
VeRSA: Verifiable Registries with Efficient Client Audits
from RSA Authenticated Dictionaries

Nirvan Tyagi

Cornell University

Ben Fisch

Yale University

Andrew Zitek

New York University

Joseph Bonneau

New York University

Stefano Tessaro

University of Washington

Abstract. Verifiable registries allow clients to securely ac-
cess a key-value mapping maintained by an untrusted server.
Registries must be audited to ensure global invariants are
preserved, which, in turn, allows for efficient monitoring of
individual registry entries by their owners. To this end, exist-
ing proposals either assume trusted third-party auditors or rely
on incrementally verifiable computation (IVC) via expensive
recursive SNARKs to make registries client-auditable.

In this work, we give new client-auditable verifiable reg-
istries that achieve throughputs up to 100× greater than base-
line IVC solutions. Our approach relies on an authenticated
dictionary based on RSA accumulators for which we develop
a new constant-size invariant proof. We use this as a replace-
ment for Merkle trees to optimize the baseline IVC approach,
but also provide a novel construction which dispenses with
SNARKs entirely. This latter solution adopts a new check-
pointing method to ensure client view consistency.
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1 Introduction

A number of systems have demonstrated the promise of
transparency as a means to enhance security, most promi-
nently the Certificate Transparency protocol first launched in
2013 [LLK13,Lau14]. The goal of transparency systems is to
ensure that an authority’s behavior can be monitored by users.
Typically, misbehavior by the authority is not prevented but is
detectable. The implicit assumption is that large, public-facing
authorities are potentially malicious (or compromised) but
are cautious: they are unwilling or at least extremely hesitant
to carry out any attack that will leave public evidence.

Transparency has been proposed in a number of other se-
curity contexts, including user-public key mappings in en-
crypted communication systems [Rya14, MBB+15], usage
of cryptographic keys [YRC15], and distribution of soft-
ware binaries [FDP+14, NKJ+17, AM18]. Verifiable reg-
istries [CDGM19, MKL+20] are an abstraction capable
of providing transparency for the key-value mappings re-
quired for all of these applications. Without such a trans-
parency solution, the only defense against malicious be-
havior by the authority (or provider) is out-of-band cross-
checking of the authority’s behavior (e.g. checking the fin-
gerprints of downloaded public keys), an error-prone process
which the vast majority of users neither understand nor at-
tempt [DSB+16, TBB+17, VWO+17, ASB+17].

Client monitoring and auditing. Verifiable registries provide
lookup proofs (or binding proofs) that prove the results of a
lookup are consistent with the committed state of the registry
at a particular epoch. These lookup proofs can be monitored
by users to detect any unexpected changes. Typically there is
no well-defined notion of correctness for a specific registry
mapping as the authority is trusted to update mappings when
needed (e.g. account recovery for a user who has lost their
private key). Thus, monitoring is inherently a process specific
to each mapping and/or user.

By contrast, auditing is the process of ensuring that the
entire registry is well-formed and maintains promised in-
variants across epochs. Unlike monitoring, auditing can be
fully automated, with any violation by the provider pro-
ducing unambiguous cryptographic proof of misbehavior.
Early constructions propose clients directly perform au-
dits in every epoch [LLK13, Rya14, MBB+15]. As this ap-
proach incurs large overhead which is linear in the number
of epochs, later proposals instead suggest outsourcing au-
diting of global registry invariants (such as update counts)
to a third party. This enables clients to monitor their own
key-value mapping at a lower frequency, with significant cost
savings [MBB+15,CDGM19,MKL+20,TBP+19,HHK+21].

However, this assumes suitable trusted parties exist which
can regularly perform expensive global audits. One could
rely on the validation process underlying existing blockchain
infrastructure (in particular, by implementing auditing in a
smart contract [Bon16]), but this may result in large trans-

action fees. In this paper, we focus on solutions that rely on
general-purpose, application agnostic, trusted infrastructure.
In particular, we can instantiate our solutions assuming the
existence of a trusted bulletin board, which can be shared with
a number of different applications, and which will provide
a consistent (or eventually consistent) mapping between an
epoch number i and a commitment di to the state of the reg-
istry at epoch i. Apart from this, our solutions will be client
auditable, in that the client themselves verify global registry
invariant proofs.

The challenges of IVC-based client auditability. A nat-
ural starting point to build client-auditable verifiable reg-
istries is to use incrementally verifiable computation (IVC)
[Val08] via recursive proofs [BCCT13, BCTV14], following
e.g. [CCDW20]. IVC enables the server to supply a commit-
ment di to the state of the registry at epoch i, along with a
succinct proof πi that di represents a state which evolved from
a genesis state d0 through a sequence of transitions which
preserve the registry’s invariants. Clients can efficiently ver-
ify these invariant proofs on their own, without relying on
dedicated third-party invariant auditors.

However, IVC proofs are, by themselves, not sufficient.Two
users may come online at different epochs i and j and receive
invariant proofs πi and πj , along with commitments di and
dj to different states of the registry. An IVC proof attests to
invariant preservation for updates across some sequence of
intermediate states leading to the states represented by di and
dj , respectively, but without additional verification, there is no
guarantee that the intermediate states attested to in πi and πj

are consistent with each other. To ensure that this is the case, a
bulletin board could store the commitments d1,d2, . . ., along
with a hash chain h0,h1,h2, . . ., where hi =H(hi−1,di) for
some hash function H . Third-party auditors are responsible
for verifying hash chain consistency, and the IVC proof πi

would attest that hi commits to the unique hash sequence of
valid registry states appearing on the bulletin board.

In practice, hash chain verification is only slightly more
expensive than maintaining a bulletin board. A more impor-
tant obstacle with IVC solutions is that generating invariant
proofs is computationally expensive. Merkle trees are the pre-
dominant data structure for implementing an authenticated
dictionary (AD) in existing verifiable registries [MBB+15,
CDGM19, MKL+20]. Proving the invariant for a sequence of
updates typically corresponds to verifying consistency of a
sequence of Merkle paths. To achieve succinctness through
IVC, the verification of Merkle paths is done within a succinct
proof (in particular, a SNARK [Gro10, GGPR13]). However
encoding the Merkle path verification into a circuit repre-
sentation suitable for SNARKs results in a large circuit and
concretely expensive proving times, ultimately translating to
a verifiable registry with low update throughput (< 5 key
updates/second). In contrast, the Certificate Transparency
ecosystem requires throughput of approximately 60 key up-
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dates per second [Clo20].

Our contributions. We aim to provide new verifiable reg-
istries which overcome the update throughput bottlenecks in
IVC based solutions. Our new solutions will rely on the use
of an RSA-based authenticated dictionary. Our main insight
is a new cryptographic approach to produce succinct invari-
ant proofs for large sequences of updates to an authenticated
dictionary based on the KVaC key-value commitment con-
struction from [AR20], opening up its use in the verifiable
registry setting.

We then use our new insights to provide two systems, which
we refer to as VeRSA-IVC and VeRSA-Amtz. In VeRSA-IVC,
we show how KVaC and our new succinct proof can be com-
bined with IVC to allow the server to produce succinct invari-
ant proofs for client auditability at much higher throughput
(∼ 10-100× greater) than applying IVC to Merkle tree-based
registries: the invariant proofs for the RSA dictionary encode
as a constant-size circuit regardless of the number of updates,
as opposed to a circuit linear in the number of updates for
Merkle tree dictionaries (i.e., a Merkle path for each update),
resulting in faster SNARK proving times.

Our second system, VeRSA-Amtz, provides instead a new
amortized proving approach that dispenses with the need for
IVC/SNARKs entirely, resulting in the first construction for
efficient client auditability without IVC or generic SNARKs.
We discuss in our related work section why prior solutions
fall short of achieving this. Succinct invariant proofs for RSA
authenticated dictionaries can be precomputed for carefully
chosen sequences of updates over the lifetime of the registry
in such a way that expensive computations for long sequences
do not occur often, and any sequence of updates queried by a
client can be served via a small number of precomputed invari-
ant proofs for contiguous sequences. This alternate non-IVC
approach enables even higher throughput in some deployment
contexts.

A novel challenge with VeRSA-Amtz is ensuring view
consistency, as recursive SNARKs inherently gave us an easy
solution via the use of hash chains. To this end, we introduce
a new model of client-based auditing based on checkpointing.
When a client comes online, they select a short (sublinear)
sequence of checkpoint states between the current state and
the state from when they were last online. The client can
obtain a consistent view of the checkpoint digests thanks to
the bulletin board, and then requests and verifies succinct
proofs that the registry invariant is preserved between this
sequence of checkpoints. Any two clients that individually
perform these audits (over different checkpoint sequences)
are guaranteed to have a consistent view up to their latest
shared checkpoint; checkpoints are chosen so that two clients
are guaranteed to have a shared checkpoint that is not too far
behind their latest time online.

Our new auditing model relaxes consistency guarantees
from previous approaches by allowing clients to temporar-

ily accept an inconsistent state: the inconsistency is detected
when the shared checkpoint catches up. But on the other hand,
it enables clients to maintain eventually consistent views with-
out expensive linear work and without relying on recursive
SNARKs.

While our new proof techniques for RSA authenticated dic-
tionaries allow for constructing client-auditable verifiable reg-
istries at high update throughput, computing lookup proofs for
individual key-value mappings is more costly, naively requir-
ing work linear in the size of the registry. We provide some
deployment optimizations that help alleviate these costs with
batching and caching, but ultimately this limitation means
our RSA-based verifiable registries are better suited to trans-
parency applications that need only maintain mappings on the
order of millions, rather than Merkle tree approaches which
can easily provide lookup proofs for billions of mappings.
Nevertheless, examples of such settings where our construc-
tions are immediately applicable include binary transparency
(as of Jan 2022, Google Play Store included 3.3 million
apps and Apple App Store included 2.1 million apps [Sta22]
whereas Ubuntu’s main repository included 106 thousand
packages) or smaller messaging services such as Signal (40
million users [Tec21]). We demonstrate how our systems scale
with increased resources, but new techniques or improved
scaling through specialized hardware [SHT21,ZWZ+21] will
likely be needed to make client-auditable verifiable registries
practical for larger applications like Certificate Transparency
(340 million domains) or WhatsApp (2 billion users).

We will present our results as modularly as possible, fol-
lowing the roadmap illustrated in Figure 1. In particular, we
will start with the abstraction of an authenticated dictionary
(AD) with an efficient invariant update proof, for which we
provide an RSA instantiation by combining KVaC with our
new update proofs. Then, we will show how to generically
enhance such an AD into an authenticated history dictionary
(AHD) which additionally allows for invariant proofs over
the history of the dictionary, either via IVC or via our new
amortization technique. Finally, we will combine the result-
ing AHDs with different trusted auditing mechanism (a plain
bulletin board or one additionally verifying hash chains) to
obtain our final systems.

2 Setting and Threat Model

A verifiable registry [CDGM19, MKL+20] maintains a col-
lection D of key-value pairs (k,v) administered by a cen-
tralized1 server. We assume that D contains at most one pair
(k,v) for each k. The server periodically signs and publishes,
at each epoch, a commitment (or digest) di to the registry
state Di on a public bulletin board (discussed shortly). Mov-
ing from epoch i to epoch i+1, means that one or more key-

1It would be possible to use a semi-centralized model in which a set of
semi-trusted servers collaboratively maintain the registry using techniques
from distributed consensus and threshold cryptography.
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Authenticated dictionaries (AD) supporting update proofs

Merkle tree AD RSA accumulator-based AD

AD to AHD transforms

IVC / SNARK recursion Amortized update proofs

Auditing mechanism
Bulletin board +

hashchain verification
Bulletin board +

client checkpointing

Authenticated history dictionaries

MT-AHD-IVC RSA-AHD-IVC RSA-AHD-Amtz

Verifiable registries with efficient client audits

MT-VR-IVC VeRSA-IVC VeRSA-Amtz

Figure 1: Overview of approaches to building verifiable registries
efficiently auditable by clients. The highlighted boxes correspond to
our new techniques and constructions, resulting in our two proposed
verifiable registries, VeRSA-IVC and VeRSA-Amtz. The MT-VR-
IVC verifiable registry can be considered as a baseline solution
proposed in previous work [CCDW20]. We denote that the IVC-
based registries can be instantiated via hashchain verification or via
our new client checkpoint auditing mechanism.

value pairs have been updated, i.e., (k,v) has been replaced by
(k,v ′) or that an entry for a new k is added to D. There is an
implicit notion that the updates and additions of these entries
are the outcome of users requests—we do not specify these
mechanisms further as they are application-specific. Also, we
do not bound the number of updates of Di+1 \Di. Depending
on the application context, a server may try to batch many
updates into a single epoch, perhaps increasing epoch latency
but achieving better throughput. Clients will then able to issue
lookup queries to the registry and perform monitoring of en-
tries to detect unexpected changes. We describe these below,
after clarifying a few more high-level aspects of the model.

Threat model. Our primary goal is to guarantee a consis-
tent view of the key-value mappings to all clients, and to
allow for efficient monitoring of these mappings. The server
is not trusted and may arbitrarily deviate from the protocol.
Our goal is not to prevent attacks, in principle, but to ensure
that they are eventually detected by some client accessing
the system. This is particularly suitable for a malicious-but-
cautious adversary [CDR14]2. We do not attempt to guaran-
tee availability, as a malicious server can simply refuse to
respond to any queries. We also do not provide any privacy
guarantees, though existing techniques for enhancing privacy
can be implemented at the application-layer specification of
(k,v) [MBB+15, EMBB17] (See Section 9).

2A malicious-but-cautious adversary is willing to deviate from the proto-
col only in ways that will go undetected by user tests, e.g., if detection would
lead to severe financial and/or reputational harm.

Bulletin board. As stated above, our solutions rely on a pub-
lic bulletin board to prevent split-view attacks, in which a
malicious server convinces user Alice to accept digest di
and user Bob to accept digest d′

i ̸= di for the same epoch
i. Both digests might be valid updates from a common
ancestor dj , but map a key to two distinct values. We as-
sume that all digests d0,d1, . . . (i.e., one unique digest per
epoch) are published by the server on the bulletin board,
from which clients will read to maintain a consistent view,
and that there exists an efficient mechanism for a client
to read di for any i. Reliance on an out-of-band mecha-
nism is necessary, in line with prior work on transparency
systems [LLK13, MBB+15, CDGM19, MKL+20, LKMS04].
Bulletin boards, in particular, are a common assumption in
cryptographic protocols [Ben87, CBM15, CGJ+17] which
admits several possible implementations — e.g. a public
blockchain [TD17] or a gossip protocol [STV+16,MKL+20].
The implementation of the bulletin board will require, either
directly or indirectly, some trusted auditors ensuring that ev-
ery epoch i is mapped to a unique di. In this work, all other
auditing can be performed by clients themselves.

Basic lookups and monitoring. Clients can interact with the
server to query a key3 k at epoch i and retrieve the associated
value v , along with a proof π of validity with respect to di and
some additional metadata (such as a version number). Clients
perform lookups at the current epoch i to learn the authorita-
tive value for a given key. We envision particular applications
where key-value entries are owned by some clients, e.g., if
the registry implements a public key directory, a client will
own the entry mapping their username to public key. We then
assume clients continually look up their own keys to ensure
that the mapped value is correct, a process called monitoring.

Associating certain invariant metadata (such as a version
number) with each mapping enables efficient monitoring
across digests even after the client has spent a long period of-
fline, but requires that every digest preserves these invariants
with respect to the prior digest. Past work has considered two
such invariants. The versioned invariant [MBB+15, Bon16]
associates with each key a version number that must be in-
cremented whenever that key’s value is updated. The append-
only invariant [TBP+19, MKL+20] associates with each key
an append-only list of the entire history of values for that key
over the lifetime of the dictionary. Either invariant makes it
easy to detect if a mapping has been modified; for example, in
the versioned setting, if a client queries its own key at digest
di and the associated metadata indicates the version num-
ber has not changed since the last digest dj which the client
queried, this guarantees the mapping has not changed during
this period.In this work, we primarily focus on the simpler
versioned invariant, observing that in most of our applications,

3We use key to refer to the lookup key in a directory, e.g. a username. The
value associated with that lookup key may itself be a cryptographic key in
applications such as key transparency.
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it is sufficient to provide the most up-to-date value mapping.

Where monitoring can go wrong. It is instructive to consider
concrete attacks a malicious server can mount to understand
where monitoring can fail. The canonical attack we consider
is sometimes called a ghost value attack (or ghost key at-
tack) [MBB+15]. Consider a key owner that monitors their
key at epochs i and j, and a second client that performs a
lookup on the key at epoch ℓ where i < ℓ < j. Suppose the
key owner’s expected mapped value for the key across epoch
i to j is v . A ghost value attack occurs if the server can get
the lookup client to accept a “ghost value” v ′ ̸= v for the
key at epoch ℓ and then switch the value back to v at epoch
j so that the owner’s monitoring does not detect misbehav-
ior. This attack is typically addressed, as mentioned above,
through the use of invariant proofs that help with monitoring,
e.g., detecting a change in version number. As long as (1) the
view of epoch to digest mapping is consistent across clients
and (2) the invariant is preserved between each digest, ghost
value attacks will be detected. Thus, a ghost value attack can
succeed if either of these assumptions fail – we next consider
two attacks against these assumptions.

In a split-view attack [LKMS04], a server can publish dif-
ferent digests for an epoch to clients that are partitioned in
different “worlds”. In this attack, even if the invariant is pre-
served across the published digests in the key owner’s world, it
says nothing about the published digests in the lookup client’s
world, and monitoring will fail. We address the split-view
attack by assuming a public bulletin board maintained by
trusted auditors (see above) ensuring all clients have an even-
tually consistent view of the epoch-to-digest mapping — this
appears to be a minimal assumption needed for a transparency
system.

However, even with a consistent epoch-to-digest mapping,
the question remains of who will verify invariant preserva-
tion between published digests. The server may mount an
oscillation attack [MKL+20], in which it serves clients inter-
leaving sequences of digests where each sequence preserves
the invariant, but the two sequences interleaved do not pre-
serve the invariant. For example, say the key owner is only
served digests for even epochs, while the lookup client is
served digests for odd epochs, and clients only verify the
invariant holds for digests they are served. Monitoring will
fail unless at some point an invariant proof is checked be-
tween an odd and even epoch digest. (Oscillation is of par-
ticular concern with asynchronous clients that come online
at different times.) Prior work has addressed this by verify-
ing invariant preservation between every consecutive pair of
published digests using one of the following two approaches.
The first approach simply assumes a set of trusted auditors
that perform this task — we specify the use of outsourced
trusted auditors because, typically, the invariant verification
work (linear in the number of epochs) is considered too costly
for the client to perform. The second approach, proposed in

concurrent work [CCDW20, TKPS21], uses IVC with recur-
sive SNARKs to allow for more efficient client verification.
Specifically, registry digests are tied into a hash chain where
hi =H(hi−1,di−1), and the pair (hi,di) is stored for epoch
i on the bulletin board. A succinct proof is created that attests
to (1) invariant preservation between di−1 and di, (2) inclu-
sion in the hash chain hi =H(hi−1,di−1), and (3) recursive
verification of the same proof for (hi−1,di−1). By collision-
resistance of the hash function, such a proof indirectly attests
to the existence of a unique sequence of digests that each
consecutively preserve the invariant. Even so, there is no guar-
antee that the sequence of digests attested to in the proof
match the sequence of digests published on the bulletin board.
To prevent oscillation attacks, a client must additionally verify
the hash chain posted on the bulletin board: if the hash chain
is valid, then it must be that the sequence of published digests
preserve the invariant. Verification of the hash chain is still
linear in the number of epochs, but it is concretely inexpen-
sive, and it is plausible a client may perform this task or that
it may be outsourced to the trusted auditors maintaining the
public bulletin board (e.g., via a smart contract).

Here, we put forward a novel approach to client-efficient au-
diting of invariant proofs to prevent oscillation attacks, which
we overview next. Our approach assumes only a bulletin board
(without relying on a hash chain), and will enable SNARK-
free solutions such as VeRSA-Amtz.

