
Indi�erentiable Signatures:

High Performance and Fallback Security

Charalampos Papamanthou

University of Maryland

cpap@umd.edu

Cong Zhang

University of Maryland

czhang20@umd.edu

Hong-Sheng Zhou

Virginia Commonwealth University

hszhou@vcu.edu

May 16, 2021

Abstract

Digital signatures have been widely used as building blocks for constructing complex cryptosys-

tems. To facilitate the security analysis of a complex system, we expect the underlying building blocks

to achieve desirable composability. Notably, Cane�i (FOCS 2001) and then Maurer et al (TCC 2004) pro-

pose analysis frameworks, the Universal Composability framework for cryptographic protocols, and

the indi�erentiability framework for cryptographic objects.

In this paper, we develop a “li�ing strategy”, which allows us to compile multiple existing practical

signature schemes using cyclic group (e.g., Schnorr, Boneh-Boyen), to achieve a very stringent secu-

rity guarantee, in an idealized model of the generic (bilinear) group, without introducing much extra

e�ciency loss. What’s more interesting is that, in our design, even the involved idealized model does

not exist, our compiled construction will still be able to achieve the classical notion of unforgeability.

To achieve both indi�erentiability and good e�ciency, we develop new techniques in generic (bi-

linear) group model.

1 Introduction

Provable security and composability. In modern cryptography, we are taking a rigorous approach:

(new) constructions of cryptographic schemes and protocols should come with proof of security; and such

proofs show that a cryptographic scheme satis�es a given de�nition of security, under certain assumptions.

Di�erent approaches towards de�ning security have been developed and evolved in the past decades, with

game-based (or property-based) security de�nitions and composable security de�nitions being the two

most prevalent ones. Composable security de�nitions are desirable since they o�er modular design and

analysis.

Several such frameworks have been developed, such as the Universal Composability (UC) framework

by Cane�i [Can01] for analyzing cryptographic (interactive) protocols; see also [PW01]. Important vari-

ants have also been introduced, and we list here some of them [CDPW07, MR11, MR16]. While these

frameworks have been developed with di�erent focuses in mind they all follow the real-world/ideal-world
simulation paradigm [GM84, GMR89] for de�ning security. Inspired by Cane�i’s UC framework, Maurer,

Renner, and Holenstein (MRH) [MRH04] then introduced the indi�erentiability framework, which can

support the modular way of design/analysis for cryptosystems and cryptographic objects.

1

Design and analysis in indi�erentiability framework. �e indi�erentiability framework of a ran-

dom system provides an alternative way to study the security. In this framework, a public primitive f
is available, and the goal is to build another primitive F from f via a construction Πf

in order to se-

curely replace its ideal counterpart F in variant environments. Since then, many fundamental crypto-

graphic primitives have been designed and analyzed in the indi�erentiability framework. Among these

works, Coron et al. [CDMP05] were the �rst to suggest this approach to design hash functions that “be-

have like” random oracles in a provable sense. Speci�cally, indi�erentiability assures that such a con-

struction for hash function will provide any security that a random oracle (RO) achieves. In addition

to random oracle model, more primitives such as ideal cipher, authenticated encryption have been in-

vestigated [DP06, DP07, CHK
+

16, DKT16, DS16, BF18]. �ose e�orts have been extended to public key

primitives such as public-key encryption (PKE) very recently by Zhandry and Zhang [ZZ20].

Design and analysis for digital signatures. �e design and analysis of digital signatures is the focus

of this paper. Digital signatures [DH76] are among the earliest public key primitives and are widely used

today, from public key infrastructure (PKI) and authenticated communication and storage, to consensus

and blockchains. Digital signatures can also be used as a building block for constructing more complex

cryptographic primitives such as group signatures, ring signatures, anonymous credentials, authenticated

non-interactive key-exchange, and many more.

In practice, many elegant designs exist. Notably, Schnorr [Sch91] presents a very e�cient scheme

which can be proven secure (i.e., unforgeable), in the random oracle model. Digital signature schemeshave

also been standardized [NIS94] by NIST decades ago.

Very recently, digital signatures have been investigated in the indi�erentiability framework, initiated

by Zhandry and Zhang [ZZ20], and improved by Zhang and Zhou [ZZ21b]. While the indi�erentiable

signatures have been proposed are built in the random oracle model [ZZ21b] via the tree-based strategy,

and the constructions are not practical (e.g. the signature size is over 1M bytes as shown in Table 1). In

this paper, we expect to see be�er solutions.

Our design/analysis principles, and main question. In this paper, we aim to design “be�er” digital

signatures. We have the following principles:

• First, the signature must be easy to use. �at is, we should be able to compose the signature with

other arbitrary primitives, without sacri�cing security.

• Second, the signature design must be robust. If our signature achieves indi�erentiability due to the

use of an ideal primitive and this ideal primitive does not exist, the security of our signature should

gracefully deteriorate to the classical notion of unforgeability.

• Finally, our design must be truly e�cient, only introducing minimal extra cost.

At this point, we ask the main research question:

Is that possible to develop digital signatures which stratify the above three principles?

Ideally, we plan to develop a “li�ing strategy”, starting with existing practical signature schemes, and

compiling these schemes to achieve indi�entiability in idealized models, without introducing much extra

e�ciency loss; again, even when the involved idealized models do not exist, the compiled version will still

be able to achieve the classical notion of unforegability that the given practical signature schemes already

achieved.

2

1.1 Our results

We give a�rmative answers to the question above and the following is the overview of our results.

Practical and indi�erentiable signature from GGM. We provide a construction for indi�erentiable

signature in the generic group model (GGM). More concretely, we carefully modify the Schnorr

signature by replacing the cryptographic group with generic group model and show that this natural

variant of the Schnorr signature can be proven indi�erentiable from the ideal signature.

Practical and indi�erentiable signatures from GBM. We give three constructions for indi�erentiable

signature in the generic bilinear-group model (GBM). Speci�cally, we start with Boneh-Boyen sig-

natures, and carefully modify the signatures by replacing the cryptographic group with generic

bilinear-group model, and prove that all the schemes are indi�erentiable from ideal signature. More-

over, two of the constructions yield to optimal signature size.

Fallback security. We propose a new fallback security guarantee for digital signature schemes. Roughly

speaking, when a scheme is provably secure in an idealized model, say generic group model for

achieving a very stringent security notion, the fallback security guarantee ensures that, even when

the generic group model is replaced with cryptographic groups in the standard model, the basic

security notion (i.e., unforgeability) of the scheme still holds. For instance, we show that our modi�ed

version of Boneh-Boyen signature scheme enjoys indi�erentiability in the generic bilinear-group

model and at the same time the modi�ed scheme remains unforgeable in standard model groups. In

the paper, several signature schemes we present can ensure fallback security guarantee.

We here emphasize that our constructions are e�cient; the schemes do not su�er from any signature

size loss and it only increases one or two hash operations for the computation (signing or veri�cation).

�erefore we claim that our constructions satisfy the “three principles” for signature design. To help the

readers to have a be�er sense, in Table 1 we illustrate a comparison among the schemes and show that our

constructions achieve indi�erentiability and fallback security along with high performance.

Performance Security

Size Signing cost Veri�cation cost Indi�erentiability Fallback Fallback (ROM)

Schnorr Sig [Sch91] (EC) 64 Bytes 1 EXP+1 Hash 2EXP + 1Hash No - -

BB-Sig [BB04] 64 Bytes 1 EXP 1 Pairing + 2 EXP No - -

weak BB-Sig [BB04] 32 Bytes 1 EXP 1 Pairing + 1EXP No - -

tree-based
1

Sig [ZZ21b] 1M Bytes 32K Hash 96K Hash Yes Yes Yes

i-Schnorr Sec. 3 64 Bytes 1 EXP+3 Hash 1 EXP+2 Hash Yes No Yes

i-BB Sec. 4.2 64 Bytes 1 EXP + 2 Hash 1 Pairing + 2 EXP + 1 Hash Yes Yes Yes

i-weak BB1 Sec. 4.4 32 Bytes 1EXP + 1 Hash 1 Pairing + 1 EXP + 1 Hash Yes No No

i-weak BB2 Sec. 4.4 32 Bytes 1 EXP + 2 Hash 1 Pairing + 1 EXP + 2 Hash Yes No Yes

Table 1: �is table illustrates a comparison among the digital signature schemes on both performance and

security. We consider 128-bit security as suggested by “Cryptographic Key Length Recommendation”
2
.

Here “EXP” denotes one exponentiation operation in groups, e.g. �nite �eld; “Pairing” denotes one pairing

operation in bilinear groups e.g. elliptic curve ; “Hash” denotes one hash operation, e.g. SHA3 or one

block cipher operation, e.g. AES256. In addition “Fallback” and “Fallback (ROM)” means fallback security

in standard model and in random oracle model, respectively.

.

1

For the tree-based signature in [ZZ21b], we set the parameters as follows: 1) the length of the hash output is 256-bit; 2) there

are 256 secret keys for Lamport’s signature; 3) the height of the Merkle tree is 256.

2

See h�ps://www.keylength.com/en/3/

3

1.2 Technique Overview

To achieve the results listed above, we have to resolve multiple technical di�culties. In this part, we give

an overlook on our techniques. As the techniques in building indi�erentiable Boneh-Boyen signatures are

similar with the one in indi�erentiable Schnorr signature, we here only go over the techniques in building

indi�erentiable Schnorr signature.

Our starting point is the Schnorr signature scheme Sch = (Sch.Gen,Sch.Sign,Sch.Verify), where

the signing key is a random value sk ∈ Zp and the veri�cation key is set to be pk ← gsk (g is a generator

for a group). When signing a message m, the algorithm samples r , computes gr , e = H(m, gr) (H is a

random oracle model) and s = r − sk · e, and outputs signature (s, e).

One straightforward way to build an indi�erentiable signature is to apply the techniques in [ZZ20], by

combining random oracle model and Schnorr signature. However, Zhang and Zhou [ZZ21b] discover an

a�ack, called dishonest public key a�ack, which breaks the indi�erentiability of construction in [ZZ20].

�ey then give a solution to eliminate the dishonest public keys in the random oracle model, by carefully

se�ing the space of the secret key much larger than the space of public key. Associated with this se�ing,

Zhang and Zhou build an indi�erentiable signature scheme in random oracle model. However, their solu-

tion relies on Lamport’s signature and follows the tree-based construction, which means that their scheme

is very impractical (shown in Table 1).

To build e�cient constructions, we achieve this through a fundamentally di�erent approach than that

in [ZZ21b]; instead of using random oracle model, we consider more powerful idealized models, such as

generic group model (GGM) and generic bilinear-group model (GBM). We clarify that, in our construction,

we also use random oracle models and ideal cipher models. We argue that it is �ne because in the frame-

work of indi�erentiability, Zhandry and Zhang [ZZ21a] prove that generic group model is strictly stronger

than random oracle model and Holenstein et. al. [HKT11] show that random oracle model are equivalent

to ideal cipher model (or random permutation model). Let GGM = (Label,Add) be a generic group

model and before we turn to our construction for indi�erentiable Schnorr signature, we �rst recall the

high level intuition of indi�erentiability.

1.2.1 What is indi�erentiability?

�e seminal work of Maurer, Renner, and Holenstein [MRH04] proposes a su�cient and necessary security

notion for composition of a random system. Concretely, in this framework, a public primitive f is available

and the goal is to build another primitive F from f via a construction Π, say F = Πf
, and the security

of indi�erentiability requires that: there exists a simulator S , such that the two systems (Πf , f) (the real-

world) and (F,SF) (the ideal-world) are indistinguishable, even when the di�erentiator has access to f .

1.2.2 Making Gen indi�erentiable

Following the ideas from [ZZ20], a proper way to construct a key generation algorithm is that Gen(SK) =
PK ← Label(H(SK)), where H is a random oracle model. Besides, to prevent the dishonest public key

a�ack shown in [ZZ21b], we also set the space of secret key to be much larger than the space of public

key space.

Unfortunately, this construction fails in the generic group model. According to the de�nition of generic

group model [Sho97], Label is a random injection maps Zp to S, where the size of the codomain S is much

larger than p. In other words, if randomly sampling a value s∗ � S, then with high probability, there exists

no x ∈ Zp such that Label(x) = s∗ (we say s has no pre-image). And in such a case, we note that s∗ is a

dishonest public key. Even worse, no ma�er how large the space of the secret key is, dishonest public key

exists, and we then show another a�ack based on this dishonest public key.

4

Due to de�nition, we know that if s∗ has no pre-image, then Add(s∗, ·) would always output ⊥. �e

following is the a�ack for the di�erentiator D:

• Step 1: D samples SK , and makes two queries PK ← Gen(SK); s1 ← Label(1);

• Step 2: D samples s∗ from S;

• Step 3: D �ips a coin b; if b = 0 then D makes a query T ← Add(s1, s
∗) and otherwise makes a

query T ← Add(s1,PK). Set b′ = 0 if and only if T =⊥;

• Step 4: outputs 1 if b = b′.

Trivial to note that, in the real-world, if s∗ has no pre-image (with overwhelming probability), then D
outputs 1. However, in the ideal-world, in the simulator’s view, s∗ and PK are statistically close, thus D
outputs 0 within a noticeable probability (≈ 1

2).

