
IACR EPRINT ARCHIVE, VOL. XX, NO. XX, MONTH 20XX 1

Stealth: A Highly Secured End-to-End Symmetric
Communication Protocol

Ripon Patgiri, Senior Member, IEEE

Abstract—Symmetric key cryptography is applied in almost
all secure communications to protect all sensitive information
from attackers, for instance, banking, and thus, it requires extra
attention due to diverse applications. Moreover, it is vulnerable to
various attacks, for example, cryptanalysis attacks. Cryptanalysis
attacks are possible due to a single-keyed encryption system.
The state-of-the-art symmetric communication protocol uses a
single secret key to encrypt/decrypt the entire communication
to exchange data/message that poses security threats. Therefore,
in this paper, we present a new secure communication protocol
based on Diffie-Hellman cryptographic algorithms, called Stealth.
It is a symmetric-key cryptographic protocol to enhance the
security of modern communication with truly random numbers.
Additionally, it applies a pseudo-random number generator.
Initially, Stealth uses the Diffie-Hellman algorithm to compute
four shared secret keys. These shared secret keys are used to
generate four different private keys to encrypt for the first block
of the message for symmetric communication. Stealth changes
its private keys in each communication, making it very hard to
break the security protocol. Moreover, the four shared secret keys
create additional complexity for the adversary to overcome, and
hence, it can provide highly tight security in communications.
Stealth neither replaces the existing protocol nor authentication
mechanism, but it creates another security layer to the existing
protocol to ensure the security measurement’s tightness.

Index Terms—Security, Security Protocol, Encryption, Cryp-
tography, Symmetric-key Cryptography, Diffie-Hellman Cryptog-
raphy, Random Number Generator, Computer Networking.

I. INTRODUCTION

SYMMETRIC communication protocols are the most used
security protocol, and it is able to provide high security

due to the computation of a shared secret key. Adversaries
require years to defeat such kinds of security measures,
for instance, Diffie-Hellman cryptography [1]. Also, there
are diverse variants of symmetric key exchange protocol to
enhance communication security, for example, Elliptic-curve
Diffie-Hellman cryptography [2] based on Diffie-Hellman, and
Elliptic-curve cryptography [3]. Secure symmetric communi-
cation requires encryption/decryption methods to convert the
plaintext to cipher; however, there are various possible attacks
for symmetric key encryption algorithms [4]. Moreover, the
encryption is performed using a single secret key, and there-
fore, attackers can find a pattern to reveal the secret key [5].

The shared secret key is used in encrypting a message for
communication. A conventional communication system agrees
upon a fixed shared secret key and exchanges the messages

Ripon Patgiri, Department of Computer Science & Engineering, National
Institute of Technology Silchar, Assam, India-788010, ripon@cs.nits.ac.in, url:
http://cs.nits.ac.in/rp/

Manuscript received Month 00, 20XX; revised Month 00, 20XX.

with two end-points. There is a high possibility to find a
pattern to discover the shared secret key from a set of mes-
sages. Moreover, the brute-force method can always discover
a shared secret key for encryption if the entire communication
is performed using a single shared secret key. However, it
may take many years or may take a few trials to reveal the
secret key. Therefore, there is a high risk involved in such kind
of communication. It is not impossible to reveal the shared
secret key for the known-plaintext, chosen-plaintext, chosen-
ciphertext, linear cryptanalysis, differential cryptanalysis, dif-
ferential fault analysis, differential power analysis, differential
timing analysis, and side-channel attacker [6]. Obviously, a
cryptanalyst always tries to find a weakness and patterns
to reveal the secret keys. Thus, symmetric-key cryptography
poses a high risk of being attacked by adversaries. Therefore,
there are two research questions, and these are as follows-

RQ1 Is it possible to change the secret keys in each
symmetric communication without using extra com-
munication overhead?

RQ2 Is it possible to protect the symmetric communica-
tion from cryptanalysist and brute-force attackers?

These two research questions pose a new challenge to secure
symmetric communication. Therefore, in this paper, we pro-
pose a novel and highly secure communication protocol to
secure from different kind of attackers in symmetric cryptogra-
phy, called Stealth, which address the above research questions
RQ1 and RQ2. Stealth is a secure symmetric communication
protocol for highly sensitive data communication to protect
from adversaries. Therefore, it initially uses the Diffie-Hellman
key exchange protocol to compute four shared secret keys.
These shared secret keys are used to generate the four private
keys for encryption/decryption. The encryption/decryption re-
quires four private keys. In each communication, Stealth
changes its private keys to ensure high security. Also, these
private keys are generated using a pseudo-random number
generator.

The key contribution of the paper is as follows-

• Stealth is a secure communication protocol based on
Diffie-Hellman cryptography to defend against various
attacks, and it enhances the Diffie-Hellman key exchange
protocol without incurring extra communication. Stealth
uses the same number of communication costs as well
as the Diffie-Hellman algorithm. It also enhances the
cryptography protocol, Advanced Encryption Standard
(AES) [7], for better encryption or decryption.

• Stealth uses four private keys and changes its private
keys in each communication. Therefore, the probability

IACR EPRINT ARCHIVE, VOL. XX, NO. XX, MONTH 20XX 2

of capturing entire communication without knowing the
private keys is (1

8V)
< for V bit sized private keys and <

communications.
• Stealth uses four shared secret keys to generate four

private keys, and the probability of getting correct private
keys is 1

16V .
Stealth works on the existing methodology for security,
namely, authentication, key exchange protocol, and block
cipher, and it does not replace the existing methods, but it
adds an extra layer to protect the communication from various
attackers. Stealth can defend diverse cryptanalysis attacks and
brute force attacks. However, it does not address the issues of
the man-in-the-middle (MITM) attack and DDoS attacks.

The paper is organized as follows- Section II highlights the
preliminaries for the proposed work, called Stealth. Section III
presents the proposed algorithm, Stealth, in-depth. Section V
provides the experimental results of a pseudo-random number
generator, called Stealth-PRNG. Stealth depends on the truly
random number to secure each communication. Stealth-PRNG
proves its randomness in NIST SP 800-22 statistical testing
in Section V. Section IV analyzes the proposed work and
discusses its security attacks. Also, it provides detailed math-
ematical analysis. Finally, this paper is concluded in Section
VI.

II. BACKGROUND

There is a diverse variant of symmetric cryptography algo-
rithms [8]; namely, International Data Encryption Algorithm
(IDEA) [9], Twofish, Serpent, Rijndael [7], Camellia, Salsa20,
ChaCha20, Blowfish, CAST5, Kuznyechik, RC4, DES, 3DES,
Skipjack, and Safer. These cryptography algorithms are used
to convert plaintext to ciphertext using the shared secret
key and vice-versa. Therefore, these cryptography algorithms
require a method to compute the shared secret key. The
famous key exchange protocol, the Diffie-Hellman algorithm,
is used to compute shared secret keys. Also, it is enhanced
using different methods, for instance, Elliptic-curve Diffie-
Hellman algorithm [2] used to overcome the issue of the
Logjam [10]. However, the Diffie-Hellman algorithm does
not provide an authentication mechanism to protect man-
in-the-middle (MITM) attacks. Therefore, secure symmetric
communication requires an authentication mechanism, a key
exchange protocol, and an encryption/decryption protocol. The
authentication mechanism achieved using a digital signature to
defeat the MITM attack.

A. Diffie-Hellman Key Exchange Protocol

TABLE I: Diffie-Hellman Key Exchange Protocol for three
secret key generation.

A E B
P P P
6 6 6

0 1

A = 60 <>3 P B = 61 <>3 P
B A, B A
SK = B0 <>3 P SK = A1 <>3 P

The Diffie-Hellman symmetric algorithm is used to compute
shared secret keys between two end-points [1], [11]. Initially,
A and B share two prime numbers (%, 6) over the public
channel as shown in Table I. The A and B uses a true random
number generator to generate a random number 0 and 1,
respectively, which is independent of each other. A and B
keeps the random numbers secret. A computes A = 60 <>3 P
and B computes B = 61 <>3 P. A shares computed value
A to B and B shares the computed value B to A over public
channel. Then, A and B can compute common shared secret
key SK. Thus, the Diffie-Hellman algorithm exchanges secret
keys between two end-points.

The Elliptic-curve Diffie-Hellman (ECDH) cryptography
can also be used to exchange shared secret keys over a
public channel [2] as an alternative to the Diffie-Hellman
algorithms. ECDH is based on Elliptic-curve cryptography
[3], [12]. ECDH is an enhanced version of the conventional
Diffie-Hellman Algorithm. However, both Diffie-Hellman and
ECDH algorithms are prone to Man-in-the-middle (MITM)
attacks. When A and B communicates, Mallory acts as B and
seizes the entire communication with A. Therefore, A and B
are unable to communicate due to Mallory. The authentication
mechanism is essential to defeating such kinds of attacks. In
modern practice, a digital signature is used to defeat such kinds
of attacks.

