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Abstract. Offline deniability is the ability to a posteriori deny having
participated in a particular communication session. This property has
been widely assumed for the Signal messaging application, yet no for-
mal proof has appeared in the literature. In this paper, we present what
we believe is the first formal study of the offline deniability of the Sig-
nal protocol. Our analysis shows that building a deniability proof for
Signal is non-trivial and requires strong assumptions on the underlying
mathematical groups where the protocol is run.

To do so, we study various implicitly authenticated key exchange proto-
cols including MQV, HMQV and 3DH/X3DH, the latter being the core
key agreement protocol in Signal. We first present examples of mathe-
matical groups where running MQV results in a provably non-deniable
interaction. While the concrete attack applies only to MQV, it also ex-
emplifies the problems in attempting to prove the deniability of other
implicitly authenticated protocols, such as 3DH. In particular, it shows
that the intuition that the minimal transcript produced by these proto-
cols suffices for ensuring deniability does not hold. We then provide a
characterization of the groups where deniability holds, defined in terms
of a knowledge assumption that extends the Knowledge of Exponent
Assumption (KEA).

We conclude the paper by showing two additional positive results. The
first is a general theorem that links the deniability of a communica-
tion session to the deniability of the key agreement protocol starting
the session. This allows us to extend our results on the deniability of
3DH/X3DH to the entire Signal communication session.

1 Introduction

The ever growing privacy concerns and vulnerabilities behind online interactions
have made the deniability of communications a prime privacy requirement. The
goal is to ensure that the transcript of an online communication between two
peers cannot be used for proving to a third party that the transcript corresponds
to a communication between the two. This property should hold even if one of



the parties is willing to deviate from the protocol just to generate a proof that
reveals the identity of the peer to a third party.

A well-known fact is that communications protected by a shared symmetric
key do not allow one of the peers to frame the other: Any information Bob claims
to have been authenticated by Alice with a shared key could have been produced
by Bob himself since he also knows the key. However, usually shared keys are
generated via an online authenticated key exchange (AKE) protocol, where the
parties authenticate using their own private/public keys. Then, the question is
whether the shared key computed in that protocol can itself be denied. This
gives rise to the notion of deniable authenticated key exchange. As above, the
transcript of the AKE protocol should leave no proof of communication that
can convince a third party. Bob should not be able to convince a judge that
Alice communicated with him, even if Bob is malicious and departs from the
prescribed AKE protocol just to generate such proof.

Deniability of AKE was first formally defined in [16] in terms of simulatability
(following an approach set forth by [19] in the context of deniable authentica-
tion). Roughly, an AKE protocol π between peers Alice and Bob is deniable for
Alice if the communication transcript generated in an interaction between Alice
and Bob in executions of π can be simulated by Bob without Alice’s participa-
tion. That is, one requires the existence of a simulator that in interactions with
Bob generates transcripts that are computationally indistinguishable from real
transcripts between Alice and Bob. Here, Alice’s actions are those of an honest
AKE participant but Bob can deviate from the protocol in arbitrary ways (if that
helps him frame Alice as discussed above). Moreover, and crucially, the simulator
needs to output a session key under a distribution that is indistinguishable from
that of the session key in a real protocol between Alice and (possibly malicious)
Bob.

We note that deniability of an AKE protocol may be one-sided, namely,
it may be deniable for the initiator but not for the responder, or vice versa.
Different flavors of AKE deniability are obtained by considering the type of judge
to which a proof is presented. The basic case is that of offline deniability that
assumes a judge who is not present during the communication between the peers.
In this case, the judge examines a transcript presented by Bob, after the alleged
communication took place, to decide whether Alice knowingly communicated
with Bob. If, in contrast, we let the judge be an active participant in the protocol,
ensuring deniability is harder, or even impossible. In particular, if Bob provides
his private keys to the judge, the latter can interact with Alice masquerading
as Bob and get convinced directly of Alice’s participation. The notion of online
deniability [47] refers to a judge who participates in the protocol but is not given
Bob’s private keys. The offline case is of more practical relevance since a protocol
that is not deniable in this sense can leave proofs of communication that anyone
can verify later (possibly with Bob’s help).

Deniability has been a consideration for AKE protocols for (at least) the
last 25 years since the design of the Internet Key Exchange (IKEv1) proto-
col [24, 29] through the influential off-the-record protocol [5] to today’s privacy
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conscious Signal messaging protocol [44]. Yet, designing deniable AKE protocols
has proven to be a delicate matter and is still an active area of research (see the
related work section below).

1.1 The Signal Protocol

Deniability was the central focus in the design of the Signal protocol [35, 44].
The latter has become the de-facto standard in the area of secure messaging
protocols, having been adopted in popular applications such as WhatsApp and
Facebook messenger. However in [45, 46] it has already been shown that online
deniability does not hold for Signal. Still, offline deniability is widely believed to
hold, and yet no formal proof has ever appeared in the literature.

In this paper, we address the reasons why a proof for the offline deniability of
Signal has been difficult to construct and analyze ways to overcome this problem,
offering the first formal study of the offline deniability of the Signal protocol.

For this, we focus on the offline deniability properties of a particular family of
AKE protocols, namely, implicitly authenticated protocols (which, in particular,
form the basis of Signal, see below). These are characterized by the property
that the transcript of the protocol is independent of the private keys of the peers.
That is, anyone can generate the transcript messages. Authentication is provided
implicitly by involving the peers’ private keys in the derivation of the session
key. Implicitly authenticated protocols seem to be perfectly suited to provide
deniability. In their minimal form, all the peers exchange are Diffie-Hellman
(DH) values X = gx, Y = gy with the key being computed as a function of X,Y ,
the public keys of the parties and their corresponding private keys. There is little
one can learn about the participants from these transcripts, hence, intuitively,
they “must be deniable.”

The above intuition, however, has been insufficient to prove these protocols
deniable, in particular due to the need to simulate the session key. Thus, the
question of deniability of implicitly authenticated protocols has not been settled
to this day. This is not just a challenging theoretical question, but one of practical
significance. Indeed, prime examples of this family are MQV [32,36], HMQV [31],
and 3DH [34] (see Section 2 for the description of these protocols). Implicitly
authenticated protocols are particularly attractive due to their higher efficiency
(since no additional signatures or encryptions are computed/sent together with
the basic DH ephemeral keys). Very importantly, 3DH is the basis of the X3DH
AKE underlying the Signal protocol and a main source of “intuition” regarding
Signal’s deniability properties.

1.2 Our Contributions

We make progress in the study of deniability of implicitly authenticated key
exchange protocols, and Signal, in several ways:

• We demonstrate the insufficiency of implicit authentication as a property
to ensure deniability. We present settings, in terms of properties of groups and
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assumptions, where the original MQV protocol [36] (that does not use a random
oracle for key derivation) fails deniability. We discuss how the counter-example
built around MQV illuminates the difficulties one encounters in attempting to
prove deniability for any of the other implicitly authenticated AKEs we consider,
including 3DH.

• Using the above result, we are able to characterize the non-deniability of
MQV in terms of the feasibility of the following problem: Given a random group
element A, sample Y in G (with any efficiently-samplable distribution), so that
it is hard to compute the Diffie-Hellman value of A and Y , denoted DH(A, Y ),
even for the party sampling Y while it is easy (for anyone) to decide correctness
of DH(A, Y ). We show that if such a Y can be feasibly sampled in G, then MQV
is non-deniable over G and an adversary can always prove that he communicated
with a particular honest peer.

• We show that in groups where the above condition does not hold (namely, there
are efficient ways to sample Y, given A, so that it is infeasible to compute and
decide DH(A,Y)), deniability holds for the studied protocols. Formally, we state a
property, referred to as the Knowledge of Diffie-Hellman (KDH) assumption, so
that HMQV (or MQV with random-oracle key derivation) and 3DH are deniable
in groups where this assumption holds. While KDH is a strong assumption in the
tradition of other knowledge assumptions, our treatment shows it to be necessary
for formally proving deniability of these protocols.

• We show a connection between KDH and the more established Knowledge
of Exponent assumption (KEA) [2, 12] via an additional, but more natural
assumption we call Knowledge of Discrete Logarithm (KDL). In particular, we
get that deniability of the above protocols holds in groups where both KEA and
KDL hold. It is an interesting question to find additional properties that imply
KDH, hence implying deniability of the above protocols.

• To validate the definition of deniable AKE we prove a general theorem showing
that any two-party protocol, whose transcript can be generated from a shared
symmetric key and public information, is deniable (namely, simulatable without
access to the shared key) if the symmetric key is the product of a deniable AKE.

• As a corollary of the above theorem, we get a proof of deniability of the full
Signal protocol under the assumption that its underlying AKE, 3DH, is deniable;
in particular, this is the case under the KDH assumption.

In the full version of the paper we prove deniability of the protocols studied
here when augmented with explicit authentication.

1.3 On our use of knowledge extraction

The assumptions we use to prove our deniability require that for any adversary
running the key exchange protocol, there exists an extractor that will yield some
internal state of the adversary. Here we briefly remark on how our assumptions
differ from the notion of extractable one-way function introduced in [4].
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If F is an extractable one-way function, for every adversary A that outputs
y = F (x), there exists an extractor E that outputs x′ ∈ F−1(y). The main result
in [4] is that in the case in which A and E have the same common auxiliary input,
then extractable one-way functions do not exists, under the assumption of the
existence of indistinguishability obfuscation (iO) for certain classes of circuits.
Given recent results [25] that establish the existence of iO for any circuit under
reasonable assumptions, then common-auxiliary extractable functions should not
be considered as a sound assumption.

We point out that deniability proofs based on extraction require the adver-
sary and the extractor to have a common auxiliary input (since the deniability
simulator must be a ”real-life” simulator, which has the same ”knowledge” as
the adversary1). Therefore there seems to be little hope to establish a deniability
simulations based on extractable one-way functions. This would seem to doom
our approach.