Observe that, to prevent this a�ack, we have to develop new techniques to eliminate those dishonest

public keys. Roughly speaking, in our construction, we use a restricted generic group model (de�ned in

Section 2), where we stress that |S| = p. As a result, it’s trivial that, with high probability, every s∗ ∈ S has

pre-image. Although this se�ing prevents the a�ack above, the simulation of Label and Add is subtle,

and details can be found in Section 3.

1.2.3 Making Sign indi�erentiable

Following the strategy from [ZZ20], we have a proper design for the signing algorithm, which takes

(PK ,SK ,M ,R) as inputs: Sign(PK ,SK ,M ,R) = V ← E(PK ||M , s||e), where E is an ideal cipher

model, PK ||M is E’s inverse key, and (s, e) is the Schnorr signature shown above. However, Zhang and

Zhou [ZZ21b] propose an a�ack, called nonce-abuse a�ack, to break the indi�erentiability if the random-

ness is not treated carefully. In the following, we show our design for treating randomness and show why

it works.

A natural way to design the nonce is to set r ← H(R), where r is the seed used in Schnorr signature,

and R is input nonce. However, this is insecure, and the following is an a�ack:

• Step 1: D samples SK ,M ,R and makes two queries PK ← Gen(PK), r ← H(R);

• Step 2: D makes a query V ← Sign(PK ,SK ,M ,R);

• Step 3: D makes a query (s, e)← E-1(PK ||M ,V) and computes sk ← r−s
e ;

• Step 4: D makes a query T ← Label(sk);

• Step 5: outputs 1 if and only if PK = T .

Trivial to note that, in real-world, D always outputs 1. However, in the ideal-world, the simulator

knows nothing of SK and thus it cannot respond with a proper T and D outputs 0 with overwhelming

probability.

Observe that, if S knows SK , then it can respond with a proper T ← Gen(SK). With this in mind,

we redesign the nonce to be r ← H(PK ,SK ,M ,R). �e reason why it works is that, once D wishes to

have r , our strategy enforcesD to leak SK to the simulator, and therefore the simulator can respond to the

queries a�erwards properly. In the following, we show how to build indi�erentiable Sign(PK ,SK ,M ,R)
(details can be found in Section 3):

r ← H(PK ,SK ,M ,R), e← H(M ,Label(r)), s← r − sk · e;
V ← E(PK ||M , s||e).

5

Observe that, once se�ling down Gen and Sign, the algorithm Verify is �xed. �us we complete our

construction.

1.3 Organization

In the rest of our paper, Section 2 gives notations and de�nitions of the indi�erentiability framework

and additional de�nitions can be found in Appendix A. In Section 3 we build an indi�erentiable Schnorr

signature from generic group model, and present the proof; additional and detailed proof can be found in

Appendix B. We then in Section 4 build two additional signatures, indi�erentiable Boneh-Boyen signature

in Section 4.2 and indi�erentiable weak Boneh-Boyen signature in Section 4.4. In Section 5, we give an

overview about related work.

2 Preliminaries

Notations. In the paper, λ ∈ N denotes the security parameter. For any integer n ∈ N, we use [n] to

denote the set {0, 1, . . . , n − 1}. For a non-empty �nite set X , we denote a uniformly random sample

x from X as x � X . We overload this notation and extend it to probabilistic algorithms; in the paper,

y � A(x) means that y is assigned a value according to the distribution induced by algorithm A whose

input value is x, and output value is y. When the algorithm A is deterministic, we write it as y ← A(x).

We use x
re
� X to denote that an element x is sampled from the set X by using the “rejection-

resampling” strategy. More concretely, we let Q to denote the set of elements that have been previously

sampled from the set X ; initially,Q := ∅. To sample a distinct and fresh element x from X , we �rst sample

x′ � X ; if x′ 6∈ Q, then update Q ← Q∪ {x′} and return x← x′; otherwise, repeat the previous step.

WhenX and Y are strings, we writeX||Y to mean the string created by appending Y toX . We write

{0, 1}n for the set of all n-bit strings, where n ∈ N.

We say a function µ(n) is negligible if µ ∈ o(n−ω(1)), and is non-negligible otherwise. We let negl(n)
denote an arbitrary negligible function. If we say some p(n) is poly, we mean that there is some polynomial

q such that for all su�ciently large n, p(n) ≤ q(n). We say a function δ(n) is noticeable if the inverse

1/δ(n) is poly.

2.1 Indi�erentiability framework

In this subsection, we describe the indi�erentiablity framework by Maurer et al [MRH04]. Our presentation

here follows that by Ristenpart et al [RSS11]. Note that, the original version indi�erentiablity framework

by Maurer et al [MRH04] is based on random systems [Mau02]; later Coron et al present an alternative

version [CDMP05] using interactive Turing machines. �e formulation here we borrow from Ristenpart

et al [RSS11] uses the game playing technique [BR06].

2.1.1 Game playing technique.

We use the game playing technique [BR06] as described in [RSS11]. Games consist of procedures which in

turn consist of a sequence of statements together with some input and zero or more outputs. Procedures

can call other procedures. If procedures P1 and P2 have inputs and outputs that are identical in number

and type, we say that they export the same interface. If a procedure P gets access to procedure F we

denote this by adding it in superscript PF . All variables used by procedures are assumed to be of local

scope. A�er the execution of a procedure the variable values are le� as they were a�er the execution of

the last statement. If procedures are called multiple times, this allows them to keep track of their state.

6

A functionality F is a collection of two procedures F .hon and F .adv , with suggestive names “honest”

and “adversarial”. Adversaries access a functionality F via the interface(s) exported by F .adv , while all

other procedures access the functionality via the interface(s) F .hon .

Functionalities and games. Collections of procedures will sometimes implement particular abstract

functionalities, for example that of some idealized primitive (e.g. a random oracle). A functionality is a

collection F = (F .hon,F .adv); the names of these interfaces, hon and adv are suggestive as we will see

in a moment. When games and adversaries are given access to a functionality a model of computation is

de�ned. For example when the functionality is that of a random oracle, we have the random-oracle model.

�us one can think of functionalities and models somewhat interchangeably. As an example, functionality

RO = (RO.hon,RO.adv), shown in Figure 1, implements a random oracle (with hon and adv interfaces)

and will give rise to the random-oracle model.

procedure RO.hon(x):

If T[x] = ⊥ then T[x] � R;

return T[x].

procedure RO.adv(x):

return RO.hon(x).

Figure 1: Procedures implementing the functionality of the random oracle model (ROM). �e functionality

is associated with randomness space R = {0, 1}r where the number r ∈ N is set as appropriate for a

given context.

For any two functionalities F1, F2, we denote by (F1, F2) the functionality that exposes a procedure

that allows querying (F1.hon,F2.hon) and a procedure that gives access to (F1.adv ,F2.adv).

A game G consists of a distinguished procedure called main (which takes no input) together with a

set of procedures. A game can make use of functionality F and adversarial procedures A (together called

“the adversary”). Adversarial procedures have access to the adversarial interface of functional procedures

and, as any other procedure, can be called multiple times. We, however, restrict access to adversarial

procedures to the game’s main procedure, i.e., only it can call adversarial procedures and, in particular,

adversarial procedures cannot call one another directly.

By GF ,A we denote a game using functionality F and adversaryA. If F ′ exports the same interface as

F , and adversaryA′ exports the same interface asA, thenGF
′,A′

executes the same gameGwith functional

procedure F ′ and adversaryA′. We denote by GF ,A ⇒ y the event that game G produces output y, that is

procedure main returns value y. If game G uses any probabilistic procedure then GF ,A is a random variable

and by Pr[GF ,A ⇒ y] we denote the probability (over the combined randomness space of the game) that

it takes on value y. Sometimes we need to make the random coins r explicit and write GF ,A(r) to denote

that the game is run on random coins r. Games are random variables over the entire random coins of

the game and the adversarial procedures. For functionalities F and F ′ and adversaries A and A′, we can

thus consider the distance between the two random variables. Our security approach is that of concrete

security, i.e., we say two games are ε-close if for all values y it holds that

Pr
[
GF ,A ⇒ y

]
≤ Pr

[
GF
′,A′ ⇒ y

]
+ ε.

2.1.2 Indi�erentiability.

Fix two functionalities F1 and F2. A distinguisher D is an adversary that outputs a bit. A simulator is a

procedure, usually denoted S . Figure 2 de�nes two games Real and Ideal. Fix some value y (e.g., y = 1).

7

�e indi�erentiability advantage of D is de�ned as

Advindiff
F1,F2,S(D) = Pr[RealF1,D ⇒ y]− Pr[IdealF2,D

S ⇒ y].

main Real:
b′ � DFunc,Prim

;

return b′.

procedure Func(m):

return F1.hon(m).

procedure Prim(u):

return F1.adv(u).

main IdealS :

b′ � DFunc,Prim
;

return b′.

procedure Func(m):

return F2.hon(m).

procedure Prim(u):

return SF2.adv (u).

Figure 2: �e games that de�ne indi�erentiability. AdversaryD and functionalitiesF1,F2 are unspeci�ed.

�e simulator S is a parameter of the game.

2.2 �e idealized model for generic group

Generic group model (GGM) [Sho97]. For our purposes, a cryptographic group is a set G of prime

size p, endowed with an e�ciently computable group operation. Equivalently, a cryptographic group

is a (not necesarily e�cient) embedding of the additive group Zp into some set. �e Generic Group

Model is an idealized model which assumes the existence of a random embedding from Zp. Concretely, a

generic group is a pair GGM = (Label,Add) where Label is a “labeling” function that is a random

injection from Zp to S, giving the embedding of Zp into S, and Add is the induced group operation:

Add(Label(z1),Label(z2)) = Label(z1 + z2).

Now we describe functionality GGM = (GGM.hon,GGM.adv), as in Figure 3, which implements

a generic group and will give rise to the generic-group model. Note that, two “adversarial” interfaces,

Label.adv and Add.adv for capturing the permutation and the inverse, respectively, are de�ned so that

the adversaries can access the functionality; and two “honest” interfaces, Label.hon and Add.hon are

de�ned for all other procedures to access the functionality.

procedure GGM.hon :

interface Label.hon(x):

If x 6∈ Zp
then return ⊥;

else if T[x] = ⊥ then (re)sample T[x]
re
� S;

return T[x].

procedure GGM.adv :

interface Label.adv(x):

return Label.hon(x).

interface Add.hon(s1, s2):

If ∃x1, x2 ∈ Zp so that

Label.hon(x1) = s1 and Label.hon(x2) = s2
then x3 ← x1 + x2 mod p;

return Label.hon(x3);

else return ⊥.

interface Add.adv(s1, s2):

return Add.hon(s1, s2).

Figure 3: Procedures implementing the functionality of the generic group model (GGM). �e functionality

is associated with Zp and set S.

8

Remark 2.1. In our paper, we will use a slightly strengthened version of the generic group model. Concretely,
let Srange

3 be a public known subset of S such that |Srange| = p, and the elements in Srange can be recognized
e�ciently, which means that, given an element x ∈ S, one can e�ciently tell whether x ∈ Srange or not.

In the strengthened GGM, nowLabel is a “labeling” function that is a random injection fromZp to Srange.
�e advantage of our new model is that, comparing to Shoup’s model, in our new model, given an x ∈ S, we
can easily tell whether x is a valid labeling or not.

2.3 �e idealized model for digital signatures

In Figure 4, we recall the functionality SIG = (SIG.hon,SIG.adv), which implements an ideal signa-

ture, that previously de�ned in [ZZ21b].

procedure SIG.hon

interface Gen.hon(SK):

If T[SK] = ⊥
then PK � PK; T[SK]← PK ;

return T[SK].

interface Sign.hon(PK ,SK ,M ,R):

If Gen.hon[SK] = PK and T[PK ,SK ,M ,R] = ⊥
then V � Σ; T[PK ,SK ,M ,R]← V ;

return T[PK ,SK ,M ,R].

interface Verify.hon(PK ,M ,V):

If ∃SK ,R so that Gen.hon[SK] = PK
and Sign.hon[PK ,SK ,M ,R] = V

then T[PK ,M ,V]← 1;

else T[PK ,M ,V]← 0;

return T[PK ,M ,V].

procedure SIG.adv

interface Gen.adv(SK):

return Gen.hon(SK).

interface Sign.adv(PK ,SK ,M ,R):

return Sign.hon(PK ,SK ,M ,R).

interface Verify.adv(PK ,M ,V):

return Verify.hon(PK ,M ,V).

Figure 4: Procedures implementing the functionality of the ideal signature model. �e associated param-

eters are veri�cation key space PK, signing key space SK, message spaceM, randomness space R, and

signature space Σ.

In the ideal signature in Figure 4, three “honest” interfaces, Gen.hon , Sign.hon , Verify.hon , are

de�ned, for capturing key generation, signing and veri�cation, respectively. Here, “adversarial” interfaces

are identical to the honest ones. Several tables T[] have been used to trace the behaviors of the ideal

signature. Notation “T[x] ← y” means that, the value of the x-the record in the table is y; equivalently,

for the query value x, the (potential) response value is y. In the ideal signature in Figure 4, the response

values forPK and for signatureV are randomly sampled. Whenever a signature is generated, the involved

signing key SK must be well-de�ned, and be aware to the ideal signature.

