
The Availability-Accountability Dilemma
and its Resolution via Accountability Gadgets

Joachim Neu

jneu@stanford.edu

Ertem Nusret Tas

nusret@stanford.edu

David Tse

dntse@stanford.edu

ABSTRACT
Byzantine fault tolerant (BFT) consensus protocols are tradition-

ally developed to support reliable distributed computing. For ap-

plications where the protocol participants are economic agents,

recent works highlighted the importance of accountability: the
ability to identify participants who provably violate the protocol.

We propose to evaluate the security of an accountable protocol

in terms of its liveness resilience, the minimum number of Byzan-

tine nodes when liveness is violated, and its accountable safety

resilience, the minimum number of accountable Byzantine nodes

when safety is violated. We characterize the optimal tradeoffs be-

tween these two resiliences in different network environments, and

identify an availability-accountability dilemma: in an environment

with dynamic participation, no protocol can simultaneously be

accountably-safe and live. We provide a resolution to this dilemma

by constructing an optimally-resilient accountability gadget to

checkpoint a longest chain protocol, such that the full ledger is live

under dynamic participation and the checkpointed prefix ledger is

accountable. Our accountability gadget construction is black-box

and can use any BFT protocol which is accountable under static

participation. Using HotStuff as the black box, we implemented

our construction as a protocol for the Ethereum 2.0 beacon chain,

and our Internet-scale experiments with more than 4000 nodes

show that the protocol can achieve the required scalability and has

better latency than the current solution Gasper, while having the

advantage of being provably secure. To contrast, we demonstrate a

new attack on Gasper.

1 INTRODUCTION
1.1 Accountability
Safety and liveness are the two fundamental security properties of

consensus protocols. A protocol run by a distributed set of nodes is

safe if the ledgers generated by the protocol are consistent across

nodes and across time. It is live if all honest transactions eventually

enter into the ledger.

Traditionally, consensus protocols are developed for fault-tolerant

distributed computing, where a set of distributed computing devices

aims to emulate a reliable centralized computer. In such a context,

the security of consensus protocols is naturally measured by its

resilience: the minimum number of Byzantine protocol-violating

nodes needed to cause a loss of safety or liveness. In modern ap-

plications such as cryptocurrencies and decentralized applications

platforms, consensus nodes are no longer just disinterested com-

puting devices but are agents acting based on economic and other

incentives. To provide the proper incentives to encourage nodes

to follow the protocol, it is important that they can be held ac-

countable for their protocol-violating behavior in a provable way.

The authors contributed equally and are listed alphabetically.

This point of view is advocated by Buterin and Griffith [6] in the

context of their effort to add accountability (among other things)

to Ethereum’s Proof-of-Work (PoW) longest chain protocol, and

is also central to the design of Gasper [7], the protocol running

Ethereum 2.0’s Proof-of-Stake (PoS) beacon chain. In these pro-

tocols, accountability is used to incentivize proper behavior by

slashing of the stake of protocol-violating agents. Other protocols

that are designed to provide accountability include Polygraph [13]

and GRANDPA [40]. A recent comprehensive work [25] shows that

accountability can also be added on top of some but not all existing

Byzantine fault tolerant (BFT) protocols.

Given the importance of accountability, a key question is how

the traditional definition of consensus protocol security needs to

be modified to reflect its accountability?

1.2 Accountable Security
Defining an appropriate notion of accountable security of a protocol
is the first contribution of this work.

As a starting point, we observe there is an inherent asymmetry

between safety and liveness as far as accountability is concerned.

While safety violations such as due to double-voting can be caught

in a provable way, liveness violations such as transaction censor-

ing cannot be. Indeed, the goal in [6] is to provide accountable

safety. Hence, to set the stage to incorporate accountability, it is

helpful to split the single metric of resilience into two individual

metrics: safety resilience and liveness resilience. Safety resilience is

the minimum number of Byzantine faults to cause a safety violation.

Liveness resilience is the minimum number of Byzantine faults to

cause a liveness violation. Classic resilience is simply the minimum

of the two.

To capture accountable security, the notion of liveness resilience

remains the same, but safety resilience should be strengthened to

a notion of accountable safety resilience: the minimum number of

faults that can be found accountablewhen there is a safety violation.

More precisely, a protocol has an accountable safety resilience of

𝑓 means that in the case of a safety violation, at least 𝑓 nodes

can be held accountable in a provable manner. By definition, the

accountable safety resilience of a protocol cannot be larger than its

safety resilience.

Splitting the traditional notion of resilience into safety and live-

ness resiliences, although usually not explicitly done, is implicit in

many previous works in the BFT literature. Indeed, one can think

of the design objective of a consensus protocol as achieving a good

tradeoff between safety and liveness resiliences. For example, in-

creasing the threshold of the quorum, a central concept in many

BFT protocols, increases the protocol’s safety resilience while de-

creases its liveness resilience. This separate treatment of safety and

liveness resiliences is recently formalized in [29] through the no-

tion of alive-but-corrupt faults. Indeed, results in the literature on

1

Joachim Neu, Ertem Nusret Tas, and David Tse

optimal resilience achievable in a given network environment (syn-

chronous, partially synchronous, etc.) can be refined into results

on the optimal tradeoffs achievable between safety and liveness

resiliences.

In applications with an economic context, treating safety and

liveness resiliences separately makes sense, because the mecha-

nisms of attacking safety are different from the mechanisms of

attacking liveness and therefore the costs to the attacker are also

different. Trading off the two resiliences allows the protocol de-

signer to maximize the cost to the attacker. In this light, shifting

the attention from safety resilience to accountable safety resilience

makes sense under the assumption that the dominant cost to the

attacker is the cost from being punished, from slashing of the stake

for example.

A natural question then is: given a network environment, what is

the optimal tradeoff achievable between accountable safety resilience
and liveness resilience by any protocol?

1.3 Optimal Accountable-Safety vs Liveness
Tradeoffs

Our second contribution is the characterization of the optimal trade-

offs between accountable safety resilience and liveness resilience in

three network environments: a) synchronous, where all nodes are
online and all messages are delivered between honest nodes within

a known delay bound; b) partially synchronous, where all nodes
are online but messages suffer arbitrary delays before a Global

Stabilization Time (to model network partition), after which the

network becomes synchronous; c) dynamic participation, where
the number of nodes online is varying but messages delivered be-

tween online honest nodes have a known delay bound. The results

are shown in Figure 1 (the lower part) and compared to the optimal

tradeoff between (traditional) safety and liveness resiliences (the

upper part).

The point in each of the optimal tradeoff regions which max-

imizes the traditional single resilience metric is the point on the

boundary where the safety and liveness resiliences are the same.

In general, one may want to operate at a different point on the

boundary, reflecting the different costs of attacking safety versus

liveness.

Several interesting conclusions regarding Figure 1:

• As is well known, stronger security guarantees can be pro-

vided in the synchronous environment than in the partially

synchronous environment. This is reflected in an optimal trade-

off between (traditional) safety and liveness resiliences which

is better in the synchronous environment than in the partially

synchronous environment. In contrast, the optimal tradeoff be-

tween accountable safety resilience and liveness resilience is the
same in the two environments. Thus the synchrony assump-

tion does not improve accountable security. This is related to

an impossibility result in [25], which we discuss in Section 1.6.

• Many protocols achieve the optimal tradeoffs in synchronous

and partially synchronous environments. For example, Poly-

graph [13], HotStuff [41] and Streamlet [10] achieve the optimal

tradeoff in the partially synchronous environment. Sync Hot-

Stuff [2] and Sync Streamlet [10] achieve the optimal tradeoff

in the synchronous environment (see Appendix E). In fact, in

Synchronous

(i)

𝑓
l

𝑓s

𝑛/2 𝑛

𝑛
2

𝑛 (
𝑛
2
, 𝑛
2

)

(iv)

𝑓
l

𝑓a

𝑛/2 𝑛

𝑛
2

𝑛

Partially

Synchronous

(ii)

𝑓
l

𝑓s

𝑛/2 𝑛

𝑛
2

𝑛

(
𝑛
3
, 𝑛
3

)

(v)

𝑓
l

𝑓a

𝑛/2 𝑛

𝑛
2

𝑛

Dynamic

Participation

(iii)

𝛽
l

𝛽s

1/2 1

1

2

1 (
1

2
, 1
2

)

(vi)

𝛽
l

𝛽a

1/2 1

1

2

1

Figure 1: Above: optimal tradeoffs between (traditional)
safety and liveness resilience in three environments. Below:
optimal tradeoffs between accountable safety resilience and
liveness resiliences. In each environment, the optimal trade-
off is described by a region of feasible resilience points, each
point achievable by some protocol; points outside the re-
gion cannot be achieved by any protocol. The classic sin-
gle resilience metric is maximized at the point on the re-
gion boundary where the two resiliences are the same. In
the synchronous and partially synchronous environments,
resilences are expressed in terms of the number of Byzan-
tine nodes; in the dynamic participation environment, re-
siliences are expressed in terms of the number of Byzantine
nodes as a fraction of the total online nodes.

all these cases, the same protocol simultaneously maximizes

the safety resilience and the accountable safety resilience for a

given liveness resilience. That means one can simultaneously

have optimal accountable security without sacrificing tradi-

tional security.

• In contrast to the synchronous and partially synchronous en-

vironments, no accountability can be supported under dy-

namic participation: the accountable safety resilience is zero

for any positive liveness resilience (Figure 1 (vi)). Protocols like

Ouroboros [16] and SnowWhite [15] can tolerate dynamic par-

ticipation and are safe and live under a resilience of 50%, thus

achieving the optimal point in Figure 1 (iii). But they cannot

be made accountable.

1.4 Availability-Accountability Dilemma
In public permissionless blockchains like Bitcoin and Ethereum, dy-

namic participation is a central feature. In Bitcoin, for example, the

total hash rate varies over many orders of magnitude over the years.

Yet, the blockchains remain continuously available, i.e., live. Our
results say that it is impossible to support accountability for such

dynamically available protocols, i.e., protocols that are live under
dynamic participation. We call this the availability-accountability
dilemma.

2

The Availability-Accountability Dilemma and its Resolution via Accountability Gadgets

The works Casper [6] and Gasper [7] provide some hints on how

to get around this dilemma. One way to interpret these works is that

they aim to design an accountability gadget to provide a checkpoint-
ing mechanism on top of a dynamically available chain, so that the

available chain can continue to grow while the ledger up to the lat-

est checkpoint is accountable. While the availability-accountability

dilemma says that a single ledger cannot be made dynamically avail-

able and accountable at all times, these works can be interpreted

as aiming to generate two ledgers: 1) a full ledger LOG
da
, which

is dynamically available, 2) an accountable ledger LOG
acc

, which

is the checkpointed prefix of the full ledger. Unfortunately these

works have several significant limitations:

• They lack a formulation to specify what security properties

they want to achieve for these two ledgers. In particular, it is

not clear how closely the checkpointed ledger can track the

available ledger.

• Liveness attacks have been discovered for these protocols [31,

33, 33, 35]. (To reinforce this point, in Appendix I we present

a new practical attack which dispenses with the adversarial

network delay employed by earlier attacks.)

1.5 Resolution via Accountability Gadgets
The third contribution of this work is the design and implementa-

tion of an accountability gadget which, when applied to a longest

chain protocol, generates a dynamically available ledger LOG
da

and a checkpointed prefix ledger LOG
acc

with provably optimal

security properties.

Consider a network with a total of 𝑛 permissioned nodes, and

an environment where the network may partition and the nodes

may go online and offline.

(1) (P1: Accountability) For any 𝑓 < 𝑛/2, the accountable ledger
LOG

acc
can provide an accountable safety resilience of𝑛−2𝑓 +2

at all times, and it is live after the partition heals and greater

than 𝑛 − 𝑓 honest nodes come online.

(2) (P2: Dynamic Availability) The available ledger LOG
da

is

guaranteed to be safe after network partition and live at all

times, provided that fewer than 1/2 of the online nodes are

adversarial.

Note that while the checkpointed ledger is by definition always

a prefix of the full available ledger, the above result says that the

checkpointed ledger will catch up with the available ledger when

the network heals and a sufficient number of honest nodes come

online.

The achieved resiliences are optimal. This can be seen by com-

paring this result with Figure 1 (iii) and (v). The checkpointed ledger

LOG
acc

cannot achieve a better tradeoff between accountable safety

resilience and liveness resilience than the tradeoff in (v); it in fact

achieves exactly the same tradeoff. The dynamically available led-

ger LOG
da

cannot achieve a better resilience than the (1/2, 1/2)
point in (iii); the ledger in fact achieves it. Moreover, even if the

network were synchronous at all times, no protocol could have

generated an accountable ledger with better resilience, in light of

Figure 1 (iv). So we are getting partition-tolerance for free, even

though accountability is the goal.

The accountability gadget construction is shown in Figure 2. It

is built on top of any existing longest chain protocol modified to

Accountability gadget

Π
lc Π

bft

LOG
acc

LOG
da

Checkpoint-

respecting

longest

chain

V
o
t
e

g
e
n
e
r
a
t
o
r

A
c
c
o
u
n
t
a
b
l
e

c
o
n
s
e
n
s
u
s

V
o
t
e

i
n
t
e
r
p
r
e
t
e
r

txs V
o
t
e
s

V
o
t
e
s

LOG
bft

Checkpoint decisions

Checkpoint decisions

C
o
n
fi
r
m
e
d

b
l
o
c
k
s

Πacc

Figure 2: We construct an accountability gadget Πacc from
any accountable BFT protocol Π

bft
and apply it to a longest-

chain-type protocol Π
lc
as follows: The fork choice rule of

Π
lc

is modified to respect the latest checkpoint decision.
Blocks confirmed byΠ

lc
are output as available ledger LOG

da
.

They are also the basis on which nodes generate a proposal
and vote for the next checkpoint. To ensure that all nodes
reach the same checkpoint decision, consensus is reached
onwhich votes to count usingΠ

bft
. Checkpoint decisions are

output as accountable ledger LOG
acc

and fed back into the
protocol to ensure consistency of future block production
in Π

lc
and future checkpoints with previous checkpoints.

0 500 1,000 1,500 2,000 2,500
0

100

200

Time [s]

L
e
d
g
e
r
l
e
n
g
t
h
[
b
l
o
c
k
s
]

Accountable prefix ledger Available full ledger

Figure 3: Ledger dynamics of a longest chain protocol outfit-
ted with our accountability gadget based on HotStuff, mea-
sured with 4,100 nodes distributed around the world. The
available full ledger grows steadily. The accountable pre-
fix periodically catches up whenever a new block is check-
pointed. (Here, no attack; for attack, cf. Figure 6.)

respect the checkpoints. That is, new blocks are proposed and the

ledger of confirmed transactions is determined based on the longest

chain among all the chains containing the latest checkpointed block.

This gives the available full ledger LOG
da
. Periodically, nodes vote

on the next checkpoint (following a randomly selected leader’s

proposal). To ensure that when tallying votes all nodes base their

decision for the next checkpoint on the same set of votes, any

accountable BFT protocol designed for a fixed level of participation

can be used (entirely as a black box) to reach consensus on the votes.

The chain up to the latest checkpoint constitutes the accountable

prefix ledger LOG
acc

. Consistency of blocks confirmed by Π
lc
and

future checkpoint proposals with established checkpoints is ensured

throughout.

Since there are many accountable BFT protocols [25], we have

a lot of implementation choices. Due to its maturity and the avail-

3

Joachim Neu, Ertem Nusret Tas, and David Tse

ability of a high quality open-source implementation which we

could employ practically as a black box, we decided to implement a

prototype of our accountability gadget using the HotStuff protocol

[41]. Taking the Ethereum 2.0’s beacon chain as a target appli-

cation and matching its key performance characteristics such as

latency and block size, we performed Internet-scale experiments

to demonstrate that our solution can meet the target specification

with over 4000 participants (see Figure 3). In particular, for the cho-

sen parameterization and even before taking reduction measures,

the peak bandwidth required for a node to participate does not

exceed 1.5MB/s (with a long-term average of 78 KB/s) and hence

is feasible even for many consumer-grade Internet connections. At

the same time, our prototype provides 5× better average latency of

LOG
acc

compared to the instantiation of Gasper currently used for

Ethereum 2’s beacon chain.

1.6 Related Works
1.6.1 Accountability. Accountability in distributed protocols has

been studied in earlier works [23, 24]. [23] designed a system, Peer-

Review, which detects faults. [24] classifies faults into different

types and studies their detectability. Casper [6] focuses on account-

ability and fault detection when there is violation of safety, and led

to the notion of accountable safety resilience we use in this work.

Polygraph [13] is a partially synchronous BFT protocol which is se-

cure when there are less than𝑛/3 adversarial nodes, and when there
is a safety violation, at least 𝑛/3 nodes can be held accountable. In

our formulation, this corresponds to achieving the point (𝑛/3, 𝑛/3)
on Figure 1 (v). [38] builds upon [13] to create a blockchain which

can exclude Byzantine nodes that were found to have provably

violated the protocol.

Many of these previous works focus on studying the accounta-

bility of specific protocols and think of accountability as an add-on

feature in addition to the basic security properties of the protocol.

[25] follows this spirit but broadens the investigation to formulate

a framework to study the accountability of many existing BFT pro-

tocols. More specifically, their framework augments the traditional

resilience metric with accountable safety resilience (which they

call forensic support). The present work is more in the spirit of

[6] where accountability is a central design goal, not just an add-

on feature. To formalize this spirit, we split traditional resilience

into safety and liveness resiliences, upgrade safety resilience to

accountable safety resilience, and formulate accountable security

as a tradeoff between liveness resilience and accountable safety

resilience. Further, we broaden the study to the important dynamic

participation environment, where we discovered the availability-

accountability dilemma. Despite these differences in formulation

and in scope, we are able to adopt the proof of the impossibility

result Theorem B.1 in [25], because at the heart of it, that theorem

is really about the tradeoff between liveness and accountable safety

resiliences, although not stated as such.

1.6.2 Availability-Finality Dilemma and Finality Gadgets. The avail-
ability-finality dilemma [22, 27, 35] states that no protocol can pro-

vide both finality, i.e., safety under network partitions, and availa-

bility, i.e., liveness under dynamic participation. The availability-
accountability dilemma states that no protocol can provide both

accountable safety and liveness under dynamic participation. Al-

though they are different, it turns out that some, but not all, pro-

tocols that resolve the availability-finality dilemma can be used to

resolve the availability-accountability dilemma. The first resolution

of the availability-finality dilemma is the class of snap-and-chat pro-

tocols [35], which combines a longest chain protocol with a partially

synchronous BFT protocol in a black box manner to provide finality.

If the partially synchronous BFT protocol is accountable, it is not

too difficult to show [34] that the resulting snap-and-chat protocol

would also provide a resolution to the availability-accountability

dilemma. On the other hand, checkpointed longest chain [39], an-

other resolution of the availability-finality dilemma, is not account-

able, as shown in Appendix F.

The accountability gadget we designed combines elements from

snap-and-chat protocols and from the checkpointed longest chain.

A strength of snap-and-chat protocols is its black box nature which

gives it a flexibility to provide additional features. A drawback is

that the protocol may reorder the blocks in the longest chain proto-

col to form the final ledger [34]. This means that when a proposer

proposes a block on the longest chain, it cannot predict the ledger

state and check the validity of the transactions by just looking at

the earlier blocks in the longest chain. This lack of predictive valid-
ity opens the protocol to spamming and limits the use of standard

techniques to support light clients and sharding. Checkpointed

longest chain builds upon a line of work called finality gadgets

[6, 7, 18, 40] and overcomes this limitation of snap-and-chat pro-

tocols because the longest chain protocol is modified to respect

the checkpoints. However, checkpointed longest chain’s finality

gadget is not black box but specifically uses Algorand BA [11],

which is not accountable [25]. Our accountability gadget solution

builds on the checkpointed longest chain but, like snap-and-chat

protocols, allows the use of any BFT protocol as a black box. When

an accountable BFT protocol like HotStuff is used, the checkpointed

ledger is guaranteed to be accountable.

1.7 Outline
The remainder of this paper is structured as follows: First, we in-

troduce the notation and model for a formal treatment of the trade-

offs among safety, liveness and accountable safety resiliences in

Section 2. Then, Section 3 presents the proof of the availability-

accountability dilemma and formalizes the tradeoffs visualized in

Figure 1. Section 4 elaborates on the accountability gadgets intro-

duced in Section 1.5 and argues for their security. We discuss de-

tails of a prototype implementation and experimental performance

results in Section 5. Finally, we conclude with a generalization of

accountability gadgets to Proof-of-Work and Proof-of-Space longest

chain protocols in Section 6.

2 MODEL
We first give an overview of the client-server model for state ma-

chine replication (SMR) protocols and introduce the notation that

will be used in subsequent proofs. In the classical SMR formulation,

nodes take inputs called transactions and enable clients to agree on

a single sequence of transactions, called the ledger and denoted by

LOG, that produced the state evolution. For this purpose, nodes

exchange messages, e.g., blocks or votes, and each node 𝑖 records

its view of the protocol by time 𝑡 in an execution transcript T𝑡
𝑖
.

4

The Availability-Accountability Dilemma and its Resolution via Accountability Gadgets

To obtain the ledger at time 𝑡 , clients query the nodes running

the protocol. When a node 𝑖 is queried at time 𝑡 , it produces evidence
w𝑡
𝑖
by applying an evidence generation functionW to its current

transcript: w𝑡
𝑖
≜ W(T𝑡

𝑖
). Upon collecting evidences from some

subset 𝑆 of the nodes, each client applies the confirmation rule C
to this set of evidences to obtain the ledger: LOG ≜ C({w𝑡

𝑖
}𝑖∈𝑆).

Protocols typically require to query a subset 𝑆 containing at least

one honest node.

Environment: We assume that the transactions are input to the

nodes by the environmentZ. There are in total 𝑛 nodes numbered

from 1 thru 𝑛. There exists a public-key infrastructure and each

node is equipped with a unique cryptographic identity. There is a

random oracle, serving as a common source of randomness for the

protocols. Time is slotted and the nodes have synchronized clocks.