III. STEALTH- THE PROPOSED SYSTEMS

We propose a novel and highly secured symmetric com-
munication protocol to implement hard secrecy which ensures
high security, called Stealth. It is based on the Diffie-Hellman
cryptography algorithm. Stealth adds extra complexity in the
Diffie-Hellman algorithm to ensure end-to-end secure secret
key sharing. Moreover, it depends on the existing AES algo-
rithm. There are diverse symmetric cryptography algorithms
[8]; however, our proposed systems implements the existing
cryptography algorithms. Stealth is not only a symmetric com-
munication protocol but also an enhancer of any symmetric
cryptography algorithm to provide higher security than the
conventional method. A sender A wish to send a message
to B and both parties A and B are active the same time.
The A and B use Diffie-Hellman algorithm to exchange four
secret keys. These secret keys are used to generate four private
keys to encrypting message. The three private keys are used
to encrypt a block of message and a private key is used to
generate a seed value. The second and the third private key
are XORed with original message and the first private key is
used to encrypt the block of message using AES. Each block
of communication, the private keys are changed by both the
sender A and the receiver B. Both A and B execute the same
function to produce same private keys. Otherwise, receiver
B cannot decrypt the message from the sender A. Similarly,
the AES uses the first generated private key to encryption
or decryption. The following subsections provide the detailed
descriptions of our proposed system, Stealth.

The key objectives of our proposed systems are outlined
below-
• To provide high security over conventional symmetric

communications.

IACR EPRINT ARCHIVE, VOL. XX, NO. XX, MONTH 20XX 3

• To enhance Diffie-Hellman algorithms using unpre-
dictable and cryptographically secure random number
generator.

• To defeat cryptanalysis attacks which is a major challenge
in secure symmetric communication.

To achieve above objectives, our proposed system has four
assumptions which are outlined below-
• The A and B are valid entities, and both are active at a

given time for communication.
• Digital signature is used to defeat man-in-the-middle

(MITM) attacks. Therefore, Stealth assumes that there is
no MITM attack.

• Stealth depends on the Diffie-Hellman algorithm, and
therefore, we omit detailed analysis on Diffie-Hellman
algorithms.

• Also, Stealth depends on the existing block cipher sym-
metric cryptography AES, and we skip the detailed anal-
ysis of the same.

• Our proposed system does not deal with DDoS attacks.

A. Diffie-Hellman Key Exchange Protocol for the Stealth

TABLE II: Diffie-Hellman Key Exchange Protocol for four
secret key generation. The A is a sender, E is an attacker and
B is a receiver. However, the sender can be receiver or vice-
versa.

A E B
P, Q, R, T, V P, Q, R, V P, Q, R, T, V
4, 5 , 6, ℎ 4, 5 , 6, ℎ 4, 5 , 6, ℎ

0, 1, 2, 3 Unknown F, G, H, I

A1 = 40 <>3 P,
A2 = 5 1 <>3 Q,
A3 = 62 <>3 R,
A4 = ℎ3 <>3 T

B1 = 4F <>3 P,
B2 = 5 G <>3 Q,
B3 = 6H <>3 R,
B4 = ℎI <>3 T

B1, B2, B3, B4 A1, A2, A3, A4,
B1, B2, B3, B4

A1, A2, A3, A4

SK1 = B0
1 <>3 P,

SK2 = B1
2 <>3 Q,

SK3 = B2
3 <>3 R,

SK4 = B3
4 <>3 T

Unknown SK1 = AF
1 <>3 P,

SK2 = AG
2 <>3 Q,

SK3 = AH

3 <>3 R,
SK4 = AI

4 <>3 T

Stealth is a symmetric communication protocol. It depends
on the Diffie-Hellman cryptography algorithm [1]. Diffie-
Hellman cryptography requires a true random number that is
kept secret. Similarly, Stealth uses Diffie-Hellman cryptogra-
phy and uses eight true random numbers (0, 1, 2, 3, F, G, H, I),
eight prime numbers (P,Q,R,T , 4, 5 , 6, & ℎ) and the bit
sizes of the pseudo-random numbers V. Table II demonstrates
the required parameters to calculate the secret keys. The eight
true random numbers (0, 1, 2, 3, F, G, H, I) are kept private. In
Stealth, the A and B must be active at the given time for
communication. Therefore, A calculates A1 = 40 <>3 P,
A2 = 5 1 <>3 Q, A3 = 62 <>3 R, A4 = ℎ3 <>3 T , and
the B also calculates B1 = 4F <>3 P, B2 = 5 G <>3 Q,
B3 = 6H <>3 R, B4 = ℎI <>3 T . The A shares A1,A2,A3,
and A4 to B, and the B shares B1,B2,B3, and B4 to A over
public channel. Let us assume that SK denotes shared secret
key. The A calculates four secret keys SK1 = B01 <>3 P,
SK2 = B12 <>3 Q, SK3 = B23 <>3 R, and SK4 =

B34 <>3 T . Similarly, the B calculates the four secret keys

SK1 = AF
1 <>3 P, SK2 = AG

2 <>3 Q, SK3 = AH

3 <>3 R,
and SK4 = AI

4 <>3 T . Thus, the A and B computes the
shared secret keys securely. These shared secret keys are used
to compute the pseudo-random number generator to generate
the private keys. A pseudo-random number generator generates
the private keys. However, the 0, 1, 2, 3, F, G, H, and I are
generated by a true random number generator. Initially, the
shared (computed) secret keys are used to generate the private
keys, and these privates keys are used to encrypt a block of
message for communication.

B. Random Number Generation
Random number generators are essential for cryptography

and many other applications. Therefore, the random number
generator is classified into two key categories; namely, pseudo-
random number generator (PRNG) [13] and true random
number generator (TRNG) [14]. Both PRNG and TRNG
can generate highly unpredictable and truly random numbers.
Also, these algorithms produce random bits without following
any patterns. Lacking pattern in bits creates hard to reproduce
the given bits by the adversaries. However, PRNG uses the
initial seed value as an input, while TRNG does not require
any input. Therefore, a random number can be reproduced in
PRNG for correct input.

Algorithm 1 Stealth-TRNG for generating the truly random
numbers.

1: procedure GENSTEALTHTRNG(V)
2: B443 ← GETCPUCLOCK()
3: 8 ← 1
4: while 8 < (V − 1) do ⊲ V is the required bit length
5: P ← GETCPUCLOCK()
6: ;1 ← LENGTH(P)
7: Q ← GETCPUCLOCK()
8: ;2 ← LENGTH(Q)
9: #1 ← HASSHFUN(P, ;1, B443)

10: #2 ← HASSHFUN(Q, ;2, #1)
11: B443 ← #2
12: �8=[8] ← #1 ∧ 1 ⊲ ∧ is a bitwise AND operator
13: 8 ← 8 + 1
14: end while
15: �8=[8] ← 1 ⊲ Producing odd number by padding 1 at

the end.
16: return �8=

17: end procedure

Stealth uses truly random numbers (0, 1, 2, 3, F, G, H, and
I), and these are generated by Algorithm 1. For instance,
0 ← GENSTEALTHTRNG(128) assigns a 128 bits truly ran-
dom number. The true random number generators are mainly
dependent on hardware, for instance, FPGA [15], [16] or
Quantum devices [17], [18], [19], [20]. These hardware-based
true random number generators are quite faster than other
conventional TRNG [21]. There are diverse TRNG algorithms
based on various parameters to produce high quality truly
random number; for instance, currents/voltages [22], [13], light
[23], signal [24], [25], camera [26], etc.; however, Stealth-
TRNG depends on the CPU Clock values. To the best of our

IACR EPRINT ARCHIVE, VOL. XX, NO. XX, MONTH 20XX 4

knowledge, our proposed TRNG is the first variant of true
random number generator that utilizes CPU Clock and string
hash function.

Moreover, PRNG requires an initial seed value to produce
truly random numbers. This initial seed value is the attacking
point for the attackers. Brute-force attackers can discover
the initial seed value for the PRNG. Therefore, PRNG is
weaker than TRNG, but Stealth uses PRNG to secure the
communication and proves that it is much harder for brute-
force attackers even if Stealth uses PRNG. The necessary
conditions of PRNG to be used in Stealth are as follows-

• The PRNG should take input of initial key, seed value
and the bit sizes.

• The PRNG should be able to reproduce same random
number for the same initial key, the same seed value and
the same bit sizes.

• The produced bit pattern should be highly unpredictable
and does not follow any kind of patterns.

The PRNG must fulfill those above mentioned necessary
conditions. Otherwise, it is not possible to produce high-
quality random numbers. Also, it cannot produce the same
private keys for A and B. Moreover, PRNG should not depend
on non-reproducible parameters such as CPU Clock value.
Similar to TRNG, our proposed PRNG is the first variant
of pseudo-random number generator that utilizes string hash
function. The string hash function is used to mix the bits [27].

Algorithm 2 Stealth-PRNG for generating the pseudo-random
numbers.