3

In the de�nition of Mareur’s GGM [Mau05], Srange can be viewed as the handle space.

9

3 Indi�erentiable Schnorr Signature

We here show how to compile and “li�” the original Schnorr signature scheme to achieve indi�erentiability.

3.1 Schnorr signature

To do that, we �rst recall the Schnorr signature scheme Sch = (Sch.Gen,Sch.Sign,Sch.Verify), in the

random oracle model; here let H denote the random oracle model as de�ned in Figure 1.

• Key generation (PK ,SK) � Sch.Gen(1λ):

(G, p, g) � GroupGen(1λ); x� Zp; X ← gx; SK ← x; PK ← X ; params← (G, p, g ,H);

• Signing V � Sch.Sign(params,SK ,M):

r � Zp; R ← gr ; e← H(M ,R); s← r − SK · e; V ← (s, e);

• Veri�cation φ← Sch.Verify(params,PK ,M ,V):

parse V into (V1,V2); g∗ ← gV1 · PKV2
; output φ = 1 i� V2 = H(M , g∗).

Correctness of Schnorr signature holds straightforwardly, essentially, g∗ = gV1 ·PKV2 = gr−SK ·e+SK ·e =
gr , which refers to V2 = H(M , g∗). �e security has been proven in [Sch91]: Schnorr signature scheme

can achieve unforgeability in the random oracle, under the Discrete Logarithm assumption.

3.2 Indi�erentiable Schnorr signature

We now show how to “li�” the original Schnorr signature scheme to achieve a much stronger security

goal, ideal signature SIG as de�ned in Figure 4, at the price of relying on generic group model.
4

Our construction is associated with public space PK = S, where |S| = p, secret key space
5 SK =

{0, 1}dlog pe+λ
, message spaceM, nonce space R = {0, 1}dlog pe+λ

and signature space Σ = {0, 1}t. In

our construction, we will use the following building blocks:

• Hsk : {0, 1}∗ → [p] is a random oracle model.

• Hseed : {0, 1}∗ → [p] is a random oracle model.

• Htest : {0, 1}∗ → [p] is a random oracle model.

• GGM = (Label,Add) is a generic group model that maps Zp to Srange, where |Srange| = p; see

Figure 3.

• ICM = (E,E-1) is a ideal cipher model, where E : {0, 1}k × {0, 1}t → {0, 1}t, where the key

length k = log |PK|+ log |M|, and t = 2dlog pe, and E-1
is its inverse.

For ease of exposition, in the generic group GGM = (Label, Add), we introduce additional notation; we

denote Scale(ĝ , a) := Add(ĝ , · · · , ĝ︸ ︷︷ ︸
a

), where ĝ is a group element and a ∈ Zp.

4

Note that, the generic group model implies the random oracle mode and the ideal cipher model.

5

For the security of indi�erentiability, we explicitly stress that the space of the secret key is much larger than the space of the

public key.

10

iSch = (iSch.Gen, iSch.Sign, iSch.Verify)

PK ← iSch.Gen(SK):

On input, signing key SK , compute the veri�cation key PK , as follows:

sk ← Hsk(SK); PK ← Label(sk); return PK .

V ← iSch.Sign(PK ,SK ,M ,R):

On input, veri�cation key PK , signing key SK , message M , nonce R, compute the signature V , as follows:

If PK = Gen(SK)
then seed ← Hseed(PK ,SK ,M ,R);

gseed ← Label(seed);

e← Htest(PK ,M , gseed);

s← seed −Hsk(SK) · e;
output the signature V ← E

(
PK ||M , s||e

)
.

else output the signature V ←⊥ //aborts if PK is invalid

φ← iSch.Verify(PK ,M ,V):

On input, veri�cation key PK , message M and signature V , operate as follows:

1. “unpack” the signature

(
V1,V2

)
← E-1(PK ||M , V);

2. compute the corresponding group element:

gtest ← Add
(
Scale(g,V1),Scale(PK ,V2)

)
;

3. output φ← 1 if V2 = Htest(PK ,M , gtest);

output φ← 0, otherwise.

Correctness of iSch follows easily:

gtest = Add
(
Scale(g,V1),Scale(PK ,V2)

)
= Label(seed −Hsk(SK) ·V2 + Hsk(SK) ·V2) = Label(seed),

which refers to V2 = Htest(PK ,M , gtest).

In real-world, we can instantiate the generic group model GGM = (Label,Add) by applying the

elliptic curves in [JMV01], where g is a group generator. We set Label(x) := gx and Add(gx, gy) :=
gx+y

.

Remark 3.1. To be consistent with the de�nition of ideal signature (Figure 4), our indi�erentiable con-
struction follows the query/response paradigm. Hence, Gen’s input is SK , rather than 1λ; Sign’s inputs are
(PK ,SK ,M ,R), rather than (SK ,M).

Remark 3.2 (Fallback security). Our construction iSch here enjoys a nice feature:

• when generic group model GGM does exist, our construction can achieve very strong security guaran-
tee, i.e., indi�erentiable from the ideal signatures;

• when generic group model GGM does not exist and boils down to ordinary cyclic group, our con-
struction here can still be able to achieve the same security guarantee as that has been achieved by
the original Schnorr signature; that is, our construction can achieve conventional unforgeability in the
random oracle, assuming the discrete logarithm problem is hard over the cyclic group and (E,E-1) is a
keyed permutation only requiring correctness.

3.3 Security

In this section, we prove that our construction achieves indi�erentiable security in the generic group

model, random oracle model, and ideal cipher model. Formally,

11

�eorem 3.3. iSch = (iSch.Gen, iSch.Sign, iSch.Verify) is indi�erentiable from the ideal signature
SIG = (Gen,Sign,Verify), in the model for, random oracles Hsk, Hseed, generic group GGM =
(Label,Add), and ideal cipher ICM = (E,E-1). More precisely, there exists a simulator S such that
for all q-query di�erentiator D, we have

Advindiff
iSch,SIG,S(D) ≤ 20q2

p
+ 2p · e−2λ .

Here, e is the natural logarithm and the simulator makes at most q2 number of queries to its oracles.

Proof. According to the de�nition of indi�erentiability, we have that, in the real world, the di�erentia-

tor has three honest interfaces (iSch.Gen, iSch.Sign, iSch.Verify) and adversarial interfaces including

random oracles Hsk, Hseed, Htest, generic group GGM = (Label, Add), and ideal cipher ICM =(E,

E-1
). �erefore, to complete the proof, we build an e�cient simulator S in the ideal world, such that 1)

S has access to the ideal signature via the adversarial interfaces; 2) S simulates those seven adversarial

interfaces properly. Concretely, in the ideal world, the di�erentiator D has three honest interfaces (Gen,

Sign, Verify) and seven adversarial interfaces (SHsk , SHseed , SHtest
, SLabel

, SAdd
, SE

, SE-1
), and we

prove that for any di�erentiator D, the view in the real world is close to the view in the ideal world. In

the following, we illustrate the full description of our simulator and then we give the high-level intuition

of our proof strategy.

Simulator S

�e simulator S has the external oracle access to the ideal signature SIG =(Gen, Sign, Verify); the simulator S will

provide the following interfaces for the external di�erentiator D:

SHsk(SK):

if ∃(SK , sk ,PK) ∈ THsk , then return sk ;

query the external SIG with (Gen, SK), and obtain P̂K ;

if ∃(�, sk ,PK) ∈ THsk s.t. PK = P̂K , then return sk ;

sk � Zp; TLabel ← TLabel ∪ {(sk , P̂K)}; THsk ← THsk ∪ {(SK , sk , P̂K)};
return sk .

SLabel(sk):

if ∃(sk , gsk) ∈ TLabel, then return gsk ;

SK � SK , query the SIG with (Gen, SK), and obtain P̂K ;

TLabel ← TLabel ∪ {(sk , P̂K)}; THsk ← THsk ∪ {(SK , sk , P̂K)};
return P̂K .

SAdd(gsk1 , gsk2):

If @(sk1, gsk1) ∈ TLabel,

then sk1 ← Zp, THsk ← THsk ∪ {(�, sk1, gsk1)},
TLabel ← TLabel ∪ {(sk1, gsk1)}

If @(sk2, gsk2) ∈ TLabel,

then sk2 ← Zp, THsk ← THsk ∪ {(�, sk2, gsk2)},
TLabel ← TLabel ∪ {(sk2, gsk2)}

sk ← sk1 + sk2 mod p, return SLabel(sk).

SHseed(PK ,SK ,M ,R):

P̂K ← SHsk(SK);

if ∃(PK ,SK ,M ,R, seed) ∈ THseed , then return seed ;

query the external SIG with (Sign,PK ,SK ,M ,R), and obtain V̂ ,

if ∃(V̂ ,PK ,M ,V1,V2, seed) ∈ TE-1 ,

then return seed ;

seed � Zp, THseed ← THseed ∪ {(PK ,SK ,M ,R, seed)},

12

return seed .

SHtest(PK ,M , ĝ):

if ∃(PK ,M , ĝ , test) ∈ THtest , then return test ;
test � Zp, THtest ← THtest ∪ {(PK ,M , ĝ , test)},
return test .

SE(PK ||M ,V1,V2):

if ∃(V ,PK ||M ,V1,V2) ∈ TE, then return V ;

if ∃(V ,PK ||M ,V1,V2, seed) ∈ TE-1 , then return V ;

if ∃(SK 6= SK ′) s.t.

(
(SK , sk , PK) ∈ THsk

)
∧
(

(SK ′, sk ′, PK) ∈ THsk

)
then goto Case 1; //Bad event: secret key collision

if @(SK , sk , PK) ∈ THsk ,

then goto Case 1; //Bad event: no knowledge of the corresponding secret key

else ŜK ← SK ; ŝk ← sk ;

seed ← V1 + V2 · ŝk mod p;

if @(seed , gseed) ∈ TLabel, //Bad event: Label(seed) has never been queried

then go to Case 1;

if V2 6= SHtest(PK ,M , gseed), then gseed ← SLabel(seed);

if ∃(PK , ŜK ,M ,R, seed) ∈ THseed ,

then R̂ ← R; go to Case 3;

else go to Case 2. //Semi-bad event: (V1,V2) passes veri�cation with abused nonce

Case 1: //One of the bad events occurs, then responds with random signature value

V � Σ; TE ← TE ∪ {(V ,PK ,M ,V1,V2)}; return V .

Case 2: //Semi-bad event occurs: then responds with a valid signature by sampling a nonce

R̂ � R; THseed ← THseed ∪ {PK , ŜK ,M , R̂, seed},
query the external SIG with (Sign,PK , ŜK ,M , R̂), and obtain V ;

TE ← TE ∪ {(V ,PK ,M ,V1,V2)}; return V .

Case 3: query the external SIG with (Sign,PK , ŜK ,M , R̂), and obtain V ;

TE ← TE ∪ {(V ,PK ,M ,V1,V2)}; return V .

SE-1

(PK ||M ,V):

if ∃(V ,PK ||M ,V1,V2) ∈ TE, then return (V1,V2).

if ∃(V ,PK ||M ,V1,V2, seed) ∈ TE-1 , then return (V1,V2).

query the external SIG with (Verify,PK ||M ,V), and obtain φ̂;

if φ̂ = 0, //for the invalid signature, respond with random strings

then V1,V2 � Zp, TE ← TE ∪ {(V ,PK ,M ,V1,V2)}; return (V1,V2).

if ∃(SK 6= SK ′) s.t.

(
(SK , sk , PK) ∈ THsk

)
∧
(

(SK ′, sk ′, PK) ∈ THsk

)
,

//Bad event: secret key collision, then responds with random strings

then V1,V2 � Zp, TE ← TE ∪ {(V ,PK ,M ,V1,V2)}; return (V1,V2).

if ∃(SK , sk ,PK), (�, sk ,PK) ∈ THsk or (sk ,PK) ∈ TLabel ,

then ŝk ← sk //identify the secret key ;

else ŝk � Zp, THsk ← THsk ∪ {(�, ŝk ,PK)};TLabel ← TLabel ∪ {(ŝk ,PK)}
ŝeed � Zp;

for each tuple (PK ∗,SK ∗,M ∗,R∗, seed∗) ∈ THseed , //identify the nonce

query the external SIG with (Sign,PK ∗,SK ∗,M ∗,R∗), and obtain V ∗,

if PK ∗ = PK ,M ∗ = M ,V ∗ = V , then ŝeed ← seed∗;
gŝeed ← S

Label(ŝeed); test ← SHtest(PK ,M , gŝeed);

//compute the Schnorr signature (V1,V2) using ŝk , ŝeed and test

V1 ← ŝeed − ŝk · test ; V2 ← test ; TE-1 ← TE-1 ∪ {(V ,PK ,M ,V1,V2, seed)}; return (V1,V2).

13

We immediately note that, if the di�erentiator D makes q queries via the honest and adversarial

interfaces, then our simulator S makes at most q2
number of queries to the ideal signature SIG =

(Gen,Sign,Verify), which indicates that the simulator above S is e�cient. Next we prove that S re-

sponds to all the queries properly, which implies that the view of D in the real world is close to the view

in the ideal world. To do so, we introduce a sequence of hybrid games, G
F0,D
S0 , . . . ,GF8,D

S8 , and proving

that: 1) Pr[RealΠ,D = 1] = Pr[GF0,D
S0 = 1]; 2)

∣∣Pr[GFi,DSi = 1] − Pr[G
Fi+1,D
Si+1

= 1]
∣∣ ≤ negl(λ); 3)

Pr[GF8,D
S8 = 1] = Pr[IdealSIG,D

S], where Fi and Si are the corresponding ideal functionality and simula-

tor in each hybrid game, respectively.