Yet our assumptions are not equivalent to extractable one-way functions and
indeed require something weaker. Informally our extractor E will either output
x′ ∈ F−1(y) or fail, and in the latter case the assumption requires that it is easy
to sample a distribution which is computationally indistinguishable from F−1(y).
This in turns implies that our assumption are not affected by the negative result
in [4].

1.4 Related work

Readers are referred to [3,7,9,43] for the formal definition of secure AKE. These
formal treatments provide robust justifications for the security of AKE but do
not deal with the issue of deniability. Informal discussions of deniability began
to appear in [5,6,15,24,30,33]. Offline Deniable AKE were defined in [16] based
on the work on deniable authentication in [19]. Definitions of deniable AKE that
offer composability and online deniability were presented in [18, 47]. Provably
offline deniable AKEs are presented in [16, 48], while online deniable ones are
presented in [18,45–47]. None of these protocols is implicitly authenticated. Al-
though the offline deniability of protocols such as HMQV and 3DH is widely
conjectured, we are not aware of any formal proof according to the definitions
above for any implicitly authenticated scheme.

There are alternative, relaxed definitions of deniability that work for less ex-
pansive purposes [11, 20, 49]. These definitions include: content deniability, con-
text deniability, source deniability, destination deniability, two notions of time
deniability, peer deniability, and reasonable deniability. Each of these alternative
definitions involve giving the simulator access to an oracle to perform the simu-
lation. The oracle represent the “deniability loss” with respect to the standard
strict definition of simulatability.

Other works in the context of deniability include [14,28, 37], and we remark
on the work by Pass [38] which stresses the important differences between a

1 The analogy is allowing the simulator to have the trapdoor associated with a com-
mon reference string – while that’s OK for zero-knowledge simulation, it does not
provide a proof of real-life plausible deniability.
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deniability simulator and a zero-knowledge one (as defined in [22]). Tools to
achieve deniability include: designated verifier proof and ring signatures. Desig-
nated verifier proofs refers to a proof that only one party can verify, ensuring
that this proof cannot be passed on to anyone else [26]. A ring signature de-
scribes a signature made by a member of a group that cannot be traced back
to that particular member [37, 40]. The ”minimalistic” implicitly-authenticated
schemes studied here do not involve any of these (relatively costly) techniques

A full specification of the Signal protocol can be found in [44]. As mentioned
above it uses the Extended Triple Diffie-Hellman (X3DH) key agreement protocol
[35] (built on the 3DH AKE [34]) followed by a communication session which
include a ratcheting mechanism to refresh keys [39]. Security analyses of these
protocols that do not include deniability can be found in [1,10]. The deniability
of X3DH and 3DH is often stated or taken for granted, but always without a
formal definition or proof.

The MQV protocol was presented in [32, 36]. It inspired several other pro-
tocols including HMQV in [31] and the OAKE family of AKEs by Yao and
Zhao [49]. No formal deniability proof of these protocols has appeared anywhere.
In [49], one protocol in the OAKE family is claimed to have the weaker notion
of reasonable deniability. Our full deniability results extend to the OAKE family
as well.

1.5 Organization

In Section 2 we introduce some preliminaries, including the implicitly-authenticated
key exchange protocols MQV, HMQV and 3DH. In Section 3 we present the def-
inition of Deniable Authenticate Key Exchange and in Section 4 we prove how
this notion extends to the deniability of communication sessions that use a key
computed through a deniable AKE. In Section 5 we show an important nega-
tive result: A group setting where the MQV protocol is provably non-deniable,
in particular showing that the intuition that implicitly authenticated protocols
must be deniable does not hold. In Section 6 we use the MQV example from pre-
vious section to derive a general characterization of non-deniability. In Section 7
we present our main results regarding the provable deniability of the protocols
we study, in particular introducing the KDH assumption that underlies these
results. In Section 8 we show that the deniability of 3DH implies the deniability
of X3DH and the full Signal protocol. In Section 9 we show how to remove the
assumption of proof of possession at key registration that was used in some of
the results in the paper. Finally, in Appendix A we present the KDL assumption
and prove that together with KEA it implies KDH, hence basing our deniability
results on these assumptions too.

2 Implicitly Authenticated Key Exchange

In this section, we recall two examples of implicitly authenticated key exchange
protocols, namely HMQV [31] (and its predecessor MQV [32, 36]) and 3DH as
used in Signal [34].
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2.1 Preliminaries

In the following, we denote with G a cyclic group of prime order q generated by g.
For every element X ∈ G there exist an integer x ∈ Zq such that X = gx. We say
that x is the discrete log of X with respect to g and denote it with x = loggX.

Given two elements A = ga and B = gb we denote with DH(A,B) = gab =
Ab = Ba, the Diffie-Hellman transform of A,B, [17].

With a← S we denote the process of sampling a uniformly at random in the
set S.

The following definition states that computing the discrete log is hard.

Definition 1. Let G be a cyclic group of prime order q generated by g. We say
that the (T, ε) Discrete Log Assumption holds in G if for every probabilistic Turing
Machine A running in time T we have that

Prob[x← Zq ; A(gx) = x] ≤ ε

The following definition states that computing the Diffie-Hellman transform
is hard.

Definition 2. Let G be a cyclic group of prime order q generated by g. We say
that the (T, ε) Computational Diffie-Hellman (CDH) Assumption holds in G if for
every probabilistic Turing Machine A running in time T we have that

Prob[A,B ← G ; A(A,B) = DH(A,B)] ≤ ε

Consider the set G3 = G × G × G and the following two probability distri-
butions over it:

RG = {(ga, gb, gc) for a, b, c← [0..q]}

and
DHG = {(ga, gb, gab) for a, b,← [0..q]}

We use these distributions in the following definition:

Definition 3. We say that the (T, ε) Decisional Diffie-Hellman (DDH) Assump-
tion holds over G = 〈g〉 if the two distributions RG and DHG are (T, ε)-indistinguishable.

For Definition 3, we use Goldwasser and Micali’s classical definition of com-
putational indistinguishability [21].

Definition 4. Let X ,Y be two probability distributions over A. Given a circuit
D, the distinguisher, consider the following quantities

δD,X = Probx∈X [D(x) = 1]

δD,Y = Proby∈Y [D(y) = 1]

We say that the probability distributions X and Y are (T, ε)-indistinguishable
if for every probabilistic Turing Machine D running in time T we have that
|δD,X − δD,Y | ≤ ε.
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2.2 MQV and HMQV Protocols

The MQV protocol was introduced in [36] and further specified in [32]. A formal
analysis of its security properties was presented by Krawczyk in [31] where he
also presented an improved version called HMQV to address some of MQV’s
weaknesses uncovered by the analysis. In Figure 1, we describe both protocols.

MQV and HMQV Protocols
Public Input: A = ga, B = gb public keys of Alice and Bob respectively.
Secret Input of Alice: a; Secret Input of Bob: b;

Alice Bob

x← {1, . . . , q} X = gx
-

Y = gy
�

y ← {1, . . . , q}
K̃ = (XAd)y+eb

K̃ = (Y Be)x+da

MQV: K = K̃, d = 2` + (X mod 2`), e = 2` + (Y mod 2`), ` = |q|/2.

HMQV: K = H(K̃), d = h(X, idBob), e = h(Y, idAlice),

where h(·), H(·) are suitable hash functions.

Fig. 1. Computation of the session key K in MQV and HMQV protocols

Note that in MQV the session key is defined as the group element K̃ (with
the use of a hash function left as optional), while HMQV mandates the use of
a hash function H to derive the session key from the secret value K̃ shared by
Alice and Bob.

2.3 Triple Diffie-Hellman

The Triple Diffie-Hellman (3DH) protocol creates a shared secret key between
two parties who authenticate each other via public keys [34], with deniability
being one of its claimed features (but never formally proven until now).

3DH is the key exchange that underlies secure communication in the Signal
messaging application. We postpone discussions about how 3DH is used inside
Signal to Section 8. Here, we simply describe 3DH as a basic key exchange
protocol where both parties are alive and communicating with each other.

Figure 2 describes the protocol. As for the case of MQV Alice and Bob have
long-term public keys A = ga, B = gb and exchange ephemeral public keys X,Y .
What changes is how the session key is computed. The “three Diffie-Hellman”
part refers to three separate Diffie-Hellman operators concatenated together and
then passed to a hash function to derive a key.
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3DH Protocol
Public Input: A = ga, B = gb public keys of Alice and Bob respectively.
Secret Input of Alice: a; Secret Input of Bob: b;

Alice Bob

x← {1, . . . , q} X = gx
-

Y = gy
�

y ← {1, . . . , q}
K = H(Ay||Xy||Xb)

K = H(Y a||Y x||Bx)

where || denotes concatenation and H(·) is a suitable hash function.

Fig. 2. Triple Diffie-Hellman key exchange protocol

2.4 Key Registration

The protocols described above assume that participants have long-term public
keys that are associated to their identity via some form of Public Key Infras-
tructure (PKI). Certification authorities often require that at the time of key
registration, participants prove knowledge of their secret key. If this is done via
an extractable proof of knowledge, e.g., via a Schnorr proof [41], proving deni-
ability can be simplified by assuming the simulator can extract the private key
of the participants. Some of our proofs (e.g., for Theorems 3, 4 and 6) are sim-
plified by assuming such a “Key Registration” setting. However, we later show
(Section 9) that in all these cases, a slight strengthening of our assumptions gets
rid of the need to assume private-key extractability.

3 Deniable Key Exchange

We recall the definition of deniable Authenticated Key Exchange (AKE in the
rest) from [16,18,47].

An AKE protocol works with two parties, A and B, who want to agree on
a secret key K. Each party has a long-term public/secret key pair which is
associated to the party through a trusted registry. These key pairs are generated
via a key generation phase. For notation purposes, A has public key pkA and
secret key skA – B has pkB and skB.