Corruption: Adversary A is a probabilistic poly-time algorithm.

Before the protocol execution starts, A gets to corrupt (up to) 𝑓

nodes, then called adversarial nodes. Adversarial nodes surrender
their internal state to the adversary and can deviate from the proto-

col arbitrarily (Byzantine faults) under the adversary’s control. The

remaining (𝑛 − 𝑓) nodes are called honest and follow the protocol

as specified.

Sleeping: To model dynamic participation, we adopt the concept

of sleepiness from [37]. In the setting with dynamic participation,

A chooses, for every time slot and node, whether an honest node is

awake (i.e., online) or asleep (i.e., offline) in that slot.Z then wakes

up or puts nodes to sleep following the schedule determined by

A. An honest node that is awake in a slot executes the protocol

faithfully in that slot. An honest node that is asleep in a slot does

not execute the protocol in that slot, and messages that would have

arrived in that slot are queued and delivered in the first slot in which

the node is awake again. Adversarial nodes are always awake. We

define 𝛽 as the maximum value of the fraction of adversarial nodes

over the total number of awake nodes throughout the execution of

the protocol.

Networking: Nodes can send each other messages, which arrive

with a certain delay controlled by the adversary, subject to con-

straints elaborated below.

Network Environments: Given the definitions above, we provide

three sets of assumptions on the environment Z and the adver-

sary A to model a synchronous network, a partially synchronous

network and a synchronous network with dynamic participation,

respectively. These assumptions are expressed as the (A,Z) tuples:
(As,Zs) formalizes the model of a synchronous network, where

the adversary corrupts 𝑓 nodes, and all of the 𝑛 nodes are awake

throughout the execution. At all times, adversary is required to

deliver all messages sent between honest nodes in at most Δ slots.

(Ap,Zp) formalizes a partially synchronous network, where

the adversary corrupts 𝑓 nodes, and all of the 𝑛 nodes are awake

throughout the execution. Before a global stabilization timeGST,A
can delay network messages arbitrarily. After GST, A is required

to deliver all messages sent between honest nodes in at most Δ
slots. GST is chosen by A, unknown to the honest nodes, and can

be a causal function of the randomness in the protocol.

(A
da
,Z

da
) formalizes the model of a synchronous network with

dynamic participation: For any given time slot,A determines which

honest nodes are awake/asleep at that slot, subject to the constraint

that at all time slots, at most 𝛽 fraction of awake nodes are adversar-

ial and at least one honest node is awake. At all times, the adversary

is required to deliver messages sent between honest nodes in at

most Δ slots. Adversarial nodes are assumed to be always awake.

Examples: To illustrate the model above, consider a client that

queries nodes running a Nakamoto-style longest chain protocol

under (A
da
,Z

da
) at some time 𝑡 . Suppose 𝛽 < 1/2. The transcript

T𝑡
𝑖
held by node 𝑖 at time 𝑡 consists of the blocks received by node

𝑖 by time 𝑡 . Given the transcript T𝑡
𝑖
,W outputs as evidence the

longest chain implied by T𝑡
𝑖
. Upon collecting evidences from a

subset 𝑆 of awake nodes with at least one honest node, a client calls

C which selects the longest chain in the set {w𝑡
𝑖
}𝑖∈𝑆 and outputs

the 𝑘-deep prefix of that longest chain as the ledger.

We can also consider propose-and-vote-style BFT protocols such

as HotStuff, LibraBFT, Streamlet and PBFT [9, 10, 28, 41] with 𝑛 =

3𝑓 + 1 nodes under (Ap,Zp). In this case, the transcript T𝑡
𝑖
held by

a node 𝑖 at time 𝑡 consists of all received messages such as proposals

and votes. Given T𝑡
𝑖
,W outputs as evidence a sequence of proposals

with votes attesting to them. Upon collecting evidences from a

subset 𝑆 of nodes containing at least one honest node, a client callsC,
which outputs the largest possible sequence of proposals that can be

confirmed given the votes attesting to them. The confirmation rule

typically requires votes from𝑛−𝑓 +1 nodes on consecutive proposals
to guarantee safety which follows from a quorum intersection

argument. Liveness ensues from the fact that the honest evidence

within 𝑆 includes all of the confirmed proposals submitted by honest

nodes. Existence of an honest evidence in 𝑆 is typically enforced

by collecting evidences from at least 𝑓 + 1 nodes.

Safety and Liveness Resiliences: Safety and liveness are defined

as the traditional security properties of SMR protocols:

Definition 1. Let𝑇
confirm

be a polynomial function of the security

parameter 𝜎 of an SMR protocol Π. We say that Π with a confirma-

tion rule C is secure and has transaction confirmation time 𝑇
confirm

if ledgers output by C satisfy:

• Safety: For any time slots 𝑡, 𝑡 ′ and sets of nodes 𝑆, 𝑆 ′ satisfying
the requirements stipulated by the protocol, either LOG ≜
C({w𝑡

𝑖
}𝑖∈𝑆) is a prefix of LOG′ ≜ C({w𝑡 ′

𝑖
}𝑖∈𝑆′) or vice versa.

• Liveness: IfZ inputs a transaction to an awake honest node

at some time 𝑡 , then, for any time slot 𝑡 ′ ≥ 𝑡 +𝑇
confirm

and any

set of nodes 𝑆 satisfying the requirements stipulated by the

protocol, the transaction is included in LOG ≜ C({w𝑡 ′
𝑖
}𝑖∈𝑆).

Definition 2. For static (dynamic) participation, safety resilience of
a protocol is theminimumnumber 𝑓 of adversarial nodes (minimum

fraction 𝛽 of adversarial nodes among awake nodes) to cause a

safety violation. Such a protocol provides 𝑓 -safety (𝛽-safety).

Definition 3. For static (dynamic) participation, liveness resilience
of a protocol is the minimum number 𝑓 of adversarial nodes (mini-

mum fraction 𝛽 of adversarial nodes among awake nodes) to cause

a liveness violation. Such a protocol provides 𝑓 -liveness (𝛽-liveness).

Accountable Safety Resilience: To formalize the concept of ac-

countable safety resilience, we define an adjudication function J ,

similar to the forensic protocol defined in [25], as follows:

5

Joachim Neu, Ertem Nusret Tas, and David Tse

Definition 4. An adjudication function J takes as input two sets

of evidences𝑊 and𝑊 ′ with conflicting ledgers LOG ≜ C(𝑊) and
LOG′ ≜ C(𝑊 ′), and outputs a set of nodes that have provably

violated the protocol rules. So, J never outputs an honest node.

When the clients observe a safety violation, i.e., at least two
sets of evidences𝑊 and𝑊 ′ such that LOG ≜ C(𝑊) and LOG′ ≜
C(𝑊 ′) conflict with each other, they call J on these evidences to

identify nodes that have violated the protocol.

Accountable safety resilience builds on the concept of 𝛼-account-
able-safety first introduced in [6]:

Definition 5. For static (dynamic) participation, accountable safety
resilience of a protocol is the minimum number 𝑓 of nodes (mini-

mum fraction 𝛽 of nodes among awake nodes) output by J in the

event of a safety violation. Such a protocol provides 𝑓 -accountable-
safety (𝛽-accountable-safety).

Note that 𝛽-accountable-safety implies 𝛽-safety of the protocol

(and the same for 𝑓) since J outputs only adversarial nodes.

3 THE AVAILABILITY-ACCOUNTABILITY
DILEMMA

In this section, we investigate the fundamental tradeoffs between

liveness, safety and accountable safety resiliences shown in Figure 1

under three different network environments: synchrony (As,Zs),
partial synchrony (Ap,Zp) and dynamic participation (A

da
,Z

da
).

3.1 Accountability and Liveness are
Incompatible Under Dynamic Participation

We observe that the strictest tradeoff between the liveness and

accountable safety resilience occurs for dynamically available pro-

tocols under (A
da
,Z

da
) (Figure 1 (vi)), a result which was named

the availability-accountability dilemma in Section 1.4:

Theorem 1. No SMR protocol provides both 𝛽a-accountable-safety
and 𝛽

l
-liveness for any 𝛽a, 𝛽l > 0 under (A

da
,Z

da
).

Theorem 1 states that under dynamic participation it is impos-

sible for an SMR protocol to provide both positive accountable

safety resilience and positive liveness resilience. In light of this

result, protocol designers are compelled to choose between pro-

tocols that maintain liveness under fluctuating participation, and

protocols that can enforce the desired incentive mechanisms high-

lighted in Section 1.1 via accountability. Since both of the above

features are desirable properties for Internet-scale consensus pro-

tocols, the availability-accountability dilemma presents a serious

obstacle in the effort to obtain an incentive-compatible and robustly

live protocol for applications such as cryptocurrencies.

To build some intuition for the proof of Theorem 1, let us consider

a permissioned longest chain protocol under (A
da
,Z

da
) where half

of nodes are adversarial. Adversarial nodes avoid all communica-

tion with honest nodes and build a private chain that conflicts with

the chain built collectively by the honest nodes. Such diverging

chains mean the possibility of an (ostensible) safety violation. Think

of an honest client towards whom adversarial nodes pretend to

be asleep and who confirms a ledger based solely on the longest

chain provided by the honest evidences; and a co-conspirator of

the adversary who pretends to not have received any evidences

from honest nodes and to have confirmed a ledger based solely on

the longest chain provided by the adversarial evidences. Indeed,

both would obtain non-empty ledgers, because the longest chain

is dynamically available, but these two ledgers would conflict. Yet,

based on the two sets of evidences, the judge J can neither dis-

tinguish who is honest client and who is co-conspirator, nor tell

which nodes are honest or adversarial. So none of the adversarial

nodes can be held accountable (without risking to falsely convict

an honest node).

A formal proof building on this observation is as follows:

Proof. For the sake of contradiction, suppose there exists an

SMR protocol Π that provides 𝛽
l
-liveness and 𝛽a-accountable-safety

for some 𝛽
l
, 𝛽a > 0 under (A

da
,Z

da
). Then, there exists an adjudi-

cation function J , which given two sets of evidences attesting to

conflicting ledgers, outputs a non-empty set of adversarial nodes.

Suppose there are 𝑛 nodes inZ. Without loss of generality, we

may assume that 𝑛 is even; otherwise, Z puts one node to sleep

throughout the execution. Let 𝑃 and 𝑄 partition the 𝑛 nodes into

two disjoint equal groups with |𝑃 | = |𝑄 | = 𝑛/2. We denote by [tx]
a ledger consisting of a single transaction tx at its first index.

Next consider the following worlds:

World 1: Nodes in 𝑃 are honest and awake throughout the

execution. Z inputs tx1 to them. Nodes in 𝑄 are asleep. Since Π
satisfies liveness for some 𝛽

l
> 0 under (A

da
,Z

da
), nodes in 𝑃

eventually generate a set of evidences𝑊1 such that C(𝑊1) = [tx1].
World 2: Nodes in 𝑄 are honest and awake throughout the

execution. Z inputs tx2 to them. Nodes in 𝑃 are asleep. Since Π
satisfies liveness for some 𝛽

l
> 0 under (A

da
,Z

da
), nodes in 𝑄

eventually generate a set of evidences𝑊2 such that C(𝑊2) = [tx2].
World 3:Z wakes up all 𝑛 nodes, and inputs tx1 to the nodes in

𝑃 and tx2 to the nodes in 𝑄 . Nodes in 𝑃 are honest. Nodes in 𝑄 are

adversarial and do not communicate with the nodes in 𝑃 . All nodes

stay awake throughout the execution. Since the worlds 1 and 3 are

indistinguishable for the nodes in 𝑃 , they eventually generate a set

of evidences𝑊1 such that C(𝑊1) = [tx1]. Nodes in 𝑄 simulate the

execution in world 2 without any communication with the nodes in

𝑃 . Hence, they eventually generate a set of evidences𝑊2 such that

C(𝑊2) = [tx2]. Thus, there is a safety violation. So, J takes𝑊1

and𝑊2, and outputs a non-empty set 𝑆3 ⊆ 𝑄 of adversarial nodes.

World 4:Z wakes up all 𝑛 nodes, and inputs tx1 to the nodes in
𝑃 and tx2 to the nodes in 𝑄 . Nodes in 𝑄 are honest. Nodes in 𝑃 are

adversarial and do not communicate with the nodes in𝑄 . All nodes

stay awake throughout the execution. Since the worlds 2 and 4 are

indistinguishable for the nodes in 𝑄 , they eventually generate a set

of evidences𝑊2 such that C(𝑊2) = [tx2]. Nodes in 𝑃 simulate the

execution in world 1 without any communication with the nodes in

𝑄 . Hence, they eventually generate a set of evidences𝑊1 such that

C(𝑊1) = [tx1]. Thus, there is a safety violation. So, J takes𝑊1

and𝑊2, and outputs a non-empty set 𝑆4 ⊆ 𝑃 of adversarial nodes.

Note however that worlds 3 and 4 are indistinguishable from the

perspective of the adjudication function J . Thus, it is not possible

that J reliably outputs a non-empty set which in the case of world

3 contains only elements of 𝑄 and in the case of world 4 contains

only elements of 𝑃 , as would be required by Definition 4. □

6

The Availability-Accountability Dilemma and its Resolution via Accountability Gadgets

3.2 Tradeoff Between Accountable Safety and
Liveness Resiliences

Proof of Theorem 1 relies on the fact that in a dynamically available

protocol, adversarial nodes, by private execution, can always create

a set of evidences that yields a conflicting ledger through the con-

firmation rule C. This is because dynamically available protocols

cannot set a lower bound on the number of evidences eligible to

generate a non-empty ledger through C, and thus are forced to

output ledgers for evidences from any number of nodes. However,

in the case of a BFT protocol with a fixed level of 𝑛 participating

nodes, such an attack on accountability will not be possible as the

protocol could require a valid input to C to contain evidences from

at least a certain fraction of the 𝑛 nodes. In this context, instead of

an availability-accountability dilemma, we can talk about a softer

tradeoff between the accountable safety and liveness resiliences

(Figure 1 (iv) and (v)), which is formalized below:

Theorem 2. For any SMR protocol that satisfies 𝑓a-accountable-
safety and 𝑓

l
-liveness, 𝑓a ≤ max(0, 𝑛 − 2𝑓

l
+ 2).

Proof of Theorem 2 follows from the proof of [25, Theorem B.1]

and is given in Appendix A. Both proofs rely on the observation

that for an SMR protocol (or BA protocol in the case of [25, Theorem

B.1]) that satisfies 𝑓
l
-liveness (𝑓

l
-validity for [25, Theorem B.1]), no

adjudication function is able to output more than max(0, 𝑛−2𝑓
l
+2)

nodes in the event of a safety (agreement for [25, Theorem B.1])

violation without incorrectly accusing an honest node.

Finally, note that no SMR protocol provides 𝑓
l
-liveness for 𝑓

l
>

⌈𝑛/2⌉ under any setting, as will be explained in Section 3.3. This,

together with Theorems 1 and 2, completes the characterization

of the curves of Figure 1 (iv)–(vi). We proceed to show that these

curves are tight. Tightness of (vi) under (A
da
,Z

da
) follows directly

from the nature of the dilemma, any dynamically available protocol

‘achieves’ it. On the other hand, Sync Streamlet [10] and Sync Hot-

Stuff [2] achieve all liveness and accountable safety resilience points

(𝑓
l
, 𝑓a) shaded in blue in Figure 1 (iv) for (As,Zs), and Streamlet

and HotStuff [41] achieve all (𝑓
l
, 𝑓a) shaded in blue in Figure 1 (v)

for (Ap,Zp). A more detailed discussion on the protocols, in par-

ticular on how the synchronous protocols can be made to provide

accountability, is given in Appendix E.

3.3 Tradeoffs Between Safety and Liveness
Resiliences

In this section, we formalize the tradeoffs between safety and live-

ness resiliences shown by Figure 1 (i)—(iii) under the three different

network environments (As,Zs), (Ap,Zp) and (Ada
,Z

da
):

Theorem 3. For any SMR protocol that satisfies 𝑓s-safety and 𝑓
l
-

liveness, 𝑓
l
≤ ⌈𝑛/2⌉ and 𝑓s ≤ 𝑛 − 𝑓

l
+ 1.

Proof of Theorem 3 is given in Appendix B. The theorem applies

to all SMR protocols under any network environment. It formalizes

the common intuition that in the presence of clients, no consensus

protocol can maintain security when the adversary controls half or

more of the nodes. In particular, it shows that no safe SMR protocol

can provide liveness if the adversary controls the majority of the

nodes, as the adversary can always use its majority to either commit

safety violations or to censor transactions.

Theorem 4. For any SMR protocol that satisfies 𝑓s-safety and 𝑓
l
-

liveness under (Ap,Zp), 𝑓l ≤ ⌈𝑛/2⌉ and 𝑓s ≤ 𝑛 − 2𝑓
l
+ 2.

Proof of Theorem 4 is given in Appendix C. It states the funda-

mental safety-liveness resilience tradeoff for partially synchronous

protocols. It is a generalization of the celebrated 𝑛/3 resilience

bound [19] for the security of partially synchronous protocols.

Theorem 5. For any SMR protocol that satisfies 𝛽s-safety and 𝛽
l
-

liveness under (A
da
,Z

da
), 𝛽

l
, 𝛽s < 1/2.

Proof of Theorem 5 is given in Appendix D. It states the funda-

mental safety-liveness resilience tradeoff for dynamically available

protocols, and generalizes the intuition behind a similar result for

Proof-of-Work protocols given by [36, Theorem 3]. Dynamically

available protocols are designed to output ledgers for sets of evi-

dences containing responses from any number of nodes, as they do

not know a priori the number of awake nodes. In this case, given

two sets of evidences for conflicting ledgers, their relative sizes
become the only selection criterion for such protocols, unlike in a

static environment where the protocol can require evidences from a

fixed number of nodes. Thus, the adversary is able to violate safety

and liveness whenever it controls the majority among awake nodes.

Finally, we show that the curves of Figure 1 (i)–(iii) implied

by Theorems 3, 4, and 5 are tight. Sync Streamlet [10] and Sync

HotStuff [2] achieve all liveness and safety resilience points (𝑓
l
, 𝑓s)

shaded in blue in Figure 1 (i) for (As,Zs). Streamlet and HotStuff

[41] achieve all (𝑓
l
, 𝑓s) shaded in blue in Figure 1 (ii) for (Ap,Zp).

Sleepy and Ouroboros [3, 15, 16, 26, 37] achieve all (𝛽
l
, 𝛽s) shaded

in blue in Figure 1 (iii) for (A
da
,Z

da
). A more detailed discussion

on these protocols is given in Appendix E.

4 ACCOUNTABILITY GADGETS
In this section, we give a detailed description of the accountability

gadget introduced in Section 1.5. For ease of exposition, we con-

struct an accountability gadget from an accountable BFT protocol

Π
bft

with accountable safety and liveness resilience of ⌊𝑛/3⌋.

4.1 Protocol Description
Accountability gadgets, denoted byΠacc, can be used in conjunction

with any dynamically available longest chain (LC) protocol Π
lc

such as Nakamoto’s PoW LC protocol [30], Sleepy [37], Ouroboros

[3, 16, 26] and Chia [14] (Figure 2). The protocol Π
lc
then follows a

modified chain selection rule where honest nodes build on the tip

of the LC that contains all of the checkpoints they have observed.

We call such chains checkpoint-respecting LCs. At each time slot

𝑡 , each honest node 𝑖 outputs the 𝑘-deep prefix of the checkpoint-

respecting LC (or the prefix of the latest checkpoint, whichever is

longer) in its view as LOG𝑡
da,𝑖

.

The accountability gadget Πacc has three main components as

shown on Figure 2: a checkpoint vote generator (Algorithm 1)

that issues checkpoint proposals and votes, an accountable SMR

protocol Π
bft

that is used to reach consensus on which votes to

count for the checkpoint decision, and a checkpoint vote interpreter

(Algorithm 2) that outputs checkpoint decisions computed deter-

ministically from the ordered sequence of checkpoint votes output

by Π
bft
. The protocol Π

bft
can be instantiated with any accountable

BFT protocol such as Streamlet [10], LibraBFT [28] or HotStuff

7

Joachim Neu, Ertem Nusret Tas, and David Tse

Algorithm 1 Pseudocode for Checkpoint Vote Generator

1: lastCp, props← ⊥, {𝑐 : ⊥ | 𝑐 = 0, 1, ...} ⊲ Last checkpoint, proposals
2: for currIter← 0, 1, ...

3: if lastCp ≠ ⊥
4: while waiting𝑇cp time ⊲ Wait𝑇cp time after new checkpoint
5: on Checkpoint(𝑐,𝑏) ← GetNextCp() with 𝑐 = currIter

6: goto 23 ⊲ Jump to conclusion of current iteration
7: on Proposal(𝑐,𝑏) ← RecvVerifiedProp() with props[𝑐] = ⊥
8: props[𝑐] ← 𝑏 ⊲ Keep track of proposals from authorized leader
9: if CpLeaderOfIter(currIter) = myself

10: Broadcast(⟨propose, currIter,GetCurrProposalTip() ⟩
myself

)
11: while waiting𝑇to time

12: on props[currIter] ≠ ⊥, but at most once ⊲ Act on the first proposal
received from authorized leader before end of𝑇cp-wait and𝑇to-timeout

13: if IsValidProposal(props[currIter]) ⊲ Valid proposal extends
latest checkpoint and is consistent with current checkpoint-respecting LC

14: SubmitVote(⟨accept, currIter, props[currIter] ⟩
myself

)
15: else
16: SubmitVote(⟨reject, currIter⟩

myself
) ⊲ Reject invalid proposal

17: on Checkpoint(𝑐,𝑏) ← GetNextCp() with 𝑐 = currIter

18: goto 23 ⊲ Jump to conclusion of current iteration
19: on Proposal(𝑐,𝑏) ← RecvVerifiedProp() with props[𝑐] = ⊥
20: props[𝑐] ← 𝑏 ⊲ Keep track of proposals from authorized leader
21: SubmitVote(⟨reject, currIter⟩

myself
) ⊲ Reject due to timeout

22: wait on Checkpoint(𝑐,𝑏) ← GetNextCp() with 𝑐 = currIter

23: lastCp← 𝑏 ⊲ Keep track of checkpoint decision

Algorithm 2 Pseudocode for Checkpoint Vote Interpreter

1: for currIter← 0, 1, ...