Client checkpoint auditing. We introduce a new checkpoint-
ing technique, which we describe in detail in Section 6. Con-
sider a client that was last online at epoch i and comes back
online at epoch j. Instead of requiring the client to verify the
invariant for all consecutive epochs in the range from i to j,
the client will audit the invariant for a logarithmic number of
checkpoint digests corresponding to certain canonical epochs
between i and j. Crucially, these checkpoints are chosen so
that any two overlapping ranges will share at least one check-
point. This implicitly guarantees that, for any two clients,
the invariant is preserved through the sequence of digests in
their interleaved view up to their latest common checkpoint,
and any oscillation that may have occurred since then will
eventually be detected on future audits. We note that clients
may temporarily accept two digests which do not preserve the
invariant with respect to each other. Crucially, however, such
an oscillation attack is guaranteed to eventually be detected
at the next shared checkpoint.

3 Preliminaries

Authenticated dictionaries. An authenticated dictionary
(AD) maintains and commits to a collection of key/value pairs
[(ki,vi)]i, where every key is unique, with a digest d. An ini-
tial digest and state are produced via (d0,st)← Initpp() fol-
lowing a setup producing public parameters pp←$Setup(λ)
where λ is a security parameter. The public parameters are
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included implicitly in all algorithms, and we may drop the
superscript if the use is clear from context. A set of key-
value mappings may be updated to produce a new digest,
(d′,st) ← Upd([(kj ,vj)]j : st). It provides proofs for key
lookups, (v ,π)← Lkup(k : st), that can be verified given the
digest commitment, 0/1← VerLkup(d,k,v ,π). An authenti-
cated dictionary must satisfy key binding, which means that it
is infeasible to produce valid lookup proofs for key k to differ-
ent values v and v ′. ADs can also be augmented with invariant
update proofs, proving that a certain invariant Φ(k,v ,v ′) is
preserved for all keys during an update; we augment the Upd
algorithm to additionally return a proof and provide an accom-
panying verification algorithm, 0/1← VerUpd(d,d′,π). The
invariant proof must satisfy soundness, meaning if the verifi-
cation algorithm succeeds, the invariant is preserved. We will
primarily be concerned with the versioned invariant which
has been previously used in Merkle trees [MBB+15, Bon16].

The most prevalent authenticated dictionary implementa-
tions in practice are based on Merkle trees [Mer87, MBB+15,
PP15]. Merkle trees admit lookup proofs and update proofs
for a single key which are of size and verification time
O(logN) for dictionaries of size N . We review these algo-
rithms in Appendix A and introduce our own optimization
using open addressing in Appendix B.

Append-only vector commitments. A vector commitment
(VC) commits to an ordered list of elements [vi]i. Setup
and initialization syntax follow the same as for ADs. An
append-only VC provides an update algorithm to append
elements to the end of the list, (d′,st) ← Upd([v ′

i]i : st),
as well as supports efficient prefix proofs that a commit-
ment commits to a prefix of another: π← ProveUpd(j : st)
and 0/1← VerUpd(d′,d, j,π) where L[0 : j] = L′ for list
L and L′ corresponding to digests d and d′, respectively. A
VC supports efficient lookups with proof of elements by in-
dex, (v ,π)← Lkup(i : st) with accompanying verification
algorithm 0/1← VerLkup(d, i,v ,π). A VC must satisfy in-
dex binding meaning that it should not be possible to pro-
vide valid lookup proofs to different values for the same in-
dex. Again, append-only VCs can be derived from Merkle
trees [CW09, MKL+20, BKLZ20]; it supports lookup proofs
and arbitrary-length update proofs of size and verification
time O(logN) for vectors of size N (see Appendix A).

Compact ranges. A compact range is a succinct, canonical
representation of a range [L,R) where L,R are non-negative
integers [MKL+20]. A compact range, [(Li,Ri)]

m
i=1 ←

CompactR((L,R)), is the minimum set of m subranges that
"span" [L,R) where L1 = L, Rm = R, and Ri = Li+1 for
all 1≤ i < m. Each subrange is restricted to be of the form:
(Li = ai ·2bi ,Ri =Li+2bi) for non-negative integers (ai, bi).
It is guaranteed that a unique compact range exists for every
range; further, the time to compute the compact range and the
number of subranges m is logarithmic in the size of the range,
O(log(R−L)) (see [MKL+20] for more details).

RSA groups and key-value dictionaries. An RSA group
is the multiplicative group of invertible integers modulo N
(denoted Z×

N ), where N is the product of two secret primes.
We define the RSA quotient group for N as Z×

N \{±1}. The
widely believed Strong RSA Assumption (Strong-RSA) as-
serts that it is computationally difficult to compute eth roots
of a non-trivial element of Z×

N for e≥ 3.
Recently, it was shown how to construct efficient authen-

ticated key-value dictionaries based on the Strong-RSA as-
sumption [AR20, BBF19]. Our work builds on the KVaC
construction [AR20] which we provide in Appendix D.

Lastly, proofs of integer discrete log [Wes19, BBF19] have
been useful for batching insertions and membership proofs
in RSA accumulators [CL02]. In such a proof, a prover con-
vinces a verifier that for u,v ∈ G and α ∈ Z, the relation
v= uα holds, where G is an RSA quotient group. Importantly,
the integer α can be much larger than |G|, but the verifier’s
running time remains Õ(log |G|). Later, we will extend these
techniques to apply to the RSA key-value dictionary.

SNARKs and incrementally-verifiable computation. A
non-interactive proof system for a relation R over state-
ment-witness pairs (x,w) enables producing a proof, π ←
Prove(pk,x,w), that convinces a verifier ∃w : (x;w) ∈ R,
0/1← Ver(vk,π,x); pk and vk are proving and verification
keys output by a setup, (pk,vk)← Setup(λ).

A non-interactive argument of knowledge further convinces
the verifier not only that the witness w exists but also that the
prover knows w. If π is succinct, i.e. of “small” size and veri-
fication time, with respect to x andR, the protocol is further
known as a (preprocessing) SNARK [Gro10, GGPR13]. We
make use of SNARKs for relations of general circuit satisfi-
ability, of which there exist many constructions [GGPR13,
Gro10, GWC19, CHM+20, BBHR19, BFS20, Set20].

An incrementally-verifiable computation (IVC) [Val08]
allows proving correctness of repeated application of a cir-
cuit computation. The predominant approach to IVC uses
recursive SNARKs [BCCT13, BCTV14, BCMS20, BGH19],
in which the proof circuit for each intermediate state verifies
one step of computation from the previous state and veri-
fies correct computation from the initial state to the previous
state by recursively verifying the proof for the previous state;
such a proving circuit can be described because the recursive
verification can be computed succinctly.

4 Versioned Invariant Proofs for
RSA Authenticated Dictionaries

We begin by constructing the first RSA-based authenticated
dictionary that efficiently supports succinct versioned invari-
ant proofs. Our starting point is the KVaC authenticated dic-
tionary construction of Agrawal and Raghuraman [AR20].
We extend the original construction in two ways in order to
make it suitable for use with verifiable registries. First, we
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show how to support efficient updates for a batch of key-value
mappings ([kj ,vj ]j), instead of only a sole key-value update.
Second, as our most significant contribution, we construct a
succinct proof that a batch of updates applied to the dictionary
preserve the versioned invariant. Building this proof, enables
KVaC to achieve the strong key binding security property
needed for verifiable registries, in which key binding holds
for adversarially chosen digests. Prior to this work, the con-
struction was only secure with respect to weak key binding,
i.e., digests that were produced honestly, limiting its applica-
bility significantly.

In KVaC, key-value pairs are committed to with the fol-
lowing digest, where u represents a version number for the
key, H is a collision-resistant hash function mapping keys to
primes, and g is a member of an RSA quotient group:

d←
(
g(

∏
iH(ki)

ui)·(
∑

i vi/H(ki)), g
∏

iH(ki)
ui
)

To update a key’s value from v to v+ δ, the new digest d′ =

(d
H(k)
1 dδ

2, d
H(k)
2 ) is computed, where the previous digest d =

(d1,d2). We defer the full details including lookup proof
computation to Appendix D.

Batching updates. When updating the values associated with
many keys, we observe that instead of applying each update
in sequence, all updates [k, δ]i can be applied at once by the
following:

Z←
∏

iH(ki) ∆← (
∏

iH(ki)) · (
∑

i δi/H(ki)) .

Then the batched update follows the same form as before,
d′ = (dZ

1 d
∆
2 ,dZ

2 ). We will take advantage of this form to
construct succinct proofs for the versioned invariant.

Proving the versioned invariant. Informally, the versioned
invariant enforces over an update that the only way to change a
key’s value is by increasing its version number. More formally,
we define the invariant as follows with two constraints: (1) a
key’s version number does not decrease in an updated digest,
and (2) two different values for a key cannot be shown for the
same version number,

Φvsn(k,(v,u),(v
′,u′)) = u < u′ ∨ (u= u′ ∧ v = v′) . (1)

One approach to prove this invariant (and bootstrap strong
key binding from weak key binding) is to prove that d′ is
the result of correctly applying the batch update procedure
to d, i.e., that the update equations above hold, however it
turns out that proving a weaker statement suffices. The prover
constructs a proof of knowledge for the following relation
between d = (X1,X2) and updated digest d′ = (Y1,Y2):

RKVaC =
{
((X1,X2,Y1,Y2); (α,β)) : Y1 =Xα

1 X
β
2 ∧Y2 =Xα

2

}
.

We show in Appendix D that it is computationally infeasi-
ble to produce a valid proof for this relation if the versioned
invariant is violated. This is a somewhat surprising result,
as we do not enforce any extra structure on α and β, such
as matching the structure of (Z,∆) (which would result in
a much more costly proof). Rather, simply proving knowl-

edge of any α and β ensures that either the underlying pair
of dictionary states do not violate the versioned invariant or
that the prover has solved a computational problem related to
factoring, breaking the Strong-RSA assumption.

We use the generalized knowledge of integer discrete log
proof system from [BBF19] (Figure 13, Appendix D) as the
non-interactive proof of knowledge forRKVaC. Importantly,
this proof system, which leverages the algebraic structure of
the RSA group, has a constant-time verification algorithm
and constant-sized proof. This is a significant improvement
over other Merkle-based [MBB+15, MKL+20] and bilinear
pairing-based [TBP+19,LGG+20] constructions of authen-
ticated dictionaries with versioned proofs. We defer the full
formalism and proofs of security of strong key binding and
versioned invariant preservation to Appendix D.

Computing lookup proofs. Unfortunately, computing mem-
bership and non-membership proofs for keys from scratch
is expensive – on the order of the combined number of keys
with non-null values and number of past updates to the dictio-
nary. Given a (non-)membership proof for a previous epoch,
the proof can be updated to be valid for the current epoch in
time linear in the number of key updates that have since oc-
curred. However, even these updates can be expensive for the
provider if many epochs have passed since a key’s last query
date. In our evaluation (Section 8), we show that for dictionar-
ies with millions of keys, lookup proof computation costs are
manageable; we discuss batch computation techniques that
help alleviate these costs in Appendix E.

Extending to the append-only invariant. While in this work,
we focus on the versioned invariant, some applications may re-
quire the stronger append-only invariant that tracks the entire
history of mapped values of a key. In Appendix H, we pro-
pose an extension of KVaC for which we construct succinct
append-only invariant proofs.

5 Authenticated History Dictionaries

In this section we will define an authenticated history dictio-
nary (AHD), the novel cryptographic primitive behind our
verifiable registry system, and present several constructions
of this primitive from authenticated dictionaries.

5.1 Syntax, Semantics, and Security

An AHD commits not only to its current state, but also to
all previous states in its history. It is also able to efficiently
provide update invariant proofs between any sequence of
previous states. As for authenticated dictionaries, we define
an invariant Φ as a boolean function on input k,vi,vj that
outputs 1 if the invariant is preserved; we require the invariant
to be preserved for all keys. Again, in this work, we will be
interested in the versioned invariant Φvsn (Equation 1). An
AHD is defined by the following set of algorithms:
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• pp←$Setup(λ): The setup algorithm takes a security
parameter and returns public parameters.

• (d0,st0)← Init(): The initialization algorithm returns
an initial digest to the empty dictionary.

• (di+1,sti+1)← Upd([kj ,vj ]j : sti): The update algo-
rithm updates the dictionary values for input keys {kj}
to the values {vj} and outputs a new digest di+1 repre-
senting the new dictionary history for epoch i+1.

• (v ,πlkup)← Lkup(k : sti): The lookup algorithm returns
the value v associated with k along with a membership
proof πlkup. If the k is not present in the dictionary, v is
set to ⊥ and a non-membership proof is provided.

• 0/1← VerLkup(di,k,v ,πlkup): The lookup verification
algorithm verifies the key-value mapping in di.

• πhist← ProveHist([cj ]
m
j : sti): The prove history algo-

rithm takes as input an ordered list of checkpoint epochs,
c1 < .. . < cm < i, and provides a proof that the digest
at each checkpoint is included in the committed history.

• 0/1← VerHist(di, [(cj ,dcj )]
m
j ,πhist): The history veri-

fication algorithm verifies the ordered list of checkpoint
digests are included in the history of digest di.

• πΦ ← ProveInv([cj ]
m
j : sti): The prove invariant algo-

rithm takes as input an ordered list of checkpoint epochs,
c1 < .. . < cm ≤ i, and provides a proof that the invariant
Φ is preserved between the dictionary states of each pair
of digests in sequence: (dcj ,dcj+1

).
• 0/1← VerInv(di, [(cj ,dcj )]

m
j ,πΦ): The invariant ver-

ification algorithm verifies the invariant is preserved
between the sequence of ordered checkpoint digests.

An important feature of the AHD syntax and semantics
is allowing querying of history and invariant properties for
previous states. While critical to support client auditing as
clients often come online after long periods of disconnection,
this functionality is what creates the main challenge in coming
up with efficient constructions.

In terms of correctness, informally, the dictionary should
correctly update its key-value mappings and lookups should
return the latest value added. Previous digests should be
correctly committed to in the appropriate epoch position in
history. And lastly, the proofs produced by the proving al-
gorithms should pass their accompanying verification algo-
rithms.

In terms of security, we define three properties. The first
two properties are analogous to the security properties of
ADs. First, an AHD must satisfy key binding, which is de-
fined equivalently to as in ADs: it should not be possible
to provide valid lookup proofs to two different values for a
key in a digest. Second, invariant soundness requires that it
should not be possible to produce a valid invariant proof for
a sequence of checkpoints such that the invariant is not pre-
served between any two checkpoint digests. The last property
is history binding, which requires that it should not be possi-

ble to provide two valid history proofs for a digest including
a different checkpoint digest at the same checkpoint epoch.
We formally define these security properties as pseudocode
games in Appendix F.

5.2 Towards a Generic Construction

We begin by discussing useful building blocks and strawman
solutions for constructing an AHD from an underlying AD.

Composing an AD with a history commitment. A core
additional functionality AHDs provide over ADs is the ability
to track and commit to the history of previous states. As such,
a natural starting point to build an AHD is to combine an AD
with an append-only vector commitment (VC), committing
the digest of the AD at time step i to the ith position of the
vector commitment; we will refer to the vector commitment
as a history commitment.

More specifically, consider an AHD made of an authen-
ticated dictionary D and a vector commitment L: the di-
gest of the AHD is a pair of digests (or hash of pair), one
from an authenticated dictionary and the other of the his-
tory commitment: (dAD,dVC). To perform a set of key-value
updates [ki,vi]i, first, a new AD digest is computed by up-
dating the AD, (d′

AD,D
′)← AD.Upd(D, [ki,vi]i). Then, the

vector commitment is updated to append the old digest,
(d′

VC,L
′)← VC.Upd(L, [(dAD,dVC)]). The new AHD digest

is set as (d′
AD,d

′
V C).

This construction also supports succinct proofs to
AHD.ProveHist queries for arbitrary checkpoints. A prefix
proof using VC.ProveUpd is computed for each checkpoint
with respect to the current state. For the Merkle tree instan-
tiation of VC (Appendix A), these proofs both can be com-
puted and verified in time and are of size O(logN) where
N is length of the vector. This basic combination of AD and
history commitment form the basis of our proposed construc-
tions. The pseudocode details are given in Figure 2; and we
provide proof sketches for history binding and key binding in
Appendix F.

Challenge of succinct invariant proofs. Unfortunately, it is
not straightforward how to provide succinct invariant proofs
for arbitrary checkpoints in response to AHD.ProveInv. Re-
call, an AD can be augmented to provide invariant proofs
for updates. An invariant proof πi can be computed during
each epoch update for dAD,i−1 to dAD,i. For a queried pair
of checkpoints (cj , cj+1), the sequence of epoch invariant
proofs [πi]

cj+1
i=cj

together attest to invariant preservation for
dAD,cj to dAD,cj+1

. However, this would not be succinct, ulti-
mately leading to a proof of size linear in the range of epochs
the checkpoints are over.

Alternatively, it is also not efficient to compute a fresh in-
variant proof for pairs of checkpoints (cj , cj+1) on the fly in
response to a ProveInv query. Each invariant proof is com-
puted in time linear in the number of key-value updates made
to the dictionary.
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Instead, we will need different approaches. We present
two generic constructions for AHDs from ADs. First, we
present a construction for succinct invariant proofs based
on IVC. It is our most general solution and is compatible
with any AD that supports the invariant proof. Second, we
present a construction based on amortized proving of invariant
preservation over power-of-two ranges of epochs: an invariant
proof for any pair of checkpoints can be provided as a logN
sequence of precomputed proofs. This approach dispenses
with the heavyweight machinery of IVC, but requires that the
underlying AD supports a succint invariant proof. This is the
case for our new RSA construction (Section 4), however does
not hold for Merkle tree ADs.

5.3 AHDs from SNARK Recursion

Our first construction is from IVC; for concreteness, we
present the construction using recursive proofs [BCCT13,
BCTV14], the prevailing approach to IVC. IVC allows con-
structing a succinct proof of an output (digest) that attests
to its correct computation over a series of steps (invariant
preserved over epochs). IVC has previously been proposed
for producing succinct proofs for verifiers of invariant-based
ledger systems [CCDW20], a more general case of verifiable
registries.

The starting point of our construction AHDIVC is an AD
with history commitment (described in the previous Sec-
tion 5.2). On each epoch update, in addition to updating the
digests as before, a recursive SNARK proof is computed
attesting to invariant preservation. Namely, at epoch i, the
proofs πΦ from AD.Upd showing the updated key-values sat-
isfy the invariant and πhist from VC.ProveUpd showing the
new AD digest was appended to history commitment are com-
puted. Then using a SNARK, πSNARK,i proves that (1) πΦ

verifies with respect to dAD,i−1 and dAD,i, (2) πhist verifies
with respect to dVC,i−1 and dVC,i, and (3) that recursively ver-
ifies a SNARK πSNARK,i−1 for di−1. Informally, this SNARK
proves “the invariant is preserved across the sequence of di-
gests committed to in the history commitment”. The complex-
ity of the recursive relation is proportional to the combined
complexity of the SNARK verification algorithm, vector com-
mitment update verification, and importantly, the AD invariant
verification algorithm, which differs significantly between a
Merkle tree-based AD and our new RSA AD.

Completing the picture, the proof of invariant preservation
over a sequence of checkpoints [cj ]j consists of two parts:
(1) the most recent SNARK proved for the current epoch i,
πSNARK,i, and (2) a lookup proof in the history commitment
for each of the checkpoints, proving the value at index cj
is dAD,cj . Intuitively, the SNARK proves that the invariant
is preserved across digests in the history commitment, and
the lookup proofs reveal the checkpoint digests are indeed
included in the history. A protocol description for the AHDIVC

construction is given in Figure 2, and a proof sketch for the
invariant soundness of AHDIVC is given in Appendix F.

Protocol: AHDIVC[AD,VC,SNARK]

Setup: The public parameters of the scheme consist of the public parameters of
its underlying components: pp← (ppAD,ppVC,(pk,vk)SNARK).
Init: The dictionary is initialized with an empty authenticated dictionary and
empty vector commitment, returning an initial digest d0 = (dAD,0,dVC,0). It
stores the following as its current state sti:

– stAD,i: state of the AD representing current state of key-value mapping.