1: procedure GENSTEALTHPRNG(SK, B443, V)
2: 8 ← 1
3: B4431 ← B443

4: B4432 ← B443 ⊕ %A8<4 =D<14A
5: while 8 < (V − 1) do ⊲ V is the required bit length
6: ; ← LENGTH(SK)
7: #1 ← HASSHFUN(SK, ;, B4431)
8: #2 ← HASSHFUN(SK, ;, B4432)
9: B4431 ← #2

10: B4432 ← #1
11: :4H ← #1 ⊕ #2
12: SK ← CONVERTINTOSTRING(:4H)
13: �8=[8] ← % ∧ 1
14: 8 ← 8 + 1
15: end while
16: �8=[8] ← 1 ⊲ Producing odd number by padding 1 at

the end.
17: return �8=

18: end procedure

Algorithm 2 is a PRNG to generate highly unpredictable
bits or numbers for Stealth. The GENSTEALTHPRNG() uses
an input key, an initial seed value, and the bit sizes. Algorithm
2 can produce the same output for the same input parameters.
It requires to produce the same private keys by both sender and
receiver. Algorithm 2 is based on hash functions that mix bits
and produce unpredictable bits. The GENSTEALTHPRNG()
extract the least significant bit (LSB) and stores it in a binary

array. Moreover, the input key SK changes in each iteration in
the Algorithm 2. Here, the seed values are also changed in each
iteration. Therefore, it produces highly unpredictable LSB
(either 0 or 1). The hash functions mix the bits, and the func-
tion GENSTEALTHPRNG() uses murmur non-cryptographic
string hash function [27]. Alternatively, there are many hash
functions, namely, xxHash, SuperFastHash, CRC32, MD5, and
SHA. However, the murmur hash function produces good
random LSB bit compared to the other string hash functions.
The algorithms iterate V times, and thus, its time complexity
is $ (V × ;) where V is the bit size, and ; is the length of the
string. The length of the string ; is constant, and therefore,
the total time complexity is $ (V). Moreover, the bit size V is
approximately 128 to 1024 bits. Therefore, we can rewrite the
time complexity as $ (V) ≈ $ (1).

C. Communication Protocol

Table III demonstrates the secure communication between
A and B. Initially, A and B establishes a connection. Let us
consider, A would like to send a message M to B, and thus,
the connection is established through public key cryptography.
Therefore, A and B can compute shared secret keys using
Diffie-Hellman cryptography. Let us denote PK be the
private key and CA be the logical timestamp of A. The A
computes PK1 = GENSTEALTHPRNG(SK1,SK4, V),
PK2 = GENSTEALTHPRNG(SK2,SK4, V),
PK3 = GENSTEALTHPRNG(SK3,SK4, V), PK4 =

GENSTEALTHPRNG(PK1,PK2, V), M1 = M1 ⊕ PK2,
M<1 = M1 ⊕ PK3, and M2<1 = �=2PK1 (M<1). The A sends
the cipher (M2<1 , CA1) to B. B receives (M2<1 , CA1) from A. The
B computes PK1 = GENSTEALTHPRNG(SK1,SK4, V),
PK2 = GENSTEALTHPRNG(SK2,SK4, V),
PK3 = GENSTEALTHPRNG(SK3,SK4, V), PK4 =

GENSTEALTHPRNG(PK1,PK2, V), M<1 = �42PK1 (M2<1).
M1 = M<1 ⊕ PK3, and retrieves original message
M1 = M1 ⊕ PK2. Stealth uses AES symmetric cryptography
(block cipher) for encryption and decryption [7]. The secret
keys PK1, PK2, and PK3 strengthen the symmetric key
encryption. The generated secret key PK1 is used as a private
key for encryption. Similarly, PK2, and PK3 are used as
a mixer for mixing a block of the message and produces
cipher. The mixing operation has to be performed before the
encryption. It creates a cipher before encryption by the AES
method. Therefore, to send the second block of message, A
computes PK5 = GENSTEALTHPRNG(PK1,PK4, V),
PK6 = GENSTEALTHPRNG(PK2,PK4, V),
PK7 = GENSTEALTHPRNG(PK3,PK4, V), PK8 =

GENSTEALTHPRNG(PK5,PK6, V), M2 = M2 ⊕ PK6,
M<2 = M1 ⊕ PK7, M2<2 = �=2PK5 (M<2), and sends
(M2<2 , CA2) to B. The B receives (M2<2 , CA2) from A and
computes PK5 = GENSTEALTHPRNG(PK1,PK4, V),
PK6 = GENSTEALTHPRNG(PK2,PK4, V),
PK7 = GENSTEALTHPRNG(PK3,PK4, V), PK8 =

GENSTEALTHPRNG(PK5,PK6, V), M<2 = �42PK5 (M2<2),
M2 = M<2 ⊕ PK7, and retrieve the original block of the
message M2 = M2 ⊕ PK6. It shows that the private keys are
not fixed, and it changes in each communication.

IACR EPRINT ARCHIVE, VOL. XX, NO. XX, MONTH 20XX 5

TABLE III: Communication Mechanism between A and B. B receives all messages in order.

A B
PK1 = GENSTEALTHPRNG (SK1, SK4, V)
PK2 = GENSTEALTHPRNG (SK2, SK4, V)
PK3 = GENSTEALTHPRNG (SK3, SK4, V)
PK4 = GENSTEALTHPRNG (PK1, PK2, V)
M1 = M1 ⊕ PK2
M<

1 = M1 ⊕ PK3
M2<

1 = �=2PK1 (M<
1)

Send (M2<
1 , CA1) to B

Receives (M2<
1 , CA1) from A

PK1 = GENSTEALTHPRNG (SK1, SK4, V)
PK2 = GENSTEALTHPRNG (SK2, SK4, V)
PK3 = GENSTEALTHPRNG (SK3, SK4, V)
PK4 = GENSTEALTHPRNG (PK1, PK2, V)
M<

1 = �42PK1 (M2<
1)

M1 = M<
1 ⊕ PK3

M1 = M1 ⊕ PK2
PK5 = GENSTEALTHPRNG (PK1, PK4, V)
PK6 = GENSTEALTHPRNG (PK2, PK4, V)
PK7 = GENSTEALTHPRNG (PK3, PK4, V)
PK8 = GENSTEALTHPRNG (PK5, PK6, V)
M2 = M2 ⊕ PK6
M<

2 = M1 ⊕ PK7
M2<

2 = �=2PK5 (M<
2)

Send (M2<
2 , CA2) to B

Receives (M2<
2 , CA2) from A

PK5 = GENSTEALTHPRNG (PK1, PK4, V)
PK6 = GENSTEALTHPRNG (PK2, PK4, V)
PK7 = GENSTEALTHPRNG (PK3, PK4, V)
PK8 = GENSTEALTHPRNG (PK5, PK6, V)
M<

2 = �42PK5 (M2<
2)

M2 = M<
2 ⊕ PK7

M2 = M2 ⊕ PK6

D. Shared Secret Key

Stealth uses Diffie-Hellman cryptography to compute shared
secret keys. Stealth requires four secret keys, and these secret
keys are computed to generate private keys for communication
or data exchanging. The secret key SK1, SK2, SK3 and SK4
are shared using Diffie-Hellman algorithm. Also, these secret
key SK1, SK2, and SK3 are used to generate initial private
keys. However, the secret key SK4 is used as the initial seed
value for the PRNG. In addition, the generated private keys are
used to generate other private keys for next communication.
This process continues to complete the communication.

E. Private Key

The secret keys are generated using the Diffie-Hellman
algorithm. These secret keys are used to generate initial private
keys PK1, PK2, PK3, and PK4 which are generated using
the four secret keys. However, PK4 is generated using two
private keys (PK1 and PK2). The secret key SK4 is replaced
by PK4. Stealth uses these private keys to encrypt or decrypt
the first block of the message. For second block of the
message, the private keys PK5, PK6 and PK7 are generated
using PK1, PK2, and PK3, respectively. The PK4 is used as
a seed value to generate the private keys PK5, PK6 and PK7.
The seed value PK8 is calculated using PK5 and PK6 to use
as a seed value for the third block of the message. Thirdly,
the private key PK9, PK10, and PK11 are calculated using
PK5, PK6 and PK7, respectively. The PK12 is calculated

using PK9 and PK10 to use as a seed value for the fourth
block of the message and so on.

F. Encryption

Stealth uses AES [7] for encryption and decryption. More-
over, AES is a well-proven and well-practiced symmetric-
key cryptography protocol. Conventionally, the plaintext and
secret key are input into the AES and converted into ci-
phertext—however, Stealth input plaintext and convert these
plaintext into ciphertext. The ciphertext is input into AES
along with the private keys.

IV. ANALYSIS

Stealth is designed to provide higher security than con-
ventional security systems in symmetric communication. It
ensures security in each communication by providing an extra
coating to the message. Stealth requires three private keys to
be computed for a single communication and a seed value
(also a private key). The private keys are changed at each
communication. Also, the seed value is changed in each
communication. This changing nature is unpredictable in each
communication. The Diffie-Hellman algorithm’s strength lies
in random number generators. The true random number gener-
ator generates unpredictable bit patterns and cannot reproduce
it by anyone. Therefore, Stealth uses true random number
generator to generate the randomly chosen number for Diffie-
Hellman. The pseudo-random number generator generates a
truly random number based on initial inputs. It is used to

IACR EPRINT ARCHIVE, VOL. XX, NO. XX, MONTH 20XX 6

create the private keys because the private keys change in each
communication. Stealth is applicable in block cipher but not
stream cipher.

A. Shared Secret Key

The sharing of a secret key is fully dependent on the Diffie-
Hellman key exchange algorithm in our proposed algorithm.
Stealth requires four secret keys to be computed for sharing
between two parties. In Stealth, the secret keys are not used
to encrypt the message. However, these secret keys are used
to generate private keys of the first communication, i.e., first
block, and a seed value for the next communication. After the
first communication, shared secret keys are not required.