One of A and B acts as the initiator and the other acts as the responder.
The protocol results in session key K. Informally, security for AKE requires
that if an honest party A outputs key K and associates it to an honest party B,
then no party other than B may know anything about K. Additional security
properties can be enforced, such as perfect forward secrecy (past session keys
remain secure, even if long-term keys are compromised), security against state
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compromise (ephemeral values are revealed to the adversary), etc. A formal
treatment of AKE security can be found in [3, 7, 9, 43].

Informally we say that an AKE is deniable if it prevents A or B from proving
to a third party (which we will call the judge) that an AKE occurred with
a particular party. A weaker goal is to be able to deny just the contents of
communication protected by the AKE’s resulting key.

Recall that a KE protocol involves two communicating parties: the initiator,
who sends the first message, and the responder. Let Σ denote an AKE protocol
with key generation algorithm KG and interactive machines ΣI and ΣR, which
respectively denote the roles of the initiator and responder. Both ΣI and ΣR take
as input their own secret and public keys. In most cases, they also take in the
identity and public key of their peer, but other AKE protocols specify that the
parties learn this information during the session [8]. The term session denotes
an individual run of a KE protocol. When the protocol finishes, it outputs either
an error or a session key.

Adversary. Let M denote an adversary that runs on an arbitrary number of
randomly chosen public keys pk = (pk1, . . . , pkl) generated by KG. The algorithm
associates the keys to honest users in the network.M’s input also includes some
arbitrary auxiliary information aux ∈ AUX. The adversary runs Σ with an
arbitrary number of honest users. SometimesM acts as the initiator, and other
times M acts as the responder. The individual sessions run in a concurrent
setting, so M may schedule and interleave them arbitrarily.

View. We define the view of the adversary M as its internal coin tosses, the
transcript of the entire interaction, and the session keys from each session thatM
participates either as an initiator or responder. Sessions that do not produce keys
result in a key defined by an error value. We denote this view by ViewM(pk, aux).

Simulator. In order to demonstrate deniability with respect to initiator (resp.,
responder), the simulator takes the role of the initiator I (resp., responder R)
and imitates I (resp., R) without having the long-term secret key skI (resp.,
skR).

As input, the simulator receives some random coins, the public keys pk of
all parties and any auxiliary input aux available to the adversary. It generates
SimM(pk, aux) by interacting with the adversaryM as its peer. SimM(pk, aux)
includes the transcript and the resulting shared key of the session.

The simulator provides the inputs to the adversary M prior to the protocol
execution and observes all communication M has with its environment (such
as AKE sessions M holds with other honest parties and the random oracle
queries). The random oracle (RO) queries made by the adversary are visible to
the simulator. However, the simulator might not be able to freely tamper with
the RO input-output pairs (program the RO), because the judge is granted access
to the random oracles, too. Therefore the RO queries involved in the simulation
are expected to be consistent with the possible queries made by the judge and
other honest parties running a session with the adversary.
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Definition 5. [16] An AKE protocol (KG, ΣI , ΣR) is (TM, TS , TD, ε) concur-
rently deniable with respect to the class of auxiliary inputs AUX if for any
adversary M running in time TM, on input honest parties’ public keys pk =
(pk1, . . . , pkl) generated by KG and any auxiliary input aux ∈ AUX, there exists
a simulator SIM running in time TS on the same inputs as M which pro-
duces a simulated view Sim(pk, aux) such that the following two distributions
are (TD, ε)-indistinguishable:

Real(aux) = [(sk, pk)I,R ← KG; (aux,pk,ViewM(pk, aux))]

Sim(aux) = [(sk, pk)I,R ← KG; (aux,pk,SimM(pk, aux))]

The definition follows the usual simulation paradigm which guarantees that the
judge cannot decide if anything that the adversary presents (the view) is the re-
sult of an interaction with a real party or the product of a simulation. As pointed
out by Pass in [38], the simulation requirements for deniability are stronger than
for Zero-Knowledge simulation as the simulation is not just a “thought exper-
iment” but it needs to run in the real world; for example, random oracle pro-
grammability is not allowed since the distinguisher (the judge in the deniability
setting) has access to a (real-world) pre-defined hash function. The same holds
for trapdoored common reference strings.

Why is the session key included in the view. We are interested in the
deniability of the full communication protected by the session key, not just
deniability of the key exchange run. Limiting deniability to the key exchange
transcript only, would allow for situations where Bob could not prove Alice’s
participation in a key exchange session but could do so once the session key is
used (we show such an example in the context of the non-deniability of MQV in
Section 5.1). Fortunately, by simply including the session key in the view that
the deniability simulator needs to produce, one guarantees that any application
using the session key (and otherwise public information) will be as deniable as
the key exchange itself (namely, the joint transcript of the key exchange session
and the ensuing application can be simulated). This important consequence of
the above definition is formalized and proven in Theorem 1.

4 Deniable Sessions

As we noted above the definition of deniability of an AKE explicitly includes the
session key in the view in order for us to claim that any deniability is preserved
in any subsequent use of the key in the session that follows the AKE. We now
formally prove this statement2. First we define deniability for an arbitrary inter-
active protocol between two parties, and then we show that any communication

2 This was claimed informally and without proof in [16]; here, we use this result in
essential way in Section 8 to show how deniability of 3DH carries to deniability of
the whole Signal protocol.
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structured as an AKE, followed by messages where the two parties only use the
session key (but not their long-term secret keys) is deniable.

Consider an adversaryM that on input pk interacts with the parties holding
the public keys. The adversary also may have auxiliary input aux drawn from
distribution AUX.
M initiates several concurrent interactions with the parties and we define

the adversary’s view of the interaction as M’s coin tosses together with the
transcript of the full interactions. We denote the view as View(pk, aux).

Definition 6. We say that an interactive protocol P (KG, I,R) is (TM, TS , TD, ε)-
concurrently deniable with respect to the class of auxiliary inputs AUX if for
any adversary M running in time TM, on input honest parties’ public keys
pk = (pk1, . . . , pkl) generated by KG and any auxiliary input aux ∈ AUX, there
exists a simulator SIMM running in time TS on the same inputs as M, such
that the following two distributions are (TD, ε)-indistinguishable

Real(aux) = [(ski, pki)← KG; (aux,pk,View(pk, aux))]

Sim(aux) = [(ski, pki)← KG; (aux,pk, SIM(pk, aux))]

We now define a session. Consider two parties Alice and Bob with associated
public keys pkA, pkB . They also hold private keys skA, skB respectively, and also
additional inputs xA, xB . We say that an interactive protocol P between Alice
and Bob is a session if

– P = [P1, P2] where P1 is an AKE. Let K be the session key resulting from
the execution of P1

– every message sent by Alice (resp. Bob) in P2 is a function only of the
transcript so far, the private input xA (resp. xB), and the session key K,
but not of the private keys skA (resp. skB)

Theorem 1. Let P = [P1, P2] be a session, where P1 is a deniable authenticated
key exchange according to Definition 5, which includes the session key in the
view. Then P is deniable according to Definition 6.

Proof. Based on Definition 6, a deniability simulator for P is required to simulate
the transcript between the parties only, i.e. trP1

and trP2
, which denote the

transcript of P1 and P2, respectively.
Since P1 is (TM1 , TS1 , TD1 , ε1)-deniable, we know that for any adversaryM1

running in time TM1
, there exists a simulator running in TS1 which outputs a

simulation of transcript and session key: {tr∗P1
,K∗}.

For all distinguishers D1 running in time TD1 ,

|Pr[D1(pk, tr∗P1
,K∗, coinsM1

) = 1]

− Pr[D1(pk, trP1
,K, coinsM1

) = 1]| ≤ ε1.
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Assume, for contradiction, that P is not deniable. So there is an adversary
M for protocol P running in time TM such that for every simulator S that runs
in TS and outputs tr∗P , there exists a distinguisher D running in TD such that

|Pr[D(pk, tr∗P , coinsM) = 1]

− Pr[D(pk, trP , coinsM) = 1]| > ε.

Let us runM on P . This induces an adversaryM1 on P1 for which we should
have a “good” simulator S1 which outputs a simulated transcript and session
key {tr∗P1

,K∗}.
We now “extend” S1 to a full simulator S for P . Using the simulated session

key K∗, the simulator S will simulate the honest party’s message: recall that
those messages are a function of only the transcript so far, the additional inputs
xA (or xB) and the session key3. For this simulator we have a distinguisher D
which distinguishes the simulated transcript from the real one.

We now can build a distinguisher D1 for S1. Given {pk, trP1
,K, coinsM1

} it
needs to decide if it is the real view of the AKE P1 or the output of S1.

The first thing that D1 does is to extend these view to a full view for P , the
same way in which S does it. Note that if D1 runs on input the real view of P1

then it obtains the real view of P . But if D1 runs on input the simulated view of
P1 created by S1 then it obtains the simulated view of S. Therefore it can call
D on its input and distinguish with the same probability that D does.

5 Negative examples

In this section, we are going to examine the difficulty in simulating an execution
of implicitly authenticated key exchange protocols such as MQV, HMQV and
3DH. We will show a strategy that (on certain groups) allows an adversary to
prove that an interaction took place. This negative result will then point the
way to what type of assumption about the underlying group we need to make
to guarantee deniability in a provable way.

We focus on MQV, but the issues we raise here will lead to an understanding
of deniability conditions for HMQV and 3DH. Consider the MQV protocol in
Figure 1 and let us try to prove that the protocol is deniable for Alice. In
other words we need to construct a simulator SIM who plays the role of Alice
while talking to Bob. SIM is given the public key of Alice, A = ga, but not the
corresponding secret key, a.