– stVC,i: state of the VC representing list of previous epoch digests.

– πSNARK,i: SNARK proof attesting to invariant preservation for latest epoch.

Upd([kj ,vj ]j : sti):

(1) The AD is updated with the new key-value mappings:
(dAD,i+1,πΦ,stAD,i+1)← AD.Upd([kj ,vj ]j : stAD,i).

(2) The previous digest is appended to the history commitment:
(dVC,i+1,stVC,i+1) ← Upd([di] : stVC,i), and πhist ← ProveUpd(i :

stVC,i+1), πlkup← Lkup(i : stVC,i+1).

(3) A new SNARK πSNARK,i+1 is computed attesting to invariant preservation
for new digest di+1 = (dAD,i+1,dV C,i+1), proving the following relation:

RSNARK =



(
(di+1),(di,πΦ,πhist,πSNARK,i)

)
:

AD.VerUpd(dAD,i,dAD,i+1,πΦ)

VC.VerUpd(dVC,i,dVC,i+1, i,πhist)

VC.VerLkup(dVC,i+1, i,di,πlkup)

SNARK.Ver(vkSNARK,di,πSNARK,i)


.

ProveInv([cj ]mj : sti):

(1) For each checkpoint, a lookup proof in the history commitment for the check-
point index is computed:

[
πlkup,j ← VC.Lkup(cj : stVC,i)

]m
j

.

(2) Proof πΦ← (πSNARK,i,
[
πlkup,j

]m
j
) is returned.

VerInv(di, [(cj ,dcj )]
m
j ,πΦ = (πSNARK,

[
πlkup,j

]m
j
)):

(1) The SNARK proof is verified: SNARK.Ver(vkSNARK,di,πSNARK).

(2) The history commitment lookup proof for each checkpoint digest is verified:
[VC.VerLkup(dVC,i, cj ,dAD,cj ,πlkup,j)]

m
j .

Lkup(k : sti) and VerLkup(di,k,v,πlkup): Lookup and lookup verification
use the lookup algorithms of the underlying AD over stAD,i and dAD,i:

(v,πlkup)← AD.Lkup(k : stAD,i), AD.VerLkup(dAD,i,k,v,πlkup)

ProveHist([cj ]mj : sti): For each checkpoint, an lookup proof for the history

commitment is provided: πhist = [(πlkup,j ,πhist,j)]
m
j

πlkup,j ← VC.Lkup(cj : stVC,i), πhist,j ← VC.ProveUpd(cj : stVC,i) .

VerHist(di, [(cj ,dcj )]
m
j ,πhist =

[
(πlkup,j ,πhist,j)

]m
j
):[

VC.VerLkup(dVC,i, cj ,dcj ,πlkup,j), VC.VerUpd(dVC,i,dcj , cj ,πhist,j)
]m
j

Figure 2: Generic construction of an AHD from an AD using
incrementally-verifiable computation through recursive SNARKS.
The history of the AHD is committed to using an append-only vector
commitment referred to as a history commitment.

5.4 AHDs from Amortized Proving

Recall the two strawman proving approaches for providing an
invariant proof for checkpoints (cj , cj+1) from Section 5.2.
The first was to provide a sequence of “epoch invariant
proofs”, one for each epoch between cj and cj+1: these can
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Protocol: AHDAmtz[AD,VC]

Setup: The public parameters of the scheme consist of the public parameters of
its underlying components: pp← (ppAD,ppVC).

Init: The dictionary is initialized with an empty authenticated dictionary and
empty vector commitment, returning an initial digest d0 = (dAD,0,dVC,0). It
stores the following as its current state sti:

– LAD = [stAD,ℓ,dAD,ℓ]
i
ℓ: state of the AD at each epoch.

– stVC,i: state of the VC representing list of previous epoch digests.

– Lk = [[kℓ,j ,vℓ,j ]
mℓ
j ]iℓ: list of key-value updates applied at each epoch.

– TΦ: table of precomputed invariant proofs for all compact subranges.

Upd([kj ,vj ]j : sti):

(1) The AD is updated with the new key-value mappings:
(dAD,i+1,πΦ,stAD,i+1)← AD.Upd([kj ,vj ]j : stAD,i).

(2) The new AD digest is appended to the history commitment:
(dVC,i+1,stVC,i+1)← Upd([dAD,i+1] : stVC,i).

(3) Compute and store an invariant proof for the key updates applied during
every compact subrange of epochs that i+1 closes, i.e., [Lj ]

m
j such that

there exists (aj , bj) where Lj = aj ·2bj and Lj +2bj = i+1:

TΦ[Lj , i+1]← AD.ProveUpd(
[
[kℓ,k,vℓ,k]k

]i+1

ℓ=Lj
,stAD,Lj

) .

(4) The new digest di+1 = (dAD,i+1,dV C,i+1) is returned.

ProveInv([cj ]mj : sti): For each checkpoint pair (cj , cj+1) for 1 ≤ j < m

compute πΦ,j then return πΦ←
[
πΦ,j

]m
j

:

(1) Compute the nj compact subranges that span (cj , cj+1]:[
(Lj,ℓ,Rj,ℓ)

]nj

ℓ ← CompactR((cj , cj+1)) .

(2) Construct an invariant proof for (cj , cj+1) with the precomputed invariant

proofs of each compact subrange: πΦ,j =
[
TΦ[Lj,ℓ,Rj,ℓ],dLj,ℓ

]nj

ℓ
.

VerInv(di, [(cj ,dcj )]
m
j ,πΦ =

[[
(πΦ,j,ℓ),dAD,j,ℓ)

]nj

ℓ

]m
j
): For each check-

point pair (cj , cj+1) for 1≤ j < m:

(1) Verify compact range endpoints: dcj = dΦ,j,1 and dcj+1 = dΦ,j,nj
.

(2) Verify each compact subrange invariant proof:[
AD.VerUpd(dΦ,j,ℓ,dΦ,j,ℓ+1,πΦ,j,ℓ)

]nj−1

ℓ .

Figure 3: Generic construction of an AHD from an AD using amor-
tized proving of invariant preservation over compact subranges. The
underlying AD must support succinct invariant proofs (e.g., as in the
new RSA AD construction).

be efficiently precomputed, but do not result in a succinct
proof. The second was to directly prove an invariant proof
for the key-value updates in the range from cj to cj+1: this
cannot be precomputed efficiently as there are quadratically
many possible checkpoint ranges that could be queried, how-
ever would result in a succinct proof if the invariant proving
algorithm of the underlying AD is succinct (as it is for our
RSA AD from Section 4).

In this section, we propose a construction AHDAmtz that
serves as a middle ground between these two approaches.
Instead of attempting to precompute proofs for all possible
start and end epoch ranges, only proofs for compact subranges
will be precomputed (see preliminaries, Section 3). Recall a

compact range for a range (cj , cj+1) produces a succinct se-
quence of subranges [(Lℓ,Rℓ)]

m
ℓ that "span" (cj , cj+1); that

is, L1 = cj , Rm = cj+1, and Ri = Li+1 for all 1≤ i < m<
log(cj+1− cj). Importantly, each compact subrange is guar-
anteed to be of the form: (Li = ai ·2bi ,Ri =Li+2bi) for non-
negative integers (ai, bi). Figure 4 depicts compact ranges as
subtrees of a binary tree.

Precomputing invariant proofs for just these compact sub-
ranges is amortized efficient. The structure of compact sub-
ranges – that they start on multiples of powers-of-two and are
of length power-of-two – mean that there are only linear (in
the number of epochs) such subranges. At epoch N , there are
≤N compact subranges,

∑lgN
i=1 N/2i, and the sum of their

lengths is ≤N lgN . Invariant proofs for ranges of length n
are computed in work linear in n. Thus, by a classic amorti-
zation argument, for an AHD at epoch N , the total work to
compute invariant proofs for all N compact subranges can
be amortized efficiently to a cost of O(lgN) for each new
published epoch [Ove83].

Given precomputed invariant proofs for compact subranges,
a succinct invariant proof can be constructed for any pair of
checkpoints (cj , cj+1) simply by providing the precomputed
invariant proofs for each compact subrange in compact range
of (cj , cj+1]. If the invariant is preserved between each sub-
range, then it is preserved across the queried checkpoint range.
If the AD invariant proofs for the compact subranges are suc-
cinct, then the resulting checkpoint invariant proof is also
succinct. A protocol description for the AHDAmtz construc-
tion is given in Figure 3. We provide only the update and
invariant proving logic, as the remaining functionality follows
from the same history commitment and AD combination as
given in Figure 2. A proof sketch for the invariant soundness
of AHDAmtz is given in Appendix F.

5.5 AHDs from Amortized SNARK Aggregation

In a previous version of this paper, we presented another
transform to building an AHD based on Groth16 SNARK
aggregation [BMM+21]. We now defer the presentation and
evaluation of this approach to Appendix I.

6 Client Checkpoint Auditing

We show here how to use an AHD for the versioned invari-
ant as described above along with a public bulletin board
to build a verifiable registry. We consider a single server
that maintains a dictionary of key-value mappings within
an AHD. The server collects client requests for new map-
pings or updates to mappings, and incorporates the updates
on a regular schedule by updating the AHD and publish-
ing, on a public bulletin board, a (signed) digest di+1, where
(di+1,st)←Upd([kj ,vj ]j : st). As discussed in Section 2, we
assume that all clients have a consistent view of this bulletin
board and can efficiently lookup digests by epoch.
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Figure 4: Checkpoint epochs for two overlapping ranges; check-
points are chosen by the compact subranges that span the range. We
depict the compact subranges as the minimum complete subtrees to
span the left-filled binary tree and select checkpoints as the leading
node in the subtree. Two overlapping ranges are guaranteed to share
a checkpoint, indicated by the dashed lines.

Client lookups, monitoring, and key updates. Clients can
monitor values for keys that they own ensuring no unexpected
changes have been made, or clients can lookup the value of
other keys in the registry. In our construction, both actions
consist of the client simply making a lookup request to the
server for the desired key k. The server responds with the
value v and version number u along with a proof π of the
lookup for the current epoch i: (v ,u,π)← Lkup(k : st). The
client reads the digest di from the bulletin board4 and verifies
the proof: VerLkup(di,k,v ,u,π). If monitoring, the client
additionally checks the returned value and version match the
client’s stored value and version. Updates to keys proceed
similarly. When a client requests a key update from v to v ′

at epoch i, the server provides the client with a lookup proof
for (v ,u) in di and a lookup proof for the updated (v ′,u′)
incorporated in new di+1. The client, again, reads the digests
from the bulletin board, verifies the proofs, and checks the
version u against the stored version for the key. Finally, the
client checks u′ = u+1 storing the new version number and
value for future monitoring.

Assuming the versioned invariant is preserved between all
epoch digests published to the bulletin board, these checks are
sufficient for convincing a client that (1) any lookups to owned
keys made by other clients returned correct values, and (2)
any lookups made by the client to other keys either returned
correct values or that server misbehavior will be detected the
next time the key’s owner performs monitoring.

Of course, the client cannot efficiently verify the versioned
invariant for the full bulletin board. We solve this by requiring
the client to perform a process we call checkpoint auditing, in
which the client verifies the invariant is preserved across spe-

4We abstract away the fact that, depending on the implementation of the
bulletin board, it may be convenient for the client to obtain the commitment
di from the server, and then check consistency with the bulletin board later
on. Figure 6 provides an optional protocol to lazily confirm consistency of
server-provided digests with the bulletin board.

cific canonical checkpoint epochs. On each operation (lookup,
monitoring, or update), the client performs checkpoint audit-
ing for the epoch range (ℓ, i) where ℓ is the epoch of their last
operation (ℓ = 0 for the client’s first operation) and i is the
epoch of their current operation.

Checkpoint auditing. We make use of the notion of com-
pact ranges from amortized proving in a different context.
Clients select checkpoints [cj ]

m
j for range (ℓ, i) as the end-

points in the compact range representation: [(cj ,Rj)]
m
j ←

CompactR((ℓ, i)) – this results in a number of checkpoints
that is logarithmic in the length of the range. The server
proves the invariant is preserved between adjacent check-
points, πΦ←ProveInv([cj ]

m
j : st), which the client can verify

after reading the checkpoint digests from the bulletin board.
This is however not enough to prevent oscillation attacks (see
Section 2). Imagine two clients auditing ranges that always
result in disjoint sets of checkpoints: there will be no guar-
antee the invariant is preserved between digests seen by one
client to digests seen by the other.

Our insight, inspired by the deterministic skiplist approach
of [MB02], is summarized by the following result:

Theorem 9: (Informal) If two ranges (ℓ1, r1) and (ℓ2, r2) are
overlapping, i.e., ℓ1 ≤ ℓ2 < r1 ≤ r2, then the two ranges will
have at least one shared checkpoint.

We formalize this result (illustrated in Figure 4) and provide
a proof in Appendix G.2; a detailed pseudocode diagram
of the checkpointing auditing protocol is given in Figure 6.
The implication of this result is that two clients that individu-
ally perform checkpoint auditing will be guaranteed a shared
checkpoint, and further, any deviation by the server from the
invariant in the client views up until that checkpoint would
have been detected.

The shared checkpoint progresses based on how frequently
clients perform audits. More precisely, if a client is served a
lookup proof that violates the invariant, it is guaranteed that
one of the two clients will detect the inconsistency once each
client comes online once more in sequence, i.e., if client A is
served a bad lookup value, it will be detected after client B
audits next and client A audits again after that. We formalize
this guarantee in an eventual detection by checkpoint auditing
security property which we prove secure for any AHD under
the versioned or append-only invariant. We can illustrate the
high level argument for eventual detection through a simple
example illustrated in Figure 5. The formal definition and
security proof are deferred to Appendix G.

Consider two clients, client A and client B, where client
A periodically monitors a key that they own and client B
performs lookups and periodic audits. Following Figure 5,
consider the following sequence of events:

(1) Client A monitors at A1.
(2) Client B looks up A’s key at B2.
(3) Client A monitors at A3 and A4.
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Figure 5: Eventual inconsistency detection for Alice’s and Bob’s view using shared checkpoints. Large ticks with circle labels indicate points in
time where Alice or Bob perform auditing. They verify that the invariant is preserved between consecutive checkpoints selected in the range
from their last audit; the checkpoints are indicated by small circles. Checkpoints are chosen to guarantee that any two of Alice and Bob’s
overlapping audit ranges will share at least one checkpoint, highlighted in green. Thus, the interleaved epochs at which Alice and Bob audit are
implicitly guaranteed to preserve the invariant, up until their most recent shared checkpoint. The time at which an epoch is committed to their
shared view is indicated on the bottom timeline. The shared checkpoint lags behind the most recent lookups made by Alice and Bob, but will
eventually catch up on future lookups.

(4) Client B audits at B5.

We address detection of a ghost key attack where the server
serves client B a different value at B2 than what client A
expects. Checkpoint auditing guarantees that either client A
or B will detect an inconsistency by the next time each have
audited in sequence, which, in this case, is when client B
audits at B5. We can see this by considering three ranges that
were audited: (1) client B audits range (0,B2) on lookup, (2)
client A audits range (A1,A3) on monitoring, and (3) client
B audits range (B2,B5). Of these three ranges, we have
that (0,B2) and (A1,A3) are overlapping and that (A1,A3)
and (B2,B5) are overlapping. Then by Theorem 9, we have
the existence of checkpoints C1 and C2 such that invariant
proofs for the following paths were checked during each audit
respectively: (1) 0→ C1→B2, (2) A1→ C1→ C2→A3,
and (3) B2→ C2→ B5. Put together, we have invariant
proofs for the following path, implying that the invariant is
preserved from A1→B2→A3:

A1→ C1→B2→ C2→A3 .

Now consider for the versioned invariant, client A monitors
for expected value and version (v ,u) at A1 and A3. Since the
invariant is preserved from A1→B2, it must be that the value
(v ′,u′) served to client B cannot be different (v ′ ̸= v) unless
the version number has increased u′ > u. Similarly, from
B2→A3, since the invariant is preserved, if v ′ ̸= v , it must
be that u > u′. This is a contradiction, so this inconsistency
will either be caught by failure to verify client A’s lookup of
(v ,u) during monitoring or by failure to verify an invariant
proof for one of the three audits. It is clear that this argument
can be extended to any pair of clients.

Lastly, we note the interplay between checkpoint audit-
ing and AHDAmtz. Since the format of checkpoints that are
passed to ProveInv are already compact subranges, the invari-
ant proof for each pair of checkpoints consists of a single pre-
computed proof, instead of a logarithmic sequence of proofs.
This results in proof sizes for checkpoint auditing to be of
size O(logN) as opposed to O(log2N) for range length N .

7 Implementation

We implement our proposed constructions in Rust. Our imple-
mentation consists of a number of modular parts (following
Figure 1). We define a generic authenticated dictionary in-
terface that supports versioned invariant update proofs for
consecutive epochs, and an accompanying interface for gener-
ating SNARK constraints for verification of the update proof.
We then implement our two generic transforms, IVC (Fig-
ure 2) and amortized proving (Figure 3), to take an object
implementing the authenticated dictionary interface and pro-
duce an object implementing a defined authenticated history
dictionary interface. Lastly, given an object implementing
the AHD interface, we instantiate a verifiable registry service
exposing a RESTful API for key lookups, key updates, and
client checkpoint auditing (Figure 6). The service is backed
by an in-memory Redis datastore. In total, our implementa-
tion consists of ≈ 12000 lines of code and is available open
source 5.

The constraints and generic IVC transform are
implemented within the arkworks ecosystem for
SNARKs [BCG+20] and make use of the SNARK
implementations from arkworks. We instantiate and
evaluate the recursion constructions on [Gro16] over the
MNT4-753 and MNT6-753 pairing-friendly cycle of curves
to target 128 bits of security. This choice of SNARK
requires a trusted setup and results in a state-of-the-art
constant proof size; however, other general-purpose recursive
SNARKs [Set20, CHM+20, BCMS20, BDFG21] can be
swapped in with different trade-offs in setup assumptions,
proving costs, and proof size. Ultimately, looking forward to
evaluation, we will be interested in the difference between
SNARK proving costs for verifying the Merkle tree AD
update proof versus the RSA AD update proof. We expect
the proving cost ratio to be comparable across SNARKS as it
is dependent on the ratio of circuit constraints.

VeRSA constructions. We build our two VeRSA variants

5https://github.com/nirvantyagi/versa

12

https://github.com/nirvantyagi/versa


Protocol: Client Checkpoint Auditing
Init: The client pulls the public parameters ppAHD from the registry server and
verifies against the bulletin board. The client initializes its state as follows:

– (ℓ,dℓ): latest epoch and digest audited with registry.

– (ℓ′,d′
ℓ: (optional) latest epoch and digest audited with public bulletin board.

– T [k] = (v,u): table of owned keys and expected values to monitor.

Audit: Verify consistent view and invariant preservation

(1) Client computes current epoch i (deterministically computed from clock).

(2) Client computes checkpoint epochs [cj ]mj for range (ℓ, i):

[(cj ,Rj)]
m
j ← CompactR((ℓ, i)) .

(3) Client reads digests [dcj ]
m
j for checkpoint epochs (2 options).

(a) Client reads directly from public bulletin board.

(b) (Optional) Client reads digests from server, and lazily confirms with
public bulletin board.

– Server provides checkpoint digests and history proof, which client
verifies: πhist← AHD.ProveHist(([cj ]mj : sti)).

– At some later epoch t > i, client reads digest dt from the public bul-
letin board, and requests and verifies a history proof for checkpoints
[ℓ′, t] from the server.

– Client updates state (ℓ′,d′
ℓ)← (t,dt).

(4) Client requests and verifies invariant proof for checkpoints from server:

πΦ← AHD.ProveInv([cj ]
m
j : sti), VerInv(di, [(cj ,dcj )]

m
j ,πΦ) .

(5) Client updates state (i,di)← (ℓ,dℓ).

Lookup: Authenticated lookup of key k

(1) Client performs audit to current epoch i.

(2) Client requests and verifies lookup proof for audited epoch i from server:

(v,πlkup)← Lkup(k : sti), VerLkup(di,k,v,πlkup) .