Initially, Diffie-Hellman algorithm choose a random num-
ber, and therefore, Stealth requires eight random numbers,
namely, A chooses 0, 1, 2 and 3, and B chooses F, G,
H, and I. The strength of the Diffie-Hellman lies within
these random numbers. Therefore, Stealth uses a true random
number generator to generate these random numbers. It is
difficult to guess these random numbers by adversaries if these
random numbers are generated using a true random number
generator. True random number generator produces the bit
patterns in the unpredictable sequence, and thus, attackers are
unable to guess the exact number.

Theorem 1. The probability of getting the four shared secret
keys of Stealth by an attacker is 1

16V where V is the bit size of
the keys.

Proof. Diffie-Hellman uses a single random number where
the guessing probability of a particular random number is
1

2V where the V is the bit size of the random number. The
probability of not getting the exact random number is (1− 1

2V).
For instance, V = 32, then the probability of not getting the
random number is (1 − 1

232 ≈ 1) which means it is not easy
for a conventional computer to break the security. However, it
requires a powerful computing resources to break, and it also
takes a huge time. Stealth uses four such random numbers,
and these random numbers are independent events. Let, %A (0),
%A (1), %A (2), and %A (3) be the guessing probability of 0, 1,
2, and 3, respectively. Generating the number 0, 1, 2, and 3

are independent events. Therefore, the probability of guessing
all random numbers is denoted in Equation (1).

%A (0 ∩ 1 ∩ 2 ∩ 3) = %A (0) ∩ %A (1) ∩ %A (2) ∩ %A (3)

=
1
2V
× 1

2V
× 1

2V
× 1

2V

=
1

24V =
1

16V
≈ 0

(1)

In Stealth, it is not possible to get the same secret keys
by the adversaries. Alternatively, this probability applies in
guessing direct secret keys. Equation (1) state that the adver-
sary requires all four shared secret keys to breach the security
of Stealth, i.e., it implies that it is impossible to breach the
security if V is large enough. For instance, the bit size of V
may vary from 16 bits to 1024 bits or more, depending on
the security requirements. Let us assume that an adversary is
able to get a shared secret key by any means, and it requires

another more probability to overcome, as given in Equation
(2).

%A ((0 ∩ 1 ∩ 2) | 3) = %A (0 ∩ 1 ∩ 2) = %A (0) %A (1) %A (2)

=
1

23V =
1
8V
≈ 0

(2)

Equation (2) demonstrates that even though a shared secret key
is revealed, there is still probability of not getting other three
shared secret keys and it is 1− 1

8V . Thus, Stealth ensures high
security in computing shared secret keys using Diffie-Hellman
algorithm. �

Corollary 1. The probability of not getting the four shared
secret keys is (1 − 1

16V) ≈ 1.

B. Private Keys

The shared secret keys are the private keys in conventional
symmetric cryptography, however, these are not the private
keys in Stealth. The shared secret keys are used to generate
the private keys for encryption and decryption, i.e., private-
private cryptography. In this model, the private keys are not
fixed, and it changes in each message. Moreover, a single
private key is used in conventional communication, which is
fixed. On the contrary, Stealth changes the private keys in each
communication and uses four private keys. However, Stealth
does not require any communication to generate these private
keys after the first key exchange. The sender and receiver
generates the same private keys without communication using
a pseudo-random number generator.

Lemma 1. The probability of getting correct private keys for
a single communication is 1

16V where the V is the bit size of
the private keys.

Proof. Theorem 1 has already proved that the probability of
getting the correct shared secret keys which is 1

16V . Similarly,
we can easily conclude that the probability of getting the cor-
rect private keys for communication is 1

16V . It is a probability
of a single block of a message or a single communication
between A and B. Let us assume that the adversary is able
to get the shared secret keys, and thus, the probability of
getting all the private keys is 1, because the adversary can
easily generate the private keys. However, if we assume that
the adversary cannot get the shared secret keys, getting the
private keys directly from the first message is 1

16V . Therefore,
the probability of getting the next private keys is 1 for the
second block of message and onward because the adversary
can efficiently compute the second set of the private keys from
the first set of the private keys. Similarly, getting correct set
of the private keys for the second message or communication
without knowing the first message’s private keys is 1

16V . Thus,
the adversary can compute the next set of the private keys,
and the probability of getting the third set of the private keys
is 1. Likewise, the probability of getting the private keys of
the last message/communication without knowing the previous
private keys is also the same. Generating private keys for the
next event is not an independent event. Therefore, the wise
way to attack Stealth is the first communication to capture

IACR EPRINT ARCHIVE, VOL. XX, NO. XX, MONTH 20XX 7

entire communication. Thus, the total probability of getting
entire private keys is restricted to 1

16V . �

Lemma 1 states that the probability of capturing entire
message is 1

16V . Then, why should Stealth change the private
keys in each communication which introduces computation
overhead? Let us assume that an adversary is able to get
the correct private keys of a message with a probability of

1
16V . Now, the adversary can get the entire set of the private
keys for the next communication. It means that the adversary
cannot read the previous messages. Even though a part of
communication is broken, the other (previous) part of the
communication is still secured.

Theorem 2. The probability of breaking <Cℎ block of message
and onward is 1

16V ((< − 1) − 1
(16V−1)).

Proof. The probability of breaking first block of message
using private keys is 1

16V and the breaking probability of
remaining message is 1. Therefore, the total probability to
break the first block of message is 1

16V (1 − 1) = 0. For
the second block of message, the probability of breaking
the message is 1

16V and not able to break the first block
of message is (1 − 1

16V). Therefore, the total probability of
breaking is 1

16V (1 −
1

16V). For the third block of message, the
probability of breaking the message is 1

16V and the not able
to break the previous messages is (1 − 1

162V). Therefore, the
total probability of breaking the message at the third block and
onward is 1

16V (1−
1

162V). Similarly, the probability of breaking
the fourth block of message is 1

16V and the probability of not
able to break the previous block of messages is (1 − 1

163V).
The total probability of breaking the block of message is

1
16V (1 −

1
163V) and so on. The probability of breaking the last

block of message is 1
16V and the probability of not able to

break the previous block of messages is (1− 1
16(<−1)V). The total

probability at the last block of message is 1
16V (1 −

1
16(<−1)V).

Summing up all the total probability, it gives us

TP =
1

16V
(1 − 1) + 1

16V
(1 − 1

16V
) + 1

16V
(1 − 1

162V)+
1

16V
(1 − 1

163V) + . . . +
1

16V
(1 − 1

16(<−1)V)

=
1

16V
((1 − 1) + (1 − 1

16V
) + (1 − 1

162V)

+ (1 − 1
163V) + . . . + (1 −

1
16(<−1)V))

=
1

16V
((< − 1) − (1

16V
+ 1

162V +
1

163V + · · · +
1

16(<−1)V))

=
1

16V
((< − 1) − (1

16V
+ 1

162V +
1

163V + · · · + ∞))

=
1

16V
((< − 1) − 1

(16V − 1))
(3)

�

Theorem 3. The probability of being able to capture the entire
communication by the attacker without knowing the keys is(

1
8V

)<
where < is the number of communication.

Proof. Let us assume that an attacker is able to attack a
particular block without knowing the private keys, and the
probability is 1

23V , but it does not mean that the attackers
can also decrypt the next block. Therefore, the probability
of breaking the second block is 1

8V , and so on. Similarly,
the probability of breaking the last block of the message is
also the same. These events are independent of each other
because the communication is broken without knowing the
private keys. Therefore, the total probability of breaking the
entire communication is given in Equation (4).

%A (M1 ∩M2 ∩ . . .M<) = %A (M1) %A (M2)
%A (M3) . . . %A (M<)

=
1
8V
× 1

8V
× 1

8V
× . . . × 1

8V

=

(
1
8V

)<
≈ 0

(4)

Therefore, Stealth provides tight coating of messages’ block.
�

Corollary 2. The probability of not being able to capture
entire communication by the attacker without knowing the keys
is 1 −

(
1

8V

)<
≈ 1.

Equation (4) shows that the attackers cannot easily break
the entire communication. The bit size V is 128, 256, or
512 in modern practices. Thus, the probability of capturing
entire communication using such kind of attack is almost
zero. Therefore, the attacker should attack the first block of
communication to get the four private keys or the Diffie-
Hellman algorithm.

C. Time Complexity

The time complexity of Stealth depends on various factors,
particularly generating prime numbers, generating a random
number, and encryption/decryption time complexity. Stealth
requires a prime number generator, random number generator,
and expensive operations like power and modulus operation
to compute the first shared secret keys. Hence, it is costlier
(slower) than the conventional Diffie-Hellman algorithm. Now,
the time complexity of generating a prime number is $ (V +
g log6 =) where V is the time complexity to generate the
random bits by a random number generator, log6 = is the time
complexity of primality test of AKS algorithm [28], and the g
is the walking time towards the nearest prime numbers. First,
Stealth generates a random number and check it for primality.
If the generated random number is not a prime number, the
number is incremented by one. Then, repeat the process until
a prime number is met. This walking time is g. The V is not
a large number to be considered for asymptotic notation, for
instance, it can be 1024. Also, the prime numbers are not rare,
and hence, g is not large for asymptotic notation. Therefore,
the total time complexity to generate a prime number is
$ (log6 =). But V and g slow down the performance of the
Stealth. In this case, communication cost is excluded. There-
fore, the total time complexity of Stealth for computing the
first shared secret keys are 8×$ (V+g log6 =)+4×$ (V)+$ (n) ≈
$ (log6 =), and it is a one time cost. The time complexity

IACR EPRINT ARCHIVE, VOL. XX, NO. XX, MONTH 20XX 8

for a single communication depends on the random number
generator and encryption/decryption. Therefore, the random
number generator requires $ (V) time complexity and let the
time complexity of encryption/decryption is $ (n). Therefore,
the total time complexity of the first message/communication
is $ (V) + $ (n) ≈ $ (1). Thus, the overall time complexity
depends on the total number of blocks, and hence, it is
$ (< + log6 =) where < is the total communicated blocks.