�e functionalities Fi for i = 0, 1 . . . 8, are all the same, a “dummy functionality” which forward the

queries from the di�erentiator D to the simulator Si, and vice versa. �e functionality F9 is the same

as the ideal signature SIG. In the remaining, we carefully illustrate the description of the simulators Si,
for each hybrid game, and then prove that the statistical distance of each two adjacent games are close.

Simulator S0

�e simulator S0 will provide internal copies of the random oracles, Hsk, Hseed, Htest, generic group GGM = (Label,
Add), and ideal cipher ICM =(E, E-1

), and internal copy of Π =Π.{Gen, Sign, Verify }; the simulator S0 has the

external oracle access to F0; the simulator S0 will provide the following interfaces for the external di�erentiator D:

SHsk
0 (SK):

sk ← Hsk(SK), return sk .

SLabel
0 (sk):

Label(sk)← Hsk(SK), return Label(sk).

SAdd
0 (gsk1 , gsk2):

g∗ ← Add(gsk1 , gsk2), return g∗.

SHseed
0 (PK ,SK ,M ,R):

seed ← Hseed(PK ,SK ,M ,R), return seed .

SHtest
0 (PK ,M , ĝ):

test ← Htest(PK ,M , g), return test .

SE
0 (PK ||M ,V1||V2):

V ← E(PK ||M ,V1,V2), return V .

SE-1

0 (PK ||M ,V):

(V1,V2)← E-1(PK ||M ,V), return (V1,V2).

It is straightforward that the view of D in either Real or G
F0,D
S0 are identical, thus Pr[RealΠ,D = 1] =

Pr[GF0,D
S0 = 1]. �en we give the next simulator S1,

Simulator S1

�e simulator S1 will provide internal copies of the random oracles, Hsk, Hseed, Htest, generic group GGM = (Label,
Add), and ideal cipher ICM =(E, E-1

), and internal copy of Π =Π.{Gen, Sign, Verify }; the simulator S1 has the

external oracle access to F1; the simulator S1 will provide the following interfaces for the external di�erentiator D:

SHsk
1 (SK):

if ∃(SK , sk ,PK) ∈ THsk , then return sk ;

query the external F1 with (Gen, SK), and obtain P̂K ;

if ∃(�, sk ,PK) ∈ THsk s.t. PK = P̂K , then return sk ;

sk ← Hsk(SK), TLabel ← TLabel ∪ {(sk , P̂K)}; THsk ← THsk ∪ {(SK , sk , P̂K)};

14

return sk .

SLabel
1 (sk):

if ∃(sk , gsk) ∈ TLabel, then return gsk ;

gsk ← Label(sk), TLabel ← TLabel ∪ {(sk , gsk)},
return gsk .

SAdd
1 (gsk1 , gsk2):

If @(sk1, gsk1) ∈ TLabel, then return Add(gsk1 , gsk2);

If @(sk2, gsk2) ∈ TLabel, then return Add(gsk1 , gsk2);

sk ← sk1 + sk2 mod p, return SLabel
1 (sk).

SHseed
1 (PK ,SK ,M ,R):

P̂K ← Gen(SK);

if ∃(PK ,SK ,M ,R, seed) ∈ THseed , then return seed ;

query the external F1 with (Sign,PK ,SK ,M ,R), and obtain V̂ ,

if ∃(V̂ ,PK ,M ,V1,V2, seed) ∈ TE-1 , then return seed ;

seed ← Hseed(PK ,SK ,M ,R), THseed ← THseed ∪ {(PK ,SK ,M ,R, seed)},
return seed .

SHtest
1 (PK ,M , ĝ):

if ∃(PK ,M , ĝ , test) ∈ THtest , then return test ;
test ← Htest(PK ,M , ĝ), THtest ← THtest ∪ {(PK ,M , ĝ , test)},
return test .

SE
1 (PK ||M ,V1||V2):

if ∃(V ,PK ||M ,V1,V2) ∈ TE, then return V ;

if ∃(V ,PK ||M ,V1,V2, seed) ∈ TE-1 , then return V ;

if ∃(SK 6= SK ′) s.t.

(
(SK , sk , PK) ∈ THsk

)
∧
(

(SK ′, sk ′, PK) ∈ THsk

)
then goto Case 1; //Bad event: secret key collision

if @(SK , sk , PK) ∈ THsk ,

then goto Case 1; //Bad event: no knowledge of the corresponding secret key

else ŜK ← SK ; ŝk ← sk ;

seed ← V1 + V2 · ŝk mod p;

if @(seed , gseed) ∈ TLabel, then gseed ← SLabel
1 (seed);

if V2 6= SHtest(PK ,M , gseed), //Bad event: (V1,V2) fails the veri�cation phase

then go to Case 1;

if ∃(PK , ŜK ,M ,R, seed) ∈ THseed ,

then R̂ ← R; go to Case 3;

else go to Case 2. //Semi-bad event: (V1,V2) passes veri�cation with abused nonce

Case 1: //One of the bad events occurs, then responds by calling E

V ← E(PK ||M ,V1||V2); TE ← TE ∪ {(V ,PK ,M ,V1,V2)}; return V .

Case 2: //Semi-bad event occurs: then responds by calling E

V ← E(PK ||M ,V1||V2); TE ← TE ∪ {(V ,PK ,M ,V1,V2)}; return V .

TE ← TE ∪ {(V ,PK ,M ,V1,V2)}; return V .

Case 3: query the external F1 with (Sign,PK , ŜK ,M , R̂), and obtain V ;

TE ← TE ∪ {(V ,PK ,M ,V1,V2)}; return V .

SE-1

1 (PK ||M ,V):

if ∃(V ,PK ||M ,V1,V2) ∈ TE, then return (V1,V2).

if ∃(V ,PK ||M ,V1,V2, seed) ∈ TE-1 , then return (V1,V2).

query the external F1 with (Verify,PK ||M ,V), and obtain φ̂;

if φ̂ = 0, //for the invalid signature, respond by calling E-1

15

then (V1,V2)← E-1(PK ||M ,V), TE ← TE ∪ {(V ,PK ,M ,V1,V2)}; return (V1,V2).

if ∃(SK 6= SK ′) s.t.

(
(SK , sk , PK) ∈ THsk

)
∧
(

(SK ′, sk ′, PK) ∈ THsk

)
,

//Bad event: secret key collision, then responds by calling E-1

then (V1,V2)← E-1(PK ||M ,V), TE ← TE ∪ {(V ,PK ,M ,V1,V2)};
return (V1,V2).

if ∃(SK , sk ,PK), (�, sk ,PK) ∈ THsk or (sk ,PK) ∈ TLabel ,

then ŝk ← sk //identify the secret key ;

else (V1,V2)← E-1(PK ||M ,V), TE ← TE ∪ {(V ,PK ,M ,V1,V2)};
return (V1,V2).

ŝeed ← �;
for each tuple (PK ∗,SK ∗,M ∗,R∗, seed∗) ∈ THseed , //identify the nonce

query the external F1 with (Sign,PK ∗,SK ∗,M ∗,R∗), and obtain V ∗,
if PK ∗ = PK ,M ∗ = M ,V ∗ = V ,

then ŝeed ← seed∗;
if ŝeed = �,

then (V1,V2)← E-1(PK ||M ,V), TE ← TE ∪ {(V ,PK ,M ,V1,V2)}; return (V1,V2).

gŝeed ← S
Label(ŝeed); test ← SHtest(PK ,M , gŝeed);

//compute the Schnorr signature (V1,V2) using ŝk , ŝeed and test

V1 ← ŝeed − ŝk · test ; V2 ← test ; TE-1 ← TE-1 ∪ {(V ,PK ,M ,V1,V2, seed)}; return (V1,V2).

Comparing to S0, the simulator S1 keeps several tables. When S1 responds to a query, it �rst checks the

tables, if the proper response is recorded in one of the tables, then S1 responds to the query using the table,

else S1 responds to the query by using its internal copies of the oracles. In the following, we prove that,

for any query, the response of S0 and S1 is identical with high probability, which straightforwardly refers

to that ∣∣Pr[GF0,D
S0 = 1]− Pr[GF1,D

S1 = 1]
∣∣ ≤ negl(λ).

In Game 0, SHsk
0 (SK) = Hsk(SK), and in Game 1, S1 responds to this query either using its table THsk

or calling Hsk(·). It’s trivial that SHsk
0 (SK) = SHsk

1 (SK) if S1 responds to the query by calling Hsk(SK),

and next we analyze the case where S1 responds to query by using table THsk
. Note that in Game 1, none

of the sub-simulator inserts tuple with form of (�, sk ,PK) into THsk
, and only SHsk

1 might insert tuple

(SK , sk ,PK) into THsk
. Moreover, the tuple inserted by SHsk

1 is consistent with the responses of oracles.

More concretely, if (SK , sk ,PK) is inserted by SHsk
1 , then it’s apparent that sk = Hsk(SK),PK =

Label(sk). �us, we have that

SHsk
0 (SK) = SHsk

1 (SK).

Applying exactly the same analysis, it’s straightforward that SHseed
0 (PK ,SK ,M ,R) =

SHseed
1 (PK ,SK ,M ,R), SHtest

0 (PK ,M , ĝ) = SHtest
1 (PK ,M , ĝ), SLabel

0 (sk) = SLabel
1 (sk).

�us it su�ces to show that for E,E-1
, the equivalence also holds. In Game 0, we have that

SE
0 (PK ||M ,V1,V2) = E(PK ||M ,V1||V2),

and in Game 1, S1 responds to this query in the following cases:

1. using its table TE;

2. using its table TE-1 ;

3. calling E(PK ||M ,V1||V2);

4. responds with Π.Sign(PK , ŜK ,M ,R).

16

Due to the analysis above, we immediately observe that the tuples recorded in tables are consistent with

the oracles, and thus it su�ces to only analyze the last case. By the description of S1, we have that

SE
1 (PK ||M ,V1,V2) = Π.Sign(PK , ŜK ,M ,R) if and only if the following conditions hold (case 3 oc-

curs):

• there is a tuple (ŜK , sk ,PK) ∈ THsk
;

• there is a tuple (PK , ŜK ,M ,R, seed) ∈ THseed
;

• there is a tuple (seed , gseed) ∈ TLabel;

• there is a tuple (PK ,M , gseed , test) ∈ THtest ;

• V1 = seed − sk · test ,V2 = test .

Trivial to note that, if those �ve conditions hold, then we have that

Π.Sign(PK , ŜK ,M ,R) = E(PK ||M ,V1||V2).

�us we have that

SE
0 (PK ||M ,V1||V2) = SE

1 (PK ||M ,V1||V2).

And for E-1
, in Game 0, SE-1

0 (PK ||M ,V) = E-1(PK ||M ,V). While, in Game 1, S1 responds to this

query in the following cases:

1. using its table TE;

2. using its table TE-1 ;

3. calling E-1(·, ·);

4. responds with (V1,V2).

Applying the same analysis above, we have that, if S1 responds to the query by the �rst three cases, then

it’s apparent that SE-1

0 (PK ||M ,V) = SE-1

1 (PK ||M ,V). And next we analyze the last case. Essentially,

SE-1

1 (PK ||M ,V) = (V1,V2) if and only if the following conditions hold:

• Π.Verify(PK ||M ,V) = 1;

• there exist no (SK , sk ,PK) 6= (SK ′, sk ,PK) ∈ THsk
;

• there is a tuple (SK , sk ,PK) ∈ THsk
;

• there is a tuple (PK ,SK ,M ,R, seed) ∈ THseed
such that Π.Sign(PK ,SK ,M ,R) = V ;

�en S1 responds to the query with

V2 = SHtest
1 (PK ,M ,SLabel

1 (seed)),V1 = seed − sk ·V2.

Moreover, we have that V = Π.Sign(PK ,SK ,M ,R) = E(PK ||M ,V1||V2), which refers to

SE-1

0 (PK ||M ,V) = SE-1

1 (PK ||M ,V).

Combing together, it’s apparent that

Pr[GF0,D
S0 = 1] = Pr[GF1,D

S1 = 1].

Moreover, we note that the strategies for responding to all queries of S1 are same as the ones in our

�nal simulator S , except that

17

1. S1 keeps several internal copies for the oracles and S keeps none;

2. S1 responds to the queries by using the tables (if proper tuples stored) or the internal copies, while

S only uses its tables and external oracle access.

�erefore, in the next hybrid games, we erase the internal copies for the oracles one by one and �nally

reach out to S . Due to space limit, we give the rest proof in Appendix B.

4 Indi�erentiable Boneh-Boyen Signature

In this section, we show how to “li�” the Boneh-Boyen signature to achieve indi�erentiability.

