proof-of-work blockchain systems such as Bitcoin and
Ethereum, block creation is not deterministic but probabilistic.
However it is proven in [19] that under the assumption of an
honest majority of nodes t ≤ 1−δ

2 (n − t), Bitcoin satisfies
agreement and validity properties with probability at least
1−e−Ω(ε2λf) with n number of parties mining; t out of which
are controlled by the adversary, δ the advantage of honest
parties, ε the quality of concentration of random variables
in typical executions, λ the tail-bounds parameter and f the
probability at least one honest party succeeds in finding a
POW in a round. Thus, for such blockchain systems, R-SWAP
satisfies the properties of a time locked atomic cross chain
swap with high probability.

VI. PROTOCOL EVALUATION

In this section we will analytically evaluate the perfor-
mances of the R-SWAP protocol. Then we will estimate the
operational cost of maintaining the infrastructure required. A
numerical projection is given in appendix.

A. Atomic Swap Latency definition
Naively, Atomic swap latency could be defined as the time

difference between the moment first asset is locked and the
moment the last asset is unlocked. But since there is no
reliable global clock in most blockchain systems, it is difficult
to measure the real latency of an atomic cross-chain swap.
In order to be more accurate, latency can be measured from
the participants blockchain client’s perspective. Besides the
improved accuracy, the measurement of the latency will better
reflect the protocol ergonomics and performance.

Definition 3 (Atomic Swap Latency) Let Locked,
Refund and Redeem be three predicates. Let p be
a participant in an atomic cross-chain swap. Predicate
Locked = true indicates that p’s asset is locked. Pred-
icate Refund = true indicates that p has received his
refund and can transact it. Predicate Redeem = true
indicates that p has received his payoff and can transact
it. Let tl be the time when Locked = true. Let tu be the
time when Refund ∨Redeem = true. Then the atomic
swap latency is defined by:

∆latency = tu − tl (10)



B. R-SWAP Latency

In the following, we are going to analyse the latency of the
R-SWAP protocol. We will evaluate the theoretical latency of
the protocol but we provide a numerical analysis in Appendix
C.

Disambiguation: We refer to validation time as the time it
takes for a transaction to be included in a block and to receive
k confirmations. We refer to confirmation time as the time it
takes for a transaction to be included in a block.

1) Theoretical analysis: λ is the upper bound on trans-
action validation with probability ε and ∆ is the time lock
value of a R-SWAP contract SC. There are two values for
the latency, one from Alice’s client perspective and one from
Bob’s. As proven in Section V, the R-SWAP protocol is
γ time bounded. This means that from the moment Alice’s
COMMIT transaction has been sent and the moment she will
have received her payoff or will be able to be refunded, there
is a maximum of γ time. In the case every participant is honest
and abide by the protocol, the atomic swap latency of the R-
SWAP protocol is less than ∆1, the lock time of contract SC1.
In the case Bob stopped abiding by the protocol after Alice’s
COMMIT transaction, she will have to wait for ∆1’s expiration
before calling REFUND. Then this REFUND transaction will be
confirmed in less than λa, the transaction validation time of
blockchain BCa. From Alice’s point of view, this is a latency
of less than ∆1+λa. In the case Alice stopped abiding by the
protocol after Bob’s COMMIT transaction, he will have to wait
for the expiration of ∆2 before calling REFUND on SC2. This
gives a latency of ∆2 + λb for Bob and ∆1 + λa for Alice.
Thus the overall maximum latency is ∆lantency = 3λb+λa.