SIM runs Bob to simulate the conversation and observes all of Bob’s commu-
nication in his environment. SIM starts by providing the random coins r, and, if
available, the auxiliary information to Bob. SIM then chooses a random x and
sends out X = gx to Bob. In return it receives a group member Y ∈ G from

3 Here, we assume that the auxiliary inputs xA and xB are not tied to the identity of
the party (as opposed to skA and skB) and therefore can be given to the simulator.
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Bob. SIM’s final output must be indistinguishable from Bob’s view (r,X, Y,K)
and the only thing that SIM does not know is K. Recall that in MQV

K = gxygaydgxbegabde

where e, d are values computed from the transcript.
When Bob is honestly executing the protocol, the simulator is easy to con-

struct. If Bob follows the protocol and computes Y as gy for y ← Zq, the
simulator can do exactly the same thing and compute the session key K =
gxyAyd(XAd)be. Here, we assume that the simulator gets Bob’s private key4.

However, a malicious Bob can deviate from the protocol at will and having
Bob’s random coins provides SIM no information about how Y is actually sam-
pled. In the simulation above, SIM can compute two of the DH values gxy = Y x

and (XAd)be since b and x are known. But DH(A, Y ) = gay cannot be computed
because neither a (secret key of Alice) nor y = logg Y is known to SIM (maybe
not even to Bob).

The only option for SIM would be putting a random string as the simulated
key, hoping that a random value is indistinguishable from the actual key. Such
strategy would work if we could invoke the DDH assumption to claim the two
distributions are indistinguishable. However, a random string does not necessar-
ily substitute for gay, because though a is uniformly selected, DDH does not
apply for an adversarially chosen Y .

5.1 When MQV is provably non-deniable

The discussion above shows that an adversarially chosen Y is a barrier to prove
deniability for MQV. We now prove that over some groups, it is actually im-
possible to prove that MQV is deniable, because there is a strategy for Bob to
prove that he interacted with Alice.

Assume we are running the protocol over a cyclic group G setting where:

1. The DDH problem is easy
2. The following experiment succeeds with negligible probability for every effi-

cient adversary Adv and any efficiently samplable distribution Y
– Adv runs on input A,B ∈ G chosen uniformly at random and outputs
X ∈ G

– Adv receives Y ∈ G chosen according to Y
– Adv succeeds if it outputsKA = (XAd)y(XAd)be = DH(XAd, Y )DH(XAd, Be)

where d, e are defined as in the MQV protocol

We note that (2) follows from the KCI security of MQV, namely, the values x
and b do not suffice to compute the session key. Point (1) holds, for example, if
G is a bilinear group.

4 For showing the failure of (proofs of) deniability, assuming the simulator gets b
makes our negative result stronger as it implies that even if we allow key registration
we do not know how to simulate, and in some cases simulation is actually impossible.
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On assuming that the DDH problem is easy. Before we proceed with our
counter-example, let us discuss our assumption that the DDH problem is easy in
G. In this case, the security of MQV cannot be proven in the sense of the session
key being indistinguishable from a random group element. Does this mean that
our counter-example shows non-deniability of a protocol that is insecure as a
key-exchange scheme? Is there value in doing so? There are several answers to
this point:

– First, one can consider a weaker security notion for key exchange where
the goal is for the session key to be unpredictable. We illustrate the utility
of such notion in the “bearer token” example below. Furthermore, an un-
predictable key with sufficient (computational) entropy, but not necessarily
indistinguishable from random, can be converted into a strong key using
a randomness extractor. MQV could conceivably satisfy such property, be
secure as a key exchange, and still be non-deniable.

– Deniability is an orthogonal property to that of security. Our counter-example
is designed to illustrate the difficulties of proving deniability for MQV and
similar protocols, and demonstrating the failure of the intuition that the
sole lack of explicit authentication methods (such as digital signatures) is
sufficient to assume that deniability holds.

– Additionally, there are so-called trapdoor DDH groups [13, 42], where the
DDH problem is conjectured to be hard unless one is in possession of a
trapdoor. In this case, the protocol is secure for anybody who does not
possess the trapdoor but non-deniable for a judge who holds the trapdoor.

The counter-example (incriminating Alice). We show a strategy that
incriminates Alice over groups where the DDH problem is easy. A malicious
Bob samples Y uniformly at random in the group but in a way in which he can
demonstrate that he does not know y = logg Y , for example by hashing a publicly
known string (e.g. today’s copy of the NY Times) into a group element via a
sufficiently complicated hash function (which could be modeled as a random
oracle5).

We now prove by contradiction that there cannot be a simulator. If there
is a simulator SIM, let KS be the key provided by the simulator, while K =
(XAd)y(XAe)b = DH(XAd, Y )DH(XAe, B) is the real key. We assume that
Bob is willing to reveal b to the judge in order to prove that an interaction took
place.

The knowledge of b allows the judge to compute z = DH(XAd, Be) =
(XAd)be. Since the DDH is easy, the judge can decide if K = KS by check-
ing if KS · z−1 = DH(XAd, Y ). Therefore, anything other than the authentic
key is detected by the judge. So the only possible successful simulator is the one
that outputs KS = K. But such simulator contradicts assumption (2) above and
the security of MQV.

5 It is not necessary to model this hash as a random oracle, as long as we assume that
computing gay is hard when A = ga is sampled uniformly at random and Y = gy is
sampled according to the procedure used by Bob.
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So all that Bob needs to do to be able to prove Alice communicated with
him is to choose a value Y = gy for which Bob could not possibly know y (as
described above) and obtain the (unhashed) MQV key computed by Alice on
the quadruple (A,X,B, Y ). As an example of an application that would disclose
this value to Bob (without Bob being able to compute it by himself), consider
a key exchange protocol whose session key is used as a bearer token (cf., RFC
6750 [27]) that a user needs to present for obtaining access to some controlled
resource (e.g., a non-public webpage, a printing service, etc.). Here, the user
Alice would run MQV with the server Bob to obtain the bearer token in the
form of an MQV key which Alice later submits to Bob for gaining access to
the resource. Server Bob could choose Y as above, receive the token (=key)
from Alice and use this key to prove she communicated with him (note that
the computation of the key is specific to Bob’s public key thus proving Alice’s
intention to have this communication with Bob). In other words, this example
shows that the non-deniability of MQV can be actually exploited in practice.
We further note that the above bearer-token application illustrates how a key
exchange like MQV that outputs an unpredictable value (rather than a key that
is indistinguishable from a random string) can have significant value in practice.

3DH without hashing. It is not hard to see that a similar reasoning ap-
plies to an “unhashed” version of 3DH where the session key is set as K =
DH(A, Y )||DH(X,Y )||DH(X,B). Therefore such a version of 3DH would also
be provably non-deniable under the above conditions.

5.2 Does the random oracle help?

In HMQV and 3DH the session key is computed by hashing the secret shared
value, i.e.

K = H[DH(XAd, Y )DH(XAd, Be)]

in HMQV and

K = H[DH(A, Y )||DH(X,Y )||DH(X,B)]

in 3DH. If we model H as a random oracle, would this help in solving the
problems described in the previous section?

The question is still how can the simulator provide a session key which is
indistinguishable from the real one. In this case, one would hope that the use of
the random oracle will allow the simulator to identify the key. Assume Bob is
the malicious party and can deviate from the honest execution of the protocol.
Every time Bob makes a random oracle query, SIM sees it (even though it is not
allowed to choose the answer for it [38]). In particular, if Bob computes the real
session key K in HMQV that matches A,B,X, Y , then he must have queried
DH(XAd, Y )DH(XAd, Be) (resp. DH(A, Y )||DH(X,Y )||DH(X,B) for 3DH)
to the random oracle.

Note that even if Bob queries the RO on these values, it is not clear how the
simulator can identify the correct query that corresponds to the computation of
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the session key. Indeed, the simulator SIM is able to compute gbx and gxy, but
cannot compute gay since a and y are not known. If Y is uniformly distributed
and the DDH holds, SIM cannot provably detect which query corresponds to the
session key6.

The only option for the simulator is to choose a random value as the key,
but this is distinguishable from the real view if Bob presents to the judge the
correct input to the random oracle (e.g. Bob knows y = logg Y and can convince
the judge that the session key was computed using the correct input).

Note that if this is the case, Bob still cannot convince the judge that he
spoke to Alice. In fact if Bob knows y, then the entire transcript could be his
own creation without ever interacting with Alice.

In other words, we have one of two possible cases: either Bob does not know y
(and the input to the random oracle) in which case the simulator should be able
to put a random key in the view, or Bob knows y (and the correct input to the
random oracle) in which case the simulator should be able to identify the correct
key from the knowledge of Bob. The problem is that we do not know which case
we are in, and therefore we cannot complete the simulation successfully.

The way out of this problem is described in the next section and relies on an
appropriate “knowledge extraction” from Bob, which will address also the issues
related to the counter-example from Section 5.1.

6 A characterization for non-deniability

In this section, we show that the sampling strategy shown above to make MQV
non-deniable is essentially the only strategy that can achieve so. That is, we
prove that if an adversary is able to “frame” one of the parties in the MQV
protocol and prove that an interaction took place, then we have a way to sample
a group element Y in G in a way that it is hard to compute DH(A, Y ) for a
fixed group element A but it is easy to detect that DH(A, Y ) is correct.

The consequence is that if we assume that such a task is computationally
infeasible then we can conclude (albeit non-constructively, see below) that the
MQV protocol is deniable. Details follows.

Non-deniable AKE. First we define what a non-deniable or incriminating
AKE is, as the logical negation of deniability.

We call a key exchange protocol (KG, I,R) as (TM, TSIM, TJ, εJ)-incriminating
if there is an adversary M running in time TM such that for all simulators SIM
running in time TSIM, there exists a judge J running in time TJ which distinguishes
the uniformly selected samples from the following distributions with probability

6 One could use a Gap-DDH Assumption, which states that the CDH Assumption
holds even in the presence of an oracle that decides the DDH. Then such oracle
could be provided to the simulator to detect the query. Yet this simulator would
not be a legitimate deniability simulator unless the oracle could be implemented in
real-life.