4.1 Boneh-Boyen signature

To do that, we �rst recall the Boneh-Boyen signature scheme BB = (BB.Gen,BB.Sign,BB.Verify):

• Key generation (PK ,SK) � BB.Gen(1λ):

(G1,G2, e, p, g1, g2) � GroupGen(1λ); x, y � Zp; X ← gx1 ; Y ← gy1 ;

SK ← (x, y); PK ← (X,Y); params← (G1,G2, e, p, g1, g2, e(g1, g2));

• Signing V � BB.Sign(params,SK ,M):

Parse SK into (x, y); r � Zp; V ← (g
1

x+M+y·r
2 , r);

• Veri�cation φ← BB.Verify(params,PK ,M ,V):

Parse PK into (X,Y), parse V into (V1,V2);

outputs φ = 1 if and only if e(X · gM1 · Y V2 ,V1) = e(g1, g2).

Correctness of Boneh-Boyen signature holds straightforwardly, in fact, X · gM1 · Y V2 = gx+M+y·r
1 , which

refers to that e(X · gM1 · Y V2 ,V1) = e(gx+M+y·r
1 , g

1
x+M+y·r
2) = e(g1, g2).

�e security has been proven in [BB04]: Boneh-Boyen signature scheme can achieve strong unforge-

ability in the standard model, under the q-strong Di�e-Hellman assumption.

4.2 Indi�erentiable Boneh-Boyen Signature

In this part, we give the description of the indi�erentiable Boneh-Boyen signature, and here are the building

blocks:

• Hsk-one : {0, 1}∗ → [p] is a random oracle model;

• Hsk-two : {0, 1}∗ → [p] is a random oracle model;

• Hseed : {0, 1}∗ → [p] is a random oracle model;

• GBM = (Label1,Label2,LabelT,Add1,Add2,AddT,Mult) is a generic bilinear group

model.

• ICM = (E,E-1) is a ideal cipher, where E : {0, 1}k × {0, 1}t → {0, 1}t, where k = log |PK| +
log |M| and t = 2dlog pe and E-1

is its inverse.

�e following is the indi�erentiable BB signature, where the public parameter params ←
(Hsk-one,Hsk-two,Hseed,GBM, ICM).

18

iBB = (iBB.Gen, iBB.Sign, iBB.Verify)

PK ← iBB.Gen(SK):

On input, signing key SK , compute the veri�cation key PK , as follows:

1. parse SK into (SK 1,SK 2);

2. sk1 ← Hsk(SK 1); sk2 ← Hsk(SK 2);

PK 1 ← Label1(sk1); PK 2 ← Label1(sk2); PK ← (PK 1,PK 2);

3. return PK .

V ← iBB.Sign(PK ,SK ,M ,R):

On input, veri�cation key PK , signing key SK , message M , nonce R compute the signature V , as follows:

If PK = iBB.Gen(SK)
then seed ← Hseed(PK ,SK ,M ,R);

parse SK into (SK 1,SK 2);

v1 ← Label2(1
Hsk(SK1)+M+Hsk(SK2)·seed

) = Label2(1
sk1+M+sk2·seed

);

v2 ← seed ;

output the signature V ← E
(
PK ||M , v1||v2

)
.

else output the signature V ←⊥; //aborts if PK is invalid

φ← iBB.Verify(PK ,M ,V):

On input, veri�cation key PK , message M and signature V , operate as follows:

1. “unpack” the signature (v1, v2)← E-1(PK ||M , V);

2. parse the public key (PK 1,PK 2)← PK ;

3. compute the corresponding group element

g∗ = Add1(PK 1,PK
v2
2 ,Label1(M)) = Label1(sk1 + M + sk2 · v2);

4. output φ← 1 if Mult(Label1(1),Label2(1)) = Mult
(
g∗, v1

)
;

output φ← 0, otherwise.

In real-world, we can instantiate the generic group model GBM by applying the elliptic curves in [BLS01].

Remark 4.1 (Fallback security). Our construction iBB here enjoys a nice feature:

• when generic group model GBM does exist, our construction can achieve very strong security guaran-
tee, i.e., indi�erentiable from the ideal signatures;

• when generic group model GBM does not exist and boils down to ordinary bilinear group, our con-
struction here can still be able to achieve the same security guarantee as that has been achieved by the
original Boneh-Boyen signature; that is, our construction can achieve strong unforgeability in the stan-
dard, assuming the q-strong Di�e-Hellman problem is hard over the bilinear groups, and (E,E-1) is a
keyed permutation only requiring correctness.

4.3 Security

�e correctness of the our indi�erentiable BB-signature holds trivially, and this part we prove that it is

indi�erentiable from an ideal signature. More concretely, we have the following theorem.

�eorem 4.2. iBB = (iBB.Gen, iBB.Sign, iBB.Verify) is indi�erentiable from the ideal signatureSIG =
(Gen,Sign,Verify), in the model for, random oracles Hsk-one, Hsk-two, Hseed, generic bilinear group
GBM = (Label1,Label2,LabelT,Add1,Add2,AddT,Mult), and ideal cipher ICM = (E,E-1).
More precisely, there exists a simulator S such that for all q-query di�erentiator D, we have

Advindiff
iBB,SIG,S(D) ≤ O(

q2

p
).

19

Here, the simulator makes at most q2 queries to its oracles.

�e proof is similar to the one in Section 3 and we omit it here.

4.4 Additional constructions

In this part, we build two additional indi�erentiable signature schemes which achieve be�er e�ciency.

Recall that, in [BB04] Boneh and Boyen also propose alternative scheme that yields be�er e�ciency, whose

signature only consists of a single group element. �e trade-o� is that the scheme, denoted as wBB, only

achieves weak unforgeability. In the following, we show how to li� wBB to achieve indi�erentiability in

the generic bilinear groups model, by introducing almost no extra e�ciency cost. We remark that, the

ideas here can also be applied to the signature scheme by Zhang et al [ZSS04].

4.4.1 Weak Boneh-Boyen signature

We �rst recall the weak Boneh-Boyen signature scheme, denoted as wBB =
(wBB.Gen,wBB.Sign,wBB.Verify):

• Key generation (PK ,SK) � wBB.Gen(1λ):

(G1,G2, e, p, g1, g2) � GroupGen(1λ); x� Zp; X ← gx1 ;

SK ← x; PK ← X; params← (G1,G2, e, p, g1, g2, e(g1, g2));

• Signing V � wBB.Sign(PK ,SK ,M):

V ← g
1

M+SK

2 ;

• Veri�cation φ← wBB.Verify(params,PK ,M ,V):

φ = 1 if and only if e(gM1 · PK ,V) = e(g1, g2).

Correctness holds. In fact, gM1 · PK = gM+SK
1 , referring to e(gM1 · PK ,V) = e(gM+SK

1 , g
1

M+SK

2) =
e(g1, g2).

4.4.2 Indi�erentiable wBB

Next, we describe the indi�erentiable weak Boneh-Boyen signature, and here are the building blocks:

• Hsk : {0, 1}∗ → [p] is a random oracle model;

• Hmsg : {0, 1}∗ → [p] is a random oracle model;

• GBM = (Label1,Label2,LabelT,Add1,Add2,AddT,Mult) is a generic bilinear group.

• ICM = (E,E-1) is a ideal cipher, where E : {0, 1}k × {0, 1}t → {0, 1}t, where k = log |PK| +
log |M| and t = dlog pe, and E-1

is its inverse.

�e following is the construction of i -wBB1 along with the public parameters params =
(Hsk,GBM, ICM):

i-wBB1 = (i-wBB1.Gen, i-wBB1.Sign, i-wBB1.Verify)

PK ← i-wBB1.Gen(SK):

On input, signing key SK , compute the veri�cation key PK , as follows:

1. sk ← Hsk(SK); PK ← Label1(sk);

2. return PK .

20

V ← i-wBB1.Sign(PK ,SK ,M):

On input, veri�cation key PK , signing key SK , message M , compute the signature V , as follows:

If PK = Gen(SK)
then v ← Label2(1

M+Hsk(SK)
);

output the signature V ← E
(
PK ||M , v

)
;

else output the signature V ←⊥;

φ← i-wBB1.Verify(PK ,M ,V):

On input, veri�cation key PK , message M and signature V , operate as follows:

1. “unpack” the signature v ← E-1(PK ||M , V);

2. compute the corresponding group element:

g∗ = PK · Label1(M) = Label1(Hsk(SK) + M)

3. output φ← 1 if Mult(Label1(1),Label2(1)) = Mult(g∗, v),

output φ← 0 otherwise.

Next, we make use of the additional random oracle Hmsg to build a variant indi�erentiable weak

Boneh-Boyen signature scheme i -wBB2:

i-wBB2 = (i-wBB2.Gen, i-wBB2.Sign, i-wBB2.Verify)

i-wBB2.Gen(SK): = i-wBB1.Gen(SK)

V ← i-wBB2.Sign(PK ,SK ,M):

On input, veri�cation key PK , signing key SK , message M , compute the signature V , as follows:

If PK = Gen(SK)
then v ← Label2(1

Hmsg(M)+Hsk(SK)
);

output the signature V ← E
(
PK ||M , v

)
;

else output the signature V ←⊥;

φ← i-wBB2.Verify(PK ,M ,V):

On input, veri�cation key PK , message M and signature V , operate as follows:

1. “unpack” the signature v ← E-1(PK ||M , V);

2. compute the corresponding group element:

g∗ = PK · Label1(M) = Label1(Hsk(SK) + Hmsg(M))

3. output φ← 1 if Mult(Label1(1),Label2(1)) = Mult(g∗, v),

output φ← 0 otherwise.

Remark 4.3 (Fallback security). Our construction i -wBB2 here enjoys a nice feature:

• when generic group model GBM does exist, our construction can achieve very strong security guaran-
tee, i.e., indi�erentiable from the ideal signatures;

• when generic group model GBM does not exist and boils down to ordinary bilinear group, our con-
struction here can still be able to achieve the same security guarantee as that has been achieved by the
original Boneh-Boyen signature; that is, our construction can achieve unforgeability in the random ora-
cle model, assuming the q-strong Di�e-Hellman problem is hard over the bilinear groups, and (E,E-1)
is a keyed permutation only requiring correctness.

21

4.4.3 Security

�e correctness of the our indi�erentiable weak BB-signature schemes hold trivially, and next we show

both of them are indi�erentiable from an ideal signature.

�eorem 4.4. i -wBB1 and i -wBB2 are indi�erentiable from the ideal signature SIG =
(Gen,Sign,Verify), in the model for, random oracles Hsk, Hmsg, generic bilinear group
GBM = (Label1,Label2,LabelT,Add1,Add2,AddT,Mult), and ideal cipher ICM = (E,E-1).
More precisely, there exists a simulator S such that for all q-query di�erentiator D, we have

Advindiff
i-wBB1,SIG,S(D) ≤ O(

q2

p
),Advindiff

i-wBB2,SIG,S(D) ≤ O(
q2

p
).

Here, the simulator makes at most q2 queries to its oracles.

5 Related work

Digital Signatures (originally proposed by Di�e and Hellman [DH76]) has widely used. �e classical

game-based security, also known as unforgeability, was formulated by Goldwasser et al. [GMR88]. In the

Universal Composability (UC) framework, digital signature has been rigorously studied, and ideal func-

tionality for signature has been formulated by Cane�i [Can04]; there, a thorough investigation between

the correspondence of the game-based security formulation [GMR88] and the simulation-based ideal func-

tionality for signature, has been performed. We also note that, the formulation of ideal functionality for

signature is non-trivial, and a �rst a�empt of de�ning the ideal functionality [Can00] has shown not be

able to capture the consistency property, as pointed out in [BH04].

Very recently, in the indi�erentiability framework [MRH04], digital signature has been stud-

ied [ZZ21b]. �ere, an ideal (one-time) signature model using query-response formulation style as in

[RSS11], has been presented. We remark also that, a �rst a�empt of de�ning ideal signature model [ZZ20],

has later been found not complete; see [ZZ21b]. �e �rst construction that is indi�erentiable from ideal

signature, has been demonstrated in [ZZ21b]; this construction is tree based in the random oracle model.

In contrast, the constructions in this paper are much more e�cient than that in [ZZ21b], but at the price

of using a strictly stronger idealized model, the generic (bilinear) group model.

Finally, we point out here that, the signature that studied in the UC framework and the signature in

the indi�erentiability framework are fundamentally di�erent; in the UC framework, it has been shown by

Cane�i [Can04] that a protocol based on the game-based unforgeability (along with additional consistency

property and completeness) can be proven to realize the ideal functionality for signature. In contrast, in

the indi�erentiability framework, the ideal signature is strictly stronger than the game-based security for

digital signature.

Acknowledgement

We thank Mark Zhandry for the insightful discussion on the early version of this work.

References

[BB04] Dan Boneh and Xavier Boyen. Short signatures without random oracles. In Christian Cachin and Jan

Camenisch, editors, EUROCRYPT 2004, volume 3027 of LNCS, pages 56–73. Springer, Heidelberg, May

2004.

22

[BF18] Manuel Barbosa and Pooya Farshim. Indi�erentiable authenticated encryption. In Hovav Shacham and

Alexandra Boldyreva, editors, CRYPTO 2018, Part I, volume 10991 of LNCS, pages 187–220. Springer,

Heidelberg, August 2018.