D. Communication
Table IV demonstrates the communication between A and
B where B receives all messages at once. In this case, this
communication is similar to Table III and the computation for
private keys are in chronological order. The B can receive the
messages in a different order in Table V. The B receives the
second block of message first, and the first block of message
at second. In this case, B need to compute PK1, PK2, PK3,
PK4, PK5 and PK6, and stores PK1, PK2 and PK3 for the
first block of message to decrypt. The B cannot compute PK4,
PK5 and PK6 without computing PK1, PK2, PK3, i.e., the
secret keys are computed in serial order. Therefore, it requires
maintaining a logical timestamp to know the messaging order
shown in Table V. Message can arrive in any order, and it
does not create any issue. Specifically, there is < block of the
message, and B receives the <Cℎ first, i.e., the B receives the
message in descending order of sender, A. Then, B computes
all the private keys for the first block of the message to the
last block of the message, and stores these generated private
keys in sequential order to decrypt the incoming message sent
from A. Then, B can decrypt the last block of the message.
The message decryption is interdependent on each other.

Let us consider, A and B are communicating and exchang-
ing messages with each other, for instance, chat servers. In
this case, A and B need to maintain their logical timestamp to
get the order of message and calculate the right private keys.
Table VI demonstrates the active message exchanging between
two parties. The A and B exchange the messages. Thus, both
A and B need to compute the private keys in serial order. The
private keys of both A and B are the same for the first block
of the message. Similarly, the private keys are same for the
second block of the message both A and B, and so on. To
decrypt the message from A, B does not need to recalculate
the private keys. Similarly, A does not need to recalculate the
private keys to decrypt the message from B. This implies that
A and B derives the same privates keys at a given event.

E. Communication and Computation overhead
Stealth maintains the Diffie-Hellman communication proto-

col and introduces no communication overheads. But there
is computation overhead in encryption/decryption. Initially,
Stealth computes eight prime numbers, four random numbers.
It also performs extra costly operations. Therefore, it is slower
than the Diffie-Hellman algorithm to compute shared secret
keys. Moreover, the sender or receiver computes private keys
in each communication. This process incurs computational
overhead. Apparently, the security cannot be compromised
at any cost, and thus, these extra computational costs are
justifiable.

F. Attacks
The bitwise XOR has interesting properties, and Stealth

exploits these properties. XOR produces zero for same values,
for instance, C ⊕ C = 0. Stealth uses XOR to create a cipher.
Let, C1 be the plaintext, and C2 and C3 be the key. Let,
Z = C1 ⊕ C2 ⊕ C3. It requires two keys to retrieve any one
key from Z . For example, C1 = Z ⊕ C2 ⊕ C3, C2 = Z ⊕ C1 ⊕ C3
or C3 = Z ⊕ C1 ⊕ C2. It is highly vulnerable for cryptanalyst
in one-keyed XOR-cipher. For instance, Z = C1 ⊕ C2. The
Z can be attacked by known-plaintext, chosen-plaintext by
cryptanalyst, or frequency analysis. Therefore, three or more
keyed XOR operations create difficulties for a cryptanalyst to
decode the original message. Therefore, private keys can be
increased from four to five for tighter security. However, it can
create all ones or zero if many keys are XORed.

1) Brute-force attack: Brute-force attackers attack the en-
crypted code by an exhaustive search method. It is not impossi-
ble to attack any encrypted code, however, it takes many years
to decode. Let us assume that an attacker is able to decrypt
a code in Stealth using an exhaustive search. However, the
attacker requires two extra keys to decode the code. Brute-
force attackers need to break the first encryption and retrieved
the cipher. Again, the attacker requires two other keys to
decipher the coded message. Therefore, brute-force attack does
not work on Stealth.

2) Cryptanalysis: Cryptanalyst uses analysis of an en-
crypted code and discovers the patterns. There are many types
of possible cryptanalysis, particularly the known-plaintext at-
tack (KPA), chosen-plaintext attack (CPA) and chosen cipher-
text attack (CCA), differential cryptanalysis (DCA), and linear
cryptanalysis. For instance, a one-keyed XOR cipher is easy
for deciphering by the cryptanalyst. However, Stealth uses a
proven existing encryption method and extra XOR operations.
Even if the adversaries break the encryption, the encrypted
code is still secure due to additional XOR operation. Addi-
tionally, it requires two keys to decipher the encrypted code.
Moreover, Stealth changes its keys in each block. Therefore,
this cryptanalysis attack does not apply in Stealth.

3) Dictionary Attacks: The dictionary attack is famous
attacks in password guessing systems where attacker builds
a dictionary of possible words to capture the communication.
Stealth convert the plaintext into cipher text, then the converted
ciphertext into encrypted text. Moreover, it changes private
keys for encryption. Therefore, it is not possible to build a
dictionary to reveal the original messages by the attackers.

V. EXPERIMENTAL RESULTS

We have evaluated Algorithm 1 and Algorithm 2 for Stealth-
TRNG and Stealth-PRNG, respectively, in Ubuntu Desktop
environment. The configuration of the experimental environ-
ment is is as follows- Intel(R) Core(TM) i7-7700 CPU @
3.60GHz, 8GB RAM, 1TB HDD, Ubuntu 18.04.5 LTS and
GCC version 7.5.0. We have generated 10M bits to be tested
in NIST SP 800-22 [29], [30]. We have used “5483651” as
an input key, two seed values (98899, 104723), and a bit size
of 10M for Algorithm 2. The input key can be any number or
string. However, Algorithm 1 is not reproducible due to true
random number and CPU Clock values.

IACR EPRINT ARCHIVE, VOL. XX, NO. XX, MONTH 20XX 9

TABLE IV: Communication Mechanism between A and B. B receives all messages in at once.

A B
PK1 = GENSTEALTHPRNG (SK1, SK4, V)
PK2 = GENSTEALTHPRNG (SK2, SK4, V)
PK3 = GENSTEALTHPRNG (SK3, SK4, V)
PK4 = GENSTEALTHPRNG (PK1, PK2, V)
M1 = M1 ⊕ PK2
M<

1 = M1 ⊕ PK3
M2<

1 = �=2PK1 (M<
1)

Send (M2<
1 , CA1) to B

PK5 = GENSTEALTHPRNG (PK1, SK4, V)
PK6 = GENSTEALTHPRNG (PK2, SK4, V)
PK7 = GENSTEALTHPRNG (PK3, SK4, V)
PK8 = GENSTEALTHPRNG (PK5, PK6, V)
M2 = M2 ⊕ PK6
M<

2 = M1 ⊕ PK7
M2<

2 = �=2PK5 (M<
2)

Send (M2<
2 , CA2) to B

Receives (M2<
1 , CA1) from A

PK1 = GENSTEALTHPRNG (SK1, SK4, V)
PK2 = GENSTEALTHPRNG (SK2, SK4, V)
PK3 = GENSTEALTHPRNG (SK3, SK4, V)
PK4 = GENSTEALTHPRNG (PK1, PK2, V)
M<

1 = �42PK1 (M2<
1)

M1 = M<
1 ⊕ PK3

M1 = M1 ⊕ PK2
Receives (M2<

2 , CA2) from A
PK5 = GENSTEALTHPRNG (PK1, PK4, V)
PK6 = GENSTEALTHPRNG (PK2, PK4, V)
PK7 = GENSTEALTHPRNG (PK3, PK4, V)
PK8 = GENSTEALTHPRNG (PK5, PK6, V)
M<

2 = �42PK5 (M2<
2)

M2 = M<
2 ⊕ PK7

M2 = M2 ⊕ PK6

TABLE V: Communication Mechanism between A and B. The B receives all messages in different order.

