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Abstract. COFB is a lightweight authenticated encryption (AE) mode
based on block ciphers, proposed in CHES 2017 and is the basis for
GIFT-COFB, a finalist in the NIST lightweight standardization project.
It comes with provable security results that guarantee its security up to
the birthday bound in the nonce-respecting model. However, the design-
ers offer multiple versions of this analysis with different details and the
implications of attacks against the scheme are not discussed deeply. In
this article, we look at different possible attacks against COFB-like de-
signs against both forgery and confidentiality. We show that the security
for both forgery and confidentiality is bounded by the amount of forgery
attempts. In particular, we show the existence of forgery and confidential-
ity attacks with success probability qf/2n/2, given qf forgery attempts.
In particular, we show that both forgery and confidentiality can be bro-
ken with 2n/2 attempts using only a single known-plaintext encryption
query. While these attacks do not contradict the claims made by the
GIFT-COFB designers, it shows its limitations in terms of the number
of forgery attempts. It also shows that while GIFT-COFB generates a
128-bit tag it behaves in a very similar manner to an AE scheme with 64-
bit tag. As an independent result, our analysis provides a contradiction
to main in theorem of Journal of Cryptology volume 33, pages 703–741
(2020), which is an includes an improved security proof of COFB com-
pared to the CHES 2017 version. Finally, we discuss the term nqf/2n/2

that appears in the security proof of GIFT-COFB and CHES 2017, show-
ing why this term is unlikely to be tight and it is likely that qf/2n/2 is
sufficient. We emphasize that the results in this article do not threaten
the security of GIFT-COFB in the scope of the NIST lightweight cryp-
tography requirements or the claims made by the designers in the spec-
ification of the design.

Keywords: COFB · GIFT · Block Cipher · NIST · AEAD · Authenti-
cated Encryption · Forgery.

1 Introduction

Over the past few years, the National Institute for Standardization and Tech-
nology (NIST), USA, have been running a lightweight cryptography standard-
ization. The project called for Authenticated Encryption with Associated Data
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(AEAD) algorithms where the amount of data that can be processed under one
key is not less than 250 − 1 bytes and the cryptanalytic attacks against the al-
gorithms are of at least 2112 computational complexity [1]. The project received
57 proposals, 56 of them were selected as round 1 candidates, then narrowed
down to 32 in round 2. In March 2021, 10 proposals were announced as finalists.
Among these candidates, GIFT-COFB [2] is a block cipher-based proposal and
will be the focus of this article. The results presented also cover HyENA [5], a
round 2 candidate and a similar proposal to GIFT-COFB. The main difference
between HyENA and GIFT-COFB is the linear function that mixes input blocks
with the internal state. However, the attacks presented rely only on the linearity
of this function. Iin the spirit of succinctness, we focus only on GIFT-COFB for
the rest of the article.

The GIFT-COFB mode (depicted in Figure 1) is an instance of the COm-
bined FeedBack, which is an AEAD mode proposed in CHES 2017 [6] as a
lightweight algorithm based on Block Ciphers (BC). It is is claimed to be secure
up to 2n/2/n queries in the nonce-respecting mode. This comes from a bound
on the adversary’s success probability on the form of nqf/2

n/2 where qf is the
number of forgery attempts made by the attacker. Interestingly, this bound re-
lies only on the number of forgery attempts and is independent of the number
of the amount of data encrypted by the algorithm or the computational abilities
of the adversary. It is typical to see such similar terms when it comes to generic
attacks based on the authentication tag size. In particular, an AEAD scheme
that generates a τ -bit tag can be attacked by simply guessing the correct tag
corresponding to a ciphertext. The attack success probability relies on the num-
ber of forgery attempts (qf/2

τ ) as after 2τ the adversary would have guessed the
correct tag. However, GIFT-COFB has a tag size of n bits. so the appearance
of qf/2

n/2 raises some research questions. Most notably:

1. Can we break the GIFT-COFB algorithm with only 2n/2/n forgery attempts
and negligible (or 0) encryption queries?

2. Can we show that GIFT-COFB behaves as a scheme with a tag that is shorter
than n bits, even when an n-bit tag is generated?

These two questions are not answered by the security proofs of GIFT-COFB.
Provable security is a critical tool in studying the security of new designs. It
provides mathematical guarantees for their security. However, it does not always
take the attackers point of view and it often times does not consider what hap-
pens when the provable security bounds are reached. It may lead to conservative
bounds that cannot be matched by attacks in practice. Besides, analyzing the
schemes helps understand and verify the security proofs, understand the different
assumptions that the designers may have used or implied, and identify errors, if
any.