[BH04] Michael Backes and Dennis Ho�einz. How to break and repair a universally composable signature

functionality. In Kan Zhang and Yuliang Zheng, editors, Information Security, 7th International Confer-
ence, ISC 2004, Palo Alto, CA, USA, September 27-29, 2004, Proceedings, volume 3225 of Lecture Notes in
Computer Science, pages 61–72. Springer, 2004.

[BLS01] Dan Boneh, Ben Lynn, and Hovav Shacham. Short signatures from the Weil pairing. In Colin Boyd,

editor, ASIACRYPT 2001, volume 2248 of LNCS, pages 514–532. Springer, Heidelberg, December 2001.

[BR06] Mihir Bellare and Phillip Rogaway. �e security of triple encryption and a framework for code-based

game-playing proofs. In Serge Vaudenay, editor, EUROCRYPT 2006, volume 4004 of LNCS, pages 409–426.

Springer, Heidelberg, May / June 2006.

[Can00] Ran Cane�i. Universally composable security: A new paradigm for cryptographic protocols. Cryptology

ePrint Archive, Report 2000/067, 2000. h�ps://eprint.iacr.org/2000/067.

[Can01] Ran Cane�i. Universally composable security: A new paradigm for cryptographic protocols. In 42nd
FOCS, pages 136–145. IEEE Computer Society Press, October 2001.

[Can04] Ran Cane�i. Universally composable signature, certi�cation, and authentication. In 17th IEEE Computer
Security Foundations Workshop, (CSFW-17 2004), 28-30 June 2004, Paci�c Grove, CA, USA, page 219. IEEE

Computer Society, 2004.

[CDMP05] Jean-Sébastien Coron, Yevgeniy Dodis, Cécile Malinaud, and Prashant Puniya. Merkle-Damgård revis-

ited: How to construct a hash function. In Victor Shoup, editor, CRYPTO 2005, volume 3621 of LNCS,

pages 430–448. Springer, Heidelberg, August 2005.

[CDPW07] Ran Cane�i, Yevgeniy Dodis, Rafael Pass, and Shabsi Wal�sh. Universally composable security with

global setup. In Salil P. Vadhan, editor, TCC 2007, volume 4392 of LNCS, pages 61–85. Springer, Heidel-

berg, February 2007.

[CHK
+

16] Jean-Sébastien Coron, �omas Holenstein, Robin Künzler, Jacques Patarin, Yannick Seurin, and Stefano

Tessaro. How to build an ideal cipher: �e indi�erentiability of the Feistel construction. Journal of
Cryptology, 29(1):61–114, January 2016.

[DH76] Whit�eld Di�e and Martin Hellman. New directions in cryptography. IEEE Transactions on Information
�eory, 22(6):644–654, 1976.

[DKT16] Dana Dachman-Soled, Jonathan Katz, and Aishwarya �iruvengadam. 10-round Feistel is indi�eren-

tiable from an ideal cipher. In Marc Fischlin and Jean-Sébastien Coron, editors, EUROCRYPT 2016, Part II,
volume 9666 of LNCS, pages 649–678. Springer, Heidelberg, May 2016.

[DP06] Yevgeniy Dodis and Prashant Puniya. On the relation between the ideal cipher and the random oracle

models. In Shai Halevi and Tal Rabin, editors, TCC 2006, volume 3876 of LNCS, pages 184–206. Springer,

Heidelberg, March 2006.

[DP07] Yevgeniy Dodis and Prashant Puniya. Feistel networks made public, and applications. In Moni Naor,

editor, EUROCRYPT 2007, volume 4515 of LNCS, pages 534–554. Springer, Heidelberg, May 2007.

[DS16] Yuanxi Dai and John P. Steinberger. Indi�erentiability of 8-round Feistel networks. In Ma�hew Rob-

shaw and Jonathan Katz, editors, CRYPTO 2016, Part I, volume 9814 of LNCS, pages 95–120. Springer,

Heidelberg, August 2016.

[GM84] Sha� Goldwasser and Silvio Micali. Probabilistic encryption. J. Comput. Syst. Sci., 28(2):270–299, 1984.

[GMR88] Sha� Goldwasser, Silvio Micali, and Ronald L. Rivest. A digital signature scheme secure against adaptive

chosen-message a�acks. SIAM J. Comput., 17(2):281–308, 1988.

[GMR89] Sha� Goldwasser, Silvio Micali, and Charles Racko�. �e knowledge complexity of interactive proof

systems. SIAM J. Comput., 18(1):186–208, 1989.

23

[HKT11] �omas Holenstein, Robin Künzler, and Stefano Tessaro. �e equivalence of the random oracle model

and the ideal cipher model, revisited. In Lance Fortnow and Salil P. Vadhan, editors, 43rd ACM STOC,

pages 89–98. ACM Press, June 2011.

[JMV01] Don Johnson, Alfred Menezes, and Sco� Vanstone. �e elliptic curve digital signature algorithm (ecdsa).

International journal of information security, 1(1):36–63, 2001.

[Mau02] Ueli M. Maurer. Indistinguishability of random systems. In Lars R. Knudsen, editor, EUROCRYPT 2002,

volume 2332 of LNCS, pages 110–132. Springer, Heidelberg, April / May 2002.

[Mau05] Ueli Maurer. Abstract models of computation in cryptography. In IMA International Conference on
Cryptography and Coding, pages 1–12. Springer, 2005.

[MR11] Ueli Maurer and Renato Renner. Abstract cryptography. In Bernard Chazelle, editor, ICS 2011, pages

1–21. Tsinghua University Press, January 2011.

[MR16] Ueli Maurer and Renato Renner. From indi�erentiability to constructive cryptography (and back). In

Martin Hirt and Adam D. Smith, editors, TCC 2016-B, Part I, volume 9985 of LNCS, pages 3–24. Springer,

Heidelberg, October / November 2016.

[MRH04] Ueli M. Maurer, Renato Renner, and Clemens Holenstein. Indi�erentiability, impossibility results on

reductions, and applications to the random oracle methodology. In Moni Naor, editor, TCC 2004, volume

2951 of LNCS, pages 21–39. Springer, Heidelberg, February 2004.

[NIS94] FIPS 186-4 Digital Signature Standard (DSS). 1994. h�ps://csrc.nist.gov/publications/detail/�ps/186/4/

�nal.

[PW01] Birgit P�tzmann and Michael Waidner. A model for asynchronous reactive systems and its application

to secure message transmission. In 2001 IEEE Symposium on Security and Privacy, pages 184–200. IEEE

Computer Society Press, May 2001.

[RSS11] �omas Ristenpart, Hovav Shacham, and �omas Shrimpton. Careful with composition: Limitations

of the indi�erentiability framework. In Kenneth G. Paterson, editor, EUROCRYPT 2011, volume 6632 of

LNCS, pages 487–506. Springer, Heidelberg, May 2011.

[Sch91] Claus-Peter Schnorr. E�cient signature generation by smart cards. Journal of Cryptology, 4(3):161–174,

January 1991.

[Sho97] Victor Shoup. Lower bounds for discrete logarithms and related problems. In Walter Fumy, editor,

EUROCRYPT’97, volume 1233 of LNCS, pages 256–266. Springer, Heidelberg, May 1997.

[ZSS04] Fangguo Zhang, Reihaneh Safavi-Naini, and Willy Susilo. An e�cient signature scheme from bilinear

pairings and its applications. In Feng Bao, Robert Deng, and Jianying Zhou, editors, PKC 2004, volume

2947 of LNCS, pages 277–290. Springer, Heidelberg, March 2004.

[ZZ20] Mark Zhandry and Cong Zhang. Indi�erentiability for public key cryptosystems. In Daniele Micciancio

and �omas Ristenpart, editors, CRYPTO 2020, Part I, volume 12170 of LNCS, pages 63–93. Springer,

Heidelberg, August 2020.

[ZZ21a] Mark Zhandry and Cong Zhang. �e relationship between idealized models under computationally

bounded adversaries. 2021. h�ps://eprint.iacr.org/2021/240.

[ZZ21b] Cong Zhang and Hong-Sheng Zhou. From random oracles to ideal signatures, and back. 2021. h�ps:

//eprint.iacr.org/2021/566.

24

A Preliminaries: Additional Material

A.1 Idealized model for generic bilinear group

Generic Bilinear Group Model (GBM) [BB04] . For our purposes, a bilinear map consists of three

sets S1, S2, ST of prime size p, each endowed with a group structure. Additionally, there is an e�ciently

computable map e : G1 × G2 → GT such that e(gz11 , g
z2
2) = e(g1, g2)z1z2 for some �xed generators

g1 ∈ G1, g2 ∈ G2.

�e Generic Bilinear Group Model is an idealized model which assumes the existence of random em-

beddings from Zp into the groups G1,G2,GT . Concretely, a generic bilinear group is a tuple GBM =
(Label1,Label2,LabelT,Add1,Add2,AddT,Mult). Here, Labeli and Addi, for i ∈ {1,2,T}
are as in the generic group case, and Mult is then de�ned as Mult(Label1(z1),Label2(z2)) =
LabelT(z1 · z2).

�e functionality GBM = (GBM.hon,GBM.adv), as in Figure 5, implements a generic bilinear

group and thus de�nes the idealized model for generic bilinear group.

Remark A.1. In our paper, we will use a slightly strengthened version of the generic bilinear-group model
(GBM). Concretely, let Srange be a public known subset of S1 such that |Srange| = p, and the element in Srange

can be recognized e�ciently, which means that, given an x ∈ S1, one can e�ciently tell whether x ∈ Srange

or not.
In the strengthened GBM, now Label1 is a “labeling” function that is a random injection from Zp to

Srange. �e advantage of our new model is that, comparing to Shoup’s model, in our new model, given a string
x ∈ S1, we can easily tell whether x is a valid labeling or not.

A.2 Idealized model for ideal cipher

Functionality ICM = (ICM.hon, ICM.adv), shown in Figure 6, implements an ideal cipher and will

give rise to the ideal-cipher model. Note that, two “adversarial” interfaces, E.adv and E-1.adv for capturing

the encryption and the inverse, respectively, are de�ned so that the adversaries can access the function-

ality; and two “honest” interfaces, E.hon and E-1.hon are de�ned for all other procedures to access the

functionality.

A.3 Composition�eorem.

One goal of indi�erentiability is to allow the security analysis of a cryptographic scheme when using

one functionality to imply security holds when using another. �is is enabled by the following, which is a

concrete security version of the original composition theorem of Maurer, Renner, and Holenstein [MRH04].

�eorem A.2. Let F1, F2 be two functionalities with compatible honest interfaces. Let A be an adversary
with one oracle. Let S be a simulator that exports the same interface as F1.adv . �en there exist adversary B
and distinguisher D such that for all values y

Pr[GF1,A ⇒ y] ≤ Pr[GF2,B ⇒ y] + Advindiff
F1,F2,S(D).

Moreover
tB ≤ tA + qA · tS , qB ≤ qA · qS , tD ≤ tG + qG,1 · tA, qD ≤ qG,0 + qG,1 · qA

where tA, tB, tD are the maximum running times of A, B, D; qA, qB are the maximum number of queries
made by A and B in a single execution; and qG,0, qG,1 are the maximum number of queries made by G to the
honest interface and to the adversarial procedure.

25

procedure GBM.hon :

interface Label1.hon(x):

If x 6∈ Zp
then return ⊥;

else if T1[x] = ⊥ then (re)sample T1[x]
re
� S1;

return T[x].

procedure GBM.adv :

interface Label1.adv(x):

return Label1.hon(x).

interface Label2.hon(x):

If x 6∈ Zp
then return ⊥;

else if T2[x] = ⊥ then (re)sample T2[x]
re
� S2;

return T2[x].

interface Label2.adv(x):

return Label2.hon(x).

interface LabelT.hon(x):

If x 6∈ Zp
then return ⊥;

else if TT [x] = ⊥ then (re)sample TT [x]
re
� ST ;

return TT [x].

interface LabelT.adv(x):

return LabelT.hon(x).

interface Add1.hon(s1, s2):

If ∃x1, x2 ∈ Zp so that

Label1.hon(x1) = s1 and Label1.hon(x2) = s2
then x3 ← x1 + x2 mod p;

return Label1.hon(x3);

else return ⊥.

interface Add1.adv(s1, s2):

return Add1.hon(s1, s2).

interface Add2.hon(s1, s2):

If ∃x1, x2 ∈ Zp so that

Label2.hon(x1) = s1 and Label2.hon(x2) = s2
then x3 ← x1 + x2 mod p;

return Label2.hon(x3);

else return ⊥.

interface Add2.adv(s1, s2):

return Add2.hon(s1, s2).

interface Mult.hon(s1, s2):

If ∃x1, x2 ∈ Zp so that

Label1.hon(x1) = s1 and Label2.hon(x2) = s2
then x3 ← x1 · x2 mod p;

return LabelT.hon(x3);

else return ⊥.

interface Mult.adv(s1, s2):

return Mult.hon(s1, s2).

Figure 5: Procedures implementing the functionality of the generic bilinear group model (GBM). �e func-

tionality is associated with Zp and sets S1, S2, ST .

26

procedure ICM.hon :

interface E.hon(k, x):

If T[k, x] = ⊥ then (re)sample T[k, x]
re
� R;

return T[x].

procedure ICM.adv :

interface E.adv(x):

return E.hon(x).

interface E-1.hon(k, y):

If ∃x so that T[k, x] = y,

return x;

else (re)sample x
re
� R, T[k, x] = y,

return x.

interface E-1.adv(y):

return E-1.hon(y).