A B
PK1 = GENSTEALTHPRNG (SK1, SK4, V)
PK2 = GENSTEALTHPRNG (SK2, SK4, V)
PK3 = GENSTEALTHPRNG (SK3, SK4, V)
PK4 = GENSTEALTHPRNG (PK1, PK2, V)
M1 = M1 ⊕ PK2
M<

1 = M1 ⊕ PK3
M2<

1 = �=2PK1 (M<
1)

Send (M2<
1 , CA1) to B

PK5 = GENSTEALTHPRNG (PK1, PK4, V)
PK6 = GENSTEALTHPRNG (PK2, PK4, V)
PK7 = GENSTEALTHPRNG (PK3, PK4, V)
PK8 = GENSTEALTHPRNG (PK5, PK6, V)
M2 = M2 ⊕ PK6
M<

2 = M1 ⊕ PK7
M2<

2 = �=2PK5 (M<
2)

Send (M2<
2 , CA2) to B

Receives (M2<
2 , CA2) from A

PK1 = GENSTEALTHPRNG (SK1, SK4, V)
PK2 = GENSTEALTHPRNG (SK2, SK4, V)
PK3 = GENSTEALTHPRNG (SK3, SK4, V)
PK4 = GENSTEALTHPRNG (PK1, PK2, V)
PK5 = GENSTEALTHPRNG (PK1, PK4, V)
PK6 = GENSTEALTHPRNG (PK2, PK4, V)
PK7 = GENSTEALTHPRNG (PK3, PK4, V)
PK8 = GENSTEALTHPRNG (PK5, PK6, V)
M<

2 = �42PK5 (M2<
2)

M2 = M<
2 ⊕ PK7

M2 = M2 ⊕ PK6
Receives (M2<

1 , CA1) from A
M<

1 = �42PK1 (M2<
1)

M1 = M<
1 ⊕ PK3

M1 = M1 ⊕ PK2

IACR EPRINT ARCHIVE, VOL. XX, NO. XX, MONTH 20XX 10

TABLE VI: Communication Mechanism between A and B. Both are sending messages to each other.

A B
PK1 = GENSTEALTHPRNG (SK1, SK4, V) PK1 = GENSTEALTHPRNG (SK1, SK4, V)
PK2 = GENSTEALTHPRNG (SK2, SK4, V) PK2 = GENSTEALTHPRNG (SK2, SK4, V)
PK3 = GENSTEALTHPRNG (SK3, SK4, V) PK3 = GENSTEALTHPRNG (SK3, SK4, V)
PK4 = GENSTEALTHPRNG (PK1, PK2, V) PK4 = GENSTEALTHPRNG (PK1, PK2, V)
M1 = MA1 ⊕ PK2 MB1 = MB1 ⊕ PK2
M<A

1 = MA1 ⊕ PK3 M<B
1 = MB1 ⊕ PK3

M2<A
1 = �=2PK1 (M<A

1) M2<B
1 = �=2PK1 (M<B

1)
Send (M2<A

1 , CA1) to B Send (M2<B
1 , CB1) to A

Receives (M2<B
1 , CB1) from B Receives (M2<A

1 , CA1) from A
M<B

1 = �42PK1 (M2<B
1) M<A

1 = �42PK1 (M2<A
1)

MB1 = M<B
1 ⊕ PK3 MA1 = M<A

1 ⊕ PK3
MB1 = MB1 ⊕ PK2 MA1 = MA1 ⊕ PK2

TABLE VII: P-values and success rates of Algorithms 1 for 32, 64 and 128 bits in NIST SP 800-22.

Test name 32 bits 64 bits 128 bits
P-value Pass rate P-value Pass rate P-value Pass rate

Approximate Entropy 0.468595 31/32 0.350485 64/64 0.875539 128/128
Frequency 0.468595 31/32 0.911413 62/64 0.739918 127/128
Block Frequency 0.122325 32/32 0.100508 64/64 0.723129 126/128
Cumulative sums 0.178278,

0.407091
32/32, 32/32 0.012043,

0.162606
62/64, 62/64 0.350485,

0.654467
128/128,
127/128

Runs 0.253551 31/32 0.035174 64/64 0.134686 127/128
Longest runs 0.739918 31/32 0.378138 61/64 0.585209 127/128
Rank 0.739918 32/32 0.671779 64/64 0.015065 128/128
FFT 0.035174 32/32 0.324180 64/64 0.422034 127/128
Non-overlapping Template 0.976060 32/32 0.991468 64/64 0.941144 128/128
Overlapping Template 0.468595 31/32 0.500934 61/64 0.452799 128/128
Random Excursions 0.437274 11/11 0.834308 15/15 0.739918 12/12
Random Excursions Variant 0.834308 11/11 0.637119 15/15 0.911413 12/12
Serial 0.671779,

0.804337
32/32, 32/32 0.378138,

0.637119
64/64, 64/64 0.017912,

0.517442
127/128,
128/128

Linear complexity 0.407091 32/32 0.195163 64/64 0.772760 127/128
Universal 0.534146 31/32 0.148094 64/64 0.407091 127/128

TABLE VIII: Comparison of Algorithms 2 for 32, 64 and 128 bits in NIST SP 800-22.

Test name 32 bits 64 bits 128 bits
P-value Pass rate P-value Pass rate P-value Pass rate

Approximate Entropy 0.016990 32/32 0.468595 62/64 0.788728 127/128
Frequency 0.949602 31/32 0.931952 63/64 0.337162 127/128
Block Frequency 0.949602 31/32 0.299251 63/64 0.392456 127/128
Cumulative sums 0.468595,

0.035174
31/32, 31/32 0.232760,

0.602458
63/64, 63/64 0.324180,

0.128379
126/128,
126/128

Runs 0.671779 31/32 0.213309 64/64 0.834308 128/128
Longest runs 0.253551 31/32 0.862344 64/64 0.110952 126/128
Rank 0.534146 32/32 0.500934 64/64 0.066882 128/128
FFT 0.407091 32/32 0.671779 64/64 0.100508 128/128
Non-overlapping Template 0.991468 32/32 0.995711 64/64 0.941144 128/128
Overlapping Template 0.468595 31/32 0.378138 63/64 0.253551 128/128
Random Excursions 0.637119 13/13 0.739918 12/12 0.162606 15/15
Random Excursions Variant 0.437274 13/13 0.739918 12/12 0.637119 15/15
Serial 0.350485,

0.804337
32/32, 32/32 0.911413,

0.949602
62/64, 63/64 0.819544,

0.517442
127/128,
128/128

Linear complexity 0.213309 32/32 0.350485 64/64 0.311542 125/128
Universal 0.100508 32/32 0.804337 63/64 0.484646 126/128

Table VII and Table VIII demonstrate the P-values and the
success rate of random number testing on NIST SP 800-22
[29], [30] for Algorithm 1 and Algorithm 2, respectively. NIST
SP 800-22 provides statistical testing of the randomness of
given bits. We have generated 10M random bits and tested
them using NIST SP 800-22 test. It provides approximate
entropy, frequency, block frequency, cumulative sums, runs,
longest runs, rank, FFT, non-overlapping template, overlapping
template, random excursions, random excursions variant, se-

rial, linear complexity, and universal testing for bits’ random-
ness. The deciding factor of P-value is ≥ 0.01, otherwise, the
given bits are not random. It may contain certain patterns that
can easily be identified and discover the generated numbers’
pattern by adversaries. Table VII and Table VIII shows the
corresponding P-values, and it shows quite satisfactory results
on the randomness test for the generated bits by Algorithm
1 and Algorithm 2, respectively. The minimum success rate
of Algorithm 1 is 0.96875, 0.96875 and 0.984375 for 32,

IACR EPRINT ARCHIVE, VOL. XX, NO. XX, MONTH 20XX 11

64 and 128 bit streams, respectively. The maximum success
rate of Algorithm 1 is 1 for all bit streams. The lowest P-
value of Algorithm 1 are 0.035174, 0.012043, 0.017912 in
32, 64 and 128 bit streams, respectively. The highest P-values
are 0.976060, 0.991468 and 0.941144 in 32, 64, and 128 bit
streams respectively. Also, Algorithm 2 test’s success rates
are as low as 0.96875, 0.96875, and 0.9765625 in 32, 64,
and 128 bit streams, respectively. The highest success rate is
1 (100%) for all bit streams. The lowest P-values of 32, 64,
and 128 bit streams are 0.016990, 0.213309, and 0.066882,
respectively. The highest P-values of 32, 64, and 128 bit
streams are 0.991468, 0.995711, and 0.941144, respectively.

A. Comparison for randomness

Stealth-PRNG produces random numbers, and it passes its
statistical test. However, it is compared with other state-of-the-
art random number generators for randomness. Tables IX, X
and XI compare the Stealth-TRNG and Stealth-PRNG with
Erozan et al. [22], Koyuncu et al. [31], Jiang et al. [21],
Johnson et al. [32], Wieczorek and Golofit [33] and Yeoh
et al. [26]. Stealth-TRNG shows the highest success rate of
1 and the lowest success rate of 0.984375. The maximum
P-value is 0.949602 and minimum is 0.015065. Similarly,
Stealth-PRNG exhibits the highest success rate of 1 and the
lowest success rate of 0.9765625. The highest P-value of
Stealth-PRNG is 0.941144 and the lowest PRNG is 0.066882.
The highest success rate of Erozan et al. [22], Jiang et al.
[21], Johnson et al. [32], Wieczorek and Golofit [33] and
Yeoh et al. [26] are 1, 1, 1, 0.99 and 0.995, respectively.
Likewise, the lowest success rate of Erozan et al. [22], Jiang
et al. [21], Johnson et al. [32], Wieczorek and Golofit [33]
and Yeoh et al. [26] are 0.96, 0.973684211, 0.8, 0.98, and
0.984, respectively. The highest P-values of Erozan et al. [22],
Koyuncu et al. [31], Jiang et al. [21], Johnson et al. [32],
Wieczorek and Golofit [33] and Yeoh et al. [26] are 0.494555,
0.99834, 0.795464, 0.9114, 0.92, and 0.9966685, respectively.
Similarly, the lowest P-value of Erozan et al. [22], Koyuncu
et al. [31], Jiang et al. [21], Johnson et al. [32], Wieczorek
and Golofit [33] and Yeoh et al. [26] are 0.055361, 0.01101,
0.000954, 0.0043, 0.08, and 0.122325, respectively. Therefore,
the overall randomness of Stealth-TRNG and Stealth-PRNG
are entirely satisfactory as compared to state-of-the-art random
number generators. However, hardware-based random number
generators are relatively faster than Stealth-PRNG.