Case
Max latency

Alice Bob

Alice $ Bob abide by the protocol ∆1 ∆1

Bob stops after Alice’s Commit ∆1 + λa None
Alice stops after Bob’s Commit ∆1 + λa ∆2 + λb

Fig. 2. Table of R-SWAP theoretical latency

C. Cost evaluation

In this section, we will analyse the operational cost of the
infrastructure required to implement the R-SWAP protocol.
The R-SWAP protocol is made out of three software bricks;
hash time locked contracts, blockchain adapters and relays.
Operating an external adapter is as costly as operating a
blockchain node. A single hash time locked contract can be
used for a large amount of swaps, making the deployment
cost negligible. Thus the operational costs of the infrastructure
narrows down to the cost of operating the relays.

a) Operational cost of Relays: As explained in Section
III-B0b, a relay Ra←b is a piece of software, possibly a smart
contract, that allows to read and verify the state of chain
BCb from chain BCa [20]. The intuition is that a relayer
r publishes every new block header of chain BCb to the
relay Ra←b on chain BCa. The relay implements the block

verification algorithm of chain BCb. It verifies the proof of
work for PoW chains or the signature of 2/3 of the validators
for BFT consensus chains [21]. Then, once the block has
been verified, a process can call the relay to verify a specific
transaction of chain BCb from BCa. He pays a little fee that
will compensate the relayer’s work and expenses. Depending
on the blockchain, this process can be both calculation and
storage intensive. Unfortunately, storage and calculation ”on-
chain” is expensive in most blockchain systems, inevitably
leading to high operational costs. Current implementation such
as BTCRelay [10] used about 194 000 gas to store and verify
a single Bitcoin block header 1. Gas price and ether price
are subject to high volatility. Thus it is important to note
that what follows can vary from one day to another but to
give a rough estimate, as of today’s prices 2, this would
translate to 25$ per relayed block. Considering that an average
of 144 Bitcoin blocks are mined every day, maintaining the
BTCRelay would cost alone about 3600$/day. If the volume
of R-SWAP transactions is large enough, those operational
costs could be amortized by an economy of scale, each swap
participant paying a small fee to the relayer. The other outlays
concerning the relays is the computational power required to
verify a submitted transaction. For each R-SWAP execution
each participants request at least one transaction verification
to the relay. On modern implementation of BTCRealy, the cost
of such an operation vary from 67000 to 102000 gas [18].

As of today, the operating cost of the relay is quite dissua-
sive, especially considering that current centralized exchange
platforms offer fees as low as 0.1% 3. Fortunately recent
research suggest that the operational cost of blockchain relays
could be reduced of up to 92% [21], thanks to an ”on-demand”
approach.

VII. CONCLUSIONS AND DISCUSSIONS

This paper presents R-SWAP, a time bounded atomic cross-
chain swap protocol that makes use of blockchain relays
and adapters to address the shortcomings of the hash lock-
ing technique. Previously proposed atomic cross-chain swap
protocols such as [5] were subject to potential safety vio-
lation. Indeed, the safety of such protocols could only be
satisfied with the assumption that no errors occurred on the
participant’s blockchain client. Moreover, the smart contract
auditing tasks were to be executed by the participants, leading
to bad ergonomics and potential safety violations. The R-
SWAP protocol makes use of blockchain relay Ra←b to verify
transactions of chain BCb from chain BCa thus automating
the contract auditing process. The protocol also involves
distributed blockchain APIs, namely blockchain adapters that
reduces the risks of a client crash compromising the swap’s
safety.

We formally prove that R-SWAP protocol satisfies the
properties of a time bounded atomic cross-chain swap with a
maximum latency ∆latency = 3λb + λa, where λ’s represents

1https://etherscan.io/address/0x41f274c0023f83391de4e0733c609df5a124c3d4
2eth price: 1293$, gas price: 100Gwei
3https://www.binance.com/en/fee/schedule



a specific blockchain’s upper bound on transaction validation
time with high probability.

The operational cost of the infrastructure required for the
R-SWAP protocol can be narrowed down to the cost of the
relay. Indeed the blockchain relay is undoubtedly the piece
of software that has the highest operational cost, as high as
3600$ per day for a Bitcoin relay on the Ethereum blockchain
at current price. However recent research [21] suggest that
operational cost of relays could be reduced by 92%.