Monitor: Monitor owned keys in T for unexpected changes

(1) Client performs audit to current epoch i.

(2) For each [(kj ,vj ,uj)]j ∈ T :

(a) Client performs lookup of kj receiving value (v̂, û).

(b) Client verifies (vj ,uj) = (v̂, û).

Update: Update value for key k from v to v ′.

(1) Server confirms update was included in epoch i+1.

(2) Client audits to epoch i and again from i to i+1.

(3) Client performs lookup of k for epoch i receiving (v̂, û) and verifying
(v,u) = (v̂, û).

(4) Client performs lookup of k for epoch i+1 receiving (v̂ ′, û′) and verifying
(v ′,u+1) = (v̂ ′, û′).

(5) Client updates T [k] = (v ′,u+1).

Figure 6: Description of the continuous client auditing protocol
that enables eventual inconsistency detection between clients. The
registry server maintains an AHD under the versioned invariant.

using the described modular implementation. First we imple-
ment the KVaC RSA AD [AR20] along with our proposed up-
date proof (Section 4) following the proof of homomorphism
over hidden order groups [BBF19]. We instantiate the con-
struction with an RSA group of 2048 bits. We further imple-

ment SNARK constraints for verification of the update proof;
the constraints make use of optimizations for multipreci-
sion arithmetic [KPS18] and hashing to primes [OWWB20].
VeRSA-IVC is the registry resulting from the modular IVC
transform and VeRSA-Amtz is the registry from the amor-
tized proving transform. Our RSA constructions require a
hidden-order RSA group from a trusted setup; while not ideal,
academic work [CHI+21,BGG18,BGM17] has suggested that
large-scale multi-party setup ceremonies can be conducted in
practice. Class groups [BW88] provide an alternate tack to
constructing a hidden-order group without trusted setup, but
would significantly hinder performance.

Baselines. To evaluate our VeRSA constructions, we com-
pare to verifiable registries based on Merkle tree ADs. We
implement a Merkle tree AD supporting versioned invariant
proofs (see Appendix A). The first baseline, which we de-
note as MT-VR, is the verifiable registry not designed for
efficient client auditability in which update proofs for each
consecutive epoch must be checked, either by the client or
a trusted auditor party. The performance characteristics of
MT-VR represent a set of previous work, most closely being
CONIKS [MBB+15], but also sharing structure with SEEM-
less [CDGM19] and Mog [MKL+20]. The second baseline
we consider is the verifiable registry resulting from apply-
ing the IVC transform to the Merkle tree AD, which we
denote MT-VR-IVC. While we use this construction as a
baseline, as it has been proposed abstractly in concurrent
work [CCDW20], we note, to the best of our knowledge, ours
is the first implementation of this approach. Further, the imple-
mentation was non-trivial. Namely, we implement constraints
for the Merkle tree AD. We introduce a new “open addressing”
approach to the Merkle tree AD construction that optimizes
the update proof constraint size by shortening the depth of the
tree; see Appendix B. We set the height of the Merkle tree to
32, which with our open addressing optimization can support
230 keys, and instantiate the hash function with the Poseidon
algebraic hash function [GKK+19] for MT-VR-IVC and with
SHA3 for MT-VR.

8 Evaluation

We wish to answer the following questions about VeRSA-IVC
and VeRSA-Amtz in comparison to the Merkle tree baselines:

• Client auditing costs: What are the bandwidth and com-
putation costs for a client to audit a range of epochs?

• Server update costs: What are the computation costs
for the server to incorporate key updates and publish a
new epoch digest? At what latency can new digests be
published; supporting what key update throughput?

• Lookup costs: What are the bandwidth and computation
costs for key lookups?

Experimental setup. We benchmark our constructions using
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Figure 7: Client auditing costs. The size (left) and verification time
(right) of invariant proofs for varying epoch range lengths.

an Amazon EC2 r5.16xlarge instance with 32 CPU cores
and 512 GB memory. Client computation is evaluated single-
threaded, and network costs of gathering client input are not
evaluated; our experiments simulate client input, generating
random requests of the appropriate size.

VeRSA-Amtz grows in update cost over the history of the
registry due to increasing amortized costs of proving. We
present the amortized costs of proving for epoch 2k by aver-
aging the proving costs incurred between the 2k−1 updates
from epoch 2k−1+1 to 2k. While these proving costs occur
in spikes over the range, VeRSA-Amtz is not delayed by the
need to complete an expensive proof for a large range; the in-
variant proofs can be computed in the background and audits
can still be fulfilled (see further discussion on parallelism in
Section 8.2). Therefore, we believe reporting the amortized
costs in this manner leads to a fair evaluation.

8.1 Client Auditing Costs

We contrast the auditing costs in terms of proof size and
verification time for different lengths of audit ranges; the
results are shown in Figure 7. MT-VR-IVC, VeRSA-IVC,
and VeRSA-Amtz have client auditing costs that scale log-
arithmically in the length of the audit range. Note, the IVC
constructions’ proof size and verification costs would become
truly constant were they instantiated in the auditing model
where a third-party verifies the hashchain. In any case, the
costs among the client-auditable constructions, VeRSA and
MT-VR-IVC, are comparable. The proof sizes, even for large
epoch ranges, remain under 20 KB, and proofs are verified in
under 100 ms.

The naive comparison for client auditing costs is the base-
line MT-VR in which clients (or trusted auditors) must per-
form linear work auditing every consecutive epoch. Against
MT-VR, for an epoch range of length 32, client bandwidth
costs are 103× lower and verification time is 10× lower. For
epoch ranges of length 1000, the improvement grows to 105×
lower for bandwidth costs and 103× lower for verification
time. In context, with an epoch publishing time of 5 minutes,
auditing at epoch ranges of length 32 and 1000 correspond to
a client auditing every 3 hours or twice a week, respectively.

8.2 Server Epoch Update Costs

Building efficiently auditable proofs for clients adds signifi-
cant computational costs to the server. We investigate what
levels of key update throughput are achievable and at what
latency. To anchor our evaluation, we set a target of ≈ 60
key updates per second based on current statistics from the
certificate transparency ecosystem [Clo20].

Figure 8 shows the latency to prove an epoch update de-
pending on how many key updates are made in the epoch.
The throughput is computed as the number of key updates
divided by latency. At a high level, we find that VeRSA-IVC
and VeRSA-Amtz can both achieve throughput levels > 60
key updates per second, while MT-VR-IVC achieves only
≈ 1 key update per second under the tested computation re-
sources; we discuss how throughput can be increased through
increased parallelism later.

However, for VeRSA-IVC to achieve a throughput of 60
key updates per second, epochs are published at a latency of
≈ 30 minutes. This is because of the large constant cost of
verifying the RSA AD update proof within a circuit. This cost
is incurred per epoch update no matter how many key updates
are included, but the incremental cost of including more key
updates is minimal as they do not increase the dominating cost
of proving the SNARK. Thus, the throughput of VeRSA-IVC
increases when more key updates are batched together. At
its limit, we can extrapolate from our experiments that the
throughput will cap out at ≈ 400 key updates per second due
to costs of performing RSA exponentiation and computing
the algebraic invariant proof (outside of the SNARK).

On the other hand, the throughput of VeRSA-Amtz is not
affected by the number of key updates in an epoch; the la-
tency is directly proportional to the number of key updates.
VeRSA-Amtz achieves a throughput of ≈ 90 key updates per
second while supporting publishing digests at low latencies.
So while VeRSA-IVC can achieve higher throughput than
VeRSA-Amtz, it would require a significantly higher latency
that may not be suitable for some deployments — extrapo-
lated results indicate VeRSA-IVC to surpass VeRSA-Amtz in
throughput at a latency of 50 minutes. In contrast to MT-VR,
which achieves a throughput of 40,000 key updates per sec-
ond but does not produce efficiently auditable proofs, our
VeRSA systems incur a ≈ 480× proving overhead.

Lastly, in terms of persistent storage, VeRSA-Amtz incurs
1123 B per epoch, and VeRSA-IVC and MT-VR-IVC incur
(on average) just 64 B per epoch for the history tree vector
commitment.

Improving throughput via parallelism. The dominant cost
for the IVC constructions (VeRSA-IVC and MT-VR-IVC) is
the SNARK proving time, and it has been shown that SNARK
proving work is highly parallelizable [WZC+18]. Thus, we
would expect the throughput of the IVC constructions to in-
crease more-or-less directly with increased computation re-
sources. Figure 9 (left) shows the number of constraints to be
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Figure 8: Server epoch update costs plotting the epoch update latency
varying the number of key updates batched in the epoch. The key
update throughput is computed as the number of key updates per
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truncated due to running out-of-memory on the benchmark machine.
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Figure 9: (Left) The number of constraints in the SNARK circuit for
varying number of key updates. (Right) The epoch latency (domi-
nated by the SNARK proving time) for different levels of hardware
parallelism.

proved in the SNARK circuit for different numbers of key up-
dates batched per epoch. The RSA circuit is of constant size,
just under 20M constraints. The MT circuit grows linearly
with the number of key updates, ≈ 20,000 constraints per
key update. We demonstrate the parallelism of the workload
by measuring epoch update latency using different numbers
of physical cores, shown in Figure 9 (right). For the circuit
sizes evaluated, doubling the number of processors halves the
epoch latency up until between 16 and 32 processors where
the marginal benefits of adding more processors decreases.
Larger circuit sizes, e.g. by adding more key updates to the
MT constructions, will continue to benefit from increased
processors [WZC+18].

In VeRSA-Amtz, the dominant cost consists of proving
invariant proofs for large subranges over the registry’s life.
While proving a single invariant proof (Wesolowski proof of
homomorphism [Wes19, BBF19]) is mostly a sequential task,
at any one time there will be approximately logN (for N total
epochs) such invariant proofs being proved in the background,
one for each subrange length. These tasks can be easily par-
allelized given logN processors such that the epoch update
cost for VeRSA-Amtz is constant instead of logarithmically
increasing over time. It is reasonable to assume computational
resources supporting logN parallelism. For example, in our
experiments with 32 cores, it would take a registry publishing
epochs at 5 minute latency thousands of years to reach 232

epochs.

Improving throughput via sharding. A second way to in-
crease throughput is by sharding the key space and running
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Figure 10: (Left) Batch computation of RSA membership proofs for
varying levels of hardware parallelism. (Middle) Update computa-
tion of an individual RSA membership proof over a range of key
updates. (Right) Verification costs of RSA membership proofs with
respect to version number of entry.

separate instances of a verifiable registry. If perfectly sharded,
i.e., key updates are evenly distributed across shards, then the
throughput of the system is expected to increase proportion-
ally to the number of shards (assuming the total computing
resources are also increased proportionally). However, client
auditing costs will increase proportionally: clients must audit
each shard assuming keys are distributed randomly across
shards. If we can guarantee that each client will only be in-
teracting with a small number of shards, then the throughput
gains of sharding may come with little increase in client cost.

8.3 Key Lookup Costs

The VeRSA constructions achieve higher key update through-
put than Merkle tree solutions, however they also incur large
costs for computing membership proofs for key lookups. In
Section 4 and Appendix E, we describe techniques for batch
membership proof computation to manage these costs. We
evaluate these costs and find that VeRSA can reasonably com-
pute lookup proofs for registries storing on the order of mil-
lions of keys, however for hundreds of millions or billions of
keys, the costs of producing timely lookup proofs are infea-
sible. In contrast, producing lookup proofs for Merkle tree
registries is extremely low cost (order of milliseconds) even
for registries with billions of keys.

Figure 10 (left) shows the time to compute all membership
proofs for a batch of keys. As a concrete example, consider a
registry with 1 million keys: Figure 10 indicates that member-
ship proofs for all keys can be computed using a single thread
every ≈ 3 hours. In the time between batch computations,
membership proofs become outdated as the registry updates,
and if queried must be updated individually. Figure 10 (right)
shows the cost of updating a single membership proof with re-
spect to the number of key updates made to the registry. With
an update throughput of 60 key updates per second, in the 3
hour batch update cycle of our example, ≈ 213 key updates
are made, which can be individually applied to respond to a
lookup proof in≈ 10 seconds. This strategy does not incur any
storage overhead on top of the storage of the lookup proofs
themselves. More advanced caching strategies for batch up-
dating frequently queried keys may be employed to further
improve lookup costs (see Appendix E). Nonmembership
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proofs for lookups of all possible non-member keys cannot
be precomputed efficiently and must be responded to in a
delayed fashion by batch computation of a set of non-member
lookups together on some schedule.

Lookup proofs are small and of constant size: 0.8 KB for
VeRSA, comparable to the 1 KB proof sizes of MT-VR. For
MT-VR-IVC, the open addressing optimization (Appendix B)
increases the size of the lookup proof in the worst case pro-
portionally by the maximum nonce ω (16 KB for ω = 16).
Figure 10 plots the verification time of a lookup proof with
respect to the version number. Verification increases linearly
with version number because the verifier must compute an
RSA exponentiation to an exponent of the form H(k)u. De-
spite this trend, we find that the cost of verification remains
feasible for clients if version numbers do not get too large (<
1 second for version numbers less than 1000). We believe this
range of version numbers is reasonable for our envisioned
applications of binary transparency and PKI for E2EE mes-
saging. As an example for a potential application of binary
transparency, we crawled version history for a random sam-
ple of 1000 software packages available in the Ubuntu 22.04
main repository. These packages had a mean of 3.4 versions
(median 3), with a maximum value of 20. We also manually
recorded the version history of the ten most popular apps on
the iOS App Store finding a median of 52.5 (maximum of
127) versions published in 2021. If a setting must support
large version numbers u, we provide details for a dictionary
variant that increases lookup proof size by logtu for some
branching factor t but allows for verification in time logt×
the time to verify a constant-size lookup proof of version t
(see Appendix E.4).

9 Related Work

Registries from Merkle trees. Most previous proposals for
verifiable registries (under various names) are constructed
via Merkle trees and require auditors to do work linear in
the total number of updates to the registry per epoch (at least
one Merkle path verification per update) [BCK+14,KHP+13,
Lau14,Rya14,CDGM19,MBB+15,MKL+20]. An exception
is Merkle2 [HHK+21] which reduces the per-epoch work
of auditors to be logarithmic in the number of key updates;
auditors verify a single Merkle extension proof. Merkle2 fun-
damentally relies on a stronger assumption called signature
chains in which key updates must be signed by an authoriza-
tion key not controlled by the server. This security policy does
not allow users to recover if the authorization key is lost or
compromised and hence may not be suitable for some deploy-
ments. In fact, in typical end-user applications it is a require-
ment that the server can unilaterally change a user’s public
key – a property needed for users to recover access if they lose
their current device (and private keys) [MBB+15, BBG+20].
We note that in applications where this restricted key update
policy is applicable, Merkle2 can be adapted using our amor-

tized proving transform along with checkpoint auditing to
construct an extremely efficient registry supporting efficient
client audits (given a bulletin board); the Merkle extension
proofs provide succinct invariant proofs for AD updates.

Privacy of registry contents has also been considered in
prior work. Techniques to keep lookup keys private using
verifiable random functions and lookup values private using
commitments [MBB+15, EMBB17] can be adapted directly
to all of our constructions. While we do not consider other
privacy notions such as hiding total directory size and update
patterns [CDGM19], RSA accumulators may be better suited
to this task than Merkle trees [BCD+17]; we leave further
investigation to future work.

Registries from algebraic accumulators. There are a few
proposals using non-Merkle-based ADs. [TBP+19] and Aard-
vark [LGG+20] use bilinear pairing-based accumulators:
[TBP+19] admits succinct invariant proofs (logarithmic in
the number of updates) which makes it a candidate for our
amortized proving transform, however it is concretely ex-
pensive, while Aardvark, like Merkle-based approaches, pro-
vides linear invariant proofs (Aardvark improves parallelism
of updates). RSA accumulators have also been proposed
to construct registries with constant-sized verification work
per epoch [BBF19, TXN20]. [BBF19] is not concretely ef-
ficient, requiring dictionary values to be committed bit-by-
bit. [TXN20] propose a construction similar to [AR20] (both
building on the line of work of [CF13, LM19]) but with two
downsides: (1) Updating the digest requires computing an
update hint which is similar in complexity to lookup proofs,
and (2) the proposed invariant proof verifies that a dictionary
contains a superset of keys of another dictionary, but does not
verify properties about the mapped values of keys over time (a
property necessary for our applications). In contrast, we build
on the RSA AD of [AR20] which does not require update
hints, and we propose invariant proofs for the versioned and
append-only invariants allowing verifiable updates of a key’s
mapped value.

Regarding proving updates of values, [OWWB20] and
[CFH+21] provide techniques for proving batch updates
to an RSA accumulator with respect to a committed batch.
[CFH+21] improves over [OWWB20] by moving expensive
linear-in-batch-size computation “out of” the generic SNARK.
In our treatment of the verifiable registry setting, it is not nec-
essary to prove that a specific set of keys were updated at each
epoch (with respect to a committed batch of keys), rather only
that all keys preserve the update invariant. Were this property
desired, it may be possible to adapt these techniques to the
authenticated dictionary primitive.

Applying SNARKs to registries. Verifiable computa-
tion [BFR+13, LNS20, SAGL18] using SNARKs has also
been proposed to lower per-epoch auditing costs by either
(1) producing a succinct proof attesting to the updates for
each epoch (so-called ZK rollups) [But, WGH+, SSV21] or
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(2) producing a recursive proof attesting to updates across
all epochs committed in a hash chain [CCDW20, TKPS21].
These approaches require per-epoch auditors to perform only
a SNARK verification or a simple hash verification, respec-
tively. (Verdict [TKPS21] requires an inexpensive constraint
accumulation check in addition to hash verification.) Swap-
ping in our RSA AD (and invariant proof) over a Merkle-
based AD would result in a smaller SNARK circuit encoding
and more efficient proving for all of these approaches.

Finally, we note that while our focus has been on client-
auditability, the succinct proofs provided by the above
SNARK-based approaches or our new RSA AD approach may
also be beneficial in making third-party auditing much more
efficient. For example, per-epoch auditing may be inexpen-
sive enough to run as a smart contract on a public blockchain.
We leave a full evaluation of this setup to future work.
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A Merkle Tree and Compact Range Preliminaries

A Merkle tree is an authenticated data structure constructed via a tree in which the internal nodes are given a label equal to
the hash of the concatenation of their children’s labels. Data values are typically stored in the leaf nodes of the tree. Given a
collision-resistant hash function, each node cryptographically commits to all of its children and hence the hash label of the root
commits to the entire structure of the tree and the accumulated data values in all of its leaves. Merkle originally considered only
binary trees with data values in the leaves and this remains the best known construction [Mer87]. This implements a vector
commitment (a commitment to an ordered list of values) and not an authenticated dictionary with key-value mappings. However,
Merkle’s general approach is applicable to any tree-based data structure [MHKS14] and several constructions are possible for
authenticated dictionaries.

Authenticated dictionaries from Merkle trees. When using a Merkle tree as an authenticated key-value dictionary, the key
is defined by the path from the root to the leaf: left children encode 0 and right children encode 1. A lookup proof for a value
consists of the labels of all the sibling nodes along the path from the leaf to the root. Verification is run by using the claimed
value and sibling nodes to compute the labels along the path and comparing the final label to the root digest. Proving an invariant
update to a leaf can be done similarly. Given a lookup proof for a leaf’s old value, the claimed updated value is used to compute
new labels along the path using the same siblings and comparing the final label with the new root digest; this additionally verifies
no other leaves were modified. The invariant can be checked to be preserved between the old value and the new value. For
example, for the versioned invariant, the value will include a version counter that can be checked to having been incremented by
one. The lookup proofs and update proofs are both of size O(logN) and incur O(logN) verification time for a balanced tree of
size N .

A sparse Merkle tree [PP15, DPP16, Öst16] allows for initializing a complete Merkle tree over a large key space of size
N = 2h efficiently (in O(logN) time). All leaf labels are implicitly initialized to some canonical null value. A canonical null
label for internal nodes at a given height i are also computed as the hash of the concatenation of two null labels of height i−1.
As values are added, non-null internal nodes are stored explicitly. This way, storage of a sparse Merkle tree is of O(n logN)
instead of O(N) where n is the number of non-null values.