2: currVotes← {(pk,⊥) | pk ∈ committee} ⊲ Latest vote of each node
3: while true ⊲ Go through votes as ordered by Π

bft

4: vote← GetNextVerifiedVoteFromBft() ⊲ Verify signature
5: if vote = ⟨accept, 𝑐, 𝑏 ⟩

pk
with 𝑐 = currIter

6: currVotes[pk] ← Accept(𝑏) ⊲ Count accept vote for block 𝑏
7: else if vote = ⟨reject, 𝑐 ⟩

pk
with 𝑐 = currIter

8: currVotes[pk] ← Reject ⊲ Count reject vote
9: if ∃𝑏 : | {pk | currVotes[pk] = Accept(𝑏) } | > 2𝑛/3
10: OutputCp(Checkpoint(currIter, 𝑏)) ⊲ New checkpoint decision
11: break
12: else if | {pk | currVotes[pk] = Reject} | ≥ 𝑛/3
13: OutputCp(Checkpoint(currIter,⊥)) ⊲ Abort current iteration
14: break

[41]. It is used as a black box ordering service within Πacc and is

assumed to have confirmation time 𝑇
confirm

. We denote the ledger

output by Π
bft

as LOG
bft
, and emphasize that it remains internal to

the protocol Πacc. Checkpoint vote generator and interpreter are

run locally by each node and interact with Π
bft

and LOG
bft
. Hence,

whenever we refer to LOG
bft

in the following paragraphs, we mean

the ledger in the view of a specific node.

The accountability gadget Πacc proceeds in checkpoint iterations
denoted by 𝑐 , each of which attempts to checkpoint a new block

in Π
lc
. The checkpoint vote generator produces requests which

can be of three forms: a proposal ⟨propose, 𝑐, 𝑏⟩𝑖 proposing block
𝑏 for checkpointing in iteration 𝑐 , an accept vote ⟨accept, 𝑐, 𝑏⟩𝑖 in
favor of checkpointing a block 𝑏 in iteration 𝑐 , or a reject vote

⟨reject, 𝑐⟩𝑖 for iteration 𝑐 . Here, ⟨...⟩𝑖 denotes a message signed by

node 𝑖 . Each iteration 𝑐 has a publicly verifiable and unique leader

L
(𝑐)

sampled using a random oracle. The leader obtains the 𝑘cp-

deep block 𝑏 on its checkpoint-respecting LC via the procedure

GetCurrProposalTip() and broadcasts it to all other nodes as the

checkpoint proposal for iteration 𝑐 . (line 10 of Algorithm 1). Nodes

receive checkpoint proposals from the network via the procedure

RecvVerifiedProp(), and order according them with respect to

their checkpoint iterations (lines 7 and 19 of Algorithm 1). For

any given iteration 𝑐 , RecvVerifiedProp() returns only proposals

that were signed by the legitimate leader L
(𝑐)

of that iteration. A

proposal is said to be valid in the view of a node 𝑖 if the proposed

block is within 𝑖’s checkpoint-respecting LC and extends all pre-

vious checkpoints observed by 𝑖 . During an iteration 𝑐 , each node

𝑖 checks if the proposal received for that iteration is valid using

the procedure IsValidProposal() (line 13 of Algorithm 1). If it has

indeed received a valid proposal with the proposed block 𝑏, it votes

⟨accept, 𝑐, 𝑏⟩𝑖 (line 14 of Algorithm 1). Otherwise, if the proposal

received for iteration 𝑐 is invalid or if 𝑖 does not receive any pro-

posal for a timeout period𝑇to, it votes ⟨reject, 𝑐⟩𝑖 (lines 16 and 21 of
Algorithm 1). Votes are input as payload to Π

bft
, which outputs an

ordered sequence of votes in the form of the ledger LOG
bft
. Thus,

it enables nodes to reach consensus on which votes to count for an

upcoming checkpoint decision.

The checkpoint vote interpreter (Algorithm 2) processes the se-

quence of votes in LOG
bft

to produce checkpoint decisions. Each

node receives verified votes (i.e., with valid signature) in the order

they appear on LOG
bft

via the procedure GetNextVerifiedVote-

FromBft() (line 4 of Algorithm 2). Upon observing unique accept

votes ⟨accept, 𝑐, 𝑏⟩𝑖 from more than 2𝑛/3 nodes for a block 𝑏 and

the current iteration 𝑐 , each node outputs 𝑏 as the checkpoint for
iteration 𝑐 via the procedure OutputCp() (line 10 of Algorithm 2).

The checkpointed blocks output by OutputCp() over time, together

with their respective prefixes, constitute the ledger LOG𝑡
acc,𝑖

. Fur-

thermore, the checkpoint decisions are fed back to Π
lc
and the

checkpoint vote generator so that they can ensure consistency of

future block production in Π
lc
and checkpoint proposals with prior

checkpoints.

On the other hand, upon observing reject votes ⟨reject, 𝑐⟩𝑖 from
𝑛/3 nodes, each node outputs ⊥ as the checkpoint decision for

the current iteration 𝑐 (line 13 of Algorithm 2). Here, ⊥ signals

that an iteration is aborted with no new checkpointed block, which

happens if honest nodes suspect a faulty checkpoint leader and vote

‘reject’ because they have not seen progress for too long. Note that

once a node outputs a checkpoint decision for its current iteration

𝑐 , the checkpoint vote interpreter jumps to iteration 𝑐 +1; thus, only
a single decision is output per iteration.

Upon receiving a new checkpoint for the current iteration 𝑐 via

the procedure GetNextCp(), nodes terminate iteration 𝑐 of the

checkpoint vote generator and enter iteration 𝑐 +1 (lines 6 and 18 of
Algorithm 1). If the checkpoint decision was for a non-empty block

𝑏, nodes wait for𝑇cp time, denoted as the checkpoint interval, before
they consider checkpoint proposals for iteration 𝑐 + 1. Similarly,

an honest leader for iteration 𝑐 + 1 waits for 𝑇cp time before it

broadcasts the new checkpoint proposal. As will become clear in

the analysis, the checkpoint interval is crucial to ensure that Π
lc
’s

chain dynamics are ‘not disturbed too much’ by accommodating

and respecting checkpoints.

4.2 Security Properties
In this section, we formalize and prove the security properties P1
and P2 from Section 1.5 for accountability gadgets based on permis-
sioned LC protocols [3, 16, 26, 37]. (For an extension of the security

analysis to Proof-of-Work and Proof-of-Space LC protocols, see Sec-

8

The Availability-Accountability Dilemma and its Resolution via Accountability Gadgets

1
Consistency of check-

pointed blocks in Π
lc

2
Accountability

of LOG
bft

3
Accountability

of LOG
acc

(Appendix G.2)

4
Gap and recency properties

of Πacc (Appendix G.4)

5
Recurrence of checkpoint-strong

pivots (Appendix H.3)

6
Security of Π

lc
after

max(GST,GAT) (Appendix H)
7

Liveness of Π
bft

after

max(GST,GAT)

8
Liveness of LOG

acc
after

max(GST,GAT) (Appendix G.3)

9
Checkpointing

𝑘cp-deep blocks

10
Security of Π

lc

under synchrony

11
Security of LOG

da

Figure 4: Dependency of the security properties of LOG
acc

and LOG
da

on the properties of Πacc, Πlc
and Π

bft
.

tion 6.) For this purpose, we first fix 𝑓 ≤ ⌈𝑛/2⌉ and consider an ac-

countability gadget Πacc instantiated with a partially synchronous

BFT protocol Π
bft

that provides (𝑛 − 2𝑓 + 2)-accountable-safety at

all times, and 𝑓 -liveness under partial synchrony after the network

partitions heal and sufficiently many honest nodes come online.

(An example of such a protocol is HotStuff [41] with a quorum size

of 𝑛 − 𝑓 + 1. See Appendix E for further discussion.) To provide the

same accountable safety resilience as Π
bft

for LOG
acc

, we select

the thresholds for the number of accept and reject votes required

to output a new checkpoint as 𝑛 − 𝑓 and 𝑓 in lines 9 and 12 of

Algorithm 2, respectively.

Let (A
pda

,Z
pda
) denote a partially synchronous network with

dynamic participation. It extends the partially synchronous network

defined in Section 2 (with a global stabilization timeGST) to include
asleep/awake nodes and a global awake time GAT. Before GAT, the
adversary determines which honest nodes are awake or asleep at

each slot. After GAT, all honest nodes are awake. Here, GAT, just
like GST, is chosen by the adversary, unknown to the honest nodes

and can be a causal function of the randomness in the protocol. But,

while GST needs to happen eventually (GST < ∞), GAT may be

infinite. So, whereas GST represents the time when the partition

heals,GAT represents the timewhen sufficientlymany honest nodes

wake up. With GST and GAT, (A
pda

,Z
pda
) enables us to express

security properties for accountability gadgets under environments

with both network partitions and dynamic participation.

Let 𝜆 denote the security parameter associatedwith the employed

cryptographic primitives. Similarly, let 𝜎 denote the security pa-

rameter associated with the LC protocol Π
lc
. Then, we can state the

following theorem for the security properties of the ledgers LOG
acc

and LOG
da

output by the accountability gadget Πacc and the per-

missioned LC protocol Π
lc
(modified to be checkpoint-respecting):

Theorem 6. For any 𝜆, 𝜎 , and 𝑇
confirm

, 𝑘, 𝑘cp linear in 𝜎 :

(1) (P1: Accountability) Under (A
pda

,Z
pda
), the accountable led-

ger LOG
acc

provides (𝑛 − 2𝑓 + 2)-accountable-safety at all times
(except with probability negl(𝜆)), and there exists a constant
C such that LOG

acc
provides 𝑓 -liveness with confirmation time

𝑇
confirm

afterCmax(GST,GAT) (except with probability negl(𝜎)).
(2) (P2: Dynamic Availability) Under (A

da
,Z

da
), the available

ledger LOG
da

provides 1/2-safety and 1/2-liveness at all times
(except with probability negl(𝜎) + negl(𝜆)).

(3) (Prefix) LOG
acc

is always a prefix of LOG
da
.

Here, negl(.) denotes a negligible function, i.e., a function that

decays faster than all polynomials.

The resiliences achieved by LOG
acc

and LOG
da

are optimal, as

can be seen from Theorem 2 which states that for any protocol

satisfying 𝑓a-accountable-safety and 𝑓
l
-liveness, it must be the case

that 𝑓a ≤ 𝑛 − 2𝑓
l
+ 2, and from Theorem 5 which states that for any

protocol satisfying 𝛽s-safety and 𝛽
l
-liveness under (A

da
,Z

da
), it

must be the case that 𝛽
l
, 𝛽s ≤ 1/2.

To prove Theorem 6, we will first focus on the security of LOG
da

under (A
da
,Z

da
) (box 11 of Figure 4). We know from [3, 16, 26, 37]

that Π
lc
is safe and live with some security parameter 𝜎 under

the original LC rule when 𝛽 < 1/2 (box 10 of Figure 4). Hence, if
𝑘cp is selected as an appropriate linear function of 𝜎 , once a block

becomes 𝑘cp-deep at time 𝑠 in the LC held by a node, it stays on

the LCs held by all of the honest nodes for all times 𝑡 ≥ 𝑠 . Since

any block checkpointed by an honest node at time 𝑠 has to be at

least 𝑘cp-deep in the LC held by the proposer of that block (box 9

of Figure 4), checkpoints are and will stay as part of the original

LCs held by every other honest node for all times 𝑡 ≥ 𝑠 . Then, the

evolution of the checkpoint-respecting LCs will be the same as the

evolution of the LCs in the absence of checkpoints. This implies that

LOG
da

inherits the security properties of the original LC protocol

Π
lc
.

We next focus on the accountability and liveness of LOG
acc

un-

der (A
pda

,Z
pda
) with global stabilization and awake times GST

and GAT (boxes 3 and 8 of Figure 4). The pseudocode of Πacc stipu-

lates that honest nodes vote accept only for checkpoint proposals

that are consistent with previous checkpoints they have observed

(box 1 of Figure 4). Moreover, each new checkpoint requires at

least 𝑛 − 𝑓 + 1 accept votes (line 9 of Algorithm 2). Thus, in the

event of a safety violation, either there should be two inconsistent

ledgers LOG
bft

held by honest nodes, or at least 𝑛 − 2𝑓 + 1 nodes
(which cannot be honest) must have voted on inconsistent check-

points with respect to a single ledger LOG
bft
. In both cases, at least

𝑛 − 2𝑓 + 2 adversarial nodes can be identified by either invoking

(𝑛 − 2𝑓 + 2)-accountable-safety of LOG
bft

(box 2 of Figure 4) or the

consistency requirement for checkpoints (box 1 of Figure 4). This

implies (𝑛 − 2𝑓 + 2)-accountable-safety of LOG
acc

, a detailed proof

of which can be found in Appendix G.2.

Liveness of LOG
acc

(box 8 of Figure 4) is the most involved

part of the proof and requires the existence of iterations after

max(GST,GAT) where all honest nodes vote accept for proposals
by honest leaders. This, in turn, depends on whether the proposals

by honest leaders are consistent with the checkpoint-respecting

LCs held by the honest nodes after max(GST,GAT). To show that

this is indeed the case, we prove that Π
lc
recovers its security af-

9

Joachim Neu, Ertem Nusret Tas, and David Tse

ter max(GST,GAT) (box 6 of Figure 4). For this purpose, we first

observe that in the presence of checkpoints, honest nodes aban-

don their LC if a new checkpoint is revealed on another (possibly

shorter) chain. Then, there can be honest blocks that do not con-

tribute to chain growth due to checkpoints arising at competing

chains. This feature of checkpoint-respecting LCs violates a core

assumption of the standard proof techniques [21, 26, 37] for LC

protocols. Hence, to bound the number of such abandoned honest

blocks and demonstrate the self-healing property of checkpoint

respecting LCs, we follow a different approach introduced in [39].

In this context, we first observe the gap and recency properties for

Πacc (Appendix G.4) which were highlighted in [39] as necessary

conditions for any checkpointing mechanism to ensure the self-

healing of Π
lc
(box 4 of Figure 4). The gap property states that the

checkpoint interval 𝑇cp has to be sufficiently longer than the time

it takes for a checkpoint proposal to be checkpointed by Πacc. The

recency property requires that newly checkpointed blocks were

held in the checkpoint-respecting LC of at least one honest node

within a short time interval preceding the checkpoint decision.

Using the gap and recency properties, we next extend the analy-

sis of [39] to Proof-of-Stake protocols by introducing the concept

of checkpoint-strong pivots, a generalization of strong pivots from

[37]. Whereas strong pivots count honest and adversarial blocks

to claim the convergence of the LC in the view of different honest

nodes, checkpoint-strong pivots consider only the honest blocks

that are guaranteed to extend the checkpoint-respecting LC, thus

resolving the issue of non-monotonicity for these chains. Recur-

rence of checkpoint-strong pivots after max(GST,GAT) (box 5 of
Figure 4) along with the gap and recency properties of Πacc enable

us to assert the security of Π
lc
after max(GST,GAT). Details of the

security analysis for Π
lc
can be found in Appendix H. Given the

self-healing property of Π
lc
, liveness of LOG

acc
follows from the

liveness of Π
bft

after max(GST,GAT) (box 7 of Figure 4), full proof
of which is given in Appendix G.3.

Finally, the prefix property follows from the fact that both LOG
da

and LOG
acc

are derived from the checkpoint-respecting LC. In par-

ticular, while LOG
acc

corresponds to the prefix of the latest check-

point, LOG
da

corresponds to either the prefix of the latest check-

point or that of the 𝑘-deep block on the checkpoint-respecting LC,

selecting whichever one is longer. Hence, by construction, LOG
acc

is always a prefix of LOG
da
.

5 EXPERIMENTAL EVALUATION
To evaluate whether the protocol of Section 4.1 can serve as a drop-

in replacement for Gasper as the Ethereum 2 beacon chain protocol,

we have implemented a prototype
1
. Having proved security and

accountability in Section 4.2, we are interested in its real-world

behavior and performance characteristics at operating points cho-

sen to match those of Ethereum 2. We then compare Gasper and

our protocol in terms of the average required bandwidth and the

latency of the accountable ledger, and conclude that our protocol

can exceed the performance of Gasper. In particular, our protocol

incurs comparable bandwidth at reduced latency. Finally, we ob-

serve that Gasper’s resilience decreases as the number of nodes

increases, for fixed latency of the accountable ledger, due to a new

1
Source code: https://github.com/tse-group/accountability-gadget-prototype

L
C
b
l
o
c
k
p
r
o
-

d
u
c
t
i
o
n
l
o
t
t
e
r
y

L
C
b
l
o
c
k

t
r
e
e
m
a
n
a
g
e
r

C
h
e
c
k
p
o
i
n
t

v
o
t
e
g
e
n
e
r
a
t
o
r

H
o
t
S
t
u
ff

C
h
e
c
k
p
o
i
n
t

v
o
t
e
i
n
t
e
r
p
r
e
t
e
r

libp2p Gossipsub network Network

T
i
p
t
o
g
r
o
w

New

blocks

New

blocks

G
e
t
/
v
a
l
i
d
a
t
e

p
r
o
p
o
s
a
l
s

V
o
t
e
s

V
o
t
e
s

Proposals HotStuff

messages LOG
da

LOG
acc

Checkpoints

Checkpoints

Figure 5: Components and their interactions in our imple-
mentation of Figure 2. Gray: off the shelf components used
as black boxes. Blue: taken from Π

lc
without modification.

Green: taken from Π
lc
, modified to respect checkpoints.

attack which we have discovered (detailed in Appendix I).

Implementation: Our prototype is implemented in the program-

ming language Rust. A diagram of the different components and

their interactions is provided in Figure 5. We use a longest chain

protocol modified to respect latest checkpoints as Π
lc
, with a per-

missioned block production lottery with winning probability 𝑝 per

node and per time slot of duration𝑇
slot

; and HotStuff
2
as Π

bft
. Hon-

est nodes pause HotStuff (including its timeouts) while waiting for

the next checkpoint proposal. All communication (including Hot-

Stuff’s) takes place in a broadcast fashion via libp2p’s Gossipsub
protocol

3
, mimicking Ethereum 2’s network layer [1], to be able

to scale to thousands of nodes. Thus, we assume that under nor-

mal conditions every message received by one honest node will be

received by all honest nodes within some bounded delay. Since re-

sponsiveness is not so important for our checkpointing application

and to avoid broadcasting quorum certificates, we use a variant

of HotStuff where to ensure liveness the leader waits for the net-

work delay bound before proposing a block. Our prototype does

not implement the application logic of the beacon chain (such as

validators joining and leaving, integration with shard chains and

Ethereum 1, etc.) which can be realized on top of consensus in

the same way as currently done in Ethereum 2, and our prototype

does not use any orthogonal techniques to reduce bandwidth by

constant factors (such as signature aggregation, short signature

schemes, compression of network communication, etc.) which are

not fundamental to the consensus problem.

Choice of parameters: We chose the parameters of our protocol

in the experiments to match the parameters of Ethereum 2’s beacon

chain. The beacon chain has 𝐶 = 32 slots per epoch and𝑚 = 128

validators per slot, for a total of 𝑛 = 4096 validators (per epoch),

which is the approximate number of nodes that we run our experi-

ments with. To match the block inter-arrival time (i.e., the duration
of one slot) of 12 s in the beacon chain, we set 𝑝 = 1/𝑛 and account

for the probability of no node winning the block production lottery

and choose 𝑇
slot

= 7.5 s. We also match the block payload size of

2
We used this Rust implementation: https://github.com/asonnino/hotstuff

3
We used this Rust implementation: https://github.com/libp2p/rust-libp2p

10

https://github.com/tse-group/accountability-gadget-prototype
https://github.com/asonnino/hotstuff
https://github.com/libp2p/rust-libp2p

The Availability-Accountability Dilemma and its Resolution via Accountability Gadgets

0 500 1,000 1,500 2,000 2,500
0

100

200

Time [s]

L
e
d
g
e
r
l
e
n
g
t
h
[
b
l
o
c
k
s
]

|LOG
acc
| |LOG

da
|

Figure 6: Both without attack (Figure 3) and in the presence
of a 𝛽 = 25% adversary who mines selfishly in Π

lc
and boy-

cotts leader duty in Π
bft

and Πacc (Figure 6) LOG
da

grows
steadily and LOG

acc
periodically catches up with LOG

da
. Un-

der attack, the growth rate of LOG
da

is reduced (due to self-
ishmining) and LOG

acc
’s catching up is occasionally slightly

delayed due to leader timeouts. (Parameters 𝑛 = 4100, 𝑇cp =

5min, 𝑇to = 1min, 𝑇
hs

= 20 s, 𝑘cp = 𝑘 = 6, all nodes online.)

22KBytes. In terms of Π
lc
, we chose 𝑘cp = 6 so that a checkpoint

proposal by an honest leader is reasonably likely (although not

‘guaranteed’) to be accepted by other honest nodes, and 𝑘 = 6 for

a swift 72 s average confirmation delay of LOG
da
. Note that 𝑘cp

should be the same for all nodes, while each client can choose an

individual 𝑘 to trade off latency and confirmation error probability

of LOG
da
. To leave enough time for message propagation, we set

the HotStuff timeout 𝑇
hs

= 20 s. To avoid HotStuff timeouts escalat-

ing into checkpoint timeouts for honest leaders, we set 𝑇to = 1min.

Finally, to obtain 5× improvement in average LOG
acc

latency over

Gasper (cf. Figure 9), we set 𝑇cp = 5min.