REFERENCES

[1] N. Satoshi, “Bitcoin: A peer-to-peer electronic cash system,” Manubot,
Tech. Rep., 2019.

[2] N. Ton, “A complete list of cryptocurrency exchange hacks [updated],”
Jul 2020. [Online]. Available: https://blog.idex.io/all-posts/a-complete-
list-of-cryptocurrency-exchange-hacks-updated

[3] J. Xu and B. Livshits, “The anatomy of a cryptocurrency pump-and-
dump scheme,” in 28th {USENIX} Security Symposium ({USENIX}
Security 19), 2019, pp. 1609–1625.

[4] B. Vitalik, “Chain interoperability,” 2016.
[5] M. Herlihy, “Atomic cross-chain swaps,” in Proceedings of the

2018 ACM Symposium on Principles of Distributed Computing,
ser. PODC ’18. New York, NY, USA: Association for
Computing Machinery, 2018, p. 245–254. [Online]. Available:
https://doi.org/10.1145/3212734.3212736

[6] V. Zakhary, D. Agrawal, and A. El Abbadi, “Atomic commitment across
blockchains,” Proceedings of the VLDB Endowment, vol. 13, no. 9, 2020.

[7] A. Zamyatin, D. Harz, J. Lind, P. Panayiotou, A. Gervais, and W. Knot-
tenbelt, “Xclaim: Trustless, interoperable, cryptocurrency-backed as-
sets,” in 2019 IEEE Symposium on Security and Privacy (SP), 2019,
pp. 193–210.

[8] R. Han, H. Lin, and J. Yu, “On the optionality and fairness of atomic
swaps,” in Proceedings of the 1st ACM Conference on Advances in
Financial Technologies, 2019, pp. 62–75.

[9] Z. D. Kiayias Aggelos, “Proof-of-work sidechains,” in International
Conference on Financial Cryptography and Data Security. Springer,
2019, pp. 21–34.

[10] Consensys, “ethereum/btcrelay,” Oct 2017. [Online]. Available:
https://github.com/ethereum/btcrelay

[11] A. Back, M. Corallo, L. Dashjr, M. Friedenbach, G. Maxwell,
A. Miller, A. Poelstra, J. Timón, and P. Wuille, “Enabling
blockchain innovations with pegged sidechains,” URL: http://www.
opensciencereview. com/papers/123/enablingblockchain-innovations-
with-pegged-sidechains, vol. 72, 2014.

[12] J. Redman, “Report: Blockchain price oracle manipula-
tion produces millions in losses, shows no signs of
slowing – altcoins bitcoin news,” Nov 2020. [Online].
Available: https://news.bitcoin.com/report-blockchain-price-oracle-
manipulation-produces-millions-in-losses-shows-no-signs-of-slowing/

[13] S. Jon, “Chainlink exploits lead to eth losses-again,” Sep 2020.
[Online]. Available: https://coingeek.com/chainlink-exploits-lead-to-eth-
losses-again/

[14] M. Pease, R. Shostak, and L. Lamport, “Reaching agreement in the
presence of faults,” J. ACM, vol. 27, no. 2, p. 228–234, Apr. 1980.
[Online]. Available: https://doi.org/10.1145/322186.322188

[15] E. Anceaume, R. Ludinard, M. Potop-Butucaru, and F. Tronel, “Bitcoin
a Distributed Shared Register,” in SSS 2017 - 19th International
Symposium on Stabilization, Safety, and Security of Distributed
Systems, ser. Lecture Notes in Computer Science, vol. 10616. Boston,
MA, United States: Springer, Nov. 2017, pp. 456–468. [Online].
Available: https://hal.archives-ouvertes.fr/hal-01522360

[16] Y. Amoussou-Guenou, A. D. Pozzo, M. Potop-Butucaru, and S. Tucci
Piergiovanni, “Dissecting tendermint,” CoRR, vol. abs/1809.09858,
2018. [Online]. Available: http://arxiv.org/abs/1809.09858