We also note that not all AEAD modes that are secure up to the Birthday
Bound (upBB) suffer from such issues. For example, the GCM [10] is probably
the most famous BC-based AEAD mode secure upBB but the security bound
in on the form of σ2/2n, where σ is the total amount of data processed by the
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Fig. 1. The COFB mode of operation.

algorithm given a certain key. While σ/2n/2 ≈ σ2/2n when σ ≈ 2n/2, σ/2n/2 is
significantly smaller than σ2/2n when σ is small.

Given a BC with n-bit block and k-bit key, it expands the internal state
by only n/2 bits compared to the state of the BC (n + k bits). The design-
ers assume that the BC is secure in the standard Pseudo-Random Permutation
(PRP) model and that it behaves as a Pseudo-Random Function (PRF) up to
the bound derived in the PRP-PRF switching lemma [4]. They assume that an
adversary makes qe encryption queries that involve σe blocks. (σe invocations of
the BC) and qf forgery attempts that involve σf blocks. Given these assump-
tions, the authors presented a provable security bound that suggests that the
success probability single-key attacks against COFB as an AEAD scheme, when
the underlying cipher is replaced by a PRF, is bounded by

Pr[CHES 2017] ≤ 4σe + 0.5nqf
2n/2

+
qf + (qe + σe + σf )σe

2n
.

Subsequently, an extended version of COFB has been published in the Journal
of Cryptology (JoC) in 2020 [7]. The provable security bound in this version
implies a different probability bound:

Pr[JoC 2020] ≤ 4σe
2n/2

+
qf + (qe + σe + 2σf )σf

2n
.

As part of the efforts surrounding the NIST lightweight cryptography project,
the designers of GIFT-COFB [2] provided the following bound on the Cryptology
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ePrint Archive report 2020/738:

Pr[GIFT− COFB] ≤ 1

2n/2
+

(n+ 4)qf
2n/2+1

+
qf + σ2

e + (qe + σe + σf )σe
2n

.

While the three bounds share a lot of similarities, some of the strategies used in
each security proof are different, which leads to the differences. More importantly,
Pr[JoC 2020] is dominated by terms on the form of σ2/2n. If this bound is
correct, then the question is if it is possible to adopt that bound for GIFT-
COFB, improving its security claims.

Contributions In this article, we analyze the security of GIFT-COFB. We present
the first IND-CCA attack with complexity 2n/2 and the first forgery attack with
complexity2n/2 to operate with a single encryption query. We show that the be-
haviour of GIFT-COFB is very close to that of an algorithm with half the tag
size. We present an oversight in [7] and discuss the implications of our attack
and open questions on the security of GIFT-COFB. Interestingly, the attack
in section 5 represents a structural weakness in the mode itself, i.e. the attack
works even if the underlying BC is replaced by an ideal PRF. The article is
organized as follows: In Section 2 we give some needed definitions of authen-
ticated encryption, the feedback function of GIFT-COFB. We also discuss the
generic IND-CCA attack presented in [11]. We discuss existing forgery attacks
against GIFT-COFB in Section 3 and a possible IND-CPA attack in Section 4.
We present our main IND-CCA attack with discussions in Section 5. The IND-
CCA and the observation on [7] have been communicated to and confirmed by
the designers of the COFB mode.

2 Preliminaries

2.1 Nonce-based Authenticated Encryption (NAE)

Bellare and Namprempre [3] provide an in-depth discussion of the security no-
tions and definitions of authenticated encryption. In this section, we focus on
three main notions: IND-CPA, INT-CTXT and IND-CCA. An NAE scheme
ensures both the confidentiality and authenticity of input data as long as the
nonce, an auxiliary parameter associated with each query, is never repeated in
two different encryption queries. More precisely, an NAE scheme Π consists of
two algorithms:

– (C, T ) ← Π.Enc(N,A,M): It takes as input a unique public nonce N , a
public input string called associated data A and a private input string M .
It returns a string C, such that |C| = |M | and a string T such that |T | = τ ,
where τ is a constant value and |X| is the bit length of X.