Experiment setup: Adversarial nodes in the experiment aim to

stall consensus as much as possible. Thus, they do not share a

proposal when elected leader in Π
bft

or Πacc, so that honest nodes

have to wait for a timeout before they can move on, and they mine

selfishly [20] in Π
lc
to reduce honest chain growth. We ran our

prototype (a) with no adversary (Figure 3), and (b) with 𝛽 = 25%

adversary (Figure 6), each for 2500 s on five AWS EC2 c5a.8xlarge
instances in each of ten AWS regions

4
, with 82 nodes per machine,

for a total of 4100 nodes. Each honest (adversarial) node connected

to 15 (15 honest and 15 adversarial) randomly selected peers for

the peer-to-peer gossip network.

Observations: We observe that both without faults (Figure 3) as

well as under the 25%-attack (Figure 6) the available full ledger

() shows steady growth, albeit under attack at a reduced rate

due to selfish mining. In both cases, the accountable prefix ledger

() periodically catches up with the available ledger. Timeouts

cause occasional but overall minor delays of the catch-up.

In terms of bandwidth (reported in Figures 8 and 7 for an exem-
plary AWS instance, i.e., for 82 nodes), we observe a distinct spiky
pattern with frequent small spikes corresponding to the propaga-

tion of Π
lc
blocks and infrequent wide spikes corresponding to the

propagation of checkpoint votes and Π
bft

blocks and votes as part

4eu-north-1, eu-west-3, ap-south-1, ap-northeast-1, ap-southeast-2,
sa-east-1, ca-central-1, us-west-1, us-east-2, us-east-1

900 1,000 1,100 1,200 1,300 1,400 1,500

10
2

10
4

10
6

Time [s]

R
x
b
a
n
d
w
i
d
t
h
[
K
B
/
s
]

Figure 7: Setting of Figure 3: The network traffic for each
AWS instance (i.e., 82 nodes) shows four marked spikes (red)
for every new checkpoint (𝑇cp = 5min interval) and smaller
spikes (orange) for every new Π

lc
block (𝑇

slot
= 7.5 s interval).

10
2

10
4

10
6

R
x
b
a
n
d
w
i
d
t
h
[
K
B
/
s
]

900 1,000 1,100 1,200 1,300 1,400 1,500

10
2

10
4

10
6

Time [s]

R
x
b
a
n
d
w
i
d
t
h
[
K
B
/
s
]

Figure 8: Setting of Figure 6: Leader timeouts in Π
bft

and
Πacc can delay new checkpoints (red). E.g., after the end of
a checkpoint interval (𝑡 ≈ 870 s), and subsequent Πacc leader
timeout (𝑡 ≈ 930 s), honest nodes vote to reject the cur-
rent checkpoint iteration, but the decision is delayed by an-
other Π

bft
leader timeout. The next checkpoint iteration has

an honest leader, but a decision is again delayed by a Π
bft

leader timeout, until a new checkpoint is finally reached
(𝑡 ≈ 1070 s). Traffic at honest nodes (bottom) lacks some of
the small spikes (orange) compared to traffic at adversarial
nodes (top), since the adversary temporarilywithholds some
of its blocks from honest nodes due to selfish mining.

of checkpointing. There is more traffic under attack than without

attack (per node: avg. 78 KB/s peak 1.5MB/s vs avg. 56 KB/s peak
1.34MB/s), since timeouts due to adversarial non-action lead to

additional iterations of checkpointing and HotStuff. In either case,

the bandwidth requirement does not pose a severe limitation to

participation even using consumer-grade Internet connectivity.

Bandwidth requirement and accountable ledger latency: We ex-

amine the tradeoff between the average number of votes commu-

nicated per time (as a surrogate for average required bandwidth,

to avoid confounding factors such as compression or signature ag-

11

Joachim Neu, Ertem Nusret Tas, and David Tse

400 600 900 1350 2025

10
1

10
2

16

32

64

16

32

64

10min

20min

30min

40min

50min

60min

10min

20min

30min

40min

50min

60min

Avg. LOG
acc

latency [s]

A
v
g
.
b
a
n
d
w
i
d
t
h
r
e
q
u
i
r
e
m
e
n
t
[
v
o
t
e
/
s
]

Gasper, 𝑛 = 4096, vary𝐶 Gasper, 𝑛 = 8192, vary𝐶

Our protocol, 𝑛 = 4096, vary𝑇cp Our protocol, 𝑛 = 8192, vary𝑇cp

Figure 9: For fixed 𝑛, the average latency of LOG
acc

for
Gasper and our protocol (here for 𝑘cp = 6) increases with
the number 𝐶 of slots per epoch and with 𝑇cp, respectively,
while the bandwidth required for votes reduces proportion-
ally. Our protocol offers a better tradeoff and can tolerate
twice the 𝑛 at comparable latency and bandwidth (our proto-
col for 𝑛 = 8192,𝑇cp = 30min vs. Gasper for 𝑛 = 4096,𝐶 = 32).

gregation) and the average latency of the accountable ledger (see

Figure 9), for varying number 𝑛 of nodes and varying parameters

𝐶 and 𝑇cp for Gasper and our protocol, respectively, under ideal

operation, i.e., 𝛽 = 0,Δ = 0. In this case, Gasper transmits 2 · 𝑛
𝐶

votes per 12 s (per slot, each committee member issues an LMD

GHOST and a Casper FFG vote), while our protocol transmits 5 · 𝑛
votes per 𝑇cp time (broadcast checkpoint votes, checkpoint votes

in HotStuff proposal, three rounds of HotStuff voting for confirma-

tion). A transaction takes on average
1

2
+ 2 epochs to enter into the

accountable ledger for Gasper (wait until end of ongoing epoch,

then two epochs to reach finality), and 𝑘cp · 12 s + 1

2
·𝑇cp time to

enter into the accountable ledger for our protocol (𝑘cp-deep to enter

checkpoint proposal, then wait until next checkpoint iteration). As

evident from Figure 9, our protocol offers slightly improved latency

at comparable bandwidth, or comparable bandwidth and latency

but for a larger number of nodes. Let us point out that, as currently

implemented, nodes in our protocol broadcast votes at the highest

throughput feasible once𝑇cp has expired, so that the resulting traffic

pattern is more bursty than that produced by Gasper, where voting

is taking place throughout each epoch. However, Figure 9 also cor-

roborates that even if voting after 𝑇cp was artificially rate-limited,

bandwidth and latency comparable to Gasper can be achieved.

Note that the gross bandwidth measured in Figures 7 and 8 is

roughly 6× the bandwidth estimate based on the number of votes

per time. This is largely due to two factors: 1)Wehave not optimized

HotStuff in our prototype to remove quorum certificates from blocks

(although we may do so due to the broadcast nature of the gossip

network, as discussed in the earlier ‘Implementation’ paragraph),

2) the amplification factor that comes with nodes flooding every

new message to all their peers in the gossip network.

Scaling the number of nodes for fixed accountable ledger latency:
To scale the number of nodes for a fixed accountable ledger la-

tency (and hence fixed 𝐶 and 𝑇cp, respectively), both Gasper and

our protocol need to increase their vote bandwidth proportionally.

However, the attack described in Appendix I suggests that even

without adversarial but with merely random network delay, Gasper

is susceptible to a balancing by an adversary controlling 𝑂 (
√︁
𝐶/𝑛)

of nodes. As a result, for fixed 𝐶 , the relative adversarial resilience

decreases (to 0) as 𝑛 increases (to∞).

Improvements: Obvious improvements would be to customize the

block proposal generation of HotStuff to account for the semantics

of votes and the state of the checkpointing protocol, e.g., do not

propose votes from past checkpoint iterations, delay proposals

when there are no pending votes, propose blocks with the minimum

set of votes to reach a new checkpoint decision, etc.

6 PROOF-OF-WORK AND PROOF-OF-SPACE
We have so far focused on accountability gadgets built for permis-

sioned LC protocols. We conclude with an outlook on accountability

gadgets for permissionless LC protocols such as those based on

Proof-of-Work (PoW), e.g., Bitcoin [30], or those based on Proof-

of-Space (PoSpace), e.g., Chia [14]. In such constructions, nodes

fulfill two different roles: miners control a unit of a rate-limiting

resource, e.g., compute power or storage space, and are responsible

for extending the permissionless checkpoint-respecting LC; and

validators with unique cryptographic identities are responsible for

providing accountability. Thus, security of Π
lc
is primarily main-

tained by the miners, while security of Πacc and the associated

protocol Π
bft

are primarily maintained by the validators. While the

miners are free to participate dynamically, validators are expected

to be always present to provide accountability.

In the following, let 𝛽 be the fraction of online rate-limiting

resource controlled by adversarial miners, and 𝛽∗ be a quantity

depending on the underlying Π
lc
protocol: 𝛽∗ = 1/2 for Bitcoin and

𝛽∗ = 1/𝑒 for Chia, the two example permissionless LC protocols we

focus on. Then, the accountable ledger LOG
acc

and the available

ledger LOG
da

satisfy the following properties:

Consider a networkwith validators (with𝑛 unique cryptographic

identities) and miners (at least one of which is honest and awake),

with the properties discussed above. The network may partition,

and the miners may come online and go offline subject to the con-

straints below. Then, for any 𝑓 ≤ ⌈𝑛/2⌉:
(1) (P1: Accountability) The accountable ledger LOG

acc
can pro-

vide an accountable safety resilience of 𝑛 − 2𝑓 + 2 at all times,

and it is live after network partition, if 𝛽 < 𝛽∗ holds, and if the

number of honest validators is greater than 𝑛 − 𝑓 .

(2) (P2: Dynamic Availability) The available ledger LOG
da

is

guaranteed to be safe after network partition and live at all

times, if 𝛽 < 𝛽∗ holds, and if the number of adversarial validators
is at most 𝑛 − 𝑓 .

Again, LOG
acc

is always a prefix of LOG
da

by construction.

Observe that the requirements of having greater than 𝑛 − 𝑓 hon-

est nodes under P1 and having 𝛽 < 𝛽∗ under P2 are analogous

to the permissioned case formulated in Theorem 6. However, ac-

countability gadgets for permissionless LC protocols have further

12

The Availability-Accountability Dilemma and its Resolution via Accountability Gadgets

requirements. First, under P1, liveness of LOG
acc

requires 𝛽 < 𝛽∗.
Otherwise, the large fraction of adversarial miners might stall Π

lc

and hence LOG
da

might not become live after the network parti-

tion, which was argued to be a necessary condition for the liveness

of LOG
acc

in Section 4.2. Second, under P2, security of LOG
da

re-

quires the number of adversarial validators to be bounded by 𝑛 − 𝑓 .

Otherwise, if the number of adversarial validators was greater than

𝑛 − 𝑓 , it would be possible for a block that is not on a checkpoint-

respecting LC held by any honest nodes to become checkpointed

solely by adversarial votes (line 9 of Algorithm 2), thus causing

safety violations on LOG
da
.

For Bitcoin, proof of the security properties above is given in

Appendices G and H. For Chia, security can be proven via an exten-

sion of the method of blocktree partitioning [17] to the setting of

checkpoint-respecting LCs. Further details can be found in Appen-

dix H.5. Finally, note that the reduced threshold 𝛽∗ = 1/𝑒 if Chia is
used as the permissionless LC protocol is due to nothing-at-stake

attacks [17], since randomness is updated per each block in Chia.

Other embodiments of PoSpace can provide different 𝛽∗.

ACKNOWLEDGMENTS
JN, ENT, and DT gratefully acknowledge funding from the Reed-

Hodgson Stanford Graduate Fellowship, the Stanford Center for

Blockchain Research, and the Center for Science of Information

(CSoI), an NSF Science and Technology Center under grant agree-

ment CCF-0939370, respectively.

REFERENCES
[1] 2020. Ethereum 2.0 networking specification. https://github.com/ethereum/eth2.0-

specs/blob/dev/specs/phase0/p2p-interface.md

[2] I. Abraham, D. Malkhi, Kartik Nayak, Ling Ren, and Maofan Yin. 2020. Sync

HotStuff: Simple and Practical Synchronous State Machine Replication. In Sym-
posium on Security and Privacy (S&P ’20). IEEE, 106–118.

[3] Christian Badertscher, Peter Gaži, Aggelos Kiayias, Alexander Russell, and Vas-

silis Zikas. 2018. Ouroboros Genesis: Composable proof-of-stake blockchains

with dynamic availability. In Conference on Computer and Communications Secu-
rity (CCS ’18). ACM, 913–930.

[4] Christian Badertscher, Peter Gaži, Aggelos Kiayias, Alexander Russell, and Vas-

silis Zikas. 2020. Consensus Redux: Distributed Ledgers in the Face of Adversarial

Supremacy. IACR Cryptology ePrint Archive, Report 2020/1021.

[5] Vitalik Buterin. 2020. Proposal for mitigation against balancing attacks to LMD
GHOST. https://notes.ethereum.org/@vbuterin/lmd_ghost_mitigation

[6] Vitalik Buterin and Virgil Griffith. 2019. Casper the Friendly Finality Gadget.

arXiv:1710.09437

[7] Vitalik Buterin, Diego Hernandez, Thor Kamphefner, Khiem Pham, Zhi Qiao,

Danny Ryan, Juhyeok Sin, Ying Wang, and Yan X Zhang. 2020. Combining

GHOST and Casper. arXiv:2003.03052

[8] Vitalik Buterin and Alistair Stewart. 2018. Beacon chain Casper mini-spec (com-
ments #17, #19). https://ethresear.ch/t/beacon-chain-casper-mini-spec/2760/17

[9] Miguel Castro and Barbara Liskov. 1999. Practical Byzantine Fault Tolerance. In

Symposium on Operating Systems Design and Implementation (OSDI ’99). USENIX
Association, 173–186.

[10] Benjamin Y. Chan and Elaine Shi. 2020. Streamlet: Textbook Streamlined

Blockchains. In Advances in Financial Technologies (AFT ’20). ACM, 1–11.

[11] Jing Chen, Sergey Gorbunov, Silvio Micali, and Georgios Vlachos. 2018. ALGO-

RAND AGREEMENT: Super Fast and Partition Resilient Byzantine Agreement.

IACR Cryptology ePrint Archive, Report 2018/377.

[12] Jing Chen and Silvio Micali. 2019. Algorand: A secure and efficient distributed

ledger. Theoretical Computer Science 777 (2019), 155–183.
[13] P. Civit, Seth Gilbert, and Vincent Gramoli. 2019. Polygraph: Accountable Byzan-

tine Agreement. IACR Cryptology ePrint Archive, Report 2019/587.

[14] Bram Cohen and Krzysztof Pietrzak. 2019. The Chia Network Blockchain. https:

//www.chia.net/assets/ChiaGreenPaper.pdf.

[15] Phil Daian, Rafael Pass, and Elaine Shi. 2019. Snow White: Robustly Recon-

figurable Consensus and Applications to Provably Secure Proof of Stake. In

Financial Cryptography and Data Security (FC ’19). Springer, 23–41.
[16] Bernardo David, Peter Gazi, Aggelos Kiayias, and Alexander Russell. 2018.

Ouroboros Praos: An Adaptively-Secure, Semi-synchronous Proof-of-Stake

Blockchain. In EUROCRYPT 2018. Springer, 66–98.
[17] Amir Dembo, Sreeram Kannan, Ertem Nusret Tas, David Tse, Pramod Viswanath,

Xuechao Wang, and Ofer Zeitouni. 2020. Everything is a Race and Nakamoto

Always Wins. In Conference on Computer and Communications Security (CCS
’20). ACM, 859–878.

[18] Thomas Dinsdale-Young, Bernardo Magri, Christian Matt, Jesper Nielsen, and

Daniel Tschudi. 2020. Afgjort: A Partially Synchronous Finality Layer for

Blockchains. In Conference on Security and Cryptography for Networks (SCN
’20). 24–44.

[19] Cynthia Dwork, Nancy Lynch, and Larry Stockmeyer. 1988. Consensus in the

Presence of Partial Synchrony. J. ACM 35, 2 (April 1988), 288–323.

[20] Ittay Eyal and Emin Gün Sirer. 2018. Majority is not enough: Bitcoin mining is

vulnerable. Commun. ACM 61, 7 (2018), 95–102.

[21] Juan Garay, Aggelos Kiayias, and Nikos Leonardos. 2015. The Bitcoin backbone

protocol: Analysis and applications. In EUROCRYPT 2015. Springer, 281–310.
[22] Yue Guo, Rafael Pass, and Elaine Shi. 2019. Synchronous, with a Chance of

Partition Tolerance. In CRYPTO 2019. Springer, 499–529.
[23] Andreas Haeberlen, Petr Kouznetsov, and Peter Druschel. 2007. PeerReview:

Practical Accountability for Distributed Systems. SIGOPS Oper. Syst. Rev. 41, 6
(Oct. 2007), 175–188.

[24] Andreas Haeberlen and Petr Kuznetsov. 2009. The Fault Detection Problem. In

International Conference on Principles of Distributed Systems (OPODIS ’09).
[25] Sreeram Kannan, Kartik Nayak, Peiyao Sheng, Pramod Viswanath, and Gerui

Wang. 2020. BFT Protocol Forensics. arXiv:2010.06785

[26] Aggelos Kiayias, Alexander Russell, Bernardo David, and Roman Oliynykov. 2017.

Ouroboros: A provably secure proof-of-stake blockchain protocol. In CRYPTO
2017. Springer, 357–388.

[27] Andrew Lewis-Pye and Tim Roughgarden. 2020. Resource Pools and the CAP

Theorem. arXiv:2006.10698

[28] Libra Association. 2020. Libra White Paper. https://libra.org/en-US/white-

paper/.

[29] Dahlia Malkhi, Kartik Nayak, and Ling Ren. 2019. Flexible Byzantine Fault

Tolerance. In Conference on Computer and Communications Security (CCS ’19).
ACM, 1041–1053.

[30] Satoshi Nakamoto. 2008. Bitcoin: A Peer-to-Peer Electronic Cash System. https:

//bitcoin.org/bitcoin.pdf.

[31] Ryuya Nakamura. 2019. Analysis of bouncing attack on FFG. https://ethresear.

ch/t/analysis-of-bouncing-attack-on-ffg/6113

[32] Ryuya Nakamura. 2019. Prevention of bouncing attack on FFG. https://ethresear.

ch/t/prevention-of-bouncing-attack-on-ffg/6114

[33] Joachim Neu, Ertem Nusret Tas, and David Tse. 2020. A balanc-
ing attack on Gasper, the current candidate for Eth2’s beacon chain.
https://ethresear.ch/t/a-balancing-attack-on-gasper-the-current-candidate-

for-eth2s-beacon-chain/8079

[34] Joachim Neu, Ertem Nusret Tas, and David Tse. 2020. Snap-and-Chat Protocols:

System Aspects. arXiv:2010.10447

[35] Joachim Neu, Ertem Nusret Tas, and David Tse. 2021. Ebb-and-Flow Protocols:

A Resolution of the Availability-Finality Dilemma. In Symposium on Security and
Privacy (S&P ’21). IEEE. arXiv:2009.04987 Forthcoming.

[36] Rafael Pass and Elaine Shi. 2017. Rethinking Large-Scale Consensus. In Computer
Security Foundations Symposium (CSF ’17). IEEE, 115–129.

[37] Rafael Pass and Elaine Shi. 2017. The Sleepy Model of Consensus. In ASIACRYPT
2017. Springer, 380–409.

[38] Alejandro Ranchal-Pedrosa and Vincent Gramoli. 2020. Blockchain Is Dead,

Long Live Blockchain! Accountable State Machine Replication for Longlasting

Blockchain. arXiv:2007.10541

[39] Suryanarayana Sankagiri, Xuechao Wang, Sreeram Kannan, and Pramod

Viswanath. 2021. Blockchain CAP Theorem Allows User-Dependent Adaptivity

and Finality. In Financial Cryptography and Data Security (FC ’21).
[40] Alistair Stewart and Eleftherios Kokoris-Kogia. 2020. GRANDPA: a Byzantine

Finality Gadget. arXiv:2007.01560

[41] Maofan Yin, Dahlia Malkhi, Michael K. Reiter, Guy Golan Gueta, and Ittai Abra-

ham. 2019. HotStuff: BFT Consensus with Linearity and Responsiveness. In

Symposium on Principles of Distributed Computing (PODC ’19). ACM, 347–356.

A PROOF OF THE ACCOUNTABLE
SAFETY-LIVENESS RESILIENCE TRADEOFF
FOR SMR PROTOCOLS

Proof. For the sake of contradiction, suppose there exists a

protocol Π that provides 𝑓
l
-liveness for some constant 𝑓

l
≤ ⌈𝑛/2⌉

and 𝑓a-accountable safety for 𝑓a = 𝑛 − 2𝑓
l
+ 3. Then, J outputs at

least 𝑛 − 2𝑓
l
+ 3 adversary nodes when there is a safety violation

13

https://github.com/ethereum/eth2.0-specs/blob/dev/specs/phase0/p2p-interface.md
https://github.com/ethereum/eth2.0-specs/blob/dev/specs/phase0/p2p-interface.md
https://notes.ethereum.org/@vbuterin/lmd_ghost_mitigation
https://arxiv.org/abs/1710.09437
https://arxiv.org/abs/2003.03052
https://ethresear.ch/t/beacon-chain-casper-mini-spec/2760/17
https://www.chia.net/assets/ChiaGreenPaper.pdf
https://www.chia.net/assets/ChiaGreenPaper.pdf
https://arxiv.org/abs/2010.06785
https://arxiv.org/abs/2006.10698
https://libra.org/en-US/white-paper/
https://libra.org/en-US/white-paper/
https://bitcoin.org/bitcoin.pdf
https://bitcoin.org/bitcoin.pdf
https://ethresear.ch/t/analysis-of-bouncing-attack-on-ffg/6113
https://ethresear.ch/t/analysis-of-bouncing-attack-on-ffg/6113
https://ethresear.ch/t/prevention-of-bouncing-attack-on-ffg/6114
https://ethresear.ch/t/prevention-of-bouncing-attack-on-ffg/6114
https://ethresear.ch/t/a-balancing-attack-on-gasper-the-current-candidate-for-eth2s-beacon-chain/8079
https://ethresear.ch/t/a-balancing-attack-on-gasper-the-current-candidate-for-eth2s-beacon-chain/8079
https://arxiv.org/abs/2010.10447
https://arxiv.org/abs/2009.04987
https://arxiv.org/abs/2007.10541
https://arxiv.org/abs/2007.01560

Joachim Neu, Ertem Nusret Tas, and David Tse

and never outputs an honest node.