P-value determines the randomness of the generated bits. A
high P-value indicates high-quality randomness. Both PRNG
2 and TRNG 1 generate highly unpredictable, truly random
numbers; however, a random number can be reproduced gen-
erated by PRNG if we know the initial input but not true for
the TRNG. TRNG produces a highly unpredictable random
number that is not possible to reproduce by any means.

VI. CONCLUSIONS

In this article, we have demonstrated secured symmetric
communication between two endpoints, called Stealth. Stealth
provides dynamic security in symmetric communication. It
neither replaces any existing methodology of key exchange

protocol nor encryption method but it creates another security
layer to protect from various kinds of attacks. Also, Stealth is
not designed to deal with DDoS attacks and MITM. Stealth
creates a secure coating on a raw message for communication.
Initially, it depends on Diffie-Hellman algorithms to compute
the shared secret keys. These shared secret keys are altered
for the blocks of the message to communicate. Stealth uses
existing version of AES cryptography. Stealth creates another
layer to provide tight security for secured symmetric commu-
nication. However, it adds additional computational overhead
to the system, but security is intact. We have also demon-
strated PRNG and TRNG for Stealth, called Stealth-PRNG and
Stealth-TRNG, which provides a truly random number to pro-
tect from various attackers. Both Stealth-PRNG and Stealth-
TRNG are tested in NIST SP 800-22 for randomness and are
able to pass all the 15 statistical testings for randomness. We
have also compared Stealth-PRNG and Stealth-TRNG with
state-of-the-art random number generators, and are able to
outperform the existing algorithm in randomness. In addition,
we have also explored security measurement mathematically.
The probability of getting correct shared secret key is 1

16V and
getting the correct private key is 1

16V . Also, the probability of
getting all the correct messages or seize the entire commu-
nication without knowing the keys is (1

8V)
< for < blocks of

a message in communication, for instance, block cipher. The
patterns of the blocks of a message cannot be revealed at any
cost due to the different private keys in each communication,
which protects from the cryptanalysis attacks.

REFERENCES

[1] W. Diffie and M. Hellman, “New directions in cryptography,” IEEE
Transactions on Information Theory, vol. 22, no. 6, pp. 644–654, 1976.

[2] R. for Pair-Wise Key Establishment Schemes UsingDiscrete Loga-
rithm Cryptography, “Elaine barker and lily chen and allen roginsky
and miles smid,” Accessed on January 2021 from https://nvlpubs.nist.
gov/nistpubs/Legacy/SP/nistspecialpublication800-56ar.pdf, 2007.

[3] V. S. Miller, “Use of elliptic curves in cryptography,” in Advances in
Cryptology — CRYPTO ’85 Proceedings, H. C. Williams, Ed. Berlin,
Heidelberg: Springer Berlin Heidelberg, 1986, pp. 417–426.

[4] S. G. Stubblebine and C. A. Meadows, “Formal characterization and
automated analysis of known-pair and chosen-text attacks,” IEEE Jour-
nal on Selected Areas in Communications, vol. 18, no. 4, pp. 571–581,
2000.

[5] Y. Zhu, “Attack pattern discovery in forensic investigation of network
attacks,” IEEE Journal on Selected Areas in Communications, vol. 29,
no. 7, pp. 1349–1357, 2011.

[6] J. Black and H. Urtubia, “Side-channel attacks on symmetric encryption
schemes: The case for authenticated encryption.” in USENIX Security
Symposium, 2002, pp. 327–338.

[7] J. Daemen and V. Rijmen, “Aes proposal: Rijndael,” 1999.
[8] L. Bossuet, M. Grand, L. Gaspar, V. Fischer, and G. Gogniat,

“Architectures of flexible symmetric key crypto engines—a survey:
From hardware coprocessor to multi-crypto-processor system on chip,”
ACM Comput. Surv., vol. 45, no. 4, Aug. 2013. [Online]. Available:
https://doi.org/10.1145/2501654.2501655

[9] D. Khovratovich, G. Leurent, and C. Rechberger, “Narrow-bicliques:
Cryptanalysis of full idea,” in Advances in Cryptology – EUROCRYPT
2012, D. Pointcheval and T. Johansson, Eds. Berlin, Heidelberg:
Springer Berlin Heidelberg, 2012, pp. 392–410.

[10] D. Adrian, K. Bhargavan, Z. Durumeric, P. Gaudry, M. Green,
J. A. Halderman, N. Heninger, D. Springall, E. Thomé, L. Valenta,
B. VanderSloot, E. Wustrow, S. Zanella-Béguelin, and P. Zimmermann,
“Imperfect forward secrecy: How diffie-hellman fails in practice,” in
Proceedings of the 22nd ACM SIGSAC Conference on Computer
and Communications Security, ser. CCS ’15. New York, NY, USA:
Association for Computing Machinery, 2015, p. 5–17. [Online].
Available: https://doi.org/10.1145/2810103.2813707

IACR EPRINT ARCHIVE, VOL. XX, NO. XX, MONTH 20XX 12

TABLE IX: Comparison of Stealth-TRNG and Stealth-PRNG with other algorithms in successful randomness testing in NIST
SP 800-22.

Test name Stealth-TRNG Stealth-PRNG Erozan et al.[22] Koyuncu et al.[31]
P-value Pass rate P-value Pass rate P-value Pass rate P-value Pass rate

Approximate Entropy 0.875539 128/128 0.788728 127/128 – – 0.15224 Successful
Frequency 0.739918 127/128 0.337162 127/128 0.202268 96/100 0.72184 Successful

Block Frequency 0.723129 126/128 0.392456 127/128 0.213309 100/100 0.06380 Successful
Cumulative sums 0.350485 128/128 0.324180 126/128 0.428568 96/100 0.56254 Successful

Runs 0.134686 127/128 0.834308 128/128 0.171867 99/100 0.06380 Successful
Longest runs 0.585209 127/128 0.110952 126/128 – – 0.19640 Successful

Ranks 0.015065 128/128 0.066882 128/128 – – 0.99834 Successful
FFT 0.422034 127/128 0.100508 128/128 0.474986 98/100 0.12786 Successful

Non-overlapping Template 0.949602 128/128 0.941144 128/128 – – 0.69314 Successful
Overlapping Template 0.452799 128/128 0.253551 128/128 0.055361 99/100 0.90598 Successful
Random Excursions 0.739918 12/12 0.162606 15/15 – – 0.86541 Successful

Random Excursions Variant 0.911413 12/12 0.637119 15/15 – – 0.35789 Successful
Serial 0.517442 128/128 0.819544 127/12 0.494555 100/100 0.87105 Successful

Linear complexity 0.772760 127/128 0.311542 125/128 0.249284 97/100 0.01101 Successful
Universal 0.407091 127/128 0.484646 126/128 – – 0.02262 Successful

TABLE X: Comparison of Stealth-TRNG and Stealth-PRNG with other algorithms in successful randomness testing in NIST
SP 800-22.

Test name Stealth-TRNG Stealth-PRNG Jiang et al.[21] Johnson et al.[32]
P-value Pass rate P-value Pass rate P-value Pass rate P-value Pass rate

Approximate Entropy 0.875539 128/128 0.788728 127/128 0.00983 75/76 0.7399 1.0
Frequency 0.739918 127/128 0.337162 127/128 0.477737 74/76 0.9114 1.0
Block Frequency 0.723129 126/128 0.392456 127/128 0.768138 75/76 0.9114 1.0
Cumulative sums 0.350485 128/128 0.324180 126/128 0.426525 74/76 0.3505 1.0
Runs 0.134686 127/128 0.834308 128/128 0.042413 75/76 0.0089 0.92
Longest runs 0.585209 127/128 0.110952 126/128 0.042413 76/76 0.7400 1.0
Rank 0.015065 128/128 0.066882 128/128 0.094936 76/76 0.0043 1.0
FFT 0.422034 127/128 0.100508 128/128 0.739918 75/76 0.0089 1.0
Non-overlapping Template 0.949602 128/128 0.941144 128/128 – 11052/11248 0.0043 1.0
Overlapping Template 0.452799 128/128 0.253551 128/128 0.5929591 75/76 0.0213 0.8
Random Excursions 0.739918 12/12 0.162606 15/15 – 360/368 – –
Random Excursions Variant 0.911413 12/12 0.637119 15/15 – 818/828 – –
Serial 0.517442 128/128 0.819544 127/128 0.795464 76/76 0.5341 1.0
Linear complexity 0.772760 127/128 0.311542 125/128 0.350485 76/76 0.9114 1.0
Universal 0.407091 127/128 0.484646 126/128 0.000954 76/76 – –

TABLE XI: Comparison of Stealth-TRNG and Stealth-PRNG with other algorithms in successful randomness testing in NIST
SP 800-22.