17



at least εJ.

Real = {ViewM(pki)}(ski,pki)←KG
Sim = {SIMM(pki)}(ski,pki)←KG

|Prx∈Real[J(x) = 1]− Prx∈Sim[J(x) = 1]| ≥ εJ

ViewM includes the public keys, the transcript, the session key and random coins
r given to M. (ski, pki) denotes long-term key pairs of parties for i ∈ {I,R} (I
for initializer, R for responder).

6.1 Bad Sampler

We now define a particular type of sampling algorithm for G which we call a
Bad Sampler. We will prove that the existence of a bad sampler is equivalent to
MQV being incriminating.

We say that a sampling algorithm for G is (TSamp, TSolv, TD, εSolv, εD)-Bad if
the following conditions are satisfied:

There exists a sampling algorithm Sample which satisfies the following

1. Sample takes as input A (uniformly picked from G) and the random coins r
to generate Y = Sample(A, r) running in time ≤ TSamp.

2. ∀ Solve running in TSolv

Pr Solve, A, r[Solve(A, Y, r) = gay | Y = Sample(A, r)] ≤ εSolv

Probability is over the randomness of Solve, uniform choice of A = ga and
random coins r.

3. There exists a distinguisher D running in time ≤ TD which tells apart gay

from a random group member ĝ ← G for a uniformly chosen A and random
coins r.

|PrD, A, r[D(A, Y, r, gay) = 1 | Y = Sample(A, r)]−
PrD, A, r[D(A, Y, r, ĝ) = 1 | Y = Sample(A, r)]| ≥ εD

6.2 Equivalence between Bad Sampling and Incrimination

In the following Theorem, if T is the running time of an algorithm then the
notation T̃ means T plus a constant number of exponentiations in G.
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Theorem 2. If there is a (TSamp, TSolv, TD, εSolv, εD)-bad sampler in G then the

MQV protocol is (T̃M, T̃SIM, T̃J, εJ)-incriminating with εJ = εD(1− εSolv).
Conversely if the MQV protocol run over G is (TM, TSIM, TJ, εJ)-incriminating

then there exists a (T̃Samp, T̃Solv, T̃D, εSolv, εD)-bad sampler for G, with εSolv =
(1− εJ) and εD = εJ.

Malicious Initiator. The theorem above proves the equivalence of bad sam-
pling with the non-deniability of MQV for the initiator when interacting with a
malicious responder. It is also not hard to see that a similar theorem holds for
the case of a malicious initiator who is trying to incriminate the responder. In
this case also, the only possible strategy for a malicious initiator will be to run
a bad sampler.

Theorem Interpretation. The above theorem, which will guide us towards
the proof of deniability in Section 7, characterizes the strategy that the adversary
needs to follow to be able to incriminate one of the parties: the only way to do
it is to be able to sample elements Y in G such that for every element A← G it
is easy to decide if DH(A, Y ) is correct while it is still hard to compute it. If we
assume that such “bad” sampling is infeasible, then we immediately have a proof
that the protocols are deniable. Yet such proof is a ‘non-constructive’ one, as we
are not able to show how the simulator works, but just that it must exist. The
significance of such a statement in real-life is not clear, as plausible deniability
requires the judge to actually run a simulator to counter Bob’s statement that
he spoke to Alice. In the absence of such real simulator, there is no way to argue
that the conversation was not generated by Alice, even if we assume that bad
sampling is impossible.

As before we are stuck on the fact that when we are trying to simulate
a malicious Bob we do not know if he did sample Y = gy with or without
knowledge of y (or more precisely with or without knowledge of DH(A, Y )).
The above theorem says that if bad sampling is impossible then either Bob must
know DH(A, Y ) or the value is indistinguishable from random: in either case
we would be able to successfully complete the simulation if we knew which case
we were in (and in the former be able to “extract” DH(A, Y )). But the mere
assumption that bad sampling is impossible does not give us this knowledge,
and therefore leaves us stuck in the construction of a simulator.

The next section shows how to define an appropriate “knowledge extractor”
for Bob, that will allow us to build a simulator.

6.3 Proof of Theorem 2

Proof. The proof we present is for the case in which the adversary plays the role
of Bob, the responder. A similar proof can be easily replicated for the case in
which the adversary plays the role of Alice (the initiator).

We assume that the long-term key B = gb of Bob is certified which means
that the secret key b is available to the simulator. Also we assume that Bob is
willing to reveal b to the judge when trying to incriminate Alice.
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Bad Sampler =⇒ MQV is Incriminating
Here, we assume that we have algorithms Sample and D according to the defini-
tion of Bad Sampler. Let Bob* be the malicious responder.

– Bob* runs on input A = ga and X = gx the long-term and ephemeral keys
of Alice (respectively). He randomizes those keys as follows

Â := Adα.gu

X̂ := Xα.gu
′

where d is defined as in the MQV protocol (it only depends on X).
– Bob* selects coin tosses r and invokes the bad sampler on the product Z =
ÂX̂

Y = Sample(Z, r)

and sends Y as its response. Let Y = gy (but we do not know y).
– Let now SIM be a simulator running in time < T̃Solv, and let S be the output

of SIM for the session key which we denote as

S = (XAd)y(XAd)begλ = Kgλ

i.e. the session key K = (XAd)y(XAe)b times an offsetting factor gλ. Here,
e is defined as in the MQV protocol (depends on Y ).

– Since SIM runs in time < T̃Solv it must be that λ = 0 with probability at
most εSolv. In fact if λ = 0 then we have a solver Solve running in time < TSolv
which computes Zy which can only happen with probability at most εSolv.
The solver runs as follows
• Runs SIM to obtain S = K = (XAd)y(XAd)be

• Computes Ŝ = S(XAd)−be = (XAd)y – here, we assume that Solve
knows b since it has the coin tosses of Bob*

• Compute S′ = Ŝα · Y u+u′
= [AdαguXαgu

′
]y = Zy

– We now build a judge J running in time T̃D. Given the output S of SIM it
computes Ŝ = S(XAd)−be = (XAd)ygλ and S′ = Ŝα · Y u+u′

= Zygαλ and
then runs the bad sampler distinguisher D on it.
Note that if λ = 0, then D cannot distinguish, but if λ 6= 0 the value S′ is
uniformly distributed in G. Therefore the distinguisher D is guaranteed to
distinguish with probability > εD.
Therefore our judge distinguishes with probability εJ > εD(1− εSolv).

MQV is Incriminating =⇒ Bad Sampler
Given a bad Bob* and a judge J we need to construct a bad sampler Sample and
a distinguisher D.

Construction of Sample

– Let Z be the input given to Sample. The sampler chooses at random X = gx,
computes d as in the MQV protocol and solves for A such that AdX = Z
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– Sample runs Bob* on input A,X and coin tosses r, and output the Y that
Bob* outputs. Note that Sample runs in time T̃M where TM is the running
time of the adversary (Bob*).

Let Solve be an algorithm running in time T̃SIM which computes DH(Z, Y ).
Then consider the simulator SIM running in time TSIM which runs Solve to com-
pute Zy = (AdX)y and then compute K = Zy(AdX)be (again we assume the
simulator knows b). This is a perfect simulation and therefore fools any judge.
But we know that for every simulator there is a judge that distinguishes with
probability> εJ so the algorithm Solve can only succeed with probability< 1−εJ.

Finally consider the simulator SIMR which outputs a random session key R.
For this simulator there is a judge J that distinguishes with probability > εJ.
Then we can build our distinguisher D as follows. Given a value W that it is
either Zy or random R′ the distinguisher computes W (AdX)be which is either
the correct key or a random value (i.e. the output of SIMR). If we run J on this
value we distinguish with probability > εJ.

7 Deniability Proof

As we discussed in the previous section, the roadblock in the construction of
a deniability simulator is that the simulator does not know if a malicious Bob
knows the value DH(A, Y ) or not, at the moment Bob sends Y out. In the case
of MQV, we also showed that the only way a malicious Bob can frame Alice is
if he samples a Y for which he does not know DH(A, Y ), but such value can be
efficiently recognized as correct (i.e. distinguished from a random value).

7.1 The Case of MQV

The above discussion therefore points out to the natural definition of a “knowl-
edge extractor” which allows us to build a simulator for MQV. If we assume that
given a malicious responder Bob, we can either (i) extract the value DH(A, Y )
or (ii) assume that DH(A, Y ) is indistinguishable from random, then the sim-
ulator immediately follows as the output of the extractor will be the simulated
key.

We call this the Strong Knowledge of DH (SKDH) Assumption and it is defined
below. In the next section we define a weaker version of this assumption which
will be sufficient to prove HMQV and 3DH.

Definition 7. Let G be a cyclic group and AUX a class of auxiliary inputs. Let
M be a probabilistic Turing Machine running in time TM on input (U, aux) where
U ← G, and aux ∈ AUX, and outputs Z ∈ G; we denote with Z = M(U, aux, r)
the output of running M on input U, aux with coin tosses r. We say that the
(TM , TM̂ , TD, εD)-SKDH Assumption holds over group G and class AUX, if for

every such M , there exists a companion probabilistic Turing Machine M̂ (called
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the extractor for M) such that: M̂ runs on input (U, aux, r) in time TM̂ and

outputs Ẑ ∈ G such that the distributions

[U, aux, r,DH(U,Z)] and [U, aux, r, Ẑ]

are (TD, εD)-indistinguishable.

Remark: Basically the assumption says that for every sampler M of a value
Z, there is an extractor that either computes DH(U,Z) or produces an output
distribution that is computationally indistinguishable from DH(U,Z) even when
given the internal coin tosses of M . The assumption is written generically: when
Bob [resp. Alice] is the adversary U = A [resp. U = B] the peer’s long-term
public key, and Z = Y [resp. Z = X] the adversary’s ephemeral value.