Suppose there are 𝑛 nodes inZ. Let 𝑃 , 𝑄 and 𝑅 denote disjoint

sets consisting of 𝑓
l
− 1, 𝑓

l
− 1 and 𝑛 − 2𝑓

l
+ 2 > 0 nodes respectively.

Given these sets, consider the following worlds:

World 1: Z inputs tx1 to all of the nodes. Nodes in 𝑃 and 𝑅

are honest and the nodes in 𝑄 are adversary. Nodes in 𝑄 do not

communicate with the nodes in 𝑃 and 𝑅 and do not output any

transaction. Since |𝑃 ∪ 𝑅 | = 𝑛 − (𝑓
l
− 1), via 𝑓

l
-liveness, nodes

in 𝑃 and 𝑅 eventually generate a set of evidences𝑊1 such that

C(𝑊1) = [tx1].
World 2: Z inputs tx2 to all of the nodes. Nodes in 𝑄 and 𝑅

are honest and the nodes in 𝑃 are adversary. Nodes in 𝑃 do not

communicate with the nodes in 𝑄 and 𝑅 and do not output any

transaction. As |𝑄∪𝑅 | = 𝑛−(𝑓
l
−1), via 𝑓

l
-liveness, nodes in𝑄 and 𝑅

eventually generate a set of evidences𝑊2 such that C(𝑊2) = [tx2].
World 3: Z inputs tx1 to the nodes in 𝑃 , tx2 to the nodes in

𝑄 , and both transactions to the nodes in 𝑅. Nodes in 𝑃 are honest,

nodes in𝑄 and𝑅 are adversary. Nodes in𝑄 do not send anymessage

to any of the nodes in 𝑃 . Nodes in 𝑅 perform a split-brain attack

where one brain interacts with 𝑃 as if the input were tx1 and it is

not receiving any message from𝑄 . Also, separately, nodes in𝑄 and

the other brain of 𝑅 start with input tx2 and communicate with

each other exactly as in world 2.

Since worlds 1 and 3 are indistinguishable for the nodes in 𝑃 ,

they along with the first brain of 𝑅 eventually generate a set of

evidences𝑊1 such that C(𝑊1) = [tx1]. Since 𝑄 and the second

brain of 𝑅 behave the same as in world 2, they eventually generate

a set of evidences𝑊2 such that C(𝑊2) = [tx2]. Thus, there is a

safety violation, in which case J outputs at least 𝑓a = 𝑛 − 2𝑓
l
+ 3

adversarial nodes from the set 𝑄 ∪ 𝑅. Hence, it outputs at least one
node from the set 𝑄 .

World 4:Z inputs tx1 to the nodes in 𝑃 , tx2 to the nodes in 𝑄 ,

and both transactions to the nodes in 𝑅. Nodes in 𝑄 are honest,

nodes in 𝑃 and 𝑅 are adversary. Nodes in 𝑃 do not send any message

to any of the nodes in 𝑄 . Nodes in 𝑅 perform a split-brain attack

where one brain interacts with 𝑄 as if the input were tx2 and it

is not receiving any message from 𝑃 . Also, separately, nodes in 𝑃

and the other brain of 𝑅 start with input tx1 and communicate with

each other exactly as in world 1.

Since worlds 2 and 4 are indistinguishable for the nodes in 𝑄 ,

they eventually generate a set of evidences𝑊2 such that C(𝑊2) =
[tx2] along with the first brain of 𝑅. Since 𝑃 and the second brain

of 𝑅 behave the same as in world 1, they eventually generate a

set of evidences 𝑊1 such that C(𝑊1) = [tx1]. Thus, there is a

safety violation, in which case J outputs at least 𝑛 = 𝑛 − 2𝑓
l
+ 3

adversarial nodes. Note that worlds 3 and 4 are indistinguishable

in the perspective of the adjudication function J . Then, J would

again output at least one node from the set𝑄 (which is honest) with

non-negligible probability. However, this violates the assumption

that J never outputs an honest node, implying a contradiction

with the definition of J .

Next, we prove that 𝑓a = 0 for any 𝑓
l
> ⌈𝑛/2⌉. Let 𝑃 and𝑄 denote

disjoint sets of nodes with sizes ⌈𝑛/2⌉ and ⌊𝑛/2⌋ respectively. Given
these sets, consider the following worlds:

World 1: Z inputs tx1 to the nodes in 𝑃 and tx2 ≠ tx1 to the

nodes in𝑄 . Nodes in 𝑃 are honest and the nodes in𝑄 are adversary.

Nodes in 𝑄 do not communicate with the nodes in 𝑃 and behave

like honest nodes that do not hear from the nodes in 𝑃 . Since

|𝑃 |, |𝑄 | ≥ 𝑛 − (𝑓
l
− 1), via 𝑓

l
-liveness, nodes in 𝑃 and 𝑄 eventually

generate the sets of evidences𝑊1 and𝑊2 such that C(𝑊1) = [tx1]
and C(𝑊2) = [tx2]. Thus, there is a safety violation and upon

receiving𝑊1 and𝑊2, J outputs at least one node from the set 𝑄 .

World 2: Again, Z inputs tx1 to the nodes in 𝑃 and tx2 ≠ tx1
to the nodes in 𝑄 . Nodes in 𝑄 are honest and the nodes in 𝑃 are

adversary. Nodes in 𝑃 do not communicate with the nodes in𝑄 and

emulate the honest nodes in 𝑃 within world 1. Since the nodes in

𝑄 within world 1 emulate the nodes in 𝑄 within world 2 and the

nodes in 𝑃 within world 2 emulate the nodes in 𝑃 within world 1,

worlds 1 and 2 are indistinguishable from the perspective of the

adjudication function J . In this case, J again outputs a node in 𝑄

with non-negligible probability. This violates the assumption that

J never outputs an honest node, implying a contradiction. □

B PROOF OF THE SAFETY-LIVENESS
RESILIENCE TRADEOFF FOR SMR
PROTOCOLS

Proof. For the sake of contradiction, assume that there exists

an SMR protocol Π that provides 𝑓
l
-liveness for some constant

𝑓
l
≤ ⌈𝑛/2⌉ and 𝑓s-safety for 𝑓s = 𝑛 − 𝑓

l
+ 2. Then, the protocol

should be safe when there are 𝑛 − 𝑓
l
+ 1 adversarial nodes. Suppose

there are𝑛 nodes inZ. Let 𝑃 ,𝑄 and𝑅 denote disjoint sets consisting

of 𝑓
l
− 1, 𝑓

l
− 1 and 𝑛 − 2𝑓

l
+ 2 > 0 nodes respectively. Next, consider

the following worlds with three clients 𝑐1, 𝑐2 and 𝑐3:

World 1:Z inputs tx1 to all nodes. Nodes in 𝑃 and 𝑅 are honest

and the nodes in 𝑄 are adversarial. There is only one client 𝑐1.

Nodes in 𝑄 do not communicate with the nodes in 𝑃 and 𝑅; they

also do not respond to 𝑐1. Since |𝑃 ∪𝑅 | = 𝑛− (𝑓
l
− 1), via 𝑓

l
liveness,

nodes in 𝑃 and 𝑅 eventually generate a set of evidences𝑊1 such

that C(𝑊1) = [tx1]. Thus, 𝑐1 outputs [tx1] as the ledger.
World 2:Z inputs tx2 to all nodes. Nodes in𝑄 and 𝑅 are honest

and the nodes in 𝑃 are adversarial. There is only one client 𝑐2. Nodes

in 𝑃 do not communicate with the nodes in 𝑄 and 𝑅; they also do

not respond to 𝑐2. Since |𝑄 ∪𝑅 | = 𝑛 − (𝑓
l
− 1), via 𝑓

l
liveness, nodes

in 𝑄 and 𝑅 eventually generate a set of evidences𝑊2 such that

C(𝑊2) = [tx2]. Thus, 𝑐2 outputs [tx2] as the ledger.
World 3: Z inputs tx1 to the nodes in 𝑃 , tx2 to the nodes in

𝑄 , and both transactions to the nodes in 𝑅. Nodes in 𝑃 are honest,

nodes in 𝑄 and 𝑅 are adversarial. There are two clients this time,

𝑐1 and 𝑐3. Nodes in 𝑄 do not send any message to any of the nodes

in 𝑃 ; they also do not respond to 𝑐1.

Nodes in 𝑅 perform a split-brain attack where one brain interacts

with 𝑃 as if the input were tx1 and it is not receiving any message

from 𝑄 . Also, separately, nodes in 𝑄 and the other brain of 𝑅 start

with input tx2 and communicate with each other exactly as in

world 2. The first brain of 𝑅 responds to 𝑐1 and the second brain of

𝑅 responds to 𝑐3.

Since worlds 1 and 3 are indistinguishable for 𝑐1 and the nodes

in 𝑃 , these nodes along with the first brain of 𝑅 eventually generate

a set of evidences𝑊1 such that C(𝑊1) = [tx1], and 𝑐1 outputs

[tx1]. Since 𝑄 and the second brain of 𝑅 behave the same as in

world 2, they eventually generate a set of evidences𝑊2 such that

C(𝑊2) = [tx2]. Observe that the client 𝑐3 receives both sets of

evidences𝑊1 and𝑊2.

14

The Availability-Accountability Dilemma and its Resolution via Accountability Gadgets

World 4:Z inputs tx1 to the nodes in 𝑃 , tx2 to the nodes in 𝑄 ,

and both transactions to the nodes in 𝑅. Nodes in 𝑄 are honest,

nodes in 𝑃 and 𝑅 are adversarial. There are again two clients this

time, 𝑐2 and 𝑐3. Nodes in 𝑃 do not send any message to any of the

nodes in 𝑄 ; they also do not respond to 𝑐2.

Nodes in 𝑅 perform a split-brain attack where one brain interacts

with 𝑄 as if the input were tx2 and it is not receiving any message

from 𝑃 . Also, separately, nodes in 𝑃 and the other brain of 𝑅 start

with input tx1 and communicate with each other exactly as in

world 1. The first brain of 𝑅 responds to 𝑐2 and the second brain of

𝑅 responds to 𝑐3.

Since worlds 2 and 4 are indistinguishable for 𝑐2 and the nodes

in𝑄 , these nodes along with the first brain of 𝑅 eventually generate

a set of evidences𝑊2 such that C(𝑊2) = [tx2], and 𝑐2 outputs

[tx2]. Since 𝑃 and the second brain of 𝑅 behave the same as in

world 1, they eventually generate a set of evidences𝑊1 such that

C(𝑊1) = [tx1]. Observe that the client 𝑐3 receives both sets of

evidences𝑊1 and𝑊2.

Finally, notice that the worlds 3 and 4 are indistinguishable

for the client 𝑐3. Thus, if it outputs the ledger [tx1] (or [tx2]) in
world 3, then it should also output the ledger [tx1] in world 4 with

non-negligible probability. Suppose it outputs [tx1] ([tx2]) in both

worlds. However, this implies a safety violation for 𝑓 = |𝑃 ∪ 𝑅 | =
𝑛 − 𝑓

l
+ 1 many adversary nodes since in this case, two different

clients, 𝑐2 (𝑐1) and 𝑐3 would output conflicting ledgers in world 4

(3). This is a contradiction with the assumption that 𝑓s = 𝑛 − 𝑓
l
+ 2.

Next, we observe that no SMR protocol Π provides 𝑓
l
-liveness

for 𝑓
l
> ⌈𝑛/2⌉. For the sake of contradiction, assume the contrary

and let 𝑃 and 𝑄 denote disjoint sets of nodes with sizes ⌈𝑛/2⌉ and
⌊𝑛/2⌋ respectively. Given these sets, consider the following worlds:

World 1: Z inputs tx1 to the nodes in 𝑃 and tx2 ≠ tx1 to the

nodes in 𝑄 . There is a single client 𝑐3. Nodes in 𝑃 are honest and

the nodes in𝑄 are adversarial. Nodes in𝑄 do not send any message

to any of the nodes in 𝑃 ; at the same time, they behave like honest

nodes that do not receive any messages from the nodes in 𝑃 . Since

|𝑃 |, |𝑄 | ≥ 𝑛 − (𝑓
l
− 1), via 𝑓

l
-liveness, nodes in 𝑃 and 𝑄 eventually

generate sets of evidences𝑊1 and𝑊2 such that C(𝑊1) = [tx1] and
C(𝑊2) = [tx2]. Note that a client 𝑐3 receives both sets of evidences

𝑊1 and𝑊2.

World 2: Z inputs tx1 to the nodes in 𝑃 and tx2 ≠ tx1 to the

nodes in 𝑄 . Again, there is a single client 𝑐3. Nodes in 𝑄 are honest

and the nodes in 𝑃 are adversarial. Nodes in 𝑃 do not send any

message to any of the nodes in 𝑄 ; at the same time, they emulate

the honest nodes in 𝑃 . Since the nodes in𝑄 within world 1 emulate

the honest nodes in 𝑄 within world 2 and the nodes in 𝑃 within

world 2 emulate the honest nodes in 𝑃 within world 1, 𝑃 and 𝑄

generate sets of evidences𝑊1 and𝑊2 such that C(𝑊1) = [tx1] and
C(𝑊2) = [tx2]. 𝑐3 again receives both sets of evidences𝑊1 and𝑊2.

Observe that worlds 1 and 2 are indistinguishable from the per-

spective of 𝑐3. Thus, if it outputs C(𝑊1) = [tx1] (C(𝑊2) = [tx2])
in world 1, it should also output [tx1] ([tx2]) in world 2 with non-

negligible probability. However, in this case, liveness will not satis-

fied in world 2 (1) since the transaction tx2 (tx1) received by honest

nodes in world (2) would not appear in the ledger outputted by the

client. This is a contradiction with the statement that Π provides

𝑓
l
-liveness for 𝑓

l
> ⌈𝑛/2⌉. □

C PROOF OF THE SAFETY-LIVENESS
RESILIENCE TRADEOFF FOR PARTIALLY
SYNCHRONOUS SMR PROTOCOLS

Proof. For the sake of contradiction, assume that there exists

a partially synchronous SMR protocol Π that provides 𝑓
l
-liveness

for some constant 𝑓
l
≤ ⌈𝑛/2⌉ and 𝑓s-safety for 𝑓s = 𝑛 − 2𝑓

l
+ 3

under (Ap,Zp). Then, the protocol should be safe when there are

𝑛− 2𝑓
l
+ 2 adversarial nodes. We know from the proof of Theorem 3

that no SMR protocol can provide 𝑓
l
-liveness for any 𝑓

l
> ⌈𝑛/2⌉.

Suppose there are 𝑛 nodes inZ. Let 𝑃 , 𝑄 and 𝑅 denote disjoint

sets consisting of 𝑓
l
− 1, 𝑓

l
− 1 and 𝑛 − 2𝑓

l
+ 2 > 0 nodes respectively.

Next, consider the following worlds, where each node also acts as

a client:

World 1:Z inputs tx1 to all nodes. Nodes in 𝑃 and 𝑅 are honest;

nodes in 𝑄 are adversarial and do not communicate with the nodes

in 𝑃 and 𝑅. Since |𝑃 ∪ 𝑅 | = 𝑛 − (𝑓
l
− 1), via 𝑓

l
-liveness, nodes

in 𝑃 and 𝑅 eventually generate a set of evidences𝑊1 and output

[tx1] = C(tx1).
World 2:Z inputs tx2 to all nodes. Nodes in𝑄 and 𝑅 are honest;

the nodes in 𝑃 are adversarial and do not communicate with the

nodes in𝑄 and 𝑅. Since |𝑄 ∪𝑅 | = 𝑛 − (𝑓
l
− 1), via 𝑓

l
-liveness, nodes

in 𝑄 and 𝑅 eventually generate a set of evidences𝑊2 and output

[tx2] = C(tx2).
World 3:Z inputs tx1 to the nodes in 𝑃 , tx2 to the nodes in 𝑄 ,

and both transactions to the nodes in𝑅. Nodes in 𝑃 and𝑄 are honest,

nodes in 𝑅 are adversary. Nodes in 𝑃 and 𝑄 cannot communicate

with each other due to a network partition before GST. Nodes in 𝑅

perform a split-brain attack where one brain interacts with 𝑃 as if

the input were tx1 and it is not receiving any message from 𝑄 . The

other brain interacts with 𝑄 as if the input were tx2 and it is not

receiving any message from 𝑃 .

Since worlds 1 and 3 are indistinguishable for the nodes in 𝑃 ,

they output [tx1] along with the first brain of 𝑅. Since worlds 2 and

3 are indistinguishable for the nodes in 𝑄 , they output [tx2] along
with the second brain of 𝑅. Thus, honest nodes output conflicting

transactions, implying that there is a safety violation when there

are |𝑅 | = 𝑛 − 2𝑓
l
+ 2 many adversary nodes. This is a contradiction

with the assumption that 𝑓s = 𝑛 − 2𝑓
l
+ 3. □

D PROOF OF THE SAFETY-LIVENESS
RESILIENCE TRADEOFF FOR
DYNAMICALLY AVAILABLE SMR
PROTOCOLS

Proof. For the sake of contradiction, assume that there exists

a dynamically available SMR protocol Π that provides 𝛽
l
-liveness

and 𝛽s-safety for some constant 𝛽
l
< 1/2 and 𝛽s = 1/2 + 𝜖 under

(A
da
,Z

da
), where 𝜖 > 0 can be chosen arbitrarily small. Then,

the protocol should be safe when half of the awake nodes are

adversarial. We know from the proof of Theorem 3 that no SMR

protocol can provide 𝛽
l
-liveness for any 𝛽

l
> 1/2.

Suppose there are 𝑛 nodes in A. Let 𝑃 and 𝑄 denote disjoint

sets, each consisting of ⌊𝑛/2⌋ nodes. Next, consider the following
worlds with three clients 𝑐1, 𝑐2 and 𝑐3:

World 1: Z wakes up the nodes in 𝑃 and inputs tx1 to them.

There is only one client, 𝑐1. All the nodes in 𝑃 are honest. Via 𝛽
l
-

15

Joachim Neu, Ertem Nusret Tas, and David Tse

liveness, nodes in 𝑃 eventually generate a set of evidences𝑊1 such

that C(𝑊1) = [tx1]. Thus, 𝑐1 outputs [tx1] as the ledger.
World 2: Z wakes up the nodes in 𝑄 and inputs tx2 ≠ tx1 to

them. There is only one client, 𝑐2. All the nodes in 𝑄 are honest.

Via 𝛽
l
-liveness, nodes in 𝑄 eventually generate a set of evidences

𝑊2 such that C(𝑊2) = [tx2]. Thus, 𝑐2 outputs [tx2] as the ledger.
World 3:Z wakes up all of the nodes in 𝑃 ∪𝑄 and inputs tx1

to the nodes in 𝑃 and tx2 to the nodes in 𝑄 . There are two clients

𝑐1 and 𝑐3. Nodes in 𝑃 are honest. Nodes in𝑄 are adversarial and do

not communicate with the nodes in 𝑃 and the client 𝑐1. Since the

worlds 1 and 3 are indistinguishable for the nodes in 𝑃 and 𝑐1, nodes

eventually generate a set of evidences𝑊1 such that C(𝑊1) = [tx1],
and 𝑐1 outputs [tx1]. Nodes in 𝑄 simulate the execution in world

2, thus they eventually generate a set of evidences𝑊2 such that

C(𝑊2) = [tx2]. Note that 𝑐3 receives both𝑊1 and𝑊2.

World 4:Z wakes up all of the nodes in 𝑃 ∪𝑄 and inputs tx1
to the nodes in 𝑃 and tx2 to the nodes in 𝑄 . There are two clients

𝑐2 and 𝑐3. Nodes in𝑄 are honest. Nodes in 𝑃 are adversarial and do

not communicate with the nodes in 𝑄 and the client 𝑐2. Since the

worlds 2 and 4 are indistinguishable for the nodes in𝑄 and 𝑐2, nodes

eventually generate a set of evidences𝑊2 such that C(𝑊2) = [tx2],
and 𝑐2 outputs [tx2]. Nodes in 𝑃 simulate the execution in world

1, thus they eventually generate a set of evidences𝑊1 such that

C(𝑊1) = [tx1]. Note that 𝑐3 receives both𝑊1 and𝑊2.

Finally, notice that the worlds 3 and 4 are indistinguishable for

𝑐3 with non-negligible probability. Thus, if it outputs the ledger

[tx1] ([tx2]) in world 3 (world 4), then it should also output the

ledger [tx1] ([tx2]) in world 4 (world 3). However, this implies a

safety violation for 𝛽 = 1/2 (half of the nodes are adversarial in
worlds 3 and 4) since two different clients, 𝑐2 (𝑐1) and 𝑐3, would have

outputted ledgers with conflicting transactions in world 4 (world

3). This is a contradiction with the assumption that 𝛽s = 1/2. □

E PROTOCOL EXAMPLES
In this section, we give examples of protocols that achieve the points

on the optimal safety-liveness and accountable safety-liveness re-

silience tradeoffs presented in Figure 1.

Synchronous Protocols: We first observe that any point in the

shaded regions of Figure 1 (i) and (iv), i.e. (𝑓
l
, 𝑓s) such that 𝑓l ≤ ⌈𝑛/2⌉,

𝑓s ≤ 𝑛− 𝑓
l
+1 and 𝑓a ≤ 𝑛−2𝑓

l
+2, can be achieved by Sync Streamlet

[10] and Sync HotStuff [2] with a quorum size of 𝑛 − 𝑓
l
+ 1 under

(As,Zs). For any such point (𝑓
l
, 𝑓s), 𝑓s-safety and 𝑓

l
-liveness of the

protocols follow directly from the security proofs in the respective

papers.