[17] C. Patrick, “Building and using external adapters,” Jan 2021. [Online].
Available: https://blog.chain.link/build-and-use-external-adapters/

[18] Interlay, “interlay/btc-relay-solidity,” 2020. [Online]. Available:
https://github.com/interlay/BTC-Relay-Solidity

[19] J. Garay, A. Kiayias, and N. Leonardos, “The bitcoin backbone protocol:
Analysis and applications,” in Annual international conference on the
theory and applications of cryptographic techniques. Springer, 2015,
pp. 281–310.

[20] A. Zamyatin, “Re-implementing btc relay in solidity,” Jan 2019.
[Online]. Available: https://www.alexeizamyatin.me/reimplementing-
btcrelay-in-solidity/

[21] P. Frauenthaler, M. Sigwart, C. Spanring, and S. Schulte, “Testimonium:
A cost-efficient blockchain relay,” arXiv preprint arXiv:2002.12837,
2020.

[22] CoinMarketCap, “Cryptocurrency prices, charts and market
capitalizations.” [Online]. Available: https://coinmarketcap.com/

[23] D. Koops, “Predicting the confirmation time of bitcoin transactions,”
arXiv preprint arXiv:1809.10596, 2018.

[24] S. Kasahara and J. Kawahara, “Effect of bitcoin fee on transaction-
confirmation process,” arXiv preprint arXiv:1604.00103, 2016.

[25] J. Newbery, “An introduction to bitcoin core fee estimation,” Oct
2018. [Online]. Available: https://bitcointechtalk.com/an-introduction-
to-bitcoin-core-fee-estimation-27920880ad0

[26] C. Decker and R. Wattenhofer, “Information propagation in the bitcoin
network,” in IEEE P2P 2013 Proceedings, 2013, pp. 1–10.

[27] G. A. Pierro and H. Rocha, “The influence factors on ethereum transac-
tion fees,” in 2019 IEEE/ACM 2nd International Workshop on Emerging
Trends in Software Engineering for Blockchain (WETSEB). IEEE, 2019,
pp. 24–31.

[28] E. G. Station. (2021) Eth gas station. ethgasstation.info. [Online].
Available: https://ethgasstation.info/

[29] P. Siriwardena, “The mystery behind block time,” Jul 2018.
[Online]. Available: https://medium.facilelogin.com/the-mystery-behind-
block-time-63351e35603a

[30] Rolandkofler, “rolandkofler/blocktime,” 2017. [Online]. Available:
https://github.com/rolandkofler/blocktime

[31] J. Kwon and E. Buchman, “Cosmos: a network of distributed ledgers
(2016),” 2016. [Online]. Available: https://cosmos. network/whitepaper

[32] S. Braithwaite, E. Buchman, I. Konnov, Z. Milosevic, I. Stoilkovska,
J. Widder, and A. Zamfir, “Tendermint blockchain synchronization:
Formal specification and model checking,” in Leveraging Applications
of Formal Methods, Verification and Validation: Verification Principles,
T. Margaria and B. Steffen, Eds. Cham: Springer International
Publishing, 2020, pp. 471–488.

[33] F. Omar, “Cosmos network now has nearly 100 val-
idators, 6-7 second block times,” Apr 2019. [On-
line]. Available: https://www.cryptoglobe.com/latest/2019/04/cosmos-
network-now-has-nearly-100-validators-6-7-second-block-times/

[34] G. Birch, “Cosmos stargate update overview,” 2020. [Online]. Available:
https://figment.io/resources/cosmos-stargate-upgrade-overview/#ibc

[35] G. Wood, “Polkadot: Vision for a heterogeneous multi-
chain framework.” [Online]. Available: https://github.com/polkadot-
io/polkadotpaper/raw/master/PolkaDotPaper.pdf

[36] T. Nolan, “Alt chains and atomic transfers,” 2013. [Online]. Available:
https://bitcointalk.org/index.php?topic=193281.msg2224949#msg2224949

[37] M. Belotti, S. Moretti, M. Potop-Butucaru, and S. Secci, “Game theoret-
ical analysis of atomic cross-chain swaps,” in 40th IEEE International
Conference on Distributed Computing Systems (ICDCS), 2020.