Recall from Section 2.4 that we assume key registration as a way for the simu-
lator to extract the private key of the attacker. We note that we can prove MQV
deniability without key registration by strengthening the SKDH assumption.

Theorem 3. Under the (TM , TM̂ , TD, εD) SKDH Assumption, MQV with Key

Registration is a (T̃M , T̃M̂ , T̃D, εD) deniable AKE.

Proof. We prove deniability for the initiator. The proof for the responder is
similar.

SIM, on input public key A of Alice (but not her secret key a), interacts
with the adversary Bob. Because we assume Key Registration, Bob has proven
knowledge of his secret key b during key registration and therefore we can assume
that SIM has extracted it.

SIM runs the algorithm of Bob with input A, aux′, r (where aux′ = aux||X)
and receives Y as Bob’s ephemeral public key. Then it runs the extractor for
Bob which is provided by the SKDH assumption (with U = A).

Let Ẑ be the extractor’s output. SIM computes the key using Ẑ as (AdX)beẐdY x.
For contradiction, assume a judge J running in time TJ distinguishes the key

resulting from a real execution Kreal = DH(AdX,BeY ) from a simulated key
Ksim = (AdX)beẐdY x with probability εJ :

p = Pr[J(A,B,X, Y,Kreal, aux, r) = 1]

p̂ = Pr[J(A,B,X, Y,Ksim, aux, r) = 1]

|p− p̂| > εJ

This contradicts the indistinguishability claim of SKDH assumption for the pa-
rameters εJ = εD and TJ = (TD+ constant number of exponentiations and
multiplications).
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7.2 The case of HMQV and 3DH

For HMQV and 3DH we can use a weaker assumption. In this case, when the
extractor fails to produce DH(A, Y ) we do not need to establish that DH(A, Y )
is indistinguishable from random, but rather that it is infeasible to compute.
This is sufficient because the session key (in both HMQV and 3DH) is the result
of a random oracle call over a function of DH(A, Y ). Thus if the random oracle
is not queried on this value, then the session key can be simulated with a random
value.

Before presenting the KDH assumption on which the deniability of HMQV
and 3DH will be proven, we motivate it on the basis of the well-known Knowledge
of Exponent Assumption (KEA) [2,12]. Recall that, informally, KEA states that
for any algorithm M that on input (g, gu) outputs a pair (Z,Zu), there is an
algorithm M ′ that outputs z such that Z = gz. Machine M ′ runs on the same
inputs as M , including same random coins. (Here g is a generator of the group
G, u is chosen uniformly and Z can be any group element.) .

Can we base deniability on KEA? At first glance, it would seem that the
deniability of HMQV and 3DH will follow from KEA. Indeed, in the case of an
adversarial Bob, the simulator SIM needs to learn whether Bob computed the
session key K and if so what the value of K was. To compute K, Bob must query
the necessary DH values, e.g., DH(A, Y ), from the random oracle RO. If Bob
does query these values, SIM can learn K; if it does not, then SIM can replace K
with a random value. The question is how does SIM identify which query to the
RO equaled DH(A, Y ), if any. For this, SIM can resort to the KEA extractor
which upon computation of V = DH(A, Y ) by Bob outputs y = dlog(Y ), thus
allowing SIM to check if indeed Y = gy and V = Ay. So it seems that we are
done and KEA is all that is needed here.

But there is a problem. Consider the following scenario. Bob does not query
the RO on the required values during the simulated session and does not compute
K, so SIM sets the key to a random value K ′. Later, Bob provides y and b to the
judge who can compute the key K and make the simulation fail by distinguishing
K from K ′. To prevent this “trivial” simulation failure we need to assume that if
it is possible at all to efficiently compute the session key K given the information
Bob has, then there exists an extractor that on the same inputs of Bob (including
Bob’s random coins) produces K. Then SIM can use this extractor to output
the key K, and if the extractor does not output K then SIM sets it to a random
value K ′. In the latter case, it is guaranteed that the judge will not be able
to compute the key K and distinguish the simulation. In general terms, what
this approach captures is the fact that SIM (acting as the alter ego of Bob), can
use Bob in a non-black-box way and extract from it all knowledge needed to
complete a successful simulation. In particular, if the distinguisher (judge) can
compute the correct key K based on the attacker’s (Bob) view, so should SIM.

So to use KEA, we would need to strengthen it by requiring not only that if
Bob computed DH(A, Y ) then the extractor outputs y = dlog(Y ), but also that
if Bob does not output DH(A, Y ) then no other machine has a non-negligible
probability of outputting DH(A, Y ) (or y itself) on Bob’s inputs (more precisely,
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that no machine can succeed with non-negligible probability over the distribution
of inputs where Bob failed to output DH(A,Y)).

The following KDH assumption is a generalization of this KEA strengthening.

Definition 8. Let G be a cyclic group and AUX a class of auxiliary inputs. Let
M be a probabilistic Turing Machine running in time TM which runs on input
(U, aux) where U ← G, and aux ∈ AUX, and outputs Z ∈ G; we denote with
Z = M(U, aux, r) the output of running M on input U, aux with coin tosses r.

We say that the (TM , TM̂ , TG, εG) Knowledge of DH (KDH) Assumption
holds over group G and class AUX, if for every such M , there exists a com-
panion probabilistic Turing Machine M̂ (called the extractor for M) that runs
on input U, aux, r in time TM̂ and outputs Ẑ ∈ G or Ẑ = ⊥ such that

– For all U, aux, r, if M̂(U, aux, r) = Ẑ 6= ⊥ then Ẑ = DH(U,Z)
– For every probabilistic Turing Machine C running in time TG we have that

Prob[C(U, r, aux) = DH(U,Z) | M̂(U, aux, r) = ⊥] ≤ εG

where Z = M(U, aux, r) and the probability is taken over the coin tosses of C
and uniform distribution on (U, r).

The first condition7 says that if the extractor outputs a group element, this
element must be DH(U,Z). The second condition says that no machine can suc-
ceed to compute DH(U,Z) with non-negligible probability over the distribution
of triples (U, aux, r) where M̂ outputs ⊥.

As said, the KDH assumption can be seen as a strengthening of KEA. In Ap-
pendix A we show how the combination of KEA with another natural knowledge
assumption, “knowledge of discrete log” (KDL), implies KDH. Thus, protocols
proven deniable under KDH are deniable under KEA+KDL, providing more
confidence on the deniability proof.

We now show that KDH implies the deniability of HMQV if the simulator can
extract the incriminating party’s (Bob in our examples) private key, for example
via key registration as discussed in Section 2.4. In Section 9 we remove the need
for this extraction condition using a mild generalization of KDH.

Theorem 4. Under the (TM , TM̂ , TG, εG)-KDH Assumption, HMQV with Key

Registration is a (T̃M , T̃M̂ , T̃G, εG) deniable AKE in the random oracle model.

Proof. We consider deniability for the initiator against a possibly malicious re-
sponder. The case of deniability for the responder against a possibly malicious
initiator is dealt similarly.

We build a simulator SIM which on input the public key A of Alice (but not
her secret key a), interacts with a possibly malicious Bob and outputs a view
that is indistinguishable from the real one. Again we assume that long-term keys
are registered and therefore the simulator knows b, the secret key of Bob.

7 This can be relaxed to allow a negligible set of (U, r) values where the condition does
not hold.
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SIM chooses x ← Zq and computes X = gx. At this point the value d is
determined in the HMQV protocol. Bob receives X and outputs Y = gy (which
determines the value e). Note that Bob can be seen as a machine M in the
definition of the KDHA: it runs on input U = A and some auxiliary information
aux which includes X. Therefore under the KDHA there must be an extractor
B̂ for Bob.

Remember that the real key of the HMQV protocol is defined as K =
H[(XAd)y+be] where H is a random oracle. The simulator can easily compute
(XAd)be since it knows b. To compute (XAd)y it invokes B̂.

– If B̂ outputs Ẑ = DH(A, Y ) then SIM sets the key to H[Y xẐd(XAd)be], i.e.
the real key.

– If B̂ outputs ⊥ then SIM sets the key to K ← {0, 1}n where n is the length
of the session key.

Note that in the second case, any judge running in time less than TG will not be
able to compute DH(A, Y ) and therefore will not be able to query the random
oracle in the preimage of the real key. This immediately yields that for this judge
a random key is indistinguishable from the real key.

For the case of 3DH the Key Registration step is not necessary since the value
gab (the Diffie-Hellman transform of the long-term secret keys) is not included
in the session key.

Theorem 5. Under the (TM , TM̂ , TG, εG) KDHA, 3DH is a (T̃M , T̃M̂ , T̃G, εG)
deniable AKE in the random oracle model.

Proof. We consider deniability for the initiator against a possibly malicious re-
sponder. The case of deniability for the responder against a possibly malicious
initiator is dealt similarly.

We build a simulator SIM which on input the public key A of Alice (but not
her secret key a), interacts with a possibly malicious Bob and outputs a view
that is indistinguishable from the real one.

SIM chooses x ← Zq and computes X = gx. Bob receives X and outputs
Y = gy. Note that Bob can be seen as a machine M in the definition of the
KDHA: it runs on input U = A and some auxiliary information aux which
includes X. Therefore under the KDHA there must be an extractor B̂ for Bob.

Remember that the real key of the 3DH protocol is defined as

K = H[DH(A, Y )||DH(X,Y )||DH(B,X)]

where H is a random oracle. The simulator can easily compute DH(X,Y ) and
DH(B,X) since it knows x. To compute DH(A, Y ) it invokes B̂.

– If B̂ outputs Ẑ = DH(A, Y ) then SIM sets the key to

K = H[Ẑ||DH(X,Y )||DH(B,X)]

i.e. the real key.
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– If B̂ outputs ⊥ then SIM sets the key to K ← {0, 1}n where n is the length
of the session key.

Note that in the second case, any judge running in time less than TG will not be
able to compute DH(A, Y ) and therefore will not be able to query the random
oracle in the preimage of the real key. This immediately yields that for this judge
a random key is indistinguishable from the real key.