Append-only vector commitments from Merkle trees. Merkle trees can also be used as a vector commitment supporting
efficient append-only proofs for any prefix vector. A history Merkle tree [CW09, MKL+20, BKLZ20] of size N is a Merkle tree
in which the left subtree is a complete tree of size 2ℓ where ℓ= ⌊log(N −1)⌋ and the right tree a history tree of size N −2ℓ. To
append a value to the vector, the value is appended recursively to the right subtree if it is not complete. When it is complete, a
new root is created and the new entry is added as the right child, creating a new right subtree of size 1. The time to append a value
is O(logN). This construction has the property that complete subtree roots are frozen and only ever moved underneath new
parent nodes. The digest of the vector commitment is the Merkle root. An append-only proof can be efficiently generated using
compact ranges (see Section 3). To show a jth prefix, first note that we can interpret the subranges from CompactR as complete
subtrees and provide the hashes corresponding to each subtree root (internal node). An append-only proof then consists of the
subtree roots of CompactR((0, j)) and CompactR((j,N)). The proof can be verified by using the subtree roots to compute and
check dj and dN in O(logN) time. Full details of the append-only proof and algorithm for computing compact ranges can be
found in [MKL+20].

B Open Addressing Optimization for Merkle Tree Update Circuit Representation

We present an optimization to reduce the length of the Merkle paths in the circuit from 256 required for collision-resistance to a
height determined by the number of expected keys in the registry. The tree height is reduced to one in which collisions may
occur and collisions are handled by remapping the colliding key to a different index using open addressing, a technique used in
hash tables. This produces a more efficient circuit representation than other approaches used for path compression, e.g., Merkle
Patricia tries [MBB+15, CDGM19].

More specifically, to find the index for a key, the key is hashed along with a counter nonce ω initialized to 0, H(k ∥ω). If the
index is already populated, ω is incremented and a new index is computed until the first open index is found (up to some max
increment ωmax). Since it is possible to find collisions for an index, each leaf now additionally encodes the key k when it is
initially populated (for version-only, leafs encode k ∥v ∥u); constraints are added to ensure future updates to the leaf do not
change the encoded key. This approach allows the tree height to be set based on the expected max capacity of the registry. For
example, if the registry is not expected to exceed 230 keys, a tree height set to 32 with ωmax = 16 leads to a failure probability of
less than 1/264. Any reduction in Merkle path length is significant as it leads to an equally proportional decrease in proving time
(in this example, 4×).
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The tradeoff to using open addressing for a faster epoch update proving time is that lookup proofs increase in size and
verification time. A lookup proof for a key inserted at nonce ω includes Merkle paths for all indices derived from nonces 0 to ω,
and in the case of a non-membership proof, will include all ωmax Merkle paths. Still, these proofs are relatively small and hashes
are fast to compute, so this tradeoff is largely beneficial.

C Additional Definition Preliminaries

C.1 Additional RSA Preliminaries

Groups of unknown order. We assume the existence of a randomized polynomial time sampling algorithm GGen(λ) that takes
as input the security parameter λ and generates a group of unknown order consisting of two integers a,b along with a description
of the group G. The group G is of unknown order in the range [a,b] where a,b, and a− b are all exponential in λ.

The RSA quotient group Z×
N \{±1} where N is an RSA modulus is believed to have no element of known order other than

the identity. The group generation algorithm here may require trusted setup to generate the group modulus N .

Strong RSA assumption. The strong RSA assumption tasks an adversary with computing a chosen non-trivial root of a random
group element. We define the advantage of an adversary A against the strong RSA assumption as follows:

Adv
strong-rsa
GGen,A (λ) = Pr

 uℓ = w

ℓ ∈ Primes(λ)\{2}
:

(a,b,G)←$GGen(λ);

w←$G;

(u,ℓ)←$A(a,b,G,w)

 .
Extended Euclidean algorithm. Given two integers x,y such that the gcd(x,y) = 1, then (a,b)← EEA(x,y) returns the Bézout
coefficients (a,b) where ax+by=1. The coefficients are such that a≤ y and b≤ x. The algorithm runs in timeO(max(|x|, |y|)).

C.2 Non-interactive Arguments of Knowledge

We provide the following two definitions for completeness and knowledge soundness of a non-interactive argument of knowledge
Π.

Completeness. A proof system is complete if given a true statement, a prover with a witness can convince the verifier. Correctness
of our protocols will rely on a proof system with perfect completeness. A proof system has perfect completeness if for all
(x,w) ∈R and all (pk,vk)←$Π.SetupR(λ),

Pr[Π.Ver(vk,Π.Prove(pk,x,w),x) = 1] = 1 .

Knowledge soundness. A proof system is computationally knowledge sound if whenever a prover is able to produce a valid
proof, it is possible to extract a valid witness. Knowledge soundness is defined by the security game SoundA

Π,R,X(λ) in which
an adversary is tasked with finding a verifying statement and proof for which the extractor does not extract a valid witness. The
advantage of an adversary is defined as Advsound

Π,R,A,X(λ) = Pr[SoundA
Π,R,X(λ) = 1].

Game SoundA
Π,R,X(λ)

(pk,vk,stX)←$X.Setup(λ)

(x,π)←$A(pk,vk)
w← X.Extract(x,π : stX)

b← Π.Ver(vk,π,x)

Return (x,w) ̸∈ R∧ b

C.3 Authenticated Dictionaries

Figure 11 provides the security games for the strong key binding and invariant update soundness properties of authenticated
dictionaries. The binding game requires an adversary to output two lookup proofs for different values that verify under the same
key for the same digest. The invariant update soundness game requires an adversary to provide valid lookups for a key that does
not satisfy the invariant across two digests, while also providing a sequence of invariant proofs that the invariant is preserved
across the two digests. The invariant is defined as a boolean function Φ that takes as input a key, initial value, and updated value,
then outputs 1 if the invariant is satisfied. We define an adversary’s advantage against these games, respectively, as:

Advbind
AD,A(λ) = Pr[BindAD

A (λ) = 1] , Advinv
AD,Φ,A(λ) = Pr[InvSoundAD,Φ

A (λ) = 1] .
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Game BindA
AD(λ)

pp←$AD.Setup(λ)

(k,d,(vA,πA),(vB ,πB))←$A(pp)

Return
∧


AD.VerLkup(d,k,vA,πA)

AD.VerLkup(d,k,vB ,πB)

vA ̸= vB



Game InvSoundA
AD,Φ(λ)

pp←$AD.Setup(λ)

(k,(vA,πA),(vB ,πB), [dj ]
m
j , [πΦ,j ]

m−1
j )←$A(pp)

Return
∧


AD.VerLkup(d1,k,vA,πA)

AD.VerLkup(dm,k,vB ,πB)[
AD.VerUpd(dj ,dj+1,πΦ,j)

]m−1

j

Φ(k,vA,vB) ̸= 1



Game BindA
VC(λ)

pp←$VC.Setup(λ)

(d,st)←$A1(pp)

D←D∪ [d]
(i,(dA,vA,πA),(dB ,vB ,πB))←$APrefix

2 (pp)

Return
∧


VC.VerLkup(dA, i,vA,πA)

VC.VerLkup(dB , i,vB ,πB)

vA ̸= vB

dA ∈ D∧dB ∈ D


Oracle Prefix(d,d′, j,π)

Require d ∈ D
If VC.VerUpd(d,d′, j,π) then
D←D∪ [d′]

Figure 11: Security games for strong key binding (left) and invariant preservation of updates (middle) for authenticated dictionaries. Security
game for index binding (right) for append-only vector commitments.

In this work, we focus on the versioned invariant. The versioned invariant Φvsn parses values as a value-version tuple (v,u). It
enforces (1) the key’s version number does not decrease, and (2) two different values for a key cannot be shown for the same
version number. It is defined as follows:

Φvsn(k,(vA,uA),(vB ,uB)) = uA < uB ∨ (uA = uB ∧ vA = vB) .

Some applications require a stronger invariant to be maintained among mapped values in an AD, which we will refer to as
the append-only invariant. In the append-only invariant, values of an AD are parsed as lists of values L= [vj ]

ℓ
j . The invariant

enforces that the list can only be appended to, i.e., previous values in the list do not change. More precisely, we define Φapp as
follows:

Φapp(k,LA = [vA,j ]
ℓA
j ,LB = [vB,j ]

ℓB
j ) = ℓA ≤ ℓB ∧

ℓA∧
j

vA,j = vB,j .

C.4 Append-only Vector Commitments

Figure 11 (right) provides the pseudocode security game defining index binding for append-only vector commitments. The game
requires an adversary to produce two valid lookup proofs to the same index for different values. The adversary is allowed to give
lookup proofs for different digests as long as they additionally prove that the two digests share prefixes. We define an adversary’s
advantage against index binding as:

Advbind
VC,A(λ) = Pr[BindVC

A (λ) = 1] .

D Versioned Invariant Proofs and Batch Updates for RSA Authenticated Dictionary

D.1 RSA Authenticated Dictionary

We make use of the key-value commitment KVaC from [AR20]; the construction pseudocode is given in Figure 12. The hash
function H maps keys to primes of size 2λ that are larger than the group order upper bound b. The space of values that can be
committed to is the set of positive integers bounded above by b. [AR20] prove KVaC secure with respect to a weak key binding
property in which the commitment must have been produced correctly, rather than adversarially. This is not sufficient for the
verifiable registry setting; in the next section we show how to augment KVaC with update proofs to protect against adversarially
generated commitments.

D.2 Versioned Invariant Update Proofs and Strong Key Binding

Figure 13 shows our protocol for proving updates preserve a versioned invariant. We use the generalized proof of linear
homomorphism [BBF19] to prove that the commitment is updated only by a particular homomorphism that we show guarantees
a versioned invariant. The proof of knowledge from [BBF19] is sound in the hidden order generic group model. We also show
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KVaC.Setup(λ)

(a,b,G)←$GGen(λ)

g←$G
Return (a,b,G,g)

KVaC.Init()

Return (1,g)

KVaC.Commit([(k,v,u)]i)

[z]i← [H(k)]i

C1← g

∑
j

(
vjz

uj−1

j

∏
i̸=j z

ui
i

)
C2← g

∏
i z

ui
i

Return (C1,C2)

KVaC.ProveMem([(k,v,u)]i,m)

[z]i← [H(k)]i

π1← g

∑
j ̸=m

(
vjz

uj−1

j

∏
i̸=j,m z

ui
i

)
π2← g

∏
i̸=m z

ui
i

(a,b)← EEA(
∏

i ̸=m z
ui
i ,zm)

π← ((π1,π2),(gb,a),um)

Return π

KVaC.VerifyMem(C,(k,v),π)

z← H(k)

((π1,π2),(B,a),u)← π

(C1,C2)← C

Return
∧


(π1)z

u
(π2)v·z

u−1
= C1

(π2)z
u
= C2

(π2)aBz = g



KVaC.Upd(C,(k,δ))

z← H(k)

(C1,C2)← C

C′← (Cz
1C

δ
2 ,C

z
2 )

Return C′

KVaC.UpdateMemProof((k,π),(kδ, δ))

z← H(k)

((π1,π2),(B,a),u)← π

If k = kδ then
π′← ((π1,π2),(B,a),u+1)

Else
zδ ← H(kδ)

(s, t)← EEA(z,zδ)

q← ⌊at
z
⌋ ; r← at mod z

a′← r ; B′← π
as+qzδ
2 B

π′← ((π
zδ
1 πδ

2 ,π
zδ
2 ),(B′,a′),u)

Return π′

KVaC.ProveNonMem([(k,v,u)]i,k
′)

[z]i← [H(k)]i ; z′← H(k′)

(a,b)← EEA(
∏

i z
ui
i ,z′)

Return (a,gb)

KVaC.VerNonMem(C,k′,π)

(a,B)← π

z′← H(k′) ; (C1,C2)← C

Return Ca
2B

z′ = g

KVaC.UpdNonMemProof((k′,π),(kδ, δ))

(a,B)← π

z′← H(k′) ; zδ ← H(kδ)

(s, t)← EEA(z′,zδ)

q← ⌊at
z
⌋ ; r← at mod z

a′← r ; B′← π
as+qzδ
2 B

Return (a′,B′)

Figure 12: KVaC construction from [AR20]. The AD Lkup (resp. VerLkup) algorithm combines the prove (resp. verify) membership and
non-membership algorithms.

KVaC.BatchUpdate(C, [(k,δ)]i))

[z]i← [H(k)]i

(C1,C2)← C

Z←
∏

i zi

∆←
∑

j

(
δj

∏
i̸=j zi

)
C′← (CZ

1 C∆
2 ,CZ

2 )

Return C′

KVaC.UpdateMemProof((k,π),(Z,∆))

z← H(k)

((π1,π2),(B,a),u)← π

(s, t)← EEA(z,Z)

q← ⌊at
z
⌋ ; r← at mod z

a′← r ; B′← πas+qZ
2 B

π′← ((πZ
1 π∆

2 ,πZ
2 ),(B′,a′),u)

Return π′

KVaC.ProveUpdate(C,C′,(Z,∆))

(C1,C2)← C ; (C′
1,C

′
2)← C′

π← BBF.Prove((Z,∆),(C1,C2,C′
1,C

′
2))

Return π

KVaC.VerUpdate(C,C′,π)

(C1,C2)← C ; (C′
1,C

′
2)← C′

Return BBF.Ver((C1,C2,C′
1,C

′
2),π)

RKVaC =
{
((X1,X2,Y1,Y2); (α,β)) : Y1 =Xα

1 Xβ
2 ∧Y2 =Xα

2

}
BBF.Prove((α,β),(X1,X2,Y1,Y2))

sa← gα ; sb← gβ

ℓ← HPrimes(X1 ∥X2 ∥Y1 ∥Y2 ∥ sa ∥ sb)
qa← ⌊α/ℓ⌋ ; ra← α mod ℓ

qb← ⌊β/ℓ⌋ ; rb← β mod ℓ

Wa← gqa ; Wb← gqb

W1←Xqa
1 X

qb
2 ; W2←Xqa

2

π← (Wa,Wb,W1,W2, ra, rb, ℓ)

Return π

BBF.Ver((X1,X2,Y1,Y2),π)

π← (Wa,Wb,W1,W2, ra, rb, ℓ)

sa←W ℓ
ag

ra ; sb←W ℓ
b g

rb

Return
∧


ℓ= HPrimes(X1 ∥X2 ∥Y1 ∥Y2 ∥ sa ∥ sb)

Y1 =W ℓ
1X

ra
1 X

rb
2

Y2 =W ℓ
2X

ra
2



Figure 13: Extension for KVaC to batch many key updates together (left). Extension to prove that key updates satisfy a versioned invariant
(center) using the generalized proof of linear homomorphism from [BBF19], shown for the particular update homomorphism relevant to KVaC
(right).
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(in Figure 13) how to batch many key-value updates together such that the batched update follows the same homomorphic form
as a single update. Individual membership proofs can be updated with respect to batched changes.

Next, we prove when KVaC construction from Figure 12 is combined with the update proofs from Figure 13, the construction
achieves strong key binding and the versioned invariant is preserved. More specifically, to achieve strong key binding, we require
that a digest from KVaC is accompanied with an update proof proving a valid update from the initial digest output from Init.

First, we will prove some useful lemmas.

Lemma 1. [Shamir’s trick] For any integer modulo N , given integers u,v ∈ Z×
N and x,y ∈ Z, such that ux = vy modN and

gcd(x,y) = 1, it is efficient to compute w ∈ Z×
N where wa = v modN .

Proof. Since gcd(x,y) = 1, we can compute the Bézout coefficients (a,b)← EEA(x,y) where ax+ by = 1. Let w = ubva

mod n, then

wx = ubxvax = (ux)bvax = (vy)bvax = v (mod N) .

Lemma 2. [Non-trivial root of unity] For RSA quotient group G with elements of unknown order bounded above by b, given
integers u,v ∈G and prime z > b, if uz = vz , then u= v.

Proof. Let α= u/v ∈G. Then αz = 1. Since z is prime, if α ̸= 1, then z must be the order of α in G. However, z > b, an upper
bound on the order of elements in G, which is not possible, so α= 1 and u= v.

Lemma 3. [Coprime] For RSA quotient group G, given integers u,w ∈G, random integer v ∈G, integers a,b,c ∈ Z, and prime
z, then if uzc = va and ubwz = v, then zc |a and if let d= a/zc ∈ Z, then u= vd and gcd(z,d) = 1.

Proof. First, we prove that d exists, i.e., that zc |a. Consider (uzc−1
)z = va. If z ̸ |a, then gcd(z,a) = 1 and by Lemma 1, we

can compute xz = v which wins the strong RSA security game. Therefore z |a and uzc−1
= ga/z by Lemma 2. We can repeat

this argument for (uzc−i
)z = va/z

i−1
for i ∈ [2, c], ultimately arriving at zc |a and u= va/z

c
= vd.

Next, we show that z ̸ |d. Consider ubwz = v rewritten as vbd−1 = w−z . If z |d, then gcd(bd−1,−z) = 1, and by Lemma 1,
we can compute xz = v which again wins the strong RSA security game. Therefore, z ̸ |d meaning gcd(z,d) = 1.

Theorem 1. For any adversary A against the versioned invariant soundness of KVaC augmented with proof of update from
initialization, we give adversaries B and C such that

Advinv
KVaC,Φvsn,A(λ)≤Adv

strong-rsa
GGen,B (λ)+Advsound

BBF,C,X(λ) ,

where GGen is the group generation algorithm for the RSA quotient group used in KVaC and X is the knowledge extractor for
BBF [BBF19].

Proof. First, we extract the update structure of the digests returned by adversary A. Using the extractor X for BBF, we extract
the values (αA,βA) from the update proof of d1 = CA from the initial digest (1,g). This gives us:

CA =
(
gβA ,gαA

)
.

Next, we extract the update structure of each of the updates from d1 to dm from the update proofs [πΦ,j ]
m−1
j . Denote these

extracted values as [(αj ,βj)]
m−1
j . We observe that using these values, we can write dm = CB where we can define αB and βB

as follows, as a single update from CA:

CB =
(
C

αB
A,1C

βB
A,2,C

αB
A,2

)
, αB =

m−1∏
j

αj , βA =

m−1∑
j

βj

∏
i̸=j

αi


If the extractor fails, we build adversary C against the soundness of BBF.

The proof proceeds by considering each of the two winning conditions and showing that, in each case, a winning adversary
can break strong RSA.

(1) uA > uB

(2) vA ̸= vB ∧ uA = uB
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Case 1: uA > uB

From the verification equations of πA, we have that:

πzuA
A,2 = CA,2 = gαA , π

aA
A,2B

z
A = g .

Thus, by Lemma 3, we know that πA,2 = gαA/zuA . Similarly, from the verification equations of πB , we have that:

πzuB
B,2 = CB,2 = gαAαB , π

aB
B,2B

z
B = g .

Again, by Lemma 3, we have that πB,2 = gαAαB/zuB and gcd(αAαB/z
uB ,z) = 1. Since uA > uB , we can construct group

element u as follows:

u= π
αB ·zuA−uB−1

A,2 and then, uz = (π
αB ·zuA−uB−1

A,2 )z = ((gαA/zuA )αB ·zuA−uB−1
)z = gαAαB/zuB .

Since gcd(αAαB/z
uB ,z) = 1, we can compute w from Lemma 1, where wz = g which wins the strong RSA security game.