To show the accountability of Sync Streamlet, we first observe

that if a block is confirmed in the view of an honest node in Sync

Streamlet, then that block would also be confirmed according to the

confirmation rule of partially synchronous Streamlet. In particular,

Sync Streamlet’s confirmation rule requires 4 adjacent blocks from

consecutive epochs to be at the tip of a notarized chain (with𝑛− 𝑓 +1
votes on each block), whereas partially synchronous Streamlet

requires only 3 such blocks. Hence, a safety violation on Sync

Streamlet implies the existence of two conflicting blocks that would

have been confirmed by partially synchronous Streamlet as well.

Then, via [34, Theorem 1] which shows 𝑛 − 2𝑓 + 2-accountable-
safety of partially synchronous Streamlet with a quorum size of

𝑛 − 𝑓 + 1, we know that at least 𝑛 − 2𝑓 + 2 nodes could be identified
as adversarial nodes in the event of a safety violation on Sync

Streamlet. Hence, Sync Streamlet with a quorum size of 𝑛 − 𝑓 + 1
satisfies 𝑛 − 2𝑓 + 2-accountable-safety.

We complete the discussion on synchronous protocols with the

accountability of Sync HotStuff:

Theorem 7. For any 𝑓 ≤ ⌈𝑛/2⌉, Sync HotStuff with a quorum size
of 𝑛 − 𝑓 + 1 satisfies 𝑛 − 2𝑓 + 2-accountable-safety.

Proof. We first recall from [2] that if a block 𝐵 received a quo-

rum certificate of 𝑛− 𝑓 +1 votes from view 𝑣 , it is denoted by𝐶𝑣 (𝐵)
and called a certified block. Certified blocks are ranked first by

views and then by heights i.e., (i) blocks certified in a higher view

has higher rank, and (ii) for blocks certified in the same view, a

higher height gives a higher rank.

Next, suppose there is a safety violation with two conflicting

blocks𝐶𝑣 (𝐵) and𝐶𝑣′ (𝐵′) with quorum certificates from views 𝑣 and

𝑣 ′ respectively. Without loss of generality, suppose 𝐶𝑣′ (𝐵′) is the
lowest ranked block that conflicts with 𝐶𝑣 (𝐵) and has rank greater

than or equal to it. If 𝑣 = 𝑣 ′, via a quorum intersection argument,

at least 𝑛 − 2𝑓 + 2 nodes must have voted for equivocating blocks

in the same view, thus can be identified as adversarial nodes by an

adjudication function J .

On the other hand, if 𝑣 < 𝑣 ′, for the quorum certificate of

𝐶𝑣′ (𝐵′) to exist, at least 𝑛 − 𝑓 + 1 nodes must have voted for 𝐵′

in view 𝑣 ′ upon receiving ⟨newview, 𝑣∗,𝐶𝑣∗ (𝐵′)⟩, where 𝑣∗ < 𝑣 ′

or ⟨propose, 𝐵′, 𝑣 ′,𝐶𝑣′ (𝐵′′)⟩ for some parent 𝐵′′ of 𝐵′. Now, since
𝑣 < 𝑣 ′, 𝐵′′ cannot be in the prefix of 𝐵, and has to conflict with 𝐵.

Thus, the latter case contradicts with the assumption that 𝐶𝑣′ (𝐵′)
is the lowest ranked block that conflicts with 𝐶𝑣 (𝐵), thus could
not have happened. For the former case, similarly, 𝐶𝑣∗ (𝐵′) must

rank lower than 𝐶𝑣 (𝐵) since a higher ranking 𝐶𝑣∗ (𝐵′) would con-

tradict with the definition of 𝐶𝑣′ (𝐵′) as the lowest ranked block

that conflicts with 𝐶𝑣 (𝐵) and has rank greater than or equal to it.

As 𝑣 < 𝑣 ′, by assumption, there is no equivocating block in view

𝑣 , implying that every honest node that voted on 𝐵 in view 𝑣 must

have committed 𝐵 in view 𝑣 . Moreover, by [2, Lemma 1(ii)], if an

honest node commits 𝐵, it should lock on a certified block with

rank equal to or higher than that of 𝐶𝑣 (𝐵) before entering view

𝑣 + 1 ≤ 𝑣 ′. Together, these observations imply that no honest node

could have voted for𝐶𝑣∗ (𝐵′) in view 𝑣 ′ after voting for 𝐵 in view 𝑣 .

However, via a quorum intersection arguement, at least 𝑛 − 2𝑓 + 2
nodes must have voted for both 𝐵 in view 𝑣 and 𝐶𝑣∗ (𝐵′) in view

𝑣 ′, i.e., there are at least 𝑛 − 2𝑓 + 2 double-votes in the quorum

certificates of 𝐶𝑣′ (𝐵′) and 𝐶𝑣 (𝐵). Hence, at least 𝑛 − 2𝑓 + 2 nodes
can be identified as adversarial by J . □

Partially Synchronous Protocols: Our second observation is that

any point in the shaded regions of Figure 1 (ii) and (v), i.e., (𝑓
l
, 𝑓s)

tuples such that 𝑓
l
≤ ⌈𝑛/2⌉, 𝑓s, 𝑓a ≤ 𝑛 − 2𝑓

l
+ 2, can be achieved by

Streamlet or HotStuff [10, 41] with a quorum size of 𝑛− 𝑓
l
+ 1 under

(Ap,Zp). For any such point (𝑓
l
, 𝑓s), 𝑓s-safety and 𝑓

l
-liveness of

the protocols again follow directly from the security proofs in the

respective papers. Accountability results for Streamlet and HotStuff

are proven by [34, Theorem 1] and [25, Theorems 5.1, 5.2]

Dynamically Available Protocols: Finally, we know that Nakamoto-

style LC protocols [26, 30, 37] can operate at any (𝛽
l
, 𝛽s) point

16

The Availability-Accountability Dilemma and its Resolution via Accountability Gadgets

within the shaded region 𝛽
l
, 𝛽s ≤ 1/2 on Figure 1 (iii), concluding

the achievability for Figure 1.

F PROOF OF NON-ACCOUNTABILITY OF THE
CHECKPOINTED LONGEST CHAIN
PROTOCOL

In this section, we show that the checkpointed longest chain pro-

tocol presented in [39] does not provide accountable safety. The

checkpointing protocol used by [39] is a slight modification of the

Algorand BA protocol from [11]. Thus, the attack below on the

accountability of the Algorand BA in [39] is very similar to the one

described for Algorand BBA* [12] in [25, Appendix C.3].

Theorem 8. Algorand BA [11] does not provide accountable safety.

Proof. For the sake of contradiction, suppose there exists an

adjudication function J that can identify at least one adversary

node when there is a safety violation, and never identifies an honest

node. Let 𝑛 = 3𝑓 +1 denote the total number of nodes among which

𝑓 nodes are controlled by a Byzantine adversary. Note that Algorand

BA requires each node 𝑖 to hold a starting value 𝑠𝑡𝑝
𝑖
(that is distinct

from the input values) for each period 𝑝 of the protocol. Starting

values are set to 𝑠𝑡1
𝑖
=⊥ for period 𝑝 = 1. Each period consists of 4

steps and an optional 5-th step.

Consider three disjoint sets of nodes 𝑃 ,𝑄 and𝑅, where |𝑃 | = 𝑓 −1
and |𝑄 | = |𝑅 | = 𝑓 + 1. We next construct two worlds each with a

different set of Byzantine nodes.

World 1: Nodes in 𝑅 are controlled by the adversary. Suppose

that the nodes in 𝑃 and 𝑄 start with the input bits 0 and 1 respec-

tively, and a node from 𝑃 is elected leader at period 𝑝 = 1. Then,

the following steps are executed by Algorand BA.

• Period 1, Step 1: Leader proposes its input, 0.

• Period 1, Step 2: Every node soft-votes the value 0 proposed

by the leader. Adversary nodes also soft-vote 0 and share their

votes with all honest nodes.

• Period 1, Step 3: Nodes in 𝑃 and 𝑄 see more than 2𝑓 + 1 soft-
votes for 0, thus they cert-vote for 0. Nodes in 𝑅 also cert-vote

for 0, but send their cert-votes only to the nodes in 𝑃 .

• Period 1, Step 4: Nodes in 𝑃 receive 3𝑓 + 1 > 2𝑓 + 1 cert-votes,
thus terminate using the halting condition and output 0. Nodes

in 𝑄 receive only |𝑃 | + |𝑄 | = 2𝑓 cert-votes, thus are not able to

certify any value. Nodes in 𝑅 pretend as if they do not receive

any cert-votes from the nodes in 𝑄 , thus are not able to certify

any value either. Hence, nodes in 𝑄 and 𝑅 go to the period’s

first finishing step. They all next-vote their starting values 𝑠𝑡1
𝑖
,

which is set to ⊥ for period 𝑝 = 1. Note that the nodes in 𝑅

send their next-votes to the nodes in 𝑄 .

• Period 2, Step 1: Since the nodes in 𝑄 and 𝑅 observe a total

of 2𝑓 + 1 ⊥-next-votes, they do not go to the second finishing

step of period 1 and instead jump to step 1 of period 𝑝 = 2,

with 𝑠𝑡2
𝑖
= ⊥. Suppose a node from𝑄 is elected leader at period

𝑝 = 2. It proposes its input 1.

• Period 2, Step 2: Nodes in𝑄 and𝑅 soft-vote the value 1 proposed

by the leader.

• Period 2, Step 3: Nodes in 𝑄 and 𝑅 see more than 2𝑓 + 1 soft-
votes for 1, thus they cert-vote for 1.

• Period 2 (Halting Condition): Nodes in𝑄 and 𝑅 terminate using

the halting condition and output 1.

Since the honest nodes in 𝑃 and 𝑄 outputted different values,

there is a safety violation, upon which all of the nodes send their

evidences to the adjudication function J . Evidences sent by the

nodes in 𝑄 and 𝑅 state that they did not hear from the nodes in 𝑅

and𝑄 respectively in step 3 of period 1. By assumption, J identifies

at least one node from the set 𝑅 as an adversarial node.

World 2: This world is identical to World 1 except that

• Nodes in 𝑄 are adversarial and the nodes in 𝑅 are honest.

• Nodes in the set 𝑄 behave exactly like the nodes in 𝑅 behaved

in World 1, i.e. the nodes in 𝑄 do not send any cert-votes to

the nodes in 𝑅 in step 3 of period 1 and ignore their votes at

the beginning of step 4 of period 1.

Thus, again the honest nodes in 𝑃 and 𝑄 output different values,

upon which all of the nodes send their evidences to J . As the

worlds 1 and 2 are indistinguishable in the perspective of J , it again

identifies at least one node from the set 𝑅 as an adversary node

with non-negligible probability. However, this is a contradiction

with the definition of J as 𝑅 consists of honest nodes in world

2. □

G SECURITY PROOFS FOR THE
ACCOUNTABILITY GADGETS

G.1 Theorem Statement and Notation
In this section, we consider an accountability gadget Πacc instanti-

ated with a BFT protocol Π
bft

that provides 𝑛 − 2𝑓 + 2-accountable-
safety at all times, and 𝑓 -liveness after max(GST,GAT) under
(A

pda
,Z

pda
). (Recall that it is always possible to find such a BFT

protocol as Π
bft
; see Appendix E.) To match the accountable safety

resilience of Π
bft

on Πacc, we tune the thresholds for the number

of accept and reject votes required to output a new checkpoint as

𝑛 − 𝑓 + 1 and 𝑓 respectively on lines 9 and 12 of Algorithm 2.

Recall that Πacc is used on top of a Nakamoto-style permissioned

longest chain (LC) protocol Π
lc
. For concreteness and notational

purposes, we assume thatΠacc is the Sleepy consensus protocol [37]

although we could have used any other permissioned LC protocol

in its place.

Given the accountability gadget Πacc and the LC protocol Π
lc
,

goal of this section is to prove that the ledgers LOG
acc

and LOG
da

outputted by Πacc and Π
lc
satisfy Theorem 6 repeated below:

Given any security parameter 𝜎 and 𝑓 ≤ ⌈𝑛/2⌉,
(1) (P1:Accountability) Under (A

pda
,Z

pda
), the accountable led-

ger LOG
acc

provides 𝑛 − 2𝑓 + 2-accountable safety at all times,

and there exists a constant C such that LOG
acc

provides 𝑓 -

liveness (with confirmation time polynomial in𝜎) afterCmax(GST,GAT)
except with probability negl(𝜎).

(2) (P2:Dynamic Availability) Under (A
da
,Z

da
), the available

ledger LOG
da

is guaranteed to be safe and live at all times,

provided that 𝛽 < 1/2.
(3) (Prefix) LOG

acc
is always a prefix of LOG

da
.

Before proceeding with the proofs, we formalize the concept of

security after a certain time (We write LOG ⪯ LOG′ if LOG is a

prefix of LOG′.):

17

Joachim Neu, Ertem Nusret Tas, and David Tse

Definition 6. Let𝑇
confirm

be a polynomial function of the security

parameter 𝜎 . We say that a ledger LOG is secure after time 𝑇 and

has transaction confirmation time 𝑇
confirm

if LOG satisfies:

• Safety: For any two times 𝑡 ≥ 𝑡 ′ ≥ 𝑇 , and any two hon-

est nodes 𝑖 and 𝑗 awake at times 𝑡 and 𝑡 ′ respectively, either
LOG𝑡

𝑖
⪯ LOG𝑡 ′

𝑗
or LOG𝑡 ′

𝑗
⪯ LOG𝑡

𝑖
.

• Liveness: If a transaction is received by an awake honest node

at some time 𝑡 ≥ 𝑇 , then, for any time 𝑡 ′ ≥ 𝑡 + 𝑇
confirm

and

honest node 𝑗 that is awake at time 𝑡 ′, the transaction will be

included in LOG𝑡 ′
𝑗
.

Definition 6 formalizes the meaning of ‘safety, liveness and secu-

rity after a certain time 𝑇 ’. In general, there might be two different

times after which a protocol is safe or live. A protocol that is safe

(live) at all times (i.e, after𝑇 = 0) is simply called safe (live) without
further qualification.

G.2 Accountable Safety Resilience
We first show that LOG

acc
provides 𝑛 − 2𝑓 + 2-accountable safety

under (A
pda

,Z
pda
).

Proposition 1. Suppose the number of adversarial nodes is less than
𝑛 − 2𝑓 + 2. Then, if a block 𝑏 is checkpointed for iteration 𝑐 in the
view of an honest node 𝑖 at slot 𝑡 , for any honest node 𝑗 and slot 𝑠 ,
either 𝑏 is checkpointed for iteration 𝑐 at slot 𝑠 or no block has been
checkpointed for iteration 𝑐 yet.

Proposition 1 follows from the safety of LOG
bft

when the number

of adversarial nodes is less than 𝑛 − 2𝑓 + 2.

Theorem 9 (Accountable Safety of LOG
acc

). LOG
acc

provides 𝑛 −
2𝑓 + 2-accountable-safety.

Proof. To show that LOG
acc

provides 𝑛 − 2𝑓 + 2-accountable-
safety, we construct an adjudication protocol J , which in the case

of a safety violation on LOG
acc

, outputs at least 𝑛 − 2𝑓 + 2 nodes
as adversarial and never outputs an honest node. For this purpose,

suppose there is a safety violation on LOG
acc

. Then, there exist

honest nodes 𝑖 and 𝑗 , iterations 𝑐 and 𝑐 ′ (without loss of generality
𝑐 ′ ≤ 𝑐) and slots 𝑠 and 𝑡 such that (i) a block 𝑏1 ≠ ⊥ is checkpointed

for iteration 𝑐 ′ in the view of node 𝑖 at slot 𝑠 , (ii) a block 𝑏2 ≠ ⊥ is

checkpointed for iteration 𝑐 in the view of node 𝑗 at slot 𝑡 , (iii) 𝑏1, 𝑏2
conflict with each other. Then, within LOG𝑖

bft,𝑠
, there are accept

votes ⟨accept, 𝑐 ′, 𝑏1⟩𝑘 from more than 𝑛 − 𝑓 nodes for the proposal

𝑏1 and iteration 𝑐
′
. Similarly, within LOG𝑗

bft,𝑡
, there are accept votes

⟨accept, 𝑐, 𝑏2⟩𝑘 from more than 𝑛 − 𝑓 nodes for the proposal 𝑏2 and

iteration 𝑐 . Thus, more than 2(𝑛 − 𝑓 + 1) − 𝑛 = 𝑛 − 2𝑓 + 2 nodes
voted both ⟨accept, 𝑐 ′, 𝑏1⟩𝑘 and ⟨accept, 𝑐, 𝑏1⟩𝑘 . Let 𝑆 denote the set

of these nodes.

Next, consider the following two cases:

(i) There is a safety violation on LOG
bft
. (Recall that LOG

bft

provides 𝑛 − 2𝑓 + 2-accountable safety.) In this case, since the

adjudication protocol for LOG
bft

identifies at least 𝑛 − 2𝑓 + 2 nodes
as adversarial, J simply returns the output of the adjudication

protocol for LOG
bft
.

(ii) Suppose there is no safety violation on LOG
bft

and 𝑐 ′ < 𝑐 .

Then, via Proposition 1, every node 𝑘 in 𝑆 have either seen 𝑏1 be-

come checkpointed for iteration 𝑐 ′ before voting accept ⟨accept, 𝑐, 𝑏2⟩𝑘

or voted for iteration 𝑐 before seeing any checkpoint for iteration

𝑐 ′. However, an honest node votes accept for the proposal 𝑏2 of

iteration 𝑐 only if it has already seen a block checkpointed for all

past iterations including 𝑐 ′, and if 𝑏2 is consistent with all of the

checkpoints from the past iterations, including 𝑏1. (This is because

an honest node votes accept for a proposal only if it is part of the

node’s checkpoint-respecting LC.) Then, no honest node could have

voted both ⟨accept, 𝑐 ′, 𝑏1⟩𝑘 and ⟨accept, 𝑐, 𝑏2⟩𝑘 , implying that all

of the nodes in 𝑆 have violated the protocol. If 𝑐 ′ = 𝑐 , then all of

the nodes in 𝑆 voted accept twice for two different proposals for

iteration 𝑐 , which is again a protocol violation.

Finally, when there is no safety violation on LOG
bft
, LOG𝑠

bft,𝑖
⪯

LOG𝑡
bft, 𝑗

or LOG𝑡
bft, 𝑗
⪯ LOG𝑠

bft,𝑖
. In either case, all of the accept

votes ⟨accept, 𝑐 ′, 𝑏1⟩𝑘 and ⟨accept, 𝑐, 𝑏2⟩𝑘 are within the longer of

LOG𝑠
bft,𝑖

and LOG𝑡
bft, 𝑗

, which can be used to prove that the nodes

in 𝑆 violated the protocol. Hence, in this case, J returns 𝑆 , which

contains at least 𝑛 − 2𝑓 + 2 nodes as the set of nodes that have

irrefutably violated the protocol. □

G.3 Liveness Resilience
We next focus on the liveness of LOG

acc
.

Proposition 2. Π
bft

satisfies 𝑓 -liveness after max(GST,GAT) with
transaction confirmation time 𝑇

confirm
.

Theorem 10 (Liveness of LOG
acc

). Suppose Π
lc
is secure (safe and

live) after some slot 𝑇 ≥ max(GST,GAT) + Δ + 𝑇cp. Then, LOGacc

satisfies 𝑓 -liveness after slot 𝑇 with transaction confirmation time 𝜎
except with probability 𝑒−Ω (𝜎) .

Proof. If there are 𝑓 or more adversarial nodes, we know via

Proposition 2 that LOG
bft
, and by implication LOG

acc
will not be

live. Thus, to show 𝑓 -liveness of LOG
acc

, we assume that there

are less than 𝑓 adversarial nodes and prove that LOG
acc

satisfies

liveness. In this case, again via Proposition 2, we know that LOG
bft

satisfies liveness with transaction confirmation time 𝑇
confirm

after

max(GST,GAT), a property which we will use subsequently.

Let 𝑐 ′ be the largest iteration such that a block was checkpointed

in the view of some honest node before max(GAT,GST). (Let 𝑐 ′ = 0

if there does not exist such an iteration.) Since the honest nodes

receive every message delivered before max(GAT,GST) by slot

max(GAT,GST) + Δ, all honest nodes would have entered iteration
𝑐 ′ + 1 by slot max(GAT,GST) +Δ. Then, either all honest nodes are
within iteration 𝑐 ′ + 1 at slot max(GAT,GST) +Δ+𝑇cp or an honest

nodes have seen a block checkpointed for iteration 𝑐 ′ + 1 by slot

max(GAT,GST)+Δ+𝑇cp. In either case, entrance times of the honest

nodes to subsequent iterations have become synchronized by slot

max(GAT,GST) + Δ + 𝑇cp: If an honest node enters an iteration

𝑐 > 𝑐 ′ at slot 𝑡 ≥ max(GAT,GST) + Δ + 𝑇cp, every honest node

enters iteration 𝑐 ′ by slot 𝑡 + Δ.
Suppose iteration 𝑐 > 𝑐 ′ has an honest leader L

(𝑐)
, which sends

a proposal
ˆ𝑏𝑐 at slot 𝑡 > 𝑇 +𝑇cp. Note that ˆ𝑏𝑐 is received by every

honest node by slot 𝑡 + Δ. Since the entrance times of nodes are

synchronized by𝑇 ≥ max(GST,GAT) + Δ +𝑇cp, every honest node

votes by slot 𝑡 + Δ. Now, as Π
lc
is secure after slot 𝑇 , ˆ𝑏𝑐 is on all of

the checkpoint-respecting LCs held by the honest nodes. Moreover,

as we will argue in the paragraph below,
ˆ𝑏𝑐 extends all of the

18

The Availability-Accountability Dilemma and its Resolution via Accountability Gadgets

checkpoints seen by the honest nodes by slot 𝑡+Δ. (Honest nodes see
the same checkpoints from iterations preceding 𝑐 due to synchrony.)