8 3DH vs Signal

In this section, we show that the deniability of 3DH (independently of the as-
sumptions on which such deniability can be proven) implies the deniability of
X3DH and the full Signal protocol. We do this by invoking Theorem 1 on the
message flow of Signal.

We refer the reader to [10] for a full description of the Signal protocol and
its security analysis. Informally we can describe Signal as an initial AKE which
establishes a root key, followed by a secure session where messages are exchanged.
However each message exchange is accompanied by a ratcheting step, which
generates new session key. These sequence of keys, creates a key chain where keys
are authenticated by their predecessor in the chain. In a symmetric ratcheting
step the current chain key K is fed to a KDF function to generate two keys, the
new chain key K1 and the key K2 used to encrypt/authenticate the message at
this round. In a asymmetric ratcheting the parties perform a new Diffie-Hellman
exchange over two ephemeral keys and feed the result to a KDF together with
the current chain key, also outputting K1,K2 as above.

Note how in the above description, after the initial AKE which establishes a
session key K, the messages exchanged in the protocol do not use the long-term
secret keys of the parties. Therefore if the initial AKE is deniable we can apply
Theorem 1 and claim the deniability of Signal.

The X3DH Protocol. If the initial AKE protocol in Signal were 3DH we
would be done. However to enable asynchronous communication (where Bob,
the responder, could be offline at the moment in which Alice, the initiator,
sends him a message), the Signal protocol uses the X3DH variant of 3DH. This
variant allows Bob to load his ephemeral key Y onto a key distribution server (a
pre-key in Signal jargon). To prevent impersonation attacks by the server, Bob
will sign Y with his long term secret key. When Alice wants to talk to Bob she
queries the key distribution server for Bob’s ephemeral key and runs the 3DH
protocol to establish a root chain key K1 and a message key K2 used to secure
the first message she sends to Bob. At this point Alice and Bob will continue
with the ratcheting mechanism described above. We now move to establish the
deniability of X3DH.

It is not hard to see that the proof of deniability of 3DH extends to X3DH
in the case of the initiator. Indeed, the deniability argument for Alice in X3DH
is the same as for the responder in 3DH since here Alice acts on the ephemeral
value Y chosen by Bob. In contrast, deniability with respect to Bob in X3DH is
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complicated by the fact that Bob signs the value Y . But note that Bob places Y
and its signature on a public server that anyone can access. Thus, Y is not bound
to any specific peer, and cannot be used as a proof that Bob communicated with
anyone.

Formally, we can consider Y and its signature as “auxiliary information” that
an adversarial Alice has when initiating the protocol, and can therefore be pro-
vided to the simulator as well. While this is the intuition behind the simulation
argument, there is another technical twist at this point. In the 3DH simulation
of Bob against a malicious Alice, the simulator is allowed to choose y ← Zq and
set Y = gy; the knowledge of y helps the simulator in the computation of the
correct key. In the X3DH simulation, however, Y is part of the auxiliary input
and the simulator has no access to y. Intuitively, because Bob signs Y , the latter
can be seen as another public key associated with him and the simulator cannot
be given its secret key.

The problem boils down to the computation of gxy. In the 3DH simulation,
we simply computed it through the knowledge of y. Here, we need to extract it
from Alice, and this requires an additional assumption that says we can extract
both gxy and gbx.

Definition 9. Let G be a cyclic group and AUX a class of auxiliary inputs. Let
M be a probabilistic Turing Machine running in time TM which runs on input
(U,W, aux) where U,W ← G, and aux ∈ AUX, and outputs Z ∈ G; we denote
with Z = M(U,W, aux, r) the output of running M on input U,W, aux with coin
tosses r.

We say that the (TM , TM̂ , TG, εG) Knowledge of 2DH (K2DH) Assumption
holds over group G and class AUX, if for every such M , there exists a companion
probabilistic Turing Machine M̂ (called the extractor for M) such that: M̂ runs
on input U,W, aux, r in time TM̂ and outputs Ẑ1, Ẑ2 ∈ G or ⊥ such that

– If M̂(U,W, aux, r) 6= ⊥ then Ẑ1 = DH(U,Z) and Ẑ2 = DH(W,Z)
– If M̂(U,W, aux, r) = ⊥ then for every probabilistic Turing Machine C run-

ning in time TG we have that

Prob[C(U,W,Z, r, aux) ∈ {DH(U,Z), DH(W,Z)} | M̂(U,W, aux, r) = ⊥] ≤ εG

where Z = M(U,W, aux, r) and the probability is taken over the coin tosses of
C and uniform distribution on (U,W, r).

The reliance of the following theorem on extractability of the private key via
Key Registration is removed in Section 9.

Theorem 6. Under the (TM , TM̂ , TG, εG) K2DHA, X3DH with Key Registra-

tion is a (T̃M , T̃M̂ , T̃G, εG) deniable AKE in the random oracle model.

Proof. Deniability for the initiator follows the same structure as Theorem 5. We
now consider deniability for the responder against a possibly malicious initiator.

We build a simulator SIM which on input the long-term public key B of Bob
and his signed pre-key Y, sig (but not the matching secret keys b, y), interacts
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with a possibly malicious Alice and outputs a view that is indistinguishable from
the real one. We assume that SIM knows a (the long-term secret key of Alice)
due to key registration.

SIM receives X from Alice, and Y, sig from the server. Let Â be the extractor
associated with Alice (running on input U = B, W = Y and Z = X) guaranteed
by the K2DHA.

Remember that the real key of the X3DH protocol is defined as

K = H[DH(A, Y )||DH(X,Y )||DH(B,X)]

where H is a random oracle. Note that the simulator knows DH(A, Y ) since it
knows a. The simulator invokes Â. If the extractor outputs⊥ at any of the invoca-
tions, then the simulator outputs a random session key (which under the K2DHA
is indistinguishable from the real one in the random oracle model). Otherwise the
output of Â is Ẑ1 = DH(U,Z) = DH(B,X) and Ẑ2 = DH(W,Z) = DH(X,Y )
and therefore the simulator has all the values to compute the correct session
key.

9 On the need to extract the long-term private keys

The simulation arguments of Theorems 4 and 6 assume the ability to extract
the incriminating party’s (Bob in our examples) private key, for example via key
registration. This simplified the proofs and intuition. We note however that such
extraction is not essential. Instead, we can generalize our extraction assumptions
to prevent Bob from sampling either B or Y in a way that he does not know the
discrete logs and yet both gab and gay are distinguishable from random. Indeed,
what happens (in either HMQV, 3DH and X3DH) is that Bob will be able to
incriminate Alice if (and only if) he is able to sample either B or Y under the
above conditions. Formally, we achieve this by adding one extra “knowledge”
assumption about the way parties generate their long-term keys; arguably, this
additional assumption is not essentially stronger than the previous ones. Details
follow.

Definition 10. Let G be a cyclic group and AUX a class of auxiliary inputs. Let
M be a probabilistic Turing Machine running in time TM which runs on input
aux ∈ AUX, and outputs Z ∈ G; we denote with Z = M(aux, r) the output of
running M on input aux with coin tosses r.

We say that the (TM , TM̂ , TG, εG) Extended Knowledge of DH (EKDH) As-
sumption holds over group G and class AUX, if for every such M , there exists
a companion probabilistic Turing Machine M̂ (called the extractor for M) such
that: M̂ runs on input aux, r and an additional input U ∈ G, in time TM̂ and

outputs Ẑ or ⊥ such that

– If M̂(U, aux, r) = Ẑ 6= ⊥ then Ẑ = DH(U,Z)
– If M̂(U, aux, r) = ⊥ then for every probabilistic Turing Machine C running

in time TG we have that

Prob[C(U, r, aux) = DH(U,Z) | M̂(aux, r) = ⊥] ≤ εG
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where Z = M(aux, r) and the probability is taken over the coin tosses of C and
uniform distribution on r.

Note the difference between the KDH and the EKDH Assumption. In the
latter, the group element U ∈ G is not known to the machine M , but is fed
to the extractor as input. This is because we need to model a machine M that
generates Z as its long-term public key before seeing any of the keys of the parties
it will interact with.

Theorem 7. Under the (TM , TM̂ , TG, εG) EKDHA, HMQV protocol is (T̃M , T̃M̂ , T̃G, εG)
deniable AKE in the random oracle model, even without registration of long-term
public keys.

Proof. The proof for the deniability with respect to initiator follows closely the
proof of Theorem 4.

For the case of the responder, recall that the session key is defined as K =
H[(XAd)y+be]. The simulator computes Y x+ad = (XAd)y since it knows y such
that Y = gy. It computes (Be)x+ad by invoking the extractor Â twice under the
EKDHA. Recall that Alice output the public key A = ga, therefore the extractor
Â on input Bde will output either Bade or ⊥. Similarly, after Alice sends X = gx

we can invoke Â on input Be to get either Bex or ⊥. If either output is ⊥ the
simulator outputs a random session key, otherwise it has extracted the correct
key.

A similar theorem holds for X3DH.

Acknowledgment: The authors thank the anonymous reviewer whose excellent
comments greatly improved the presentation of this paper.
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Appendix A Knowledge of Discrete Log Assumption

In Section 7.2 we introduced the Knowledge of Diffie-Hellman (KDH) assump-
tion that forms the basis for the proof of deniability of the protocols considered
in this paper. As explained there, KDH can be seen as a strengthening of the
well-known Knowledge of Exponent Assumption (KEA). Here, we shed further
light on the relation between KEA and KDH by introducing another knowledge
assumption, Knowledge of Discrete Log (KDL), and showing that KDH is im-
plied by the conjunction of KEA and KDL. In particular, it means that these
two assumptions, taken together, suffice for our proofs of deniability. Arguably,
the KDL is a natural knowledge assumption very much in the style of KEA and
possibly more appealing than KDH.