– M or ⊥← Π.Dec(N,A,C, T ): It takes as input N , A, C and T , and should re-
turn⊥ if the pair (C, T ) is not generated by an earlier call to Π.Enc(N,A,M).
Otherwise, it returns the corresponding M .
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Notably, the definition prevents the repetition of N in two different encryp-
tion queries, but does not limit the repetition of the nonce in decryption queries
or in different decryption and encryption queries. An adversary A has two goals.
In order to break the confidentiality of the scheme it is sufficient to distinguish
the outputs of Π.Enc from uniformly sampled random string from the space of
all binary string of length |M | + τ . Such adversary can make qe queries to the
oracle in question on the condition that the nonces used in these queries are
pairwise distinct. Such goal is captured by the Chosen-Plaintext Attack (CPA)
indistinguishability security notion (IND-CPA). Bounding A’s advantage in this
case leads to the confidentiality/privacy security bound. Besides, in order for A
to break the integrity of the scheme, it is sufficient to make Π.Dec output a value
other than ⊥ for a pair (C, T ) that has not been obtained from a legitimate call
to Π.Enc. To do so, A is allowed to make qe to Π.Enc of size σe and qf queries
to Π.Dec of size σf , with the overall data size of the queries σ = σe +σf . This is
captured by integrity of ciphertext security notion (INT-CTXT) and the setting
is known as the Adaptive Forgery Attempts (AFA) setting. A’s advantage in this
setting leads to the integrity security bounds. Depending on the details of the
scheme other parameters may be considered. For example, in block cipher-based
NAE, the number of queries made by A to the block cipher is relevant to the
security. However, we leave such details for simplicity as they are not related to
the attacks in this article. The overall security of an AEAD algorithm is a combi-
nation of both notions. In other words, a secure AEAD scheme must be at least
IND-CPA-secure and INT-CTXT-secure. Besides, Bellare and Namprempre [3]
showed that if an AEAD mode is both IND-CPA-secure and INT-CTXT-secure,
this implies it is also achieves indistinguishability against Chosen Ciphertext
Attacks (IND-CCA).

2.2 Combined Feedback

The combined feedback function ρ used in the GIFT-COFB mode is a linear
transformation from 2n bits to 2n bits. Given an output of the BC Xi and a
plaintext block Mi, it outputs Ci = Xi ⊕Mi and Si = Mi ⊕G(Xi), where G is
a linear permutation over n bits. During decryption, it takes a ciphertext block
Ci instead and outputs Mi = Xi ⊕ Ci and Si = Xi ⊕ G(Xi) ⊕ Ci. In case an
adversary has access to a known-plaintext-ciphertext pair (Mi, Ci), Xi and Si
can be found by Mi ⊕ Ci and Mi ⊕ G(Mi ⊕ Ci) respectively. Before applying
the next BC call, Si is masked to Yi using the mask L as shown in Figure 1.
Note that for simplicity, we ignore N and A when we index Xi, Si and Yi, where
X1 = EK(Y0) and C1 = X1 ⊕M1.

2.3 Generic IND-CCA attack against AEAD modes.

An adversary can break the INT-CTXT security by simply guessing the tag T
corresponding to (N,A,C). Such adversary has an advantage of 1/2τ . After qf =
O(2τ ) forgery attempts, there is a high probability of success. The probability of
success of this type of attacks is upper bounded by qf/2

τ . Notably, this attack
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strategy requires no calls to Π.Enc, i.e., qe = 0. In a discussion on the NIST
lightweight cryptography forum [11], Alexandre Mège proposed an IND-CCA
attack against NAE with tag size τ . The attack works against a BC-based AEAD
mode with n-bit blocks as follows:

1. A selects a triplet (N,A,C) that has never seen before, where C is C is
longer than n bits.

2. A selects a potential tag T ∗ and asks for the decryption of (N,A,C, T ∗).
3. If the decryption is successful, A receives M . Otherwise, the adversary tries

again.
4. When M is received, A asks for the encryption of (N,A,M

′
), such that M

and M
′

share the first n bits.
5. When C

′
and T

′
are received, A check whether C

′
and C share the first n

bits. Ideally, this should only happen with probability 2−n, but it happens
with probability 1 when an NAE algorithm is used.

The attack requires 2τ forgery attempts and no encryption queries besides
the challenge query. While the attack is natural, due to the relation between
INT-CTXT and IND-CCA, it is only worrying when the tag length τ is small.
In general, it is not always possible or clear how to convert a forgery attack into
an IND-CCA attack.

3 Forgery Attacks against GIFT-COFB

Two forgery attacks have been presented by Khairallah against GIFT-COFB
in [9] and [8]. The attacks take advantage of special relations on the mask L
used in the mode (see Figure 1). In [9], the attack works as follows:

1. A asks for the encryption of (N,A,M), where the length of M is at least
2n. In particular, M consists of m blocks M1‖M2‖ · · · ‖Mm.

2. A assumes L = 0. Note that L is secret and never revealed to the adversary.
3. Using the linearity of the feedback function ρ, A can find a block Cx =
M2 ⊕M1 ⊕ C1 ⊕G(M1 ⊕ C1)⊕G(M2 ⊕ C2).

4. A asks for the decryption of (N,A,C
′
, T ) where C

′
= Cx‖C3‖ · · · ‖Cm.