Consequently, every honest node votes ⟨accept, 𝑐, ˆ𝑏𝑐 ⟩𝑘 for
ˆ𝑏𝑐 by

slot 𝑡 + Δ, all of which appear within LOG
bft

in the view of every

honest node by slot 𝑡 +Δ+𝑇
confirm

. Thus,
ˆ𝑏𝑐 becomes checkpointed

in the view of every honest node by slot 𝑡 + Δ +𝑇
confirm

. (Here, we

assume that 𝑇to was chosen large enough for 𝑇to > Δ +𝑇
confirm

to

hold.)

Note that L
(𝑐)

waits for 𝑇cp slots before broadcasting
ˆ𝑏𝑐 after

observing the last checkpoint block before iteration 𝑐 . Since 𝑡−𝑇cp >

𝑇 , during the period [𝑡 −𝑇cp, 𝑡], Πlc
satisfies the chain growth and

quality properties (see Appendix H). Thus, for a large enough 𝑇cp,

the checkpoint-respecting LC of L
(𝑐)

at time 𝑡 contains at least one

honest block between
ˆ𝑏𝑐 and the last checkpointed block on the

it from before iteration 𝑐 . (As a corollary, L(𝑐) extends all of the
previous checkpoints seen by 𝑖 and all other honest nodes.) This

implies that
ˆ𝑏𝑐 contains at least one fresh honest block that enters

LOG
acc

by slot 𝑡 + Δ +𝑇
confirm

.

Next, we show that an adversarial leader cannot make an itera-

tion last longer than Δ +𝑇to +𝑇confirm for any honest node. Indeed,

if an honest node 𝑖 enters an iteration 𝑐 at slot 𝑡 , by slot 𝑡 + Δ +𝑇to,
either it sees a block become checkpointed for iteration 𝑐 , or every

honest node votes reject. In the first case, every honest node sees a

block checkpointed for iteration 𝑐 by slot at most 𝑡 + 2Δ +𝑇to. In
the second case, reject votes ⟨reject, 𝑐⟩𝑘 from at least 𝑛 − 𝑓 + 1 ≥ 𝑓

of the nodes appear in LOG
bft

in the view of every honest node

by slot at most 𝑡 + Δ + 𝑇to + 𝑇confirm. Hence, a new checkpoint,

potentially ⊥, is outputted in the view of every honest node by slot

𝑡 + Δ +𝑇to +𝑇confirm.
Finally, we observe that except with probability ((𝑓 + 1)/𝑛)𝑚 ,

there exist an iteration with an honest leader within𝑚 consecutive

iterations. Since an iteration lasts at most max(Δ+𝑇to+𝑇confirm,Δ+
𝑇
confirm

+𝑇cp) ≤ Δ +𝑇to +𝑇confirm +𝑇cp slots and a new checkpoint

containing a fresh honest block in its prefix appears when an iter-

ation has an honest leader, any transaction received by an awake

honest node at slot 𝑡 appears within LOG
acc

in the view of every

honest node by slot at most max(𝑡,𝑇) +𝑚(Δ +𝑇to +𝑇confirm +𝑇cp)
except with probability (𝑓 /𝑛)𝑚 . Hence, via a union bound over the

total number of iterations (which is a polynomial in 𝜎), we observe

that if Π
lc
is secure after some slot𝑇 , then LOG

acc
satisfies liveness

after𝑇 with a transaction confirmation time polynomial in 𝜎 except

with probability 𝑒−Ω (𝜎) .
□

Observe that Theorem 10 requires Π
lc
to eventually regain its

security under (A
pda

,Z
pda
) when there are less than 𝑓 adversarial

nodes. Although it is not possible to guarantee any security property

for Π
lc
before GST, the following theorem states that Π

lc
recovers

its security after max(GST,GAT). Note that Π
lc
is initialized with

a parameter 𝑝 which denotes the probability that a given node is

elected as a block producer in a given slot.

Theorem 11 (Security of Π
lc
). If 𝑝 < (𝑛 − 2𝑓 − 2)/(2Δ𝑛(𝑛 −

𝑓 − 1)) and there are 𝑓 − 1 (or less) adversarial nodes, for each
sufficiently large 𝑇cp, there exists a constant C > 0 such that for
any GST and GAT specified by (A

pda
,Z

pda
), Π

lc
(𝑝) is secure after

C(max(GST,GAT) +𝜎), with transaction confirmation time 𝜎 , except

with probability 𝑒−Ω (
√
𝜎) .

Proof of the theorem is given in Section H and relies on a combi-

nation of the method outlined in [39, Appendix C] with the concept

of strong pivots from [37].

Finally, since 𝑓 ≤ ⌈𝑛/2⌉, we can always find a 𝑝 such that 𝑝 <

(𝑛− 2𝑓 − 2)/(2Δ𝑛(𝑛− 𝑓 − 1)). Then, given Theorems 11 and 10 and

a sufficiently small 𝑝 , we can assert that LOG
acc

satisfies 𝑓 -liveness

with a transaction confirmation time polynomial in 𝜎 after time

C(max(GST,GAT) + 𝜎) except with probability 𝑒−Ω (
√
𝜎)
.

G.4 Recency and Gap Properties
Proof of Theorem 11 requires the accountability gadget Πacc to

satisfy two main properties first introduced in [39]: recency and

gap properties.

Gap property states that blocks are checkpointed sufficiently

apart in time, controlled by the parameter 𝑇cp:

Proposition 3 (Gap Property). Given any time interval [𝑡1, 𝑡2],
no more than (1 + (𝑡2 − 𝑡1))/𝑇cp blocks can be checkpointed in the
interval.

Proof of Proposition 3 follows from the fact that upon observing

a new checkpoint that is not ⊥ for an iteration, honest nodes wait

for 𝑇cp slots before voting for the proposal of the next iteration.

Following the notation in [39], we say that a block checkpointed

for iteration 𝑐 at slot 𝑡 > max(GST,GAT) in the view of an honest

node 𝑖 is𝑇rec-recent if it has been part of the checkpoint-respecting

LC of some honest node 𝑗 at some slot within [𝑡 − 𝑇rec, 𝑡]. Then,
we can express the recency property as follows:

Lemma 1 (Recency Property). Every checkpointed block proposed
after max(GST,GAT) is 𝑇rec-recent for 𝑇rec = Δ +𝑇to +𝑇confirm.

Proof. We have seen in the proof of Theorem 10 that if a block

𝑏 proposed after max(GST,GAT) is checkpointed in the view of

an honest node at slot 𝑡 , it should have been proposed after slot

𝑡−Δ+𝑇to+𝑇confirm. Thus, more than𝑛− 𝑓 +1 nodes must have voted

⟨accept, 𝑐, 𝑏⟩𝑘 by time 𝑡 . Let 𝑗 denote an honest nodes which voted

⟨accept, 𝑐, 𝑏⟩𝑗 . Note that 𝑗 would vote only after it sees the proposal
for iteration 𝑐 , i.e after slot 𝑡 −𝑇rec = 𝑡 − Δ +𝑇to +𝑇confirm. Hence,
𝑏 should have been on the checkpoint-respecting LC of node 𝑗 at

some slot within [𝑡 −𝑇rec, 𝑡]. This concludes the proof that every
checkpoint block proposed after max(GST,GAT) is𝑇rec-recent. □

H SECURITY PROOF FOR THE
CHECKPOINT-RESPECTING LONGEST
CHAINS

In this section, we prove Theorem 11, which states that the security

of Π
lc
is restored after max(GST,GAT) under (A

pda
,Z

pda
) pro-

vided that the election probability 𝑝 of each node is sufficiently

small. Via [35, Appendix C], we know that the Sleepy consensus pro-

tocol [37] regains its safety and liveness within𝑂 (max(GST,GAT))
slots under (A

pda
,Z

pda
). On a similar note, [4] has shown the same

self-healing property for Nakamoto’s PoW LC protocol and other

LC based PoS protocols. However, all of these works analyze the LC

protocols in their original form without considering checkpoints

in the chain selection rule. In this context, [39] is the first work to

19

Joachim Neu, Ertem Nusret Tas, and David Tse

show the recovery of security for checkpoint-respecting LC proto-

cols. As argued in [39], length of a checkpoint-respecting LC held

by an honest node can decrease when a new checkpoint appears at

a conflicting chain, thus, requiring a careful analysis to bound how

many honest blocks are lost due to such instances. However, it is

not immediately obvious if the analysis of [39] that relies on [21]

carries over to the case of PoS protocols, where an adversary can

generate multiple blocks when it is elected. Hence, our goal is to

show that the PoS protocols such as [3, 16, 37] recover their safety

and liveness after𝑂 (max(GST,GAT)) time under (A
pda

,Z
pda
). In

this endeavor, we enhance the proof technique of [39] by using the

concept of strong pivots from [37].

In the proof below, we follow the same notation as [37]. Each

node is elected as the leader of a time slot with probability 𝑝 . Total

number of slots 𝑇max is fixed and is a polynomial in the security

parameter𝜎 . There are𝑛 nodes in total, amongwhich 𝑓 −1 nodes are
controlled by the adversary. We denote the checkpoint-respecting

longest chain held by an honest node 𝑖 at slot 𝑡 by ch𝑡
𝑖
.

Define 𝛽 = 𝑝 (𝑓 − 1) as an upper bound on the expected number

of adversary nodes elected leader in a single slot. Similarly, define

𝛼 as a lower bound on the expected number of awake honest nodes

elected leader in a single slot. After GAT, every honest node wakes

up and 𝛼 = 𝑝 (𝑛 − 𝑓 + 1) > 𝛽 as 𝑓 ≤ ⌈𝑛/2⌉. For the convergence
opportunities, we adopt the definition given in [37, Section 5.2]

and denote the number of convergence opportunities within a time

interval [𝑡1, 𝑡2] by C([𝑡1, 𝑡2]).
We say that a block 𝑏 is checkpointed at slot 𝑡 if 𝑡 is the first

slot an honest node sees 𝑏 as checkpointed. Note that after GST,
if 𝑏 is checkpointed at slot 𝑡 , then every honest node sees 𝑏 as

checkpointed by slot 𝑡 + Δ. Let max(GST,GAT) +𝑇rec < 𝑡∗
1
≤ 𝑡∗

2
≤

... ≤ be the slots at which new blocks 𝑏∗
1
, 𝑏∗

2
, ... are checkpointed

after max(GST,GAT). To show that checkpointing a new block

does not forfeit too many convergence opportunities, we follow

the approach of [39] and divide time into two sets of intervals. Let

𝐼𝑙 := [𝑡∗𝑙 + Δ, 𝑡
∗
𝑙+1 −𝑇rec − Δ] and define 𝐼 := ∪𝑙≥0𝐼𝑙 as the union of

the inter-checkpoint intervals 𝐼𝑙 . (Recall the definition of 𝑇rec from

Lemma 1.) Using the definition of 𝐼 , we can now proceed to prove

the chain growth, quality and the common prefix properties.

H.1 Chain Growth
Definition 7 ([37, Section 3.2.1]). Predicate growth(𝜏, 𝑘) is satis-
fied if and only if for every slot 𝑡 ≤ 𝑇max−𝜏 , min𝑖, 𝑗 (|ch𝑡+𝜏𝑗

|−|ch𝑡
𝑖
|) ≥

𝑘 .

We use the same results given in [39] to lower bound the chain

growth in terms of convergence opportunities that lie within the

inter-checkpoint intervals.

Lemma 2 ([39, Lemma 5]). Let 𝑠, 𝑡 be two slots such that 𝑠 ∈ 𝐼 and
and 𝑡 ≥ 𝑠 + Δ. Let ch𝑠

𝑖
be a chain held by some honest node 𝑖 at slot 𝑠 .

Then all honest nodes will hold a chain of length at least |ch𝑠
𝑖
| in slot

𝑡 .

Proof is (almost) the same as [39, Lemma 5] and uses Lemma 1.

Proof. Let 𝑖 and 𝑗 (potentially 𝑖 = 𝑗) be honest nodes awake

at slots 𝑠 and 𝑡 ≥ 𝑠 + Δ respectively. Since 𝑠 ∈ 𝐼 , there exists an

𝑙 such that 𝑠 ∈ 𝐼𝑙 . Let 𝑏 denote the last checkpoint block within

ch𝑠
𝑖
. Since 𝑠 ≥ max(GST,GAT), all honest nodes accept 𝑏 as a

checkpoint by slot 𝑡 . Next, consider the following two cases: (i) 𝑏 is

the last checkpoint block in 𝑗 ’s view by slot 𝑡 . Then, |ch𝑡
𝑗
| ≥ |ch𝑠

𝑖
|,

as ch𝑠
𝑖
contains all of the checkpoints observed by 𝑗 by slot 𝑡 . (ii) 𝑗

observes at least one new block become checkpointed by slot 𝑡 . In

this case, let 𝑏 ′ denote the first block that becomes checkpointed

in 𝑗 ’s view after 𝑏 within slot 𝑡∗
𝑙 ′
. 𝑙 ′ > 𝑙 . (In this case, 𝑡 ≥ 𝑡∗

𝑙 ′
by

definition.) Via Lemma 1 (recency property), 𝑏 ′ must be on the

checkpoint-respecting LC ch𝑡
′

𝑘
held by an honest node 𝑘 at some

slot 𝑡 ′ ∈ [𝑡∗
𝑙 ′
−𝑇rec, 𝑡∗𝑙 ′], during which 𝑏 ′ was not checkpointed yet

in the view of any honest node. Thus, via case (i), |ch𝑡 ′
𝑘
| ≥ |ch𝑠

𝑖
|

since 𝑡 ′ ≥ 𝑡∗
𝑙 ′
−𝑇rec ≥ 𝑠 + Δ for 𝑙 ′ > 𝑙 . Note that the length of the

checkpoint-respecting LC held by any honest node at the time it

observes 𝑏 ′ become checkpointed must be at least |ch𝑡 ′
𝑘
| ≥ |ch𝑠

𝑖
|.

Hence, by induction, we can state that all honest nodes that observe

at least one new checkpoint (after 𝑏) by slot 𝑡 hold chains of length

at least |ch𝑠
𝑖
| at slot 𝑡 , implying that |ch𝑡

𝑗
| ≥ |ch𝑠

𝑖
|. □

A useful corollary of Lemma 2 is given below:

Corollary 1. All honest blocks produced at convergence opportuni-
ties within 𝐼 have distinct heights.

Proof. Suppose an honest block 𝑏 is produced at height ℓ at a

convergence opportunity 𝑡 within 𝐼 . Then, the honest producer of 𝑏

holds a chain of length ℓ at slot 𝑡 ∈ 𝑆 . Via Lemma 2, all honest nodes

will hold a chain of length at least ℓ at all slots ≥ 𝑡 + Δ. Since the
next convergence opportunity after 𝑡 happens at some slot ≥ 𝑡 + Δ,
the next honest block will be at a height larger than ℓ . □

Lemma 3 ([39, Lemma 6]). Consider a slot 𝑠 ∈ 𝐼 and an honest node
𝑖 awake at 𝑠 such that |ch𝑠

𝑖
| = ℓ . (Alternatively, consider a slot 𝑡 and

an honest node 𝑖 awake at 𝑡 such that ch𝑡
𝑖
contains an honest block at

height ℓ produced in some slot 𝑠 < 𝑡 .) Then, for any slot 𝑡 ≥ 𝑠 + 2Δ
and honest node 𝑗 awake at slot 𝑡 , |ch𝑡

𝑗
| ≥ ℓ + C(𝐼 ∩ [𝑠 + Δ, 𝑡 − Δ]).

Proof is similar to [39, Lemma 6] and uses Lemma 2. A direct

consequence of Lemma 3 is that growth(𝜏, 𝑘) is satisfied if for any

interval [𝑡1, 𝑡2] of length 𝑡2−𝑡1 = 𝜏 ≥ 2Δ, C(𝐼 ∩ [𝑡1+Δ, 𝑡2−Δ]) ≥ 𝑘 .

H.2 Chain Quality
Definition 8 ([37, Section 3.2.2]). Predicate quality(𝜇, 𝑘) is satis-
fied if and only if for every slot 𝑡 and every honest node 𝑖 awake

at 𝑡 , among any consecutive sequence of 𝑘 blocks within ch𝑡
𝑖
, the

fraction of blocks produced by honest nodes is at least 𝜇.

Lemma 4. If quality(𝜇, 1/𝜇) = 0, then there exist slots 𝑠, 𝑡 such that
A([𝑠, 𝑡]) ≥ 1/𝜇 and A([𝑠, 𝑡]) ≥ C(𝐼 ∩ [𝑠 + Δ, 𝑡 − Δ]) − 1.

Proof. If quality(𝜇, 1/𝜇) = 0, then there exists a slot 𝑡 ′ and an

honest node 𝑖 awake at 𝑡 ′ such that ch𝑡
′
𝑖
contains a consecutive

sequence of 1/𝜇 blocks 𝑏1, ..., 𝑏1/𝜇 produced by the adversary. Let

𝑏∗𝑠 denote the last honest block before 𝑏1 within ch𝑡
′
𝑖
and let ℓ𝑠 and

𝑠 respectively denote its height and the slot it was produced in.

Similarly, let 𝑏∗𝑡 denote the first honest block after 𝑏
1/𝜇 within ch𝑡

′
𝑖

and let ℓ𝑡 and 𝑡 respectively denote its height and the slot it was

produced in. (Note that the genesis block can be taken as an honest

block.) If there is no honest block following 𝑏
1/𝜇 within ch𝑡

′
𝑖
, let

20

The Availability-Accountability Dilemma and its Resolution via Accountability Gadgets

𝑏∗𝑡 = ch𝑡
′
𝑖
[−1], ℓ𝑡 = |ch𝑡

′
𝑖
| and 𝑡 = 𝑡 ′. In either case, there exists an

honest node which holds a chain of length ℓ𝑡 − 1 at slot 𝑡 and this

chain contains an honest block at height ℓ𝑠 produced in slot 𝑠 . Thus,

via Lemma 3, we know that ℓ𝑡 ≥ ℓ𝑠 + C(𝐼 ∩ [𝑠 + Δ, 𝑡 − Δ]). Note
that every block within ch𝑡

′
𝑖
with height in (ℓ𝑠 , ℓ𝑡) was produced by

the adversary within the interval [𝑠, 𝑡], and lie on the same chain.

Hence, A([𝑠, 𝑡]) ≥ ℓ𝑡−ℓ𝑠−1, where ℓ𝑡−ℓ𝑠−1 ≥ C(𝐼∩[𝑠+Δ, 𝑡−Δ])−1.
Moreover, the blocks 𝑏1, ..., 𝑏1/𝜇 were produced within the interval

[𝑠, 𝑡] and lie on the same chain, implying that A([𝑠, 𝑡]) ≥ 1/𝜇.
Hence, we can conclude that if quality(𝜇, 1/𝜇) = 0, A([𝑠, 𝑡]) ≥ 1/𝜇
and A([𝑠, 𝑡]) ≥ C(𝐼 ∩ [𝑠 + Δ, 𝑡 − Δ]) − 1. □

H.3 Common Prefix
Definition 9 ([37, Section 3.2.3]). Predicate prefix(𝜏) is satisfied
if and only if for all slots 𝑠 ≤ 𝑡 and honest nodes 𝑖, 𝑗 such that 𝑖 and

𝑗 are awake at slots 𝑠 and 𝑡 respectively, prefix of ch𝑗𝑡 consisting of

blocks produced at slots ≤ 𝑡 − 𝜏 is a prefix of ch𝑖𝑠 .
To show the common prefix property in the context of check-

pointed PoS protocols, we extend the definition of strong pivots in

[37, Section 5.6.1] as shown below:

Definition 10. A slot 𝑡 is said to be a checkpoint-strong pivot, if
for any 𝑡0 ≤ 𝑡 ≤ 𝑡1, it holds that either A([𝑡0, 𝑡1]) < C(𝐼 ∩ [𝑡0, 𝑡1])
or A([𝑡0, 𝑡1]) = 0.

Observe that when we count the number of convergence oppor-

tunities for a checkpoint-strong pivot, we only take those that lie

within the inter-checkpoint intervals. Intuitively, this is because the

convergence opportunities that arrive during checkpoint intervals

do not offer any guarantee of growth for the chains held by honest

nodes. Conversely, as Corollary 1 states, all of the honest blocks

that arrive at convergence opportunities within 𝐼 have a unique

height. Hence, by counting only the convergence opportunities

in 𝐼 , we can inherit all of the qualitative results presented in [37]

about the prefix property. In this context, following proposition

and lemma extend [37, Fact 4, Lemma 5]:

Proposition 4 (Unique Honest Blocks at Convergence Opportu-

nities in 𝐼). Let 𝑖 and 𝑗 be two honest nodes awake at slots 𝑟1 and
𝑟2 ≥ 𝑟1 respectively. If ch

𝑟1
𝑖
[ℓ] and ch𝑟2

𝑗
[ℓ] are both honest blocks and

there exists a convergence opportunity 𝑡∗, 𝑡∗ ∈ 𝐼 , such that an honest
block 𝑏∗ was produced at height ℓ , then, ch𝑟1

𝑖
[ℓ] = ch𝑟2

𝑗
[ℓ] = 𝑏∗.