Figure 6: Procedures implementing the functionality of the ideal cipher model (ICM). �e functionality is

associated with randomness spaceR = {0, 1}r where the number r ∈ N is set as appropriate for a given

context.

B Proof of �eorem 3.3

In this section, we complete the rest proof for the indi�erentiable Schnorr signature. �e following are the

hybrids and we then show that any adjacent hybrids are statistically close.

B.1 Hybrid: S2

Simulator S2

�e simulator S2 will provide internal copies of the random oracles, Hsk, Hseed, Htest, generic group GGM = (Label,
Add), and ideal cipher ICM =(E, E-1

), and internal copy of Π =Π.{Gen, Sign, Verify }; the simulator S2 has the

external oracle access to F2; the simulator S2 will provide the following interfaces for the external di�erentiator D:

SHsk
2 (SK): = SHsk

1 (SK)

SLabel
2 (sk):= SLabel

1 (sk)

SAdd
2 (gsk1 , gsk2):= SAdd

1 (gsk1 , gsk2)

SHseed
2 (PK ,SK ,M ,R):= SHseed

1 (PK ,SK ,M ,R)

SHtest
2 (PK ,M , ĝ):= SHtest

1 (PK ,M , ĝ)

SE
2 (PK ||M ,V1||V2):= SE

1 (PK ||M ,V1||V2)

SE-1

2 (PK ||M ,V):

if ∃(V ,PK ||M ,V1,V2) ∈ TE, then return (V1,V2).

if ∃(V ,PK ||M ,V1,V2, seed) ∈ TE-1 , then return (V1,V2).

query the external F2 with (Verify,PK ||M ,V), and obtain φ̂;

if φ̂ = 0, //for the invalid signature, respond with random string

then V1,V2 � Zp, TE ← TE ∪ {(V ,PK ,M ,V1,V2)};
return (V1,V2).

if ∃(SK 6= SK ′) s.t.

(
(SK , sk , PK) ∈ THsk

)
∧
(

(SK ′, sk ′, PK) ∈ THsk

)
,

//Bad event: secret key collision, then responds with random string

then (V1,V2) � Zp , TE ← TE ∪ {(V ,PK ,M ,V1,V2)};
return (V1,V2).

27

if ∃(SK , sk ,PK), (�, sk ,PK) ∈ THsk or (sk ,PK) ∈ TLabel ,

then ŝk ← sk //identify the secret key ;

else (V1,V2)← E-1(PK ||M ,V), TE ← TE ∪ {(V ,PK ,M ,V1,V2)};
return (V1,V2).

ŝeed ← �,
for each tuple (PK ∗,SK ∗,M ∗,R∗, seed∗) ∈ THseed , //identify the nonce

query the external F2 with (Sign,PK ∗,SK ∗,M ∗,R∗), and obtain V ∗,
if PK ∗ = PK ,M ∗ = M ,V ∗ = V ,

then ŝeed ← seed∗;
if ŝeed = �,

then (V1,V2)← E-1(PK ||M ,V), TE ← TE ∪ {(V ,PK ,M ,V1,V2)};
return (V1,V2).

gŝeed ← S
Label
2 (ŝeed); test ← SHtest

2 (PK ,M , gŝeed);

//compute the Schnorr signature (V1,V2) using ŝk , ŝeed and test

V1 ← ŝeed − ŝk · test ,V2 ← test ,
TE-1 ← TE-1 ∪ {(V ,PK ,M ,V1,V2, seed)};
return (V1,V2).

Note that S1 and S2 are identical except for responding to the E-1
queries, which are highlighted in

the blue box. Essentially, there are two bad events that di�er S1 and S2:

• Case 1: F2.Verify(PK ||M ,V) = 0;

• Case 2: Secret key collision.

For the �rst case, we immediately observe that V is not a valid signature. Let (V1,V2) ←
SE-1

1 (PK ||M ,V) and (V ′1,V
′
2) ← SE-1

2 (PK ||M ,V). By the description of S2, we note that V never

appears via the adversarial interfaces, otherwise V would be stored in either TE or TE-1 . Moreover, V
can not be obtained by calling F2.Sign(PK ,SK ,M ,R) via the honest interface as V is an invalid signa-

ture. �us, the di�erentiator view is independent of (V1,V2) except that

V2 6= Htest(PK ,M ,Label(V1 + skV2)).

Due to Htest is a random oracle, it’s apparent that the statistical distance ∆
(

(V1,V2), (V ′1,V
′
2)
)
≤ 1

p ,

which means the view on E-1
are close in either hybrid.

Moreover, we note that, for either S1 or S2, the response of the queries Hsk,Label,Add,Hseed,Htest

are identical. While for E, we note that, a�er the query E-1(PK ||M ,V) (denoted as Q below for ease),

S2 implicitly sets E(PK ||M ,V ′1||V ′2) = V . �us, as long as the di�erentiator never makes query

E(PK ||M ,V ′1||V ′2) before Q, and never makes a query E(PK ||M ,V1||V2) a�er Q, then the response of

E queries are identical for either S1 or S2. And it’s apparent that the bad event is bounded by
q
p2

+ q(p−1)
p3

.

For the second case, we argue that it never occurs except for negligible probability. In fact, Hsk is a

random oracle, and GGM is a generic group model, thus collision is trivially bounded by
q2

p .

Combing together, we have that

∣∣Pr[GF1,D
S1 = 1]− Pr[GF2,D

S2 = 1]
∣∣ ≤ q(qp + q

p2
+ q(p−1)

p3
) + q2

p .

B.2 Hybrid: S3

Simulator S3

�e simulator S3 will provide internal copies of the random oracles, Hsk, Hseed, Htest, generic group GGM = (Label,
Add), and ideal cipher ICM =(E, E-1

), and internal copy of Π =Π.{Gen, Sign, Verify }; the simulator S3 has the

external oracle access to F3; the simulator S3 will provide the following interfaces for the external di�erentiator D:

SHsk
3 (SK):= SHsk

2 (SK)

28

SLabel
3 (sk):= SLabel

2 (sk)

SAdd
3 (gsk1 , gsk2):

If @(sk1, gsk1) ∈ TLabel,

then sk1 � Zp, THsk ← THsk ∪ {(�, sk1, gsk1)},

TLabel ← TLabel ∪ {(sk1, gsk1)}
If @(sk2, gsk2) ∈ TLabel,

then sk2 � Zp, THsk ← THsk ∪ {(�, sk2, gsk2)},

TLabel ← TLabel ∪ {(sk2, gsk2)}
sk ← sk1 + sk2 mod p, return SLabel

1 (sk).

SHseed
3 (PK ,SK ,M ,R): = SHseed

2 (PK ,SK ,M ,R)

SHtest
3 (PK ,M , ĝ):= SHtest

2 (PK ,M , ĝ)

SE
3 (PK ||M ,V1||V2): = SE

2 (PK ||M ,V1||V2)

SE-1

3 (PK ||M ,V):

if ∃(V ,PK ||M ,V1,V2) ∈ TE, then return (V1,V2).

if ∃(V ,PK ||M ,V1,V2, seed) ∈ TE-1 , then return (V1,V2).

query the external F3 with (Verify,PK ||M ,V), and obtain φ̂;

if φ̂ = 0, //for the invalid signature, respond with random string

then V1,V2 � Zp, TE ← TE ∪ {(V ,PK ,M ,V1,V2)};
return (V1,V2).

if ∃(SK 6= SK ′) s.t.

(
(SK , sk , PK) ∈ THsk

)
∧
(

(SK ′, sk ′, PK) ∈ THsk

)
,

//Bad event: secret key collision, then responds with random string

then (V1,V2) � Zp, TE ← TE ∪ {(V ,PK ,M ,V1,V2)};
return (V1,V2).

if ∃(SK , sk ,PK), (�, sk ,PK) ∈ THsk or (sk ,PK) ∈ TLabel ,

then ŝk ← sk //identify the secret key ;

else ŝk � Zp, THsk ← THsk ∪ {(�, ŝk ,PK)};TLabel ← TLabel ∪ {(ŝk ,PK)}.

ŝeed ← �,
for each tuple (PK ∗,SK ∗,M ∗,R∗, seed∗) ∈ THseed , //identify the nonce

query the external F3 with (Sign,PK ∗,SK ∗,M ∗,R∗), and obtain V ∗,
if PK ∗ = PK ,M ∗ = M ,V ∗ = V ,

then ŝeed ← seed∗;
if ŝeed = �,

then (V1,V2)← E-1(PK ||M ,V), TE ← TE ∪ {(V ,PK ,M ,V1,V2)};
return (V1,V2).

gŝeed ← S
Label
3 (ŝeed); test ← SHtest

3 (PK ,M , gŝeed);

//compute the Schnorr signature (V1,V2) using ŝk , ŝeed and test

V1 ← ŝeed − ŝk · test ,V2 ← test ,
TE-1 ← TE-1 ∪ {(V ,PK ,M ,V1,V2, seed)};
return (V1,V2).

Note that S2 and S3 are identical except for responding to the Add and E-1
queries, which are high-

lighted in the blue box. Essentially, there are two bad events that di�er S2 and S3:

• Case 1: for query Add(gsk1 , gsk2) there is no (sk1, gsk1) ∈ TLabel or (sk2, gsk2) ∈ TLabel,

• Case 2: for query E-1(PK ||M ,V1,V2), there is no tuple (SK , sk ,PK), (�, sk ,PK) ∈ THsk
and

(sk ,PK) ∈ TLabel.

29

Note that, assume that the di�erentiator D proposes a group element, say gsk , and we denote sk to be

the value such that Label(sk) = g , and sk ′ � Zp. Next, we prove that, inD’s view, the distance of sk and

sk ′ are close. Essentially, if there is no tuple (SK , sk , gsk), (�, sk , gsk) ∈ THsk
or (sk , gsk) ∈ TLabel (D

might know SK such that Gen(SK) = gsk), then the only way for the D to obtain to learn the Hsk(SK)
is via the interface E. If D outputs (V1,V2) such that seed = V1 + Hsk(SK)V2, where seed is known

by D, then D solves Hsk(SK) directly. Otherwise, assume seed 6= V1 + Hsk(SK)V2, then D knows that

Hsk(SK) 6= seed−V1
V2

. �e former case never occurs except for the negligible probability, bounded by
1
p .

�e la�er case, only rules out at most q candidates for Hsk(SK). �us, the statistical distance

∆(sk , sk ′) ≤ q

p
+
q

p
+ (p− q)(1

p− q
− 1

p
) =

3q

p
.

Due to the negligible distance, it would be �ne for S3 to implicitly set SHsk
3 (SK) = sk ′, a�er the Add

or E-1
query. Besides, the response for Label,Hseed,Htest are identical for either S2 or S3. While, for E,

it’s apparent that if D does not makes a query E(gsk ||M ,V1,V2) such that seed = V1 + sk ′V2, then the

responses for E are also identical, and sk ′ is uniformly sampled by S3, thus this bad event is bounded by

q
p . Combing together, we have that

∣∣Pr[GF2,D
S2 = 1]− Pr[GF3,D

S3 = 1]
∣∣ ≤ q((3q)

p
+
q

p
) =

4q2

p
.

B.3 Hybrid S4

Simulator S4

�e simulator S4 will provide internal copies of the random oracles, Hsk, Hseed, Htest, generic group GGM = (Label,
Add), and ideal cipher ICM =(E, E-1

), and internal copy of Π =Π.{Gen, Sign, Verify }; the simulator S4 has the

external oracle access to F4; the simulator S4 will provide the following interfaces for the external di�erentiator D:

SHsk
4 (SK): = SHsk

3 (SK)

SLabel
4 (sk):

if ∃(sk , gsk) ∈ TLabel, then return gsk ;

SK � SK , query the F4 with (Gen, SK), and obtain P̂K ;

TLabel ← TLabel ∪ {(sk , P̂K)}; THsk ← THsk ∪ {(SK , sk , P̂K)};

return P̂K .

SAdd
4 (gsk1 , gsk2): = SAdd

3 (gsk1 , gsk2)

SHseed
4 (PK ,SK ,M ,R): = SHseed

3 (PK ,SK ,M ,R)

SHtest
4 (PK ,M , ĝ):= SHtest

3 (PK ,M , ĝ)

SE
4 (PK ||M ,V1||V2):= SE

3 (PK ||M ,V1||V2)

SE-1

4 (PK ||M ,V): = SE-1

3 (PK ||M ,V)

Note that S3 and S4 are identical except for responding to the Label queries, which is highlighted in

the blue box. Essentially, the only case that di�er S3 and S4 is the following: for query Label(sk), there is

no (sk , gsk) ∈ TLabel. We denote that SK to be the secret key such that Hsk(SK) = sk 6
and SK ′ � SK.

6SK exists with overwhelming probability, ≥ 1− e−2λ

30

We next prove that, in D’s view, the distance of SK and SK ′ are close.

Essentially, the di�erentiator knows sk , it can generate valid (V1,V2) for E and tests the validity of

the PK and learn information of the secret key SK . If D makes a query PK ← Gen(SK) such that

Verify(PK ||M ,E(PK ||M ,V1||V2)) = 1, then it directly knows PK = Label(sk), and if not D rules

out at most q candidates for SK . �us, the statistical distance

∆(SK ,SK ′) ≤ q

p
+

q

|SK|
+ (|SK| − q)(1

|SK| − q
− 1

|SK|
) ≤ 3q

p
.