Case 2: vA ̸= vB ∧ uA = uB

Let u= uA = uB . By the verification equation of πB , we have:

CB,1 = πzu

B,1π
vBzu−1

B,2

We also have, from the update proof and verification equations of πA, that:

CB,1 = C
αB
A,1C

βB
A,2

=
(
π
αBzu

A,1 π
αBvAzu−1

A,2

)(
π
βBzu

A,2

)
We also can derive the following relation:

πzu

A,2 = CA,2 (by verification of πA)

π
αBzu

A,2 = C
αB
A,2 = CB,2

πzu

B,2 = CB,2 (by verification of πB)

π
αB
A,2 = πB,2 (by repeated application of Lemma 2)

Putting this together we have as follows:

π
αBzu

A,1 π
αBvAzu−1

A,2 π
βBzu

A,2 = πzu

B,1π
vBzu−1

B,2 (by equality to CB,1)

π
αBzu

A,1 π
βBzu

A,2

πzu
B,1

=
π
vBzu−1

B,2

π
αBvAzu−1

A,2

π
αBzu

A,1 B
βBzu

A

πzu
B,1

= π
(vB−vA)zu−1

B,2 (by relation between πB,2 and πA,2)

((
π
αB
A,1π

βB
A,2

πB,1

)z)zu−1

=
(
π
vB−vA
B,2

)zu−1

(
π
αB
A,1π

βB
A,2

πB,1

)z

= π
vB−vA
B,2 (by repeated application of Lemma 2)

Thus, we have found a zth root of a non-trivial element. By Lemma 3, we have that πB,2 = gαAαB/zu where gcd(αAαB/z
u,z) =

1. This gives us (
π
αB
A,1π

βB
A,2

πB,1

)z

= g
(vB−vA)αAαB

zu .
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Since z is prime and the domain of values is chosen to be smaller than all z, we also have that gcd(vA−vB ,z) = 1, and therefore
by Lemma 1, we can compute w where wz = g winning the strong RSA security game.

Theorem 2. For any adversary A against the strong key binding of KVaC augmented with proof of update from initialization,
we give adversaries B and C such that

Advbind
KVaC,A(λ)≤Adv

strong-rsa
GGen,B (λ)+Advsound

BBF,C,X(λ) ,

where GGen is the group generation algorithm for the RSA quotient group used in KVaC and X is the knowledge extractor for
BBF [BBF19].

Proof. The proof follows similarly to that of Theorem 1. Using extractor X for BBF, we extract values (α,β) from the update
proof of d from the initial digest (1,g), giving us: d = C = (gβ ,gα). We then proceed by considering the following two winning
conditions; in each case, a winning adversary can break strong RSA.

(1) uA ̸= uB

(2) vA ̸= vB ∧ uA = uB

Case 1: uA ̸= uB

The first case follows similarly to (Case 1) of Theorem 1. From the verification equations of πA, we have that:

πzuA
A,2 = C2 = gα, π

aA
A,2B

z
A = g .

Thus, by Lemma 3, we know that zuA |α. Similarly, from the verification equations of πB , we have that:

πzuB
B,2 = C2 = gα, π

aB
B,2B

z
B = g .

Again, by Lemma 3, we have that gcd(α/zuB ,z) = 1. However, this is a contradiction. Wlog say uA > uB , then since zuA |α, it
cannot be that gcd(α/zuB ,z) = 1.

Case 2: vA ̸= vB ∧ uA = uB

The second case follows exactly from (Case 2) of Theorem 1 where αA = α, βA = β, αB = 1, and βB = 0.

E RSA Lookup Proof Computation

This section provides details for batch computation of RSA membership and non-membership proofs.

E.1 Promises

One solution to alleviate the server workload and client latency in waiting for these proofs is the use of promises. A
promise [MBB+15] is a signed statement by the server of a claimed lookup value and the promise to compute a corresponding
(non-)membership proof for a specific epoch (by a certain time). A promise allows a client to act on their query without waiting
for the full proof; the client can later query the full proof by the promised time and provide evidence of a broken promise if
appropriate.

E.2 Batch Computation

Delaying computation of (non-)membership proofs is also of benefit to the server, as it allows use of existing techniques [BBF19,
TXN20] for computing a batch of m (non-)membership proofs together in time O(N +m logm) time, an improvement over
computing each proof individually at the time of request (O(N ·m)) where N is the total number of past updates. Naively with
batching, there is a dependence on N , the total number of updates (as opposed to simply the total number of keys), however we
show that by storing some additional state, batch computation can be achieved in time O(K+m logm) where K is the number
of keys in the dictionary.

Figure 14 (left) provides pseudocode for the O(K+m logm) algorithm to batch compute membership proofs for a subset
of m keys over N total updates in the key-value commitment. We consider a set K of unique keys in the commitment and
a subset K′ ⊆ K of size m for which to compute membership proofs, where |K| =K. For the case of non-membership, we
consider K′ a disjoint set from K, K′ ∩K = ∅. If instead of storing only the information [k,v ,u]i for each entry of K, and
instead precomputing and additionally maintaining H(ki)

u−1, then the batch computation cost will no longer have a dependence
on the number of updates to the dictionary, only the number of keys. The O(m logm) work takes place in the BatchRecurse
protocol which adapts existing techniques from [BBF19, TXN20] for computing batch membership and non-membership proofs
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KVaC.BatchProveMem(K= [(k,v,u)]ni ,K′ = [(k,v,u)]mi )

Z←
∏

i∈K\K′ H(ki)
ui ; Z′←

∏
i∈K′ H(ki)

ui

∆←
∑

i∈K\K′

(
vi ·H(ki)

ui−1
∏

j ̸=i∈K\K′ H(kj)
uj

)
h′← g∆ ; g′← gZ

(a,b)← EEA(Z,Z′) ; B← gb

Return BatchRecurseMem(h′,g′,B,a,K′)

BatchRecurseMem(h,g,B,a, [(z,v,u)]ni )

If n= 1 then return [(h,g,B,a)]

n′← n/2

ZL←
∏n′

i=1 z
ui
i ; ∆L←

∑n′

i=1

(
viz

ui−1
i

∏
j ̸=i z

uj

j

)
ZR←

∏n
i=n′ z

ui
i ; ∆R←

∑n
i=n′

(
viz

ui−1
i

∏
j ̸=i z

uj

j

)
hL← hZLg∆L ; gL← gZL

hR← hZRg∆R ; gR← gZR

(s, t)← EEA(ZL,ZR)

qL← ⌊ at
ZL
⌋ ; rL← at mod ZL

qR← ⌊ as
ZR
⌋ ; rR← as mod ZR

aL← rL ; BL← g
qL
R gasBZR

aR← rR ; BR← g
qR
L gatBZL

WL← BatchRecurseMem(hR,gR,BL,aL, [(zi,vi,ui)]
n′

i=1

WR← BatchRecurseMem(hL,gL,BR,aR, [(zi,vi,ui)]
n
i=n′

Return WL ∥WR

KVaC.BatchProveNonMem(K= [(k,v,u)]ni ,K′ = [k′]mi )

Z←
∏

i∈KH(ki)ui ; Z′←
∏

i∈K′ H(ki)ui

g′← gZ

(a,b)← EEA(Z,Z′) ; B← gb

[(g,B,a)]mi BatchRecurseNonMem(g′,B,a,K′)

Return [(B,a)]mi

BatchRecurseNonMem(g,B,a, [z]ni )

If n= 1 then return [(g,B,a)]

n′← n/2

ZL←
∏n′

i=1 z
ui
i ; ZR←

∏n
i=n′ z

ui
i ; gL← gZL

gR← gZR

(s, t)← EEA(ZL,ZR)

qL← ⌊ at
ZL
⌋ ; rL← at mod ZL

qR← ⌊ as
ZR
⌋ ; rR← as mod ZR

aL← rL ; BL← g
qL
R gasBZR

aR← rR ; BR← g
qR
L gatBZL

WL← BatchRecurseNonMem(gR,BL,aL, [zi]
n′

i=1

WR← BatchRecurseNonMem(gL,BR,aR, [zi]
n
i=n′

Return WL ∥WR

Figure 14: Algorithms for batch computation of membership proofs (left) and non-membership proofs (right).

for RSA accumulators. The O(K) work is in computing the initial values (h,g,B,a) passed to BatchRecurse representing the
state of all keys in K\K′; we will refer to these as helper values for membership proof computation.

E.3 Caching

An alternative to promises for computing membership proofs is to periodically precompute membership proofs for all keys,
and then on a lookup query, perform individual key updates for the key since the last batch precomputation. We provide
caching as a more granular precomputation strategy, allowing for the server to maintain different caches of keys that allow for
efficient precomputation, and that can be recomputed on different schedules based on, for example, the “hotness” of the cache.
Our approach is to maintain the helper values (h,g,B,a) for a cache K′ as a set of ℓ updates U = [(k,δ)]ℓi is applied to the
commitment. Recall, originally computing these helper values takes time O(K). However, once computed, if the helper values
are maintained to reflect the updated set K then membership proofs for the keys in K′ can be recomputed with only O(m logm)
work.

UpdateHelper((h,g,B,a),K′ = [(k,v,u)]mi , U = [(k,δ)]ℓi)

Z←
∏

i∈U H(ki)ui ; Z′←
∏

i∈K′ H(ki)ui

∆←
∑

i∈U

(
δi
∏

j ̸=i∈U H(kj)
)

h′← hZg∆ ; g′← gZ

(s, t)← EEA(Z′,Z)

q← ⌊ at
Z′ ⌋ ; r← at mod Z′

a′← r ; B′← gas+qZB

Return (h′,g′,B′,a′)

The UpdateHelper pseudocode above shows how to maintain the helper values by applying updates from U . The update
protocol runs in O(m+ ℓ) time.

Because maintaining a cache requires persistently updating its corresponding helper value, the system cannot efficiently
maintain too many caches. One possible distribution of cache sizes if there are K total keys is by sizes of power of 2, leading to
logK caches to maintain.
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E.4 Logarithmic Witness Verification

Here we present an alternative dictionary construction that admits membership proof verification time logarithmic in the version
number rather than linear. It does so at the expense of increasing from constant to logarithmic size proofs, and by increasing the
total number of keys stored in the RSA accumulator structure leading to increases in batch computation time.

Linear strawman. For illustrative purposes, first consider the following strawman. Instead of encoding the value of a key k
using z = H(k), we encode the value of the key using two values, z = H(k) and z1 = H(k ∥ ctr), where ctr is initialized to 1.
The version number of z is initialized to ctr = 1, and the value of k is encoded into z1 and updated by incrementing the version
number of z1 as before. However, now when the version number of z1 reaches some threshold t, instead of incrementing the
version number past t, the counter is incremented and the value is initialized as version 1 of z2 = H(k ∥2).

We can continue this update pattern to ensure that users only need to verify two lookup proofs for monitoring and lookups:
z and zctr . When monitoring, a user verifies the version number of z is what they expect with respect to ctr = ⌈ut ⌉, uz = ctr,
that the version of zctr is what they expect, uzctr = u mod t, and that the value of zctr is equal to the current value v . When
performing a lookup, a user looks up the version of z to determine the current counter ctr to query for the value, which can be
found by querying zctr = H(k ∥ ctr).

The time complexity of this strawman is as follows: Verification of the value lookup for zctr is guaranteed to be of time O(t)
since the version number will always be ≤ t, however the verification of the version of z will continue to grow linearly in u,
O(u/t).

Logarithmic solution via tree organization. We can resolve the linear dependence by repeating the process recursively creating
a tree. The sentinel z = H(k) now encodes a version number representing the current height of the tree uz = ℓ. The current
root of the tree is found at zℓ,0 = H(k ∥ ℓ ∥ 0) and encodes a version number counter representing which of its children is
the current active child uzℓ,0 = ctrℓ,0. The lookup proceeds by checking the indicated child at the next layer of the tree at
zℓ−1,0,ctrℓ,0 = H(k ∥ ℓ−1∥0∥ctrℓ,0), which encodes a version counter for the next child, and so on until the tree height is equal
to 0. At layer 0, the indicated z0 value encodes the value of the key.

As in the linear strawman, we bound the version number of all non-sentinel zℓ values to t, where t now represents the branching
factor of the tree. If an internal zℓ value reaches its maximum version number t, the parent zℓ+1 is incremented (or created as a
new root and initialized with version 1), and the parent’s next child at layer ℓ is initialized at version 1, and so forth until a new
leaf is created where the new value is encoded. If a parent reaches its maximum version number t and a new root is created, the
sentinel value z is also incremented.

The verifier time complexity of this solution is in verifying a single sentinel lookup proof with version uz = ℓ = ⌈logtu⌉
indicating the tree height and then ℓ lookup proofs of maximum version t. In total, this results in a verification time ofO(t logtu),
and a proof size of O(logtu).

Unfortunately encoding values in this tree structure means that entries for each internal node are added to the RSA accumulator
( 2ut internal nodes). In total, the RSA accumulator contains entries on the order of linear in the versions of all of its included
keys, which can significantly slow down batch computation of all membership proofs. We observe that for each included key,
only the logarithmic number of entries representing the current active path are needed to serve lookup proofs for a key. A server
may maintain a cache using the techniques of Appendix E.3 of the set of entries logarithmic in the versions of included keys to
more efficiently keep membership proofs updated. As keys are updated and the membership paths in the tree are changed, new
initialized internal nodes can be easily added to the cache. However, even still, occasionally an expensive linear in the total entries
(i.e., in the versions of all keys) batch computation operation will be needed to prune out-dated path entries from the cache.

F Security of AHD Constructions

In this section we provide theorem statements and proof sketches for the AHD security of the two generic transforms, AHDIVC

(Figure 2) and AHDAmtz (Figure 3). The security properties for an AHD scheme are formalized as pseudocode security games
and provided in Figure 15. The key binding game is equivalent to that of authenticated dictionaries. The history binding game
tasks an adversary with producing two history proofs (or sequences of history proofs) that verify with two different digests for
the same epoch. The invariant soundness game tasks an adversary with producing lookup proofs for a key with two values that
do not satisfy the invariant, while also proving the invariant holds between the two epochs for which the lookup proofs were
provided. We define an adversary’s advantage against these games, respectively, as:

Advbind
AHD,A(λ) = Pr[BindAHD

A (λ) = 1] , Advhbind
AHD,A(λ) = Pr[HistBindAHD

A (λ) = 1] ,

Advinv
AHD,Φ,A(λ) = Pr[InvSoundAHD,Φ

A (λ) = 1] .
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Game BindA
AHD(λ)

pp←$AHD.Setup(λ)

(k,d,(vA,πA),(vB ,πB))←$A(pp)
Return

∧


AHD.VerLkup(dA,k,vA,πA)

AHD.VerLkup(dB ,k,vB ,πB)

vA ̸= vB



Game HistBindA
AHD(λ)

pp←$AHD.Setup(λ) ; win← 0

(d,st)←$A1(pp)

D←D∪ [d]
AProveHist

2 (st)

Return win

Oracle ProveHist(d′, [(cj ,dj)]mj ,π)

Require d′ ∈ D
If AHD.VerHist(d′, [(cj ,dj)]mj ,π) then

For all j ∈ [1,m] :

If cj ∈ V and V [cj ] ̸= dj then win← 1

V [cj ]← dj

D←D∪ [dj ]

Game InvSoundA
AHD,Φ(λ)

pp←$AHD.Setup(λ) k,d,
[
[(ci,j ,di,j)]

mi
j

]n
i
,
[
πΦ,i,πhist,i

]n
i

(iA, jA,vA,πA),(iB , jB ,vB ,πB)

←$A(pp)

dn+1,1← d

Return
∧



AHD.VerLkup(diA,jA ,k,vA,πA)

AHD.VerLkup(diB ,jB ,k,vB ,πB)[
AHD.VerInv(di+1,1, [(ci,j ,di,j)]

mi
j ,πΦ,i)

]n
i[

AHD.VerHist(di+1,1, [(ci,j ,di,j)]
mi
j ,πhist,i)

]n
i

Φ(k,vA,vB) ̸= 1

iA < iB ∨ (iA = iB ∧ jA ≤ jB)



Figure 15: Security games for strong key binding (left), history binding (middle), and invariant preservation (right) for authenticated history
dictionaries.

Our AHD transforms are generic with respect to an AD, a VC, and a succinct non-interactive proof system that supports
circuit relations. For the AD, we will require binding and invariant soundness, and for the VC we will require binding; defined in
Figure 11. For the non-interactive proof system, we will require soundness.

Key binding and history binding. We first consider key binding and history binding, for which both AHDIVC and AHDAmtz

use the same mechanisms. Key binding is acheived by relying directly on an underlying AD and history binding relies on an
append-only VC. We provide the following theorems:

Theorem 3. For any adversary A against the key binding of AHDIVC[AD,VC,SNARK], we give adversary B such that

Advbind
AHDIVC[AD,VC,SNARK],A(λ)≤Advbind

AD,B(λ) .

Theorem 4. For any adversary A against the key binding of AHDAmtz[AD,VC], we give adversary B such that

Advbind
AHDAmtz[AD,VC],A(λ)≤Advbind

AD,B(λ) .

Proof sketch: The lookup proofs in AHDIVC and AHDAmtz operate directly over the the AD component of the digest, dAD. Thus,
a win in the AHD key binding game translates directly to a win in the AD key binding game by constructing a wrapper adversary
B that forwards the same values output from A replacing d = (dAD,dVC) with dAD.

Theorem 5. For any adversary A against the history binding of AHDIVC[AD,VC,SNARK], we give adversary B such that

Advhbind
AHDIVC[AD,VC,SNARK],A(λ)≤Advbind

VC,B(λ) .

Theorem 6. For any adversary A against the history binding of AHDAmtz[AD,VC], we give adversary B such that

Advhbind
AHDAmtz[AD,VC],A(λ)≤Advbind

VC,B(λ) .

Proof sketch: We construct B = (B1,B2) against the index binding of VC as a relatively simple wrapper around A= (A1,A2).
First stage adversary B1 runs AHD setup and replaces the parameters for VC with its own public parameters, then runs A1. B1
parses the digest d = (dAD,dVC) and outputs dVC.

Second stage adversary B2 runs A2 and simulates ProveHist. Whenever A2 queries a valid history proof, B2 stores the VC
lookup proof for each index cj and passes along the VC update proof to its own Prefix oracle. If A2 makes a query that sets
the win flag, B2 must have two valid lookups for the same cj index for different values, which it will return to win the index
binding game. Thus, B wins whenever A wins.

Invariant soundness. The mechanisms by which invariant soundness is achieved differ between AHDIVC and AHDAmtz. We
consider each separately.

Theorem 7. For any adversaryA against the invariant soundness of AHDIVC[AD,VC,SNARK], we give adversaries B, C, and D
such that

Advinv
AHDIVC[AD,VC,SNARK],Φvsn,A(λ)≤Advinv

AD,Φvsn,B(λ)+Advbind
VC,C(λ)+Advsound

SNARK,D,X(λ) ,

where X is the knowledge extractor for SNARK.
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Proof sketch: In building B and C against the invariant soundness and index binding of AD and VC, respectively, we will first
need to extract the valid lookup and update proofs attested to in the recursive SNARK for the checkpoint epochs [cj ]mj . To show
that valid proofs for AD and VC can be extracted, we build D against the soundness of SNARK that wins if this is not the case.
When A outputs valid SNARK πΦ, D extracts the full history of AD.VerUpd, VC.VerUpd, and VC.VerLkup proofs to the initial
digest. It does this recursively by additionally extracting the SNARK proof for the prior epoch, and then repeating extraction on
the prior epoch SNARK proof. If any extraction fails to produce valid proofs, D wins the soundness game. Naively, from the way
we present AHDIVC, this extraction will be linear in the number of epochs. We did this for simplicity of presentation, to create a
tighter reduction, one would use tree-based techniques to execute recursion with logarithmic depth [BCCT13]. Then D would
perform logarithmic extraction for each checkpoint given by A.

Now given these extracted proofs, we show that a winning adversary A corresponds to either a break in invariant soundness of
AD or a break in index binding of VC. First we show that the A provided digests [dcj ]

m
j will be equal to the extracted digests

(for which we have valid extracted proofs). If A wins, the provided digests verify under VerHist, meaning that there exists
a valid VC.VerLkup proof for the digest at index cj . On the other hand, we have a sequence of extracted VC.VerUpd proofs
with an extracted lookup proof for an extracted digest each index. If the extracted digest for an index does not match that of a
provided digest, we construct C that wins the index binding game by querying the sequence of update proofs to Prefix and
then outputting the two lookup proofs for the index cj where the extracted digest differs from the provided digest.

Finally, now given that the provided digests match the extracted digests, we build B against invariant soundness. By A’s
winning condition, we have that the invariant is not preserved for key k between ciA and ciB . However, we have an extracted
sequence of valid invariant proofs for AD between ciA and ciB . B outputs the sequence of extracted invariant proofs along with
the lookup proofs provided by A to win the invariant soundness game for AD.