Proof. For the sake of contradiction, suppose ch𝑟1
𝑖
[ℓ] and ch𝑟2

𝑗
[ℓ]

are both honest blocks at least one of which is different from 𝑏∗. Let
𝑘 denote the honest producer of 𝑏∗ such that ch𝑡

∗

𝑘
[ℓ] = 𝑏∗. Without

loss of generality, suppose ch𝑟1
𝑖
[ℓ] = 𝑏 ≠ 𝑏∗, and let𝑚 and 𝑡 denote

the honest block producer and the production slot of 𝑏. As 𝑏 ≠ 𝑏∗,
either 𝑡 < 𝑡∗ −Δ or 𝑡 > 𝑡∗ +Δ. Now, if 𝑡 < 𝑡∗ −Δ, either at least one
honest node holds a checkpoint-respecting LC of length ℓ at time

𝑡∗−Δ, or 𝑏 conflicts with one of the blocks checkpointed before slot

𝑡∗−Δ. In the first case, |ch𝑡∗−
𝑘
| ≥ ℓ , which implies 𝑏∗ could not have

been produced at height ℓ , leading to a contradiction. In the latter

case, no checkpoint-respecting LC of an honest node will contain

𝑏 after slot 𝑡∗, which is a contradiction as 𝑏 ∈ ch𝑟1
𝑖
. Conversely, if

𝑡 > 𝑡∗ + Δ, via Lemma 2, |ch𝑡−𝑚 | ≥ |ch𝑡
∗

𝑘
| ≥ ℓ , which implies 𝑏 could

not have been produced at height ℓ , leading to a contradiction. Thus

𝑏 = 𝑏∗ and ch𝑟1
𝑖
[ℓ] = ch𝑟2

𝑗
[ℓ] = 𝑏∗. □

Lemma 5. Let 𝑖 and 𝑗 be two honest nodes awake at slots 𝑟1 and
𝑟2 ≥ 𝑟1 respectively. Let 𝑡 be a checkpoint-strong pivot such that there
is a convergence opportunity in [𝑡, 𝑟1] ∩ 𝐼 . Then, the last common
block within ch𝑟1

𝑖
and ch𝑟2

𝑗
should have been produced in a slot ≥ 𝑡 .

Proof. Let 𝑏1,𝑖 and 𝑏1, 𝑗 from slots 𝑡1,𝑖 and 𝑡1, 𝑗 be the last honest

blocks on the chains ch𝑟1
𝑖

and ch𝑟2
𝑗
respectively that correspond

to convergence opportunities within (0, 𝑡] ∩ 𝐼 . Similarly, let 𝑏2,𝑖
and 𝑏2, 𝑗 from slots 𝑡2,𝑖 and 𝑡2, 𝑗 be the first honest blocks on the

chains ch𝑟1
𝑖
and ch𝑟2

𝑗
respectively that correspond to convergence

opportunities within [𝑡,∞) ∩ 𝐼 .
Now, consider the following two cases: First, 𝑡 ∈ 𝐼 is a conver-

gence opportunity such that some honest block 𝑏∗ at height ℓ∗ was
produced at 𝑡 . Since 𝑡 is a checkpoint-strong pivot, there cannot

be an adversarial block within ch𝑟1
𝑖

and ch𝑟2
𝑗
at height ℓ∗. Then, via

Proposition 4, 𝑏1,𝑖 = 𝑏1, 𝑗 = 𝑏2,𝑖 = 𝑏2, 𝑗 = 𝑏∗, and thus ch𝑟1
𝑖
and ch𝑟2

𝑗

could not have diverged at slot 𝑡 .

Next, suppose 𝑡 is not a convergence opportunity. In this case,

by the definition of a checkpoint-strong pivot, within ch𝑟1
𝑖
, there

cannot be any adversarial block between 𝑏1,𝑖 and 𝑏2,𝑖 . Then, there

also cannot be any convergence opportunity in (𝑡1,𝑖 , 𝑡2,𝑖) ∩ 𝐼 , since
otherwise there would be another honest block in ch𝑟1

𝑖
from a

convergence opportunity 𝑡 ′ such that either 𝑡 ′ ∈ (0, 𝑡] ∩ 𝐼 , 𝑡 ′ > 𝑡1,𝑖
or 𝑡 ′ ∈ [𝑡,∞) ∩ 𝐼 , 𝑡 ′ < 𝑡2,𝑖 . Hence, 𝑡1,𝑖 and 𝑡2,𝑖 must be the two

convergence opportunities within 𝐼 closest in time to 𝑡 on either

side of 𝑡 . As the same reasoning applies to ch𝑟2
𝑗
, we can conclude

that 𝑡2,𝑖 = 𝑡2, 𝑗 , which implies 𝑏2,𝑖 = 𝑏2, 𝑗 . Hence, ch
𝑟1
𝑖
and ch𝑟2

𝑗
could

not have diverged at slot 𝑡 . □

H.4 Probabilistic Analysis
To lower bound the number of convergence opportunities, we can

use the following observation from [39, Proposition 4] which relies

on Proposition 3 (gap property): If 𝑡 ≥ 𝑠 ≥ max(GST,GAT),
C([𝑡1, 𝑡2] ∩ 𝐼) ≥ C([𝑡1, 𝑡2]) − (1 + (𝑡2 − 𝑡1)) (𝑇rec + 2Δ + 1)/𝑇cp .

Combining this expression with [37, Lemma 2, Corollary 2, Fact 2]

yields the following proposition:

Proposition 5. For any 𝜖 > 0, there exists an 𝜖 ′ such that given
𝑡2 ≥ 𝑡1 ≥ max(GST,GAT), 𝑡 ≜ 𝑡2 − 𝑡1,

P

[
C([𝑡1, 𝑡2] ∩ 𝐼) ≤

(
(1 − 𝜖) (1 − 2𝑝𝑛Δ)𝛼 − 𝑇rec + 2Δ + 1

𝑇cp

)
𝑡

]
< exp (−𝜖 ′𝛼𝑡)
P[A([𝑡1, 𝑡2]) > (1 + 𝜖)𝛽𝑡] < exp (−𝜖2𝛽𝑡/3).

We also note that for any given 𝑝 < (𝑛−2𝑓 +2)/(2Δ𝑛(𝑛− 𝑓 +1))
and sufficiently large 𝑇cp, there exists a constant 𝜖 > 0 such that

(1 + 𝜖)𝛽 < (1 − 𝜖) (1 − 2𝑝𝑛Δ)𝛼 − 𝑇rec + 2Δ + 1
𝑇cp

(1)

Next, we define𝑇 as the minimum slot 𝑡 ≥ max(GST,GAT) such
that C([0, 𝑡]∩𝐼) = A([0, 𝑡]). In other words,𝑇 is an upper bound on

the slot by which checkpoint-respecting LCs held by honest nodes

would have caught up with the checkpoint-respecting LCs held by

the adversary nodes. Thus, we can view 𝑇 as the time Π
lc
resets

itself such that after 𝑇 , it behaves like a checkpoint-respecting LC

protocol that has just started running in a synchronous network.

21

Joachim Neu, Ertem Nusret Tas, and David Tse

As long as 𝑇cp is selected sufficiently large for equation 1 to hold,

combining [35, Propositions 2,3,4] with Proposition 5, we can assert

the following proposition bounding 𝑇 :

Proposition 6. There exists a constant C such that for any given
security parameter 𝜎 , and GST,GAT specified by (A

pda
,Z

pda
), 𝑇 ≤

C(max(GST,GAT) + 𝜎) except with probability 𝑒−Ω (𝜎) .

Using Proposition 6, we can complete the proof of Theorem 11:

Proof. Using Proposition 5 and Lemma 3, we can assert that

for any given 𝜖 > 0, growth(𝜎, 𝑘) is satisfied after max(GST,GAT)
except with probability 𝑒−Ω (𝜎) , where 𝑘 = 𝑔0𝜎 for

𝑔0 = (1 − 𝜖) (1 − 2𝑝𝑛Δ)𝛼 −
𝑇rec + 2Δ + 1

𝑇cp
.

Similarly, using Lemma 4, Proposition 5 and Proposition 6, we can

assert that for any given 𝜖 > 0, quality(𝜇, 1/𝜇) is satisfied after slot

C(max(GST,GAT) + 𝜎), except with probability 𝑒−Ω (𝜎) , where

𝜇 =
(1 − 𝜖) (1 − 2𝑝𝑛Δ)𝛼 − (1 + 𝜖)𝛽 − (𝑇rec + 2Δ + 1)/𝑇cp

(1 − 2𝑝𝑛Δ)𝛼 − (𝑇rec + 2Δ + 1)/𝑇cp
.

Finally, we know via Lemma 5 that checkpoint-strong pivots force

convergence of the checkpoint-respecting LCs seen by all honest

nodes. Hence, we can use [37, Theorem 7] to show that prefix(𝜎) is
satisfied after slot C(max(GST,GAT) + 𝜎) except with probability

𝑒−Ω (
√
𝜎)
. Then, using [37, Lemma 1], we conclude that Π

lc
is secure

with 𝑇
confirm

= 𝑂 (𝜎/𝑔0) after slot C(max(GST,GAT) + 𝜎) except
with probability 𝑒−Ω (

√
𝜎)
. □

H.5 Security Argument for Chia
While the sections above prove Theorem 6 for PoS, and by impli-

cation PoW protocols, security of Chia [14] does not immediately

follow from the analysis of checkpoint-strong-pivots due to nothing-

at-stake attacks [17], which enable the adversary to mine blocks on

top of each existing block via independent Poisson processes. The

first paper to show security for such protocols given the possibility

of nothing-at-stake attacks is [17] which introduced a novel method

called blocktree-partitioning. This method splits the overall block-

tree into adversarial trees that build on a fictitious honest tree with a

chain growth property analogous to the one in Appendix H.1. Thus,

as in the case of convergence opportunities, we can once again

count only the honest blocks that arrive within inter-checkpoint

intervals 𝐼𝑙 to provide a non-trivial lower bound on the growth of

the fictitious honest tree in the context of checkpoint-respecting

LCs. This lower bound follows from the fact that each honest block

produced during such an interval 𝐼𝑙 has the potential to contribute

to the growth of honest chains just like in the case of original LC

protocols. Using themodified definition for the fictitious honest tree,

we can then prove [17, Theorem 3.2] that ties protocol security to

the evolution of the fictitious honest tree for checkpoint-respecting

LC protocols. Finally, the probabilistic analysis of [17, Section 4.2]

goes through provided that 𝛽 < 1/𝑒 and the parameters 𝑝 and 1/𝑇cp
are sufficiently small. Details of this analysis is left as future work.

I ATTACKING GASPERWITHOUT
ADVERSARIAL NETWORK DELAY

I.1 Motivation
Earlier works [8, 31–33, 35] have described balancing-type attacks

against variants of the GHOST fork choice rule used in Gasper. In

particular, the attack described in [33, 35] uses adversarial network

delay to show that Gasper is not secure in traditional (partially)

synchronous networks. While adversarial network delay (up to

some delay bound) is a widely employed assumption in the con-

sensus literature, there is disagreement whether it is appropriate

for Internet-scale open-participation consensus. As a result, past

attacks are often seen as impractical and have not been mitigated:

“Note that this attack does depend on networking assumptions that

are highly contrived in practice (the attacker having fine-grained

control over latencies of individual validators), [...]” [5]

We show how the attack of [33, 35] can be modified and im-

plemented so that an adversary controlling 15% of stake can stall

Gasper without requiring adversarial network delay. To this end,

we show through experiments that aggregate properties of many

individually random message propagation processes (e.g., ‘within
time 𝑇 this transmission is received by fraction 𝑥 of nodes’) in real-

world Internet-scale peer-to-peer gossip networks are sufficiently

predictable to give the adversary the required control over how

many validators see which adversarial messages when. None of the

adversarial actions are slashable protocol violations.

I.2 High-Level Idea
Recall that the balancing attack [33, 35] consists of two steps: First,

adversarial block proposers initiate two competing chains – call

them Left and Right. Then, a handful of adversarial votes per slot,

released under carefully chosen circumstances, suffice to steer hon-

est validators’ votes so as to keep the system in a tie between the

two chains and consequently stall consensus.

Assume, w.l.o.g., that when viewing Left and Right with equal

number of votes, the protocol’s tie-break favors Left over Right. If

the adversary manages to deliver a withheld adversarial vote for

Right from an earlier slot to roughly one half of honest validators

for the current slot 𝑖 , before validators submit their votes for slot

𝑖 , while the other half does not receive said vote before casting

their votes, then roughly half of honest validators (those who have

received the sway vote ‘in time’) see Right as leading and will vote

for it in slot 𝑖 , while the other half (those who see the sway vote

‘late’ and hence at the time of voting see a tie which they break in

favor of Left) will vote for Left in slot 𝑖 (see Figure 10).

Idealizing the above as voting according to a coin flip for each

validator, roughly𝑚/2 of𝑚 honest validators per slot would vote

Left and Right, respectively, with a gap of 𝑂 (
√
𝑚) (cf. variance of a

binomially distributed random variable). So, 𝑂 (1/
√
𝑚) adversarial

fraction of stake would suffice to rebalance the vote to a tie and keep

the system in limbo. In Section I.4 we provide evidence from real-

world propagation delay measurements in a replica of Ethereum 2’s

gossip network [1] to support the hypothesis that the adversary can

indeed reliably determine the time𝑇
delay

it takes for approximately

half of nodes to receive a message broadcast by the adversary.

22

The Availability-Accountability Dilemma and its Resolution via Accountability Gadgets

Time

Adversary sends sway vote for Right from slot ≤ 𝑖 − 1
𝐴 receives sway vote

Honest validators scheduled to vote for slot 𝑖

𝐴 votes Right (due to sway vote)

𝐵 votes Left (due to tie-break)

𝐵 receives sway vote

𝑇
delay𝑇𝐴

𝑇𝐵

Figure 10: Assuming a tie between two chains Left andRight,
with tie-break favoring Left. The adversary releases a sway
vote for Right from a slot < 𝑖 at time𝑇

delay
before the point in

time atwhichhonest validators vote in slot 𝑖 according to the
protocol. The parameter 𝑇

delay
is chosen such that roughly

half of honest validators (such as 𝐴) receive the sway vote
before they submit their vote (and hence vote Right, as Right
now has more votes in their view), and the other half of hon-
est validators (such as 𝐵) receive the sway vote after they sub-
mit their vote for (and hence vote Left, as the tie-break still
favors Left in their view).

I.3 Detailed Description
First we describe the attack for a given 𝑇

delay
, then we describe

how to obtain 𝑇
delay

. Our simulation
5
using the gossip network

propagation model obtained in Section I.4 provides further details.

First, the adversary waits for an opportune epoch to launch the

attack. An epoch is opportune if the block proposers in slot 0 and

1 are adversarial (this can be strengthened). Due to the random

committee selection in Gasper, this happens with probability 𝛽2 for

any given epoch, so that the adversary needs to wait on average

1/𝛽2 epochs until it can launch the attack. In the following, assume

epoch 0 is opportune. The adversarial proposers of slots 0 and 1

propose conflicting new chains ‘Left’ and ‘Right’, respectively. Note

that this is not a slashable protocol violation. Both withhold their

proposals so that none of slot 0 or 1 honest validators vote for either

block. The adversary releases the blocks to the network after slot 1.

We assume w.l.o.g. that the tie between Left and Right (recall that

no vote has been cast for either so far) is broken in favor of Left.

Time𝑇
delay

before honest validators in slot 2 vote, the adversary

releases a vote for Right from an adversarial committee member of

slot 1 (so called sway vote, see Figure 10). If 𝑇
delay

is tuned well to

the network propagation behavior at large, then roughly one half

of honest committee members of slot 2 see the sway vote before

they cast their vote, and thus view Right as leading (due to the

sway vote) and will vote for it, and the other half see the sway

vote only after they cast their vote, and thus view Left as leading

(due to the tie-break) and will vote for it. Once the adversary has

observed the outcome of the vote, which now should be a split up

to an𝑂 (
√
𝑚) gap, the adversary uses its slot 2 committee members

(which stipulates the adversarial fraction 𝑂 (1/
√
𝑚) required for

this attack) as well as slot 0 and 1 committee members to rebalance

the vote to a tie. As the tie is restored, the adversary can use the

5
Source code: https://github.com/tse-group/gasper-gossip-attack

0 50 100 150 200 250

0

0.2

0.4

0.6

0.8

1

Time [ms]

C
D
F

Figure 11: Fraction of participants in the peer-to-peer gossip
networkwho have received amessage broadcast by node 0 at
time 0 by the given time (50 sample messages in gray, mean
over all samples in blue). Median (dashed red) at ≈ 100ms.

80 100 120 140 160 180

0

200

400

600

𝑇
delay

A
v
g
.
d
u
r
a
t
i
o
n
o
f
a
t
t
a
c
k
[
s
l
o
t
s
]

Node 0 in us-east-2 Node 1 in ap-northeast-1

Node 2 in us-east-1 Node 3 in ap-northeast-1

Node 4 in ap-northeast-2

Figure 12: Using the propagation delay measurements to
model network propagation, we simulated our attack for
fixed 𝛽 = 0.15, varying 𝑇

delay
, and five different positions of

the adversary in the network, and plot the resulting average
duration of the liveness interruption (cut off at 800 slots hori-
zon). Observe that the peak for node 0fits well to themedian
observed in Figure 11. The curves are smooth and allow for
easy and reliable localization of the optimal 𝑇

delay
.

same strategy in the following slot, and so forth.

Note that the adversary can observe the outcome of a vote and

learns how many honest committee members saw Left and Right

leading, respectively. The adversary can use this information to

improve its estimate of 𝑇
delay

. We show in Section I.4 that the

optimal 𝑇
delay

can be reliably localized even using grid search.

I.4 Experimental Evaluation
To understand whether the network propagation delay distribu-

tion is sufficiently well-behaved for an adversary to reproducibly

broadcast messages so that they arrive at roughly half of nodes by a

fixed deadline, we replicated the gossip network of Ethereum 2 [1]

and measured the network propagation delay of test ‘ping’ packets

from a designated sender to all nodes. The implementation in the

Rust programming language used libp2p’s Gossipsub protocol

and implementation, as is used in Ethereum 2 [1].

The gossip network comprised 750 nodes, each on an AWS EC2

m6g.medium instance (with 50 instances each in all 15 AWS regions

that supported m6g.medium as of 21-April-2021). Each node initi-

ated a connection with ten randomly chosen peers. The five nodes

23

https://github.com/tse-group/gasper-gossip-attack

Joachim Neu, Ertem Nusret Tas, and David Tse

with lowest instance ID were designated as senders and continu-

ously broadcasted beacon messages with inter-transmission times

uniformly distributed between zero and five seconds over a period

of 20 minutes, logging the time when each message was broadcast.

All nodes logged the time when a message was first received.

The network propagation delay was determined for each mes-

sage and each receiving node. The respective CDFs, i.e., what frac-
tion of nodes have received a given message by a certain delay,

is plotted as an example for a sample of messages from the first

designated sender (node 0) in Figure 11 (together with the average

CDF of all messages originating at node 0). (CDFs for the other

four designated senders are omitted for brevity here. They show

similar behavior, just slightly shifted in time.) It is apparent from

the CDFs that depending on the location of the node (nodes 0,

1, 2, 3, 4 happened to be located in us-east-2, ap-northeast-1,
us-east-1, ap-northeast-1, ap-northeast-2, respectively) both
geographically as well as within the peer-to-peer network topology,

the median of the average CDF varies, but considering messages

originating at a fixed sender, the fraction of validators reached by

the median of the average CDF is fairly concentrated around 1/2.
This suggests that the adversary can indeed determine 𝑇

delay
so

that with little dispersion honest validators get split in two halves.

We simulated the attack for 𝛽 = 0.15,𝑚 = 128, using the net-

work propagation delay samples to model random network delay.
6

Assigning the simulated adversary to one of the five designated

senders for all of the attack, whenever the adversary broadcasts a

sway vote, the propagation delays to the honest committee mem-

bers of the given slot are sampled (without replacement) from the

delays of one randomly drawn message of that designated sender.

To determine the optimal𝑇
delay

, we performed a grid search (with

5ms step size) and for each𝑇
delay

simulated ten attacks in opportune

epochs and recorded (see Figure 12) how long the adversary was

able to stall liveness (terminating at a horizon of 800 slots). It is

apparent that for the adversary in the position of each of the five

designated senders of the measurement experiment, different𝑇
delay

are optimal. The optimal𝑇
delay

correspond well with the median of

the average CDF (cf. Figure 11). As the curves are smooth and have

a single distinct peak of width ≈ 5ms, the adversary can locate the

optimal 𝑇
delay

well. In particular, even with 𝑇
delay

approximating

the optimal value only up to 10ms, the adversary can stall liveness

for dozens of slots. Recall that none of the adversarial actions are

slashable protocol violations, so the adversary can refine 𝑇
delay

iteratively and launch this attack over and over.

6
Source code: https://github.com/tse-group/gasper-gossip-attack

24

https://github.com/tse-group/gasper-gossip-attack

	Abstract
	1 Introduction
	1.1 Accountability
	1.2 Accountable Security
	1.3 Optimal Accountable-Safety vs Liveness Tradeoffs
	1.4 Availability-Accountability Dilemma
	1.5 Resolution via Accountability Gadgets
	1.6 Related Works
	1.7 Outline

	2 Model
	3 The Availability-Accountability Dilemma
	3.1 Accountability and Liveness are Incompatible Under Dynamic Participation
	3.2 Tradeoff Between Accountable Safety and Liveness Resiliences
	3.3 Tradeoffs Between Safety and Liveness Resiliences

	4 Accountability Gadgets
	4.1 Protocol Description
	4.2 Security Properties

	5 Experimental Evaluation
	6 Proof-of-Work and Proof-of-Space
	Acknowledgments
	References
	A Proof of the Accountable Safety-Liveness Resilience Tradeoff for SMR Protocols
	B Proof of the Safety-Liveness Resilience Tradeoff for SMR Protocols
	C Proof of the Safety-Liveness Resilience Tradeoff for Partially Synchronous SMR Protocols
	D Proof of the Safety-Liveness Resilience Tradeoff for Dynamically Available SMR Protocols
	E Protocol Examples
	F Proof of Non-Accountability of the Checkpointed Longest Chain Protocol
	G Security Proofs for the Accountability Gadgets
	G.1 Theorem Statement and Notation
	G.2 Accountable Safety Resilience
	G.3 Liveness Resilience
	G.4 Recency and Gap Properties

	H Security Proof for the Checkpoint-Respecting Longest Chains
	H.1 Chain Growth
	H.2 Chain Quality
	H.3 Common Prefix
	H.4 Probabilistic Analysis
	H.5 Security Argument for Chia

	I Attacking Gasper Without Adversarial Network Delay
	I.1 Motivation
	I.2 High-Level Idea
	I.3 Detailed Description
	I.4 Experimental Evaluation