We start by providing a formal definition of KEA (with auxiliary input)
[2, 12,23].

Definition 11. Let G be a cyclic group of order q generated by element g and
AUX be a class of auxiliary inputs. Let M be a probabilistic Turing Machine
that receives as input pairs (g, gu), aux ∈ AUX and random coins r, and outputs
a pair of elements in G, which we denote by (V,W ) = M(g, gu, aux, r).

We say that (T, T̄ , εKEA)-Knowledge of Exponent Assumption (KEA) with
AUX holds over group G with respect to generator g if for every machine M
as above running in time T , there exists a probabilistic Turing Machine M̄ that
runs in time T̄ on the same inputs and coins as M and outputs an element in
Zp such that the following holds:

Prob[M(g, gu, aux, r) = (V,W = V u) and M̄(g, gu, aux, r) 6= dlogg(V )] < εKEA,

where the probability is over the uniform choice of u← Zq and the random coins
r of M .

Note: When the value of g is clear from the context we omit it as subscript to
dlog; and sometimes omit it as input to machines M and M̄ .

KEA captures the intuition that if a machine, on input (g, gu), can sample
a value Z ∈ G for which it can produce a pair (Z,Zu) then it has enough
“internal knowledge” to also produce z = dlog(Z). More generally, one can
consider machines that sample elements Z in G and ask whether the internal
processing that leads to sampling Z has enough information to extract z =
dlog(Z). In more detail, consider a process that samples elements from a cyclic
group of order q, generated by an element g. For example, the sampler could
use its random coins r to choose an exponent y ∈ Zq and output Y = gy or
it could hash r into a random group element in a way that y = dlog(Y ) is
hard to compute. In the first case, examining the internal computation one can
extract y while in the latter one cannot. We introduce Knowledge of Discrete
Log (KDL) Assumption, which says that, similarly to KEA, if in the process
of generating Y ∈ G there is enough information to extract y = dlog(Y ), then
there is an extractor that running on the same coins as the sampler outputs y.
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Furthermore, such extractor is “maximal” in the sense that on inputs it fails to
output y, other machines will fail too.

We now formalize the KDL Assumption and show that together with KEA,
it implies the KDH assumptions, and therefore together they imply deniability
of HMQV and 3DH.

Definition 12. Let G be a finite cyclic group generated by an element g of order
q. Consider a probabilistic Turing Machine M with inputs in some set S, such
that for any s ∈ S and random coins r ∈ {0, 1}` (for some ` ∈ Z+), M outputs
an element M(s, r) = Y in G. We call such a machine a G-sampler.

A probabilistic Turing Machine M ′ is called a dlog extractor for the G-
sampler M , if for every r, s, M ′(s, r) outputs dlog(Y ) or ⊥.

A machine M ′ is called a (T, T ′, Tmax, εmax)-maximal dlog extractor for a
G-sampler M , if it satisfies the following:

– The running time of M and M ′ are bounded by T and T ′, respectively.
– For all r ∈ {0, 1}` and s ∈ S, if M ′(s, r) 6= ⊥ then M ′(s, r) = dlog(M(s, r)).
– For every probabilistic Turing Machine C running in time Tmax and for all
s ∈ S,

ProbC,r[C(s, r) = dlog(M(s, r))] < ProbM ′,r[M
′(s, r) = dlog(M(s, r))]+εmax

where probabilities are taken over coin tosses of the machines C and M ′ and
the uniform distribution over values r.

Definition 13. Let G be a cyclic group of order q, generated by element g.
We say that (T, T ′, Tmax, εmax)-Knowledge of Discrete Log (KDL) Assump-
tion holds over group G, if every G-sampler running in time at most T has
a (T, T ′, Tmax, εmax)-maximal dlog extractor.

As a reminder, in the following theorem when t is the running time of an
algorithm, the notation t̃ denotes t plus a constant number of exponentiations
in G.

Theorem 8. Let G be a cyclic group of order q, generated by element g and
AUX be a class of auxiliary inputs. If the (TKEA, T̄KEA, εKEA)-KEA with AUX
and the (T, T ′, TKDL, εKDL)-KDL assumptions hold over G, then the (T, T̃ ′, T̄KEA,
εKDL + εKEA)-KDH holds over G and AUX.

Proof. Let M be a probabilistic Turing Machine running on input U, aux, r and
outputting M(U, aux, r) = Z ∈ G. We show that the KEA and KDL assump-
tions imply the existence of a KDH extractor for M as postulated by the KDH
assumption.

We view machine M as a G-sampler, which receives a (U ||aux, r) input and
outputs a group element Z. Let’s assume that M runs in time T . By KDL
assumption, there is a (T, T ′, TKDL, εKDL)-maximal dlog extractor M ′ for M .
We build a KDH extractor M̂ using M ′ as follows.
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M̂(U, aux, r)

run M ′(U ||aux, r) = α

if α = dlog(Z)

return Uα

else
return ⊥

Note that when M ′ returns dlog(Z), M̂ returns DH(U,Z) and otherwise it
returns ⊥. Thus, M̂ acts as a KDH extractor, whose running time is bounded
by T ′ plus an exponentiation in G, hence T̃ ′. We need to show that M̂ satisfies
the condition in KDH. Informally, that if there is a way to compute DH(U,Z)
from the inputs (U, aux, r), then M̂ will compute it.

Suppose, for contradiction, that there exists a probabilistic Turing Machine
C which whose success probability is greater than ε = εKEA+εKDL over the set
of inputs where M̂ fails, i.e., returns ⊥. Let Ψ denote the distribution over pairs
of (U, r) conditioned on M̂(U, aux, r) = ⊥. Explicitly, the probability weight
assigned to (U0, r0) by Ψ is that:

Ψ(U0, r0) =
ProbM̂ [M̂(U0, aux, r0) = ⊥]

Σ(U,r) ProbM̂ [M̂(U, aux, r) = ⊥]
,

where the machine name in the subscript denotes the random coins of the ma-
chine. We assume that

Prob
C,(U,r)←Ψ

[C(U, aux, r) = DH(U,Z)] > ε. (1)

We define a probabilistic machine µ that runs on a set of inputs (U, aux, r)
as defined for machines M and C above. For each such input, µ runs M and C
and outputs a pair (Z, γ) where γ is either DH(U,Z) or ⊥ or another value.

µ(U, aux, r)

run M(U ||aux, r) = Z

run M ′(U ||aux, r) = β

if β 6= ⊥,
set γ to Uβ

else
set γ to C(U, aux, r)

return (Z, γ)

By KEA, there exists an extractor µ̄ that receives the same input as µ and,
except with probability at most εKEA, it returns dlog(Z) whenever the output
of µ is (Z,DH(U,Z)) which happens either when M ′ successfully extracts (β =
dlog(Z), or when M ′ fails and C succeeds in computing γ = DH(U,Z).
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We claim that if the assumption (1) on C holds, then µ̄ violates the maxi-
mality of the dlog extractor M ′.

For simplicity in notation, assume that event A indicates µ(U, aux, r) =
(Z,DH(U,Z)) and event B indicates µ̄(U, aux, r) = dlog(Z). Negation of an
event is denoted by ¬ symbol.

Prob [B] ≥ Prob [B ∧A]

= Prob [B|A] Prob [A]

= (1− Prob [¬B|A]) Prob [A]

= Prob [A]− Prob [¬B|A] Prob[A]

= Prob [A]− Prob [¬B ∧A]

> Prob [A]− εKEA (2)

First, note that the inequality (2) is implied by KEA. Using the inequality (2)
and the definition of µ, we can conclude the following. U denotes the uniform
distribution over the corresponding space and C in the subscript denotes the
random coins of the machine C.

Prob
(U,r)←U

[µ̄(U, aux, r) = dlog(Z)]

> Prob
(U,r)←U

[µ(U, aux, r) = (Z,DH(U,Z))]− εKEA (3)

=Prob
r←U

[M ′(U ||aux, r) = dlog(Z)] +

Prob
C,(U,r)←U

[C(U, aux, r) = DH(U,Z) ∧ M ′(U ||aux, r) = ⊥]− εKEA

(4)

>Prob
r←U

[M ′(U ||aux, r) = dlog(Z)] +

Prob
C,(U,r)←U

[C(U, aux, r) = DH(U,Z) |M ′(U ||aux, r) = ⊥]− εKEA

(5)

=Prob
r←U

[M ′(U ||aux, r) = dlog(Z)] +

Prob
C,(U,r)←U

[C(U, aux, r) = DH(U,Z) | M̂(U, aux, r) = ⊥]− εKEA

(6)

=Prob
r←U

[M ′(U ||aux, r) = dlog(Z)] +

Prob
C,(U,r)←Ψ

[C(U, aux, r) = DH(U,Z)]− εKEA (7)

>Prob
r←U

[M ′(U ||aux, r) = dlog(Z)] + εKDL (8)
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In the above, line (3) is the repeat of inequality (2). The expression in (4) is
due to the construction of µ and (5) follows from the conditional probability. In
the line (6), we move from M ′ to M̂ in the conditional part, this is due to the
definition of M̂ . Equation (7) comes from the definition of the KDH assumption.
Line (8) is due to the assumption made in (1) and by setting ε = εKEA + εKDL,
as assumed.

Finally, we note that if we restrict the output of machine µ to its first element,
namely the output of M , we get that µ̄ acts as a KDL-extractor for M . However,
the above inequality shows that µ̄ breaks the assumed maximality of M ′ as a
KDL extractor.

The runtime and success probability of the machine C set the third and
fourth parameters of KDH. The bound on the runtime of C comes from the
construction of µ:

TKEA ≤ T + T ′ + runtime of C

The success probability that C outputs DH(U,Z) is at most ε = εKEA + εKDL.
Therefore the (T, T̃ ′, T̄KEA, εKDL + εKEA)-KDH holds over group G and AUX.
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