Theorem 8. For any adversary A against the invariant soundness of AHDAmtz[AD,VC], we give adversary B such that

Advinv
AHDAmtz[AD,VC],Φvsn,A(λ)≤Advinv

AD,Φvsn,B(λ) .

Proof sketch: In AHDAmtz, the invariant proof already consists of a sequence of invariant proofs for AD between each of the
checkpoints. B simply returns the sequence of invariant proofs between ciA and ciB along with the lookup proofs to win the
invariant soundness game for AD.

G Checkpoint Auditing Security

In this section, we prove the security of the checkpoint auditing mechanism.

G.1 Security Definition

First we provide a formal definition for checkpoint auditing with respect to an authenticated history dictionary and an immediately
consistent bulletin board. This definition is inspired by the “oscillation” security definition of [MKL+20] in which an adversary
wins if a client does not detect a ghost key attack. Our security game is slightly more complex as client checkpoint auditing
requires pairwise clients to perform audits, in contrast to [MKL+20] where a single client may audit and rely on additional
assurances from trusted third-party auditors.

The security game for detection of invariant breaks in checkpoint auditing is defined by the pseudocode game CkptDetect
given in Figure 16. It models two clients: client 1 monitors an adversary-chosen key over time, and client 0 performs lookups to
the key. The goal of the adversary is to serve a lookup value that is accepted by client 0, but is not consistent with the “true” value
maintained by client 1. More specifically, the adversary may induce periodic audits by client 0 and periodic monitoring audits or
value updates of the key by client 1. The exposed oracles represent the verification procedure that clients would take during
auditing and, as such, take as input proofs that would be served by the server (fully controlled by the adversary). As specified in
Figure 6, clients audit logarithmic number checkpoints selected by the compact range, and on a value update, a monitoring client
audits up to epoch prior to the change in value. The adversary also has full control over the digest, but may only publish a single
digest for each epoch, representing an immediately consistent bulletin board. At the end of the game, the adversary outputs a
value v ′ and lookup proof along with three epoch numbers i1, i2, i3. The adversary wins if the following conditions are satisfied:
(1) v ′ verifies under the lookup proof at epoch i1 for client 0. Thus, we additionally require that client 0 audited epoch i1.
(2) v ′ does not match the expected value of the key at digest i1 as monitored by client 1 and tracked by the game.
(3) The appropriate eventual detection auditing conditions have been met. There exists an epoch i2 ≥ i1 that was monitored by

client 1, and there exists an epoch i3 ≥ i2 that was audited by client 0.
We define an adversary A’s advantage against the checkpoint auditing game as:

Adv
ckpt
AHD,Φ,A(λ) = Pr[CkptDetectAHD,Φ

A (λ) = 1] .
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Game CkptDetectAAHD,Φ(λ)

pp←$AHD.Setup(λ)

(d0,st)← AHD.Init()

ℓ← 0 ; ℓ0← 0 ; ℓ1← 0

v ←⊥ ; V ← [·]
aud0← [·] ; aud1← [·]
k←$A1(pp)

(i1, i2, i3,v ′,πlkup)←$APubDigest,Audit0,Monitor1,UpdVal1
2

Return
∧



i1 ≤ i2 ≤ i3

i1 ∈ aud0

i2 ∈ aud1

i3 ∈ aud0

AHD.VerLkup(di1 ,k,v
′,πlkup)

v ′ ̸=V [i1]


Oracle PubDigest(d)

V [ℓ]← v

ℓ← ℓ+1

dℓ← d

Oracle Audit0(πΦ,πhist)

Require ℓ > ℓ0

[(cj ,Rj)]
m
j ← CompactR(ℓ0, ℓ)

Require AHD.VerInv(dℓ, [(cj ,dcj )]
m
j ,πΦ)

Require AHD.VerHist(dℓ, [(cj ,dcj )]
m
j ,πhist)

ℓ0← ℓ ; aud0← aud0 ∥ [ℓ]

Oracle Monitor1(πΦ,πhist,πlkup)

Require ℓ > ℓ1

[(cj ,Rj)]
m
j ← CompactR(ℓ1, ℓ)

Require AHD.VerInv(dℓ, [(cj ,dcj )]
m
j ,πΦ)

Require AHD.VerHist(dℓ, [(cj ,dcj )]
m
j ,πhist)

Require AHD.VerLkup(dℓ,k,v,πlkup)

ℓ1← ℓ ; aud1← aud1 ∥ [ℓ]

Oracle UpdVal1(πΦ,πhist,πlkup,v
′)

Require ℓ= ℓ1+1

Require AHD.VerInv(dℓ, [(ℓ1,dℓ1 )],πΦ)

Require AHD.VerHist(dℓ, [(ℓ1,dℓ1 )],πhist)

Require AHD.VerLkup(dℓ,k,v
′,πlkup)

v ← v ′

ℓ1← ℓ ; aud1← aud1 ∥ [ℓ]

Figure 16: Security game for invariant break detection with checkpoint auditing.

x

ℓ1 r1

Case 2

x

ℓ2 r2

Case 1

x

ℓ2 r2

Figure 17: Cases for proof of shared checkpoint epoch. Case 1 (left) has ℓ2 as leftmost leaf of x’s subtree. Case 2 (right) does not.

G.2 Proof of Shared Checkpoint Epoch

Before proving security of the checkpointing auditing definition, we first prove the core theorem of shared checkpoints for
overlapping ranges that the following proof of security will rely on.

Theorem 9. For any two ranges (ℓ1, r1) and (ℓ2, r2) that are overlapping, i.e., ℓ1 ≤ ℓ2 < r1 ≤ r2, the compact range of
(ℓ1, r1) shares a subrange boundary with the compact range of (ℓ2, r2). That is, for [(ℓ1,i, r1,i)]mi ← CompactR((ℓ1, r1)) and
[(ℓ2,i, r2,i)]

n
i ← CompactR((ℓ2, r2)), there exists i, j such that ℓ1,i = ℓ2,j .

Proof. First consider the binary tree imposed over all epochs. In this binary tree, define node x as the root of the smallest subtree
that contains ℓ2 and r1. We will show that their exists a shared boundary in the compact range representation induced by (ℓ1, r1)
and (ℓ2, r2) somewhere within this subtree rooted at x.

Consider the following two exhaustive cases (depicted in Figure 17):

Case 1: ℓ2 is the leftmost leaf of x’s subtree.

In this case, we will show that ℓ2 itself is a shared boundary between the two compact range representations.
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If r2 is not in x’s subtree, then x’s subtree (or a supertree of x’s subtree if x is a left child) is included in the compact range of
(ℓ2, r2). Otherwise, if r2 is in x’s subtree, r2 would necessarily be in x’s right subtree (since r2 ≥ r1) and thus x’s left subtree is
included in the compact range. For the other range, since r1 is included in x’s right subtree and ℓ1 < ℓ2 is not in x’s left subtree,
then x’s left subtree is included in the compact range of (ℓ1, r1).

Case 2: ℓ2 is not the leftmost leaf of x’s subtree.

Call y the leftmost leaf of x’s right subtree. We argue that y is a shared boundary between the two compact range representations.
First, we argue that if the right endpoint of a range is in a subtree T and the left endpoint is not, then the leftmost leaf of T is a

boundary in the range’s compact range representation. Consider two cases. First, if the right endpoint is in T ’s right subtree, then
T ’s left subtree is a compact subrange included in the representation and therefore, the leftmost leaf of T is a boundary. Second,
if the right endpoint is in T ’s left subtree, then we use a recursive argument to claim that the leftmost leaf of T ’s left subtree (i.e.,
the leftmost leaf of T ) is a boundary. The base case of this argument is that the right endpoint is itself the leftmost leaf of T , in
which case, it is a boundary.

Now with this argument, first consider r1 which is in x’s right subtree (ℓ1 is not), then y is a boundary of (ℓ1, r1). Next
consider, (ℓ2, r2). If r2 is in x’s right subtree (ℓ2 is not), then y is a boundary by the same argument as above. Else, r2 is not in
x’s subtree, so since ℓ2 is not the leftmost leaf of x’s subtree, then x’s right subtree is included as a subrange in the compact
range of (ℓ2, r2) and y is a boundary.

G.3 Proof of Checkpoint Auditing Eventual Detection

Theorem 10. For any adversary A against the checkpoint auditing eventual detection of AHD, we give adversary B such that

Adv
ckpt
AHD,Φvsn,A(λ)≤Advinv

AHD,Φvsn,B(λ) .

Proof sketch: Say the expected value of k at i1 according to client 1 is v (i.e., V [i1] = v), and further say that it was updated to
be equal to v ′ at epoch i0 ≤ i1. Redefine i2 to be the smallest epoch in aud1 such that i2 ≥ i1. This ensures that V [i2] = v , and
it is guaranteed that such an i2 redefinition exists by how V is populated in CkptDetect. For a winning adversary, we have
that the following sequences of invariant proofs were verified by either client 0 or client 1 because i1, i2, i3 are in the sets of
successful audits:
(1) 0→ c1→ i1: We know that client 0 verified some path of valid invariant proofs from epoch 0 through a shared checkpoint

c1 (we will show why such a shared checkpoint exists shortly) through epoch i1.
(2) i0→ c1→ c2→ i2: We know that client 1 verified some path of valid invariant proofs from i0 to i2, and since (i0, i2) is

overlapping with (0, i1), by Theorem 9, we have the existence of shared checkpoint c1, where i0 ≤ c1 ≤ i1. Again, we will
show shortly the existence of a second shared checkpoint c2.

(3) i1 → c2 → i3: We know that client 0 verified some path of valid invariant proofs from i1 to i3, and since (i1, i3) is
overlapping with (i0, i2), by Theorem 9, we have the existence of shared checkpoint c2, where i1 ≤ c2 ≤ i2.

Taking the above, we have that between client 0 and client 1, a path of valid invariant proofs were verified for:

i0→ c1→ i1→ c2→ i2 .

By our redefinition of i2, we have that client 1 verified lookup proofs for v at i0 and i2. By the adversary’s winning condition,
we have that client 0 verified a lookup proof for v ′ at i1. However, by the versioned invariant, it is not possible for the value
to change to v ′ and then change back to v . Say v = (v,u) where u denotes the version number. By the versioned invariant,
v ′ = (v′,u′), where u′ > u. Any future value v ′′ = (v′′,u′′) that preserves the versioned invariant cannot have u′′ < u′, so a
valid lookup of v = (v,u) at epoch i2 is a break in invariant. We build B to output the set of invariant and history proofs from
epoch i1 to epoch i2 and provide the lookup proof at i1 for v ′ output by A at game end and the lookup proof at i2 provided by A
to Monitor1 at i2 for v .

Lemma 4. For any adversary A against the checkpoint auditing eventual detection of AHD, we give adversary B such that

Adv
ckpt
AHD,Φapp,A(λ)≤Advinv

AHD,Φapp,B(λ) .

We immediately have the above lemma since the append-only invariant, like the versioned invariant, also ensures that no value
can be reproduced once changed.

H An RSA Authenticated Dictionary with Append-Only Invariant Proofs

The main body of the paper focuses on the versioned invariant for ADs, and we propose a versioned invariant proof for the KVaC
RSA AD construction in Appendix D. However, some applications require the stronger append-only invariant to be maintained
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for mapped values in an AD. Recall, in the append-only invariant, values of an AD are parsed as lists of values L= [vj ]
ℓ
j . It is

formalized as Φapp in Appendix C.
Here, we propose an extension of KVaC for which we can construct invariant proofs for the append-only invariant; we refer to

this construction as AO-KVaC. The commitment structure is shown below:

C←
(
g
(
∏n

i H(ki)
ℓi)·

(∏n
i

∏ℓi
j

H(ki ∥ j)
)
·
(∑n

i

∑ℓi
j

vi,j/H(ki ∥ j)
)
, g

(
∏n

i H(ki)
ℓi)·

(∏n
i

∏ℓi
j

H(ki ∥ j)
))

.

Intuitively, the commitment is made up of (1) a counter dictionary to track the length ℓ of the append-only list for key k and
(2) an insert-only key-value dictionary, much like KVaC, to store the current and previous values for each key. The counter
dictionary is represented by accumulating z = H(k) repeatedly as zℓ. The insert-only key-value dictionary is represented by a
KVaC in which inserted elements are not allowed to be updated, i.e., only elements at version number 1 are valid. The value v for
key k is appended to position j of k’s append-only list by inserting v at “key” k ∥ j using zj = H(k ∥ j). The counter dictionary
is also incremented for key k whenever a value is inserted. The full construction is given in Figure 18.

We argue security below, but first provide some comments on the construction and opportunities for future work. First, as
presented in Figure 18, the lookup proof for a list consists of the lookup proofs of each index of the list. It may be possible to
aggregate these proofs into a single proof of smaller size and verification time using existing aggregation techniques [AR20,
TXN20].

Second, in some cases, it may be desirable to open just a single index of the list, e.g., if it is more efficient to do so than
opening the entire list. We provide algorithms for doing so, but we do not formalize security for their individual use, and indeed,
there exists some subtlety. In AO-KVaC, it is possible for a specific index of a list to be opened validly, but for other indices of
the list to be invalid, e.g., if a value has not been set yet (version number is 0) or if a value has been updated past version number
1. When providing an index opening proof, you might want that verification will fail if the full list is not valid. To achieve this
property, the index opening proof would need to be augmented with another proof that verifies completeness of the list. We
provide such a proof below in which the prover proves that the counter dictionary includes exactly ℓ zi values (proving the
length of the list) and exactly one zi,j value for each j ∈ [1, ℓ] (proving version number is 1 for all indices). Unfortunately, such a
completeness proof is of verification cost linear in the size of the list ℓ. We leave to future work the problem of investigating
append-only constructions with efficient index opening proofs.

AO-KVaC.ProveComplete
([

(ki,Li = [vi,j ]
ℓi
j )

]n
i
, im

)
[zi]

n
i ← [H(ki)]

n
i[

[zi,j ]
ℓi
j

]n
i
←

[
[H(ki ∥ j)]ℓij

]n
i

V ←
(⋃n

i̸=im

⋃ℓi
j {(i, j)}

)
π′← g

(∏n
i̸=im

z
ℓi
i

)
·
(∏

(i,j)∈V zi,j

)
(a,b)← EEA

((∏n
i ̸=im

z
ℓi
i

)
·
(∏

(i,j)∈V zi,j

)
,zim

∏ℓim
j zim,j

)
π← (π′,(gb,a), ℓim )

Return π

AO-KVaC.VerComplete(C = (C1,C2),k,π = (π′,(B,a), ℓ))

z← H(k) ; [zj ]
ℓ
j ← [H(k ∥ j)]ℓj

Return
∧ (π′)z

ℓ·
∏ℓ

j zj = C2

(π′)aBz·
∏ℓ

j zj = g



We provide proof sketches below for the AD security of AO-KVaC, i.e., that it satisifies strong key binding and invariant
update soundness with respect to Φapp.

Theorem 11. For any adversaryA against the strong key binding of AO-KVaC augmented with proof of update from initialization,
we give adversaries B and C such that

Advbind
AO-KVaC,A(λ)≤Adv

strong-rsa
GGen,B (λ)+Advsound

BBF,C,X(λ) ,

where GGen is the group generation algorithm for the RSA quotient group used in AO-KVaC and X is the knowledge extractor
for BBF [BBF19].

Proof sketch. The proof follows closely to that of Theorem 2. Using extractor X for BBF, we extract values (α,β) from the
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update proof of d from the initial digest (1,g), giving us: d = C = (gβ ,gα). We then proceed by considering the following two
winning conditions; in each case, a winning adversary can break strong RSA.
(1) ℓA ̸= ℓB

(2) ∃j, vA,j ̸= vB,j

Case 1: ℓA ̸= ℓB

Wlog take any verifying index j < ℓA < ℓB . From the verification equations of πA,j , we have that:

π
zℓA ·zj
A,2 = C2 = gα, π

aA
A,2B

z·zj
A = g .

Thus, by Lemma 3, we know that zℓ ·zj |α. Similarly, from the verification equations of πB,j , we have that:

π
zℓB ·zj
B,2 = C2 = gα, π

aB
B,2B

z·zj
B = g .

Again, by Lemma 3, we have that gcd(α/zℓB · zj ,z · zj) = 1. However, this is a contradiction. Wlog say ℓA > ℓB , then since
zℓA ·zj |α, it cannot be that gcd(α/zℓB ·zj ,z ·zj) = 1.

Case 2: ∃j, vA,j ̸= vB,j

The second case follows from (Case 2) of Theorem 2 setting uA = uB = 1.

Theorem 12. For any adversary A against the append-only property of AO-KVaC, we give adversaries B and C such that

Advinv
AO-KVaC,Φapp,A(λ)≤Adv

strong-rsa
GGen,B (λ)+Advsound

BBF,C,X(λ) ,

where GGen is the group generation algorithm for the RSA quotient group used in AO-KVaC and X is the knowledge extractor
for BBF [BBF19].

Proof sketch. The proof proceeds similarly to that of Theorem 1 for version-only security. Consider the two winning conditions:
(1) ℓA > ℓB

(2) ∃j ≤ ℓA, vA,j ̸= vB,j

Case 1: ℓA > ℓB

This case follows analogously to (Case 1) of the proof of Theorem 1 using the same approach as (Case 1) of Theorem 11 of
selecting a verifying proof for any verifying index j.

Case 2: ∃j, vA,j ̸= vB,j

This case follows analogously to (Case 2) of the proof of Theorem 1 setting uA = uB = 1.

I AHDs from Groth16 SNARK Aggregation

I.1 Groth16 SNARK Aggregation

Here we present protocols for aggregating N Groth16 SNARKs [Gro16]. These protocols are simplified, more optimized versions
of the related aggregation protocols presented in [BMM+21], since here we focus on the case where the SNARKs are over the
same relation and setup.

Bilinear pairing groups. We will make use of the following notation for bilinear pairing groups. (1) Groups G1,G2,GT are cyclic
groups of prime order p. (2) Group element g is a generator of G1, h is a generator of G2. (3) Pairing function e :G1×G2→GT

is a computable map with the following properties: Bilinearity: ∀ u ∈ G1, v ∈ G2, and a,b ∈ Z, e(ua,vb) = e(u,v)ab, and
Non-degeneracy: e(g,h) ̸= 1. We assume an efficient setup algorithm that on input security parameter λ, generates a bilinear
group, (p,G1,G2,GT ,g,h,e)←G(1λ), where |p|= λ.