[38] K. team, 2018. [Online]. Available:
https://github.com/KomodoPlatform/BarterDEX

[39] K. Platform, “Komodo, an advanced blockchain technology,
focused on freedom,” June 2018. [Online]. Available:
https://static2.coinpaprika.com/storage/cdn/whitepapers/140811.pdf

[40] Blockchain.io, “Blockchain.io your gateway to the internet of value.”
[Online]. Available: https://blockchain.io/



APPENDIX A
SMART CONTRACT STATES REPRESENTATION

invalidstart

PreCommitted

Committed

RedeemedRefunded

PRECOMMIT

COMMIT
REFUND

REDEEM

REFUND

Fig. 3. Representation of the R-SWAP smart contract states as a Directed
Acyclic Graph

APPENDIX B
PROTOCOL REPRESENTATION

Inv/Invstart

Pre/InvRf/Inv

Pre/Pre Pre/Rf

Com/Pre Rf/Pre

Com/Com Com/Rf

Com/Rd Rf/Com

Rd/Rd

Rf/Rf

Fig. 4. Representation of the R-SWAP protocol possible set of states as a
Directed Acyclic Graph

This directed acyclic graph represents the states of both con-
tracts on each chain. Inv for Invalid, Pre for PreCommitted,
Com for Committed, Rd for Redeemed, Rf for Refunded.

APPENDIX C
NUMERICAL ANALYSIS OF R-SWAP LATENCY

The value of the latency is highly dependant on the set
of blockchain involved in the swap, because time locks are

based on the upper bound of transaction validation time λ
with probability ε, which is specific to each blockchain. In
this section we will provide a numerical analysis of the swap
latency between two most valued cryptocurrencies in terms of
market cap at the time of writing: Bitcoin and Ethereum [22].

a) Bitcoin’s upper bound on transaction validation
time: Calculating Bitcoin’s or any blockchain’s upper bound
on transaction validation time is a very complex problem.
Indeed, it depends on numerous factors such as transaction
fees, network traffic, current hashrate and difficulty, size of the
unconfirmed transaction mempool etc. But it has been shown
in [23] that the main factors are transaction fee density (in
satoshi/Byte) and network traffic.

It is known that miners order transactions in their mempool
by fee density to maximize profitability [24]. By setting
sufficiently high fee density it is possible to predict that a
transaction will be included in the next block with a probability
p as high as 95% [25]. Then to find an estimation of Bitcoin’s
upper bound on transaction validation time, we must ensure
that once the transaction has been included, there is enough
time for k = 6 new blocks to be appended to the chain, i.e.,
to receive k = 6 confirmations. Block time in Bitcoin follows
an exponential distribution with parameter θ = 0.001578
[26]. Thus the probability of k blocks being mined in less
than x time is given by the PDF of the gamma distribution
Gamma(k,θ) cumulative function.

As most blockchain clients consider k = 6 being a safe
number of confirmations we obtain the value of Figure C-0a.

P (X < x) x (in seconds)
0.95 6662.25
0.99 8307.02
0.995 8966.89
0.999 10427.60

Fig. 5. Probability for 6 blocks to be mined in less than x seconds

Thus with a fee density high enough for the transaction to
be included in the next block with high probability p = 0.95,
there is an upper bound on this transaction validation time
λbtc = 10427 seconds with high probability. 4 Rounded up,
this translates to a 3 hours validation time.