Test name Stealth-TRNG Stealth-PRNG Wieczorek and Golofit [33] Yeoh et al.[26]
P-value Pass rate P-value Pass rate P-value Pass rate P-value Pass rate

Approximate Entropy 0.875539 128/128 0.788728 127/128 0.49 0.98 0.647530 0.995
Frequency 0.739918 127/128 0.337162 127/128 0.55 0.99 0.516113 0.988
Block Frequency 0.723129 126/128 0.392456 127/128 0.08 0.99 0.928857 0.993
Cumulative sums 0.350485 128/128 0.324180 126/128 0.27 0.98 0.572847 0.989
Runs 0.134686 127/128 0.834308 128/128 0.92 0.99 0.122325 0.991
Longest runs 0.585209 127/128 0.110952 126/128 0.34 0.99 0.291091 0.985
Rank 0.015065 128/128 0.066882 128/128 0.68 0.99 0.530120 0.995
FFT 0.422034 127/128 0.100508 128/128 0.82 0.99 0.858002 0.990
Non-overlapping Template 0.949602 128/128 0.941144 128/128 0.81 0.99 0.743915 0.99
Overlapping Template 0.452799 128/128 0.253551 128/128 0.21 0.99 0.502247 0.984
Random Excursions 0.739918 12/12 0.162606 15/15 0.48 0.98 0.292960 0.9863
Random Excursions Variant 0.911413 12/12 0.637119 15/15 0.34 0.99 0.9966685 0.9893
Serial 0.517442 128/128 0.819544 127/128 0.79 0.99 0.402962 0.988
Linear complexity 0.772760 127/128 0.311542 125/128 0.44 0.99 0.433590 0.984
Universal 0.407091 127/128 0.484646 126/128 0.72 0.99 0.373625 0.984

[11] E. Bresson, O. Chevassut, and D. Pointcheval, “Provably secure
authenticated group diffie-hellman key exchange,” ACM Trans. Inf.
Syst. Secur., vol. 10, no. 3, p. 10–es, Jul. 2007. [Online]. Available:
https://doi.org/10.1145/1266977.1266979

[12] N. Koblitz, “Elliptic curve cryptosystems,” Mathematics of computation,
vol. 48, no. 177, pp. 203–209, 1987.

[13] M. Bakiri, C. Guyeux, J.-F. Couchot, and A. K. Oudjida, “Survey on
hardware implementation of random number generators on fpga: Theory
and experimental analyses,” Computer Science Review, vol. 27, pp. 135

– 153, 2018.
[14] D. Evtyushkin and D. Ponomarev, “Covert channels through random

number generator: Mechanisms, capacity estimation and mitigations,”
in Proceedings of the 2016 ACM SIGSAC Conference on Computer
and Communications Security, ser. CCS ’16. New York, NY, USA:
Association for Computing Machinery, 2016, p. 843–857.

[15] M. Alcin, I. Koyuncu, M. Tuna, M. Varan, and I. Pehlivan, “A novel
high speed artificial neural network–based chaotic true random number
generator on field programmable gate array,” International Journal of

IACR EPRINT ARCHIVE, VOL. XX, NO. XX, MONTH 20XX 13

Circuit Theory and Applications, vol. 47, no. 3, pp. 365–378, 2019.
[16] İsmail Koyuncu and A. Turan Özcerit, “The design and realization of

a new high speed fpga-based chaotic true random number generator,”
Computers & Electrical Engineering, vol. 58, pp. 203 – 214, 2017.

[17] X. Lin, S. Wang, Z.-Q. Yin, G.-J. Fan-Yuan, R. Wang, W. Chen, D.-
Y. He, Z. Zhou, G.-C. Guo, and Z.-F. Han, “Security analysis and
improvement of source independent quantum random number generators
with imperfect devices,” npj Quantum Information, vol. 6, no. 1, pp. 1–8,
2020.

[18] M. Stipcevic and R. Ursin, “An on-demand optical quantum random
number generator with in-future action and ultra-fast response,” Scien-
tific Reports, vol. 5, no. 1, pp. 1–8, 2015.

[19] Y. Liu, Q. Zhao, M.-H. Li, J.-Y. Guan, Y. Zhang, B. Bai, W. Zhang, W.-
Z. Liu, C. Wu, X. Yuan, H. Li, W. J. Munro, Z. Wang, L. You, J. Zhang,
X. Ma, J. Fan, Q. Zhang, and J.-W. Pan, “Device-independent quantum
random-number generation,” Nature, vol. 562, no. 7728, p. 548–551,
2018.

[20] M. Avesani, D. G. Marangon, G. Vallone, and P. Villoresi, “Source-
device-independent heterodyne-basedquantum random number generator
at 17 gbps,” Nature Communications, vol. 9, no. 1, p. 5365, 1–7.

[21] H. Jiang, D. Belkin, S. E. Savel’ev, S. Lin, Z. Wang, Y. Li, S. Joshi,
R. Midya, C. Li, M. Rao, M. Barnell, Q. Wu, J. J. Yang, and Q. Xia,
“A novel true random number generator based on a stochastic diffusive
memristor,” Nature Communications, vol. 8, no. 1, pp. 1–9, 2017.

[22] A. T. Erozan, G. Y. Wang, R. Bishnoi, J. Aghassi-Hagmann, and M. B.
Tahoori, “A compact low-voltage true random number generator based
on inkjet printing technology,” IEEE Transactions on Very Large Scale
Integration (VLSI) Systems, vol. 28, no. 6, pp. 1485–1495, 2020.

[23] K. Lee, S. Lee, C. Seo, and K. Yim, “Trng (true random number
generator) method using visible spectrum for secure communication on
5g network,” IEEE Access, vol. 6, pp. 12 838–12 847, 2018.

[24] P. Bierhorst, E. Knill, S. Glancy, Y. Zhang, A. Mink, S. Jordan,
A. Rommal, Y.-K. Liu, B. Christensen, S. W. Nam, M. J. Stevens, and
L. K. Shalm, “Experimentally generated randomness certified by the
impossibility of superluminal signals,” Nature, vol. 556, no. 7700, p.
223–226, 2018.

[25] C. Camara, P. Peris-Lopez, H. Martin, and M. Aldalaien, “ECG-RNG: a
random number generator based on ecg signals and suitable for securing
wireless sensor networks,” Sensors, vol. 18, no. 9, pp. 1–15, 2018.

[26] W.-Z. Yeoh, J. S. Teh, and H. R. Chern, “A parallelizable chaos-based
true random number generator based on mobile device cameras for the
android platform,” Multimedia Tools and Applications, vol. 78, no. 12,
pp. 15 929–15 949, 2019.

[27] A. Appleby, “Murmurhash,” Retrieved on December 2020 from
https://sites.google.com/site/murmurhash/, 2008.

[28] M. Agrawal, N. Kayal, and N. Saxena, “Primes is in p,” Annals of
Mathematics, vol. 160, no. 2, pp. 781–793, 2004.

[29] A. Rukhin, J. Soto, J. Nechvatal, M. Smid, and E. Barker, “A
statistical test suite for random and pseudorandom number generators
for cryptographic applications,” Booz-allen and hamilton inc mclean va,
Tech. Rep., 2001. [Online]. Available: https://nvlpubs.nist.gov/nistpubs/
Legacy/SP/nistspecialpublication800-22r1a.pdf

[30] L. E. Bassham III, A. L. Rukhin, J. Soto, J. R. Nechvatal, M. E.
Smid, E. B. Barker, S. D. Leigh, M. Levenson, M. Vangel, D. L.
Banks et al., SP 800-22 rev. 1a. a statistical test suite for random
and pseudorandom number generators for cryptographic applications.
National Institute of Standards & Technology, 2010. [Online]. Available:
https://csrc.nist.gov/publications/detail/sp/800-22/rev-1a/final

[31] İ. Koyuncu, M. Tuna, İ. Pehlivan, C. B. Fidan, and M. Alçın, “Design,
fpga implementation and statistical analysis of chaos-ring based dual
entropy core true random number generator,” Analog Integrated Circuits
and Signal Processing, vol. 102, no. 2, pp. 445–456, 2020.

[32] A. P. Johnson, R. S. Chakraborty, and D. Mukhopadyay, “An improved
dcm-based tunable true random number generator for xilinx fpga,” IEEE
Transactions on Circuits and Systems II: Express Briefs, vol. 64, no. 4,
pp. 452–456, 2017.

[33] P. Z. Wieczorek and K. Gołofit, “True random number generator based
on flip-flop resolve time instability boosted by random chaotic source,”
IEEE Transactions on Circuits and Systems I: Regular Papers, vol. 65,
no. 4, pp. 1279–1292, 2018.

Ripon Patgiri (ripon@cse.nits.ac.in) is currently
working as an Assistant Professor in the Department
of Computer Science & Engineering, National In-
stitute of Technology Silchar, Assam-788010, India.
He receives his Master Degree and PhD degree from
Indian Institute of Technology Guwahati and Na-
tional Institute of Technology Silchar, respectively.
His research interests are Bloom Filter, Network
Security, Privacy, and Networking. He has published
several research papers in reputed journals, confer-
ences and books. Also, he has published several

edited books. He is a senior member of IEEE, member of EAI, associate
member of IETE, and life member of ACCS. He serves as a General
Chair, Program Chair and Organizing Chair of several conferences. URL:
http://cs.nits.ac.in/rp