However, S4 implicitly set Hsk(ŜK) = sk such that Gen(SK ′) = Gen(ŜK), which in fact is not

well distributed as sk is chosen by D. Fortunately, we note that SK ′ is sampled by S4 and as long as D
cannot make sure a query (bounded by

q
p), the view on Hsk is perfectly proper. Moreover, if Label(sk)

never appears (bounded by
q
p), then the view on other interfaces are also good. Combing together, we have

that

∣∣Pr[GF3,D
S3 = 1]− Pr[GF4,D

S4 = 1]
∣∣ ≤ q(5q

p).

B.4 Hybrid S5

Simulator S5

�e simulator S5 will provide internal copies of the random oracles, Hsk, Hseed, Htest, generic group GGM = (Label,
Add), and ideal cipher ICM =(E, E-1

), and internal copy of Π =Π.{Gen, Sign, Verify }; the simulator S5 has the

external oracle access to F5; the simulator S5 will provide the following interfaces for the external di�erentiator D:

SHsk
5 (SK):= SHsk

4 (SK)

SLabel
5 (sk):= SLabel

4 (sk)

SAdd
5 (gsk1 , gsk2):= SAdd

4 (gsk1 , gsk2)

SHseed
5 (PK ,SK ,M ,R): = SHseed

4 (PK ,SK ,M ,R)

SHtest
5 (PK ,M , ĝ): = SHtest

4 (PK ,M , ĝ)

SE
5 (PK ||M ,V1||V2):

if ∃(V ,PK ||M ,V1,V2) ∈ TE, then return V ;

if ∃(V ,PK ||M ,V1,V2, seed) ∈ TE-1 , then return V ;

if ∃(SK 6= SK ′) s.t.

(
(SK , sk , PK) ∈ THsk

)
∧
(

(SK ′, sk ′, PK) ∈ THsk

)
then goto Case 1; //Bad event: secret key collision

if @(SK , sk , PK) ∈ THsk ,

then goto Case 1; //Bad event: no knowledge of the corresponding secret key

else ŜK ← SK ; ŝk ← sk ;

seed ← V1 + V2 · ŝk mod p;

if @(seed , gseed) ∈ TLabel, then gseed ← SLabel
5 (seed);

if V2 6= SHtest(PK ,M , gseed), //Bad event: (V1,V2) fails the veri�cation phase

then go to Case 1;

if ∃(PK , ŜK ,M ,R, seed) ∈ THseed ,

then R̂ ← R; go to Case 3;

else go to Case 2. //Semi-bad event: (V1,V2) passes veri�cation with abused nonce

Case 1: //One of the bad events occurs, then responds with random string

V � Σ; TE ← TE ∪ {(V ,PK ,M ,V1,V2)}; return V .

31

Case 2: //Semi-bad event occurs: then responds with a valid signature by sampling a nonce

R̂ � R; THseed ← THseed ∪ {PK , ŜK ,M , R̂, seed},

query the external SIG with (Sign,PK , ŜK ,M , R̂), and obtain V ;

TE ← TE ∪ {(V ,PK ,M ,V1,V2)}; return V .

Case 3: query the external F5 with (Sign,PK , ŜK ,M , R̂), and obtain V ;

TE ← TE ∪ {(V ,PK ,M ,V1,V2)}; return V .

SE-1

5 (PK ||M ,V):= SE-1

4 (PK ||M ,V)

Note that S4 and S5 are identical except for responding to the E queries, which are highlighted in blue

box. For Case 2 (yellow box), we denote that R to be the nonce such that Hseed(PK ,SK ,M ,R) = seed ,

and R′ ← R. Applying the same analysis in Section B.3, we see that the gap between S4 and S5 on Case

2 is bounded by
5q2

p .

Now it’s rest to show the gap on Case 1 (red box). According to the description of the simulator, there

are three bad events:

• Event 1: Secret key collision;

• Event 2: No knowledge of sk ;

• Event 3: (V1,V2) is invalid.

Note that, the �rst one has been analyzed in Section B.1 and it occurs only within negligible probability.

For the third one, if (V1,V2) is invalid, then Verify(PK ||M ,V) = 0, and V is uniformly sampled which

means V passes the veri�cation phase with negligible probability (≤ q
p). For the second one, we note that

the only chance that D can di�er S4 and S5 is “outputs a valid (V1,V2 without knowing sk), which is

trivially bounded by
q
p . Combing together, we have that

∣∣Pr[GF4,D
S4 = 1]− Pr[GF5,D

S5 = 1]
∣∣ ≤ 7q2

p .

B.5 Hybrid S6

Simulator S6

�e simulator S6 will provide internal copies of the random oracles, Hsk, Hseed, Htest, generic group GGM = (Label,
Add), and ideal cipher ICM =(E, E-1

), and internal copy of Π =Π.{Gen, Sign, Verify }; the simulator S6 has the

external oracle access to F6; the simulator S6 will provide the following interfaces for the external di�erentiator D:

SHsk
6 (SK):

if ∃(SK , sk ,PK) ∈ THsk , then return sk ;

query the external F6 with (Gen, SK), and obtain P̂K ;

if ∃(�, sk ,PK) ∈ THsk s.t. PK = P̂K , then return sk ;

sk � Zp; TLabel ← TLabel ∪ {(sk , P̂K)}; THsk ← THsk ∪ {(SK , sk , P̂K)};
return sk .

SLabel
6 (sk): = SLabel

5 (sk)

SAdd
6 (gsk1 , gsk2): = SAdd

5 (gsk1 , gsk2)

SHseed
6 (PK ,SK ,M ,R):= SHseed

5 (PK ,SK ,M ,R)

SHtest
5 (PK ,M , ĝ): = SHtest

6 (PK ,M , ĝ)

SE
6 (PK ||M ,V1||V2):= SE

5 (PK ||M ,V1||V2)

32

SE-1

6 (PK ||M ,V):= SE-1

5 (PK ||M ,V)

Applying exactly the same analysis in Section B.2, we trivially have that∣∣Pr[GF5,D
S5 = 1]− Pr[GF6,D

S6 = 1]
∣∣ ≤ ∣∣Pr[GF2,D

S2 = 1]− Pr[GF3,D
S3 = 1]

∣∣
B.6 Hybrid S7

Simulator S7

�e simulator S7 will provide internal copies of the random oracles, Hsk, Hseed, Htest, generic group GGM = (Label,
Add), and ideal cipher ICM =(E, E-1

), and internal copy of Π =Π.{Gen, Sign, Verify }; the simulator S7 has the

external oracle access to F7; the simulator S7 will provide the following interfaces for the external di�erentiator D:

SHsk
7 (SK): = SHsk

6 (SK)

SLabel
7 (sk): = SLabel

6 (sk)

SAdd
7 (gsk1 , gsk2): = SAdd

6 (gsk1 , gsk2)

SHseed
7 (PK ,SK ,M ,R):

P̂K ← SHsk
7 (SK);

if ∃(PK ,SK ,M ,R, seed) ∈ THseed ,

then return seed ;

query the external F7 with (Sign,PK ,SK ,M ,R), and obtain V̂ ,

if ∃(V̂ ,PK ,M ,V1,V2, seed) ∈ TE-1 ,

then return seed ;

seed � Zp, THseed ← THseed ∪ {(PK ,SK ,M ,R, seed)},
return seed .

SHtest
7 (PK ,M , ĝ):

if ∃(PK ,M , ĝ , test) ∈ THtest , then return test ;

test � Zp, THtest ← THtest ∪ {(PK ,M , ĝ , test)},
return test .

SE
7 (PK ||M ,V1||V2):= SE

6 (PK ||M ,V1||V2)

SE-1

7 (PK ||M ,V):

if ∃(V ,PK ||M ,V1,V2) ∈ TE, then return (V1,V2).

if ∃(V ,PK ||M ,V1,V2, seed) ∈ TE-1 , then return (V1,V2).

query the external SIG with (Verify,PK ||M ,V), and obtain φ̂;

if φ̂ = 0, //for the invalid signature, respond with random strings

then V1,V2 � Zp, TE ← TE ∪ {(V ,PK ,M ,V1,V2)}; return (V1,V2).

if ∃(SK 6= SK ′) s.t.

(
(SK , sk , PK) ∈ THsk

)
∧
(

(SK ′, sk ′, PK) ∈ THsk

)
,

//Bad event: secret key collision, then responds with random strings

then V1,V2 � Zp, TE ← TE ∪ {(V ,PK ,M ,V1,V2)}; return (V1,V2).

if ∃(SK , sk ,PK), (�, sk ,PK) ∈ THsk or (sk ,PK) ∈ TLabel ,

then ŝk ← sk //identify the secret key ;

else ŝk � Zp, THsk ← THsk ∪ {(�, ŝk ,PK)};TLabel ← TLabel ∪ {(ŝk ,PK)}

ŝeed � Zp,

for each tuple (PK ∗,SK ∗,M ∗,R∗, seed∗) ∈ THseed , //identify the nonce

query the external SIG with (Sign,PK ∗,SK ∗,M ∗,R∗), and obtain V ∗,
if PK ∗ = PK ,M ∗ = M ,V ∗ = V ,

then ŝeed ← seed∗;

33

gŝeed ← S
Label(ŝeed); test ← SHtest(PK ,M , gŝeed);

//compute the Schnorr signature (V1,V2) using ŝk , ŝeed and test

V1 ← ŝeed − ŝk · test ,V2 ← test ,
TE-1 ← TE-1 ∪ {(V ,PK ,M ,V1,V2, seed)};
return (V1,V2).

Note that the di�erence between S6 and S7 are the queries to Hseed and Htest. Concretely, S6 responds

to those queries by calling Hseed and Htest, while S7 replaces the response by sampling random strings.

Observe that Hseed and Htest are random oracles, thus the view of D on S6 is identical to the one on S7,

referring to

Pr[GF6,D
S6 = 1] = Pr[GF7,D

S7 = 1].

B.7 Hybrid S8

Simulator S8

�e simulator S8 will keep nothing of the internal copies of the random oracles, Hsk, Hseed, Htest, generic group

GGM = (Label, Add), and ideal cipher ICM =(E, E-1
), and internal copy of Π =Π.{Gen, Sign, Verify }; the simula-

tor S8 has the external oracle access to F8, where F8 will provide the internal copy of Π =Π.{Gen, Sign, Verify };
the simulator S8 will provide the following interfaces for the external di�erentiator D:

SHsk
8 (SK): = SHsk

7 (SK)

SLabel
8 (sk): = SLabel

7 (sk)

SAdd
8 (gsk1 , gsk2): = SAdd

7 (gsk1 , gsk2)

SHseed
8 (PK ,SK ,M ,R):= SHseed

7 (PK ,SK ,M ,R)

SHtest
8 (PK ,M , ĝ): =SHtest

7 (PK ,M , ĝ)

SE
7 (PK ||M ,V1||V2):= SE

6 (PK ||M ,V1||V2)

SE-1

8 (PK ||M ,V): = SE-1

7 (PK ||M ,V)

Note that, when answering to the queries, S7 never calls the random oracles Hsk,Hseed,Htest, generic

group GGM = (Label, Add), and ideal cipher ICM =(E, E-1
). �erefore, it’s perfectly �ne to remove

the internal copies from S7, which means Pr[GF7,D
S7 = 1] = Pr[GF8,D

S8 = 1].

B.8 Hybrid S9

Simulator S9

�e simulator S9 keeps no internal copies; the simulator S9 has the external oracle access to SIG =
(Gen,Sign,Verify), the simulator S9 will provide the following interfaces for the external di�erentiator D:

SHsk
9 (SK): = SHsk

8 (SK)

SLabel
9 (sk): = SLabel

8 (sk)

SAdd
9 (gsk1 , gsk2): = SAdd

8 (gsk1 , gsk2)

SHseed
9 (PK ,SK ,M ,R):= SHseed

8 (PK ,SK ,M ,R)

SHtest
9 (PK ,M , ĝ): =SHtest

8 (PK ,M , ĝ)

34

SE
9 (PK ||M ,V1||V2):= SE

8 (PK ||M ,V1||V2)

SE-1

9 (PK ||M ,V): = SE-1

8 (PK ||M ,V)

We immediately observe that the description of S9 is identical to S and it’s apparent that Pr[GF9,D
S9] =

Pr[IdealSIG,D
S].

Hence, it su�ces to show that S8 and S9 are close. In fact, in Game 8, the external oracle is Π =
(Π.Gen,Π.Sign,Π.Verify), and in Game 9, the oracle is ideal signature SIG = (Gen,Sign,Verify).

According to the de�nition of ideal signature, it’s trivial that if for any value sk ∈ [p], there exists SK ∈ SK
such that Hsk(SK) = sk and for any pair (PK ,SK ,M) and any value r ∈ [p], there exists R ∈ R such

that Hseed(PK ,SK ,M ,R) = r , then the distribution of Π and SIG are identical. And this bad event is

bounded by

2p · (1− 1

p
)p·2

λ ≤ 2p · e−2λ

where e is the natural logarithm.

Combing all together, we complete the entire proof.

35