b) Ethereum’s upper bound on transaction validation
time: Because Ethereum also uses proof of work, the factors
influencing transaction validation time are similar to the ones
with Bitcoin [27]. As in Bitcoin, miners also tend to order
transaction depending on the transaction fees (named gas price
in Ethereum). Services such as Ethereum Gas Station [28]
provide information on gas price relative to confirmation time.
For each target confirmation time, they provide ranges of gas
prices. For instance the ”fast” range of gas price would have
a transaction confirmed in less than two minutes, while the

4p = 0.95∗0.999 = 0.949. It is to be noted that even if the transaction has
not received 6 confirmations yet, it should have received at least 5 confirmation
with probability > 0.949, and should receive it’s 6th confirmation in the next
ten minutes



”standard” gas price in less than five. It has been shown in
[27] that with the highest range of fees, it takes at most thirty
seconds (or two blocks) to have a transaction confirmed.

Now that we now how much time it takes to have an
Ethereum transaction included in a block, we need to find
how much time does it take for this transaction to become
k-valid, i.e., for k new blocks to be appended to the chain.

Most Ethereum clients consider that k = 12 is a safe number
of confirmation. We could naively multiply the average block
time by k to obtain the upper bound on transaction validation
time for Ethereum, but unlike Bitcoin, Ethereum is not set to
have a constant block time. Indeed, the difficulty adjustment
algorithm is such that, at some point, the difficulty will rise
exponentially, ”freezing” the blockchain. This event, referred
to as the ”Ice Age” has been thought of to force miners to
switch to Proof of Stake [29]. Thus the estimation we will
provide for Ethereum’s upper bound on transaction validation
time only holds prior to this event.

A study based on the Ethereum blockchain data [30] showed
that 99% of the blocks where produced in less than a minute.
Thus with k = 12, twelve minutes after its inclusion in a
block, a transaction should be k-valid with high probability
p ≈ 1. Therefore with sufficient gas price, there is an upper
bound on transaction validation time for Ethereum λeth =
(k ∗ 60) + 30 = 750 seconds with high probability. 5

c) Latency for a swap between Bitcoin and Ethereum:
Consider a R-SWAP protocol execution between Bob and
Alice. Alice, the initiator, has bitcoins. Bob, the participant,
has ethers. (The initiator is the one that generates the secret).
Given the values of upper bounds on transaction validation
time, given the theoretical latency values of Figure VI-B1 and
given the values of time locks of Section V-A, the estimation
of the maximum latency values for this swap are presented
in Figure C-0c. (We selected ∆btc = 8307 seconds and
∆eth = 750 seconds).

Case
Max latency

Alice Bob

All participants abide by the protocol 10 557 10 557
Bob stops after Alice’s Commit 18 864 n.a
Alice stops after Bob’s Commit 18 864 1500

Fig. 6. Latency for a R-SWAP execution between Bitcoin and Ethereum

d) Tendermint upper bound on transaction validation
time: Block-chain systems such as Cosmos [31] uses the
Tendermint byzantine fault tolerant (BFT) consensus [32].
Tendermint BFT consensus satisfies the instant finality prop-
erty. With our model, this translates to having a safety factor
k = 1. Thus, the Tendermint upper bound on transaction
validation time is nothing else than Tendermint block time.
As of today, the observed block time is seven seconds [33].
Thus for Tendermint we have λtendermint = 7.

e) Latency for a swap between Tendermint and
Ethereum: Consider a R-SWAP protocol execution between

5This is a 12min and 30s total validation time.
Tendermint and Ethereum. The initiator (the one generating
the hash lock) has ethers and the participant has atoms
(Cosmos native asset). For such a swap we obtain the latency
values presented in Figure C-0e. Cosmos recently launched
the Stargate update [34] which allows cross chain transactions.
The inter blockchain communication protocol used to achieve
cross chain transactions uses some sort of pegging like X-
Claim [7]. As this is a work in progress, we do not have a
performance evaluation of this protocol.