Inner product arguments. We will make use of the inner product arguments TIPP and MIPPk for the following relations; we
refer the reader to [BMM+21] for details on their construction:

RTIPP =


 gβ ∈G1, h

α ∈G2, T,U,Z ∈GT , γ ∈ Zp ;

[w]i =
[
gα

2i
]m−1

i=0
, [Ai]

m−1
i=0 ∈Gm

1 , [v]i =
[
hβ2i

]m−1

i=0
, [Bi]

m−1
i=0 ∈Gm

2 , [r]i = [γ2i]m−1
i=0 ∈ Zm

p

 :

T =
∏m−1

i=0 e(Ai,vi) ∧ U =
∏m−1

i=0 e(wi,Bi) ∧ Z =
∏m−1

i=0 e(A
ri
i ,Bi)

 ,
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AO-KVaC.Setup(λ)

(a,b,G)←$GGen(λ)

g←$G
Return (a,b,G,g)

AO-KVaC.Init()

Return (1,g)

AO-KVaC.Commit
([

(ki,Li = [vi,j ]
ℓi
j )

]n
i

)
[zi]

n
i ← [H(ki)]

n
i[

[zi,j ]
ℓi
j

]n
i
←

[
[H(ki ∥ j)]ℓij

]n
i

V ←
⋃n

i

⋃ℓi
j {(i, j)}

C1← g

(∏n
i z

ℓi
i

)
·
∑

(i,j)∈V

(
vi,j ·

∏
(î,ĵ)∈V \{(i,j)} z

î,ĵ

)
C2← g

(∏n
i z

ℓi
i

)
·
(∏

(i,j)∈V zi,j

)
Return (C1,C2)

AO-KVaC.Append(C,(k,v,j))

z← H(k) ; zj ← H(k ∥ j)
(C1,C2)← C

C′← (C
z·zj
1 Cz·v

2 ,C
z·zj
2 )

Return C′

AO-KVaC.BatchAppend(C, [(ki,vi, ji)]
n
i ))

[zi]i← [H(k)]ni ; [zi,j ]
n
i ← [H(ki ∥ ji)]ni

(C1,C2)← C

Z←
∏

i zizi,j

∆←
∑

i

(
vizi

∏
ι ̸=i zιzι,j

)
C′← (CZ

1 C∆
2 ,CZ

2 )

Return C′

AO-KVaC.ProveAppend(C,C′,(Z,∆))

(C1,C2)← C ; (C′
1,C

′
2)← C′

π← BBF.Prove((Z,∆),(C1,C2,C′
1,C

′
2))

Return π

AO-KVaC.VerAppend(C,C′,π)

(C1,C2)← C ; (C′
1,C

′
2)← C′

Return BBF.Ver((C1,C2,C′
1,C

′
2),π)

AO-KVaC.ProveIndexMem
([

(ki,Li = [vi,j ]
ℓi
j )

]n
i
, im, jm

)
[zi]

n
i ← [H(ki)]

n
i[

[zi,j ]
ℓi
j

]n
i
←

[
[H(ki ∥ j)]ℓij

]n
i

V ←
(⋃n

i

⋃ℓi
j {(i, j)}

)
\{(im, jm)}

π1← g

(∏n
i z

ℓi
i

)
·
∑

(i,j)∈V

(
vi,j ·

∏
(î,ĵ)∈V \{(i,j)} z

î,ĵ

)
π2← g

(∏n
i̸=im

z
ℓi
i

)
·
(∏

(i,j)∈V zi,j

)
(a,b)← EEA

((∏n
i ̸=î

z
ℓi
i

)
·
(∏

(i,j)∈V zi,j

)
,zimzim,jm

)
π← ((π1,π2),(gb,a), ℓim )

Return π

AO-KVaC.VerIndexMem(C,(k,v,j),π)

z← H(k) ; zj ← H(k ∥ j)
((π1,π2),(B,a), ℓ)← π

(C1,C2)← C

Return
∧


(π1)

zj (π2)v·z
ℓ
= C1

(π2)
zℓ·zj = C2

(π2)aB
z·zj = g

j ≤ ℓ


AO-KVaC.ProveMem

([
(ki,Li = [vi,j ]

ℓi
j )

]n
i
, im

)
[πj ]

ℓi
j ← [AO-KVaC.ProveIndexMem([(ki,Li)], im, j)]

ℓi
j

Return [πj ]
ℓi
j

KVaC.VerMem
(
C,

(
k,L= [vj ]

ℓ
j

)
,π = [πj ]

ℓ̂
j

)
Return ℓ= ℓ̂ ∧

∧ℓ
j AO-KVaC.VerIndexMem(C,(k,vj , j),πj)

AO-KVaC.ProveNonMem
([

(ki,Li = [vi,j ]
ℓi
j )

]n
i
,k′

)
[z]i← [H(k)]i ; z′← H(k′)

(a,b)← EEA(
∏

i z
ui
i ,z′)

Return (a,gb)

KVaC.VerNonMem(C,k′,π)

(a,B)← π

z′← H(k′) ; (C1,C2)← C

Return Ca
2B

z′ = g

Figure 18: Append-only authenticated dictionary based on KVaC [AR20]. The AD Lkup (resp. VerLkup) algorithm combines the prove (resp.
verify) membership and non-membership algorithms.

RMIPP-k =


 gβ ∈G1, T ∈GT , Z ∈G1, γ ∈ Zp ;

[Ai]
m−1
i=0 ∈Gm

1 , [v]i =
[
hβ2i

]m−1

i=0
, [b]i = [γi]m−1

i=0 ∈ Zm
p

 :

T =
∏m−1

i=0 e(Ai,vi) ∧ Z =
∏m−1

i=0 A
bi
i

 .

KZG polynomial commitments. The KZG polynomial commitment scheme [KZG10] commits to polynomials of some max
degree n. For polynomial f(X) =

∑n−1
i=0 aiX

i where coefficient vector a = [ai]
n−1
i=0 , the commitment is computed with an

trapdoor commitment key ck = [gα
i
]n−1
i=0 as KZG.Commit(ck,a) =

∏
i(cki)

ai .
To prove that y= f(x) at a point x, KZG uses the polynomial remainder theorem which says f(x) = y⇔∃q(X) : f(X)−y=
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q(X)(X−x). The proof is just a KZG commitment to the quotient polynomial q(X) where if q(X) has coefficients b= [bi]i,
then KZG.Open(ck,a,x) =

∏
i(cki)

bi . The verifier key consists of vk = hα, and the verifier runs KZG.Ver(hα,C,W,x,y) for
commitment C and opening W and checks that e(CW x/gy,h) = e(W,hα).

Groth16 SNARK. We recall some relevant notation for the structure and verification of Groth16 [Gro16] SNARKS. The
verifier’s verification key is as follows:

vkG16 =

(
hγ ,hδ,e(gα,hβ),

[
Sj = g(β·uj(τ)+α·vj(τ)−wj(τ))/γ

]ℓ−1

j=0

)
,

where α,β,γ,δ,τ ∈ Zp are secret values and [uj(X),vj(X),wj(X)]
ℓ−1
j=0 are public polynomials that define a circuit relation

with a statement of ℓ elements of Zp. A proof consists of three group elements, π = (A,B,C) ∈G1×G2×G1 and is verified
with a statement [xi]

ℓ−1
i=0 by checking the following pairing product equation:

e(A,B)
?
= e(gα,hβ) ·e

ℓ−1∏
j=0

S
xj
j ,hγ

 ·e(C,hδ) .

Aggregation. [BMM+21] describe how to aggregate the verification of a vector of proofs [πi = (Ai,Bi,Ci)]
n−1
i=0 for statements[

[xi,j ]
n−1
i=0

]ℓ−1

j=0
into a single pairing product equation by combining them with a random linear combination. More specifically,

the verifier samples a random r←$Zp and then checks:

n−1∏
i=0

e
(
(Ai)

ri ,Bi

)
?
= e
(
gα,hβ

)∑n−1
i=0

ri ·e

ℓ−1∏
j=0

S
∑n−1

i=0
xi,j ·ri

j ,hγ

 ·e(n−1∏
i=0

(Ci)
ri ,hδ

)
.

We present the details of an aggregation proof that proves that this check succeeds in Figure 19; it is for the following relation:

RG16-Aggr =

{(
vkG16,

[
[xi,j ]

ℓ−1
j=0

]n−1

i=0
; [πi]

n−1
i=0

)
:

n−1∧
i=0

G16.Ver(vk, [xi,j ]
ℓ−1
j=0,πi)

}
.

Aggregation with sequential statements. Verification of the general aggregation protocol from Figure 19 is O(ℓ ·n) time since
the verifier must compute all of the “aggregate” Zj values from the n statements [xi]i. Here we present a modified aggregation
protocol that allows for O(ℓ+logn) verification time for statements that follow a specific “sequential” structure.

The sequential structure that we require is that each statement xi is made up of two parts xi = (ai, bi). The first part is shared
as the second part of the previous statement, xi−1 = (ai−1, bi−1) where bi−1 = ai, and the second part is shared as the first
part of the following statement, xi+1 = (ai+1, bi+1) where ai+1 = bi. In other words, there exists a sequence of values [ai]ni=0

such that the statements are of the form [xi = (ai,ai+1)]
n−1
i=0 . Here, each ai = [ai,j ]

ℓ−1
j=0 is a vector of ℓ field elements, and the

SNARKs are over statements of 2ℓ elements.
In this case, we can use the structure of the statements to efficiently prove knowledge of accepting intermediate statements

without requiring the verifier to themselves check linear statements. We provide an aggregation protocol for the following relation
with details given in Figure 20:

RG16-Aggr-Seq =

{(
vkG16, [a0,j ]

ℓ−1
j=0, [an,j ]

ℓ−1
j=0 ;

[
[ai,j ]

ℓ−1
j=0

]n−1

i=1
, [πi]

n−1
i=0

)
:

n−1∧
i=0

G16.Ver(vkG16,([xi = ([ai,j ], [ai+1,j ])]
ℓ−1
j=0,πi)

}
.

I.2 AHDs from Amortized Aggregation

Using the above aggregation technique, we propose another generic transform to building AHDs which we will refer to as
AHDAggr. Similar to AHDIVC, the AHDAggr transform will create a SNARK proof at each epoch that the new digest preserves the
invariant from the previous digest, however it does not include recursive verification of validity of the previous digest. Instead of
using recursion to prove validity of the full history of digests, in AHDAggr, the validity of the full history of previous digests
is attested to by aggregating all of the per-epoch SNARKs. We observe that the statements to aggregate satisfy the sequential
property from above, which admits a succinct verifier.
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G16-Aggr.Setup(n)

1. Generate commitment keys: α,β←$Zp, w←
[
gα

2i
]n−1

i=0
, v←

[
hβ2i

]n−1

i=0
.

2. Generate shared verification key and proving key for TIPP and MIPPk:(
vk = (gβ ,hα),pk = (vk,

[
gα

i
]2n−2

i=0
,
[
hβi

]2n−2

i=0
)

)
← TIPP.Setup(n,(α,β)).

3. Return (vk,pk). (Notice w,v included in pk)

G16-Aggr.Aggregate(pk, [(xi,πi = (Ai,Bi,Ci))]
n−1
i=0 )

1. Compute (π,r)← AggregateHelper(pk, [xi]
n−1
i=0 , [πi]

n−1
i=0 ), and return π.

G16-Aggr.Ver(vk,vkG16,
[
xi = [xi,j ]

ℓ−1
j=0

]n−1

i=0
,π)

1. Parse
(
hγ ,hδ,e(gα,hβ), [Sj ]

ℓ−1
j=0

)
← vkG16 and ((CA,CB ,CC),(ZAB ,ZC),(πAB ,πC))← π.

2. Compute r← H([xi]
n−1
i=0 ,CA,CB ,CC) and [Zj ]j ←

[
S
∑n−1

i=0 xi,j ·ri

j

]ℓ−1

j=0

.

3. Return VerifyHelper(vk,vkG16,π, [Zj ]
ℓ−1
j=0, r).

AggregateHelper(pk,X, [πi = (Ai,Bi,Ci)]
n−1
i=0 )

1. Parse w,v and gβ ,hα from pk.

2. Commit to proof elements: CA =
∏n−1

i=0 e(Ai,vi), CB =
∏n−1

i=0 e(wi,Bi), CC =
∏n−1

i=0 e(Ci,vi).

3. Compute challenge r← H(X,CA,CB ,CC).

4. Compute inner products ZAB ←
∏n−1

i=0 e((Ai)
ri ,Bi), ZC ←

∏n−1
i=0 (Ci)

ri .

5. Prove using TIPP and MIPPk correct computation of inner products with respect to commitments:
πAB ← TIPP.Prove

(
pk,(gβ ,hα,CA,CB ,ZAB , r),(w, [Ai]i,v, [Bi]i, [r

i]i)
)

,
πC ←MIPPk.Prove

(
pk,(gβ ,CC ,ZC , r),(v, [Ci]i, [r

i]i)
)

.

6. Return π← ((CA,CB ,CC),(ZAB ,ZC),(πAB ,πC)).

VerifyHelper(vk,vkG16,π, [Zj ]
ℓ−1
j=0, r)

1. Parse
(
hγ ,hδ,e(gα,hβ), [Sj ]

ℓ−1
j=0

)
← vkG16 and ((CA,CB ,CC),(ZAB ,ZC),(πAB ,πC))← π.

2. Check inner product proofs:

TIPP.Ver
(
vk,(gβ ,hα,CA,CB ,ZAB , r),πAB

) ?
= 1 ,

MIPPk.Ver
(
pk,(gβ ,CC ,ZC , r),πC

) ?
= 1 .

3. Check aggregate pairing product equation:

ZAB
?
= e(gα,hβ)

rn−1
r−1 ·e(

∏ℓ−1
j=0Zj ,h

γ) ·e(ZC ,hδ) .

4. Return 1 if above checks pass otherwise 0.

Figure 19: Aggregation of Groth16 [Gro16] SNARKs.
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G16-Aggr-Seq.Setup(n)

1. Generate (vkG16-Aggr,pkG16-Aggr)← G16-Aggr.Setup(n) and (vkKZG,ckKZG)← KZG.Setup(n−1).

2. Return (vk = (vkG16-Aggr, vkKZG),pk = (pkG16-Aggr,ckKZG)).

G16-Aggr-Seq.Aggregate(pk,
[
[ai,j ]

ℓ−1
j=0

]n
i=0

, [(πi = (Ai,Bi,Ci))]
n−1
i=0 )

1. Commit to statements:
[
CS,j

]
j
←

[
KZG.Commit(ckKZG, [ai,j ]

n−1
i=1 )

]ℓ−1

j=0
.

2. Compute (πAggr, r)← AggregateHelper(pkG16-Aggr,(a0,an,
[
CS,j

]ℓ−1

j=0
), [πi]

n−1
i=0 ).

3. Compute statement scalar inner products (exponents of Sj ): [zj ]j ←
[∑n−1

i=1 ai,j · ri
]ℓ−1

j=0
.

4. Prove correct computation of inner product by opening KZG commitment:

[Wj ]j ←
[
KZG.Open(ckKZG, [ai,j ]

n−1
i=1 , r)

]ℓ−1

j=0
.

5. Return π← (πAggr,
[
(CS,j ,Wj ,zj)

]ℓ−1

j=0
).

G16-Aggr-Seq.Ver(vk,vkG16, [a0,j ]
ℓ−1
j=0, [an,j ]

ℓ−1
j=0,π)

1. Parse
(
hγ ,hδ,e(gα,hβ), [Sj ]

ℓ−1
j=0

)
← vkG16, (πAggr,

[
(CS,j ,Wj ,zj)

]ℓ−1

j=0
)← π, and

((CA,CB ,CC),(ZAB ,ZC),(πAB ,πC))← πAggr.

2. Compute challenge r← H((a0,an,
[
CS,j

]ℓ−1

j=0
),CA,CB ,CC).

3. Compute statement elements taking advantage of sequential property:

[Zj ]
ℓ−1
j=0←

[
S
a0,j+zj ·r
j

]ℓ−1

j=0
, [Zj ]

2ℓ−1
j=ℓ ←

[
S
zj+an,j ·rn−1

j

]ℓ−1

j=0

.

4. Check VerifyHelper(vkG16-Aggr,vkG16,πAggr, [Zj ]
2ℓ−1
j=0 , r)

?
= 1.

5. Check KZG proofs:
[
KZG.Ver(vkKZG,CS,j ,Wj , r,zj)

]ℓ−1

j=0

?
= [1]j .

6. Return 1 if above checks pass otherwise 0.

Figure 20: Aggregation of Groth16 [Gro16] SNARKs with sequential statements.
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Producing the aggregated proof is still linear in the number of proofs being aggregated, so it will not be feasible to produce an
aggregate proof for every possible range. Instead, as in AHDAmtz, aggregate proofs will only be computed for compact subranges.
Again, this can be done in an amortized-efficient time of O(lgN) work per epoch (for N epochs). We provide pseudocode
details for the protocol in Figure 21.
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Protocol: AHDAggr[AD,VC]

Setup: The public parameters of the scheme consist of the public parameters of its underlying components and Groth16 proving
and aggregation protocols: pp← (ppAD,ppVC,ppG16,ppG16-Aggr-Seq).

Init: The dictionary is initialized with an empty authenticated dictionary and empty vector commitment, returning an initial
digest d0 = (dAD,0,dVC,0). It stores the following as its current state sti:

– LAD = [dAD,ℓ]
i
ℓ: digest of the AD at each epoch.

– stVC,i: state of the VC representing list of previous epoch digests.

– LG16 = [πG16,ℓ]
i
ℓ: Groth16 invariant proof for each epoch.

– TΦ: table of precomputed invariant proofs for all compact subranges.

Upd([kj ,vj ]j : sti):

(1) The AD is updated with the new key-value mappings:
(dAD,i+1,πΦ,stAD,i+1)← AD.Upd([kj ,vj ]j : stAD,i).

(2) The new AD digest is appended to the history commitment: (dVC,i+1,stVC,i+1)← Upd([dAD,i+1] : stVC,i).

(3) A new Groth16 proof πG16,i is computed attesting to invariant preservation for new digest dAD,i+1 with respect to dAD,i,
proving the following relation:

RG16 =
{ (

(dAD,i,dAD,i+1), πΦ

)
: AD.VerUpd(dAD,i,dAD,i+1,πΦ)

}
.

(4) Compute and store an aggregated invariant proof for the Groth16 proofs of every compact subrange of epochs that i+1

closes, i.e., [Lj ]
m
j such that there exists (aj , bj) where Lj = aj ·2bj and Lj +2bj = i+1:

TΦ[Lj , i+1]← G16-Aggr-Seq.Aggregate(pkG16-Aggr-Seq,
[
dAD,ℓ

]i+1

ℓ=Lj
, [πℓ]

i
ℓ=Lj

) .

(5) The new digest di+1 = (dAD,i+1,dV C,i+1) is returned.

ProveInv([cj ]mj : sti): For each checkpoint pair (cj , cj+1) for 1≤ j < m compute πΦ,j then return πΦ←
[
πΦ,j

]m
j

:

(1) Compute the nj compact subranges that span (cj , cj+1]:[
(Lj,ℓ,Rj,ℓ)

]nj

ℓ ← CompactR((cj , cj+1)) .

(2) Construct an invariant proof for (cj , cj+1) with the precomputed aggregated invariant proofs of each compact subrange:

πΦ,j =
[
TΦ[Lj,ℓ,Rj,ℓ],dLj,ℓ

]nj

ℓ
.

VerInv(di, [(cj ,dcj )]
m
j ,πΦ =

[[
(πΦ,j,ℓ),dAD,j,ℓ)

]nj

ℓ

]m
j
): For each checkpoint pair (cj , cj+1) for 1≤ j < m:

(1) Verify compact range endpoints: dcj = dΦ,j,1 and dcj+1 = dΦ,j,nj
.

(2) Verify each compact subrange invariant proof:[
G16-Aggr-Seq.Ver(vkG16-Aggr-Seq,vkG16,dΦ,j,ℓ,dΦ,j,ℓ+1,πΦ,j,ℓ)

]nj−1

ℓ .

Figure 21: Generic construction of an AHD from an AD using amortized SNARK aggregation of invariant proofs over compact subranges.
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Figure 22: Server epoch update costs including VeRSA-Aggr. The key update throughput is computed as the number of key updates per epoch
divided by the epoch latency.

The aggregation protocol and, as a result, AHDAggr, are specific to the Groth16 SNARK [Gro16] which requires a trusted
setup, and thus may not be suitable for all deployment scenarios. However, when appropriate, it results in a generic transform
that does not rely on SNARK recursion, thus avoiding the expensive cycles of pairing-friendly curves [BCTV14] used by many
SNARK recursion approaches. We implemented the aggregation protocol and evaluated it using KVaC as the underlying AD; we
term the resulting registry VeRSA-Aggr. Figure 22 plots the update throughput of VeRSA-Aggr compared to our two alternate
proposed constructions VeRSA-IVC and VeRSA-Amtz. We find that the savings of avoiding recursion-friendly cycles of curves
translates to an approximately 2.5× throughput gain in VeRSA-Aggr over VeRSA-IVC for shorter latency — the maximum
throughput in the limit is the same across approaches.

Amortized prover-efficient IVC. This novel combination of SNARK aggregation with amortization also admits a new approach
to IVC, which may be of independent interest. For a computation of depth N , our approach is verifier-efficient with proofs and
verifier time of size O(log2N). It is also amortized-prover-efficient where the prover does amortized O(|C|+logN) work for
each step of computation, where |C| is the size of the computation circuit, but requires O(N) storage long term to store the
individual SNARKs for each step.
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