Case
Max latency

Alice Bob

Alice $ Bob abide by the protocol 771 771
Bob stops after Alice’s Commit 1521 n.a
Alice stops after Bob’s Commit 1521 14

Fig. 7. Latency for a R-SWAP execution between Ethereum and Tendermint

APPENDIX D
OTHER RELATED WORKS

There are currently several operational systems for achiev-
ing interoperability between different blockchains (e.g Cos-
mos [31] or Polkadot [35]). However, they are not yet fully
formalized and proved correct. Moreover, there is no academic
study focusing on their performances.

Blockchain interoperability protocols can be classified into
two main classes according to their level of decentralization:
systems that use a trusted third-party to validate transactions
and systems that realize it directly between blockchains with-
out the need of a trusted third-party.

The first atomic swap was proposed for Bitcoin by Nolan
[36]. This solution uses hash-time locked contracts enabling
conditional assets transfers. In [5] the authors generalize
Nolan’s scheme and propose its analyses using a game theo-
retical approach. This analysis has been refined later in [37].
Other projects such as BartherDEX [38], part of the Komodo
project [39], represents a cross-chain solution that matches
orders and defines the swap protocol or Blockchain.io [40] im-
plements atomic cross-chain swaps by combining centralized
components (order matching) with decentralized ones (trade
settlement and execution). These projects are not yet formally
proved correct.

The academic research focuses on hybrid swap protocols,
replacing decentralized commitment/locking schemes (hash-
locks) with centralized ones, resulting in more attractive and
efficient protocols. AC3TW and AC3WN [6] protocols pro-
pose atomic cross-chain swaps respectively with centralized
and distributed trusted authorities (i.e., witnesses).



APPENDIX E
R-SWAP SMART CONTRACT

Algorithm 2 R-SWAP hash time lock contract class
1: address sender; . Address of swap initiator
2: address receiver; . Address of participant
3: float amount; . Amount exchanged
4: float rate; . Exchange rate
5: integer timelock;
6: bytes secret;
7: bytes hashLock; . Hash of the secret
8: address Relay; . Address of the relay smart contract
9: enum State{Invalid, PreCommitted, Committed, Redeemed, Refunded}

10: State state← Invalid . Variable to store state
11: procedure PRECOMMIT(hashLock, amount, rate)
12: requires(this.state = Invalid)
13: this.hashLock ← hashLock
14: this.amount← amount
15: this.rate← rate
16: this.sender ← msg.sender
17: this.state← PreCommitted
18: end procedure
19: procedure COMMIT(tx)
20: requires(this.state = PreCommitted)
21: requires(RELAY.VERIFYTX(tx)) . Calling the relay to verify that the provided transaction is valid
22: requires(tx.hashLock = this.hashLock) . Verifying the hash lock
23: requires(tx.amount = this.amount ∗ this.rate) . Verifying the amount
24: this.receiver ← msg.sender . Setting the function caller as receiver
25: this.timelock ← now +∆1 . Setting up the time lock
26: this.state← Committed
27: end procedure
28: procedure REDEEM(secret)
29: requires(this.state = Committed)
30: requires(msg.sender = this.receiver) . Check that the caller is the swap receiver
31: requires(SHA256(secret)= this.hashLock) . Verify the secret
32: this.secret← secret . Make the secret public
33: TRANSFER(this.amount, this.receiver) . Transfer the funds
34: this.state← Redeemed
35: end procedure
36: procedure REFUND
37: requires(this.state 6= Redeemed)
38: requires(msg.sender = this.sender) . Verify that the caller is the swap sender
39: requires(this.timelock ≥ now) . Check that timelock is elapsed
40: TRANSFER(this.amount, this.sender) . Transfer the funds
41: this.state← Refunded
42: end procedure
43: procedure CHECKSTATE
44: return this.state
45: end procedure
46: procedure CHECKSECRETKEY
47: return this.secret
48: end procedure

msg is a variable generated when executing a transaction. It contains several information relative to the transaction such as
the address of the function caller msg.sender or the value of the transaction msg.value.