5. If the forgery is unsuccessful, A repeats with a different N .

Since the attack relies on L = 0, and L is randomly generated, it has a success
probability of 2−n/2. In other words, it needs 2n/2 short encryptions and 2n/2

short decryptions to have success probability close to 1. In [8], the attack works
as follows:

1. A asks 2n/4 encryptions of (N i, A,M i), where the length of M is at least n.
In particular, M i consists of m blocks M i

1‖M i
2‖ · · · ‖M i

m.
2. A picks two outputs (N i, A,Ci, T i) and (N j , A,Cj , T j) randomly from the

set of all received encryption outputs.
3. Using the linearity of the feedback function ρ, A can find a block Cx =
M i

1 ⊕ Ci1 ⊕G(M i
1 ⊕ Ci1)⊕M j

1 ⊕G(M j
1 ⊕ Cj1).
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4. Aasks for the decryption of (N i, Ai, C
′
, T j) where C

′
= Cx‖C2‖ · · · ‖Cm.

5. If the forgery is unsuccessful, A two different outputs (N i, A,Ci, T i) and
(N j , A,Cj , T j) randomly from the set of all received encryption outputs.

The attack relies on a collision Li = Lj . Since L is an n/2-bit random vari-
able, the probability of such collision after 2n/4 encryptions is close to 1. Assum-
ing such collision exists in the encryption queries, finding it requires sampling
the correct pair, which has a probability of 2−n/2. The attack needs 2n/4 short
encryptions and 2n/2 short decryptions to have success probability close to 1.
Both attacks require a non-negligible amount of encryption queries. Moreover,
they cannot be directly extended to IND-CCA attacks as both attacks rely on
asking for an encryption with the target forgery nonce before performing forgery.

4 IND-CPA Attack Against GIFT-COFB

It is easy to see that an IND-CPA attack exists with probability σ2
e/2

n. For
example, in an IND-CPA attack, the adversary observes the outputs of all BC
calls corresponding to ciphertext blocks, where Xi = Mi ⊕ Ci. Let X = {Xj

i },
such that Xj

i = Mi ⊕ Ci. After 2n/2 CPA plaintext blocks, the probability of
a collision in X would be close to 1. If the ciphertext blocks are uniformly
distributed over the set of all possible n-bit strings and the collision is on the

form Xj
i = Xj

′

i′
, then

Pr[Xj
i−1 = Xj

′

i′−1
] = 2−n.

However, in the case of GIFT-COFB, a collision Xj
i = Xj

′

i′
implies a collision

Y ji−1 = Y j
′

i′−1
. While the adversary does not observe the full input of the BC

calls, due to masking, the unmasked half of the block is still observable. Hence,
in the case of GIFT-COFB,

Pr[Xj
i−1 = Xj

′

i′−1
] = 2−n/2.

Hence, an attack can work as follows:

1. A asks for a set of encryption queries where the total size of the ciphertexts
is at least 2n/2 blocks.

2. A then generates the set X and identifies a collision.

3. One a collision Xj
i = Xj

′

i′
is found, the adversary checks if the unmasked

halves of Xj
i−1 and Xj

′

i′−1
are identical, and decides the ciphertext is gener-

ated using GIFT-COFB if they are.

The last step happens with probability 2−n/2 if the ciphertexts are uniformly
distributed and with probability 1 in the case of GIFT-COFB. The attack has
success probability of

σ2
e

2n
− σ2

e

23n/2
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which is close to 1 at σe = 2n/2. Note that here we abuse the notation a little, as
σe should also include the nonces and associated data blocks, but the adversary
can limit their effect to only 2 blocks per query, and use long queries, making
the overall complexity only slightly larger than 2n/2. This attack, however, is
not relevant to the bounds discussed in Section 1 as it relies on the fact that the
underlying cipher may only behave as a PRF up to the birthday bound, which
we excluded from the bounds we present.

5 New IND-CCA Attack Against GIFT-COFB

All the previous INT-CTXT attacks in Section 3 rely on the fact that the chosen
plaintext queries give the adversary a somewhat restricted access to the underly-
ing tweakable BC defined by Y = EK(X⊕mask(L, i)) where i is the index of the
BC call. Hence, an adversary would need to satisfy a condition on the mask L
in order to be able to predict when the same input-output values can be reused.
The crucial idea was to either find L = 0 or to find L1 = L2. The first condition
requires O(2n/2) encryptions and the second requires O(2n/4) encryptions. We
observe that the encryption complexity of satisfying the required condition on L
translates to encryption complexity, while the decryption complexity is almost
fixed at O(2n/2). Besides, these attacks cannot be used to directly launch and
IND-CCA attack as they do not leak any information about fresh nonces that
have not been used in previous encryption queries.

In order to find an INT-CTXT or an IND-CCA attack with negligible en-
cryption complexity, we start by asking two questions:

1. Can we find an attack that does not requires any special condition on the
value (or values) of L?

2. What can we achieve if we completely knew what is the value of L?

We observe that if L is leaked, then the adversary gets full access to any CPA
block corresponding to the query that uses such L. In other words, not only can
the adversary observe the outputs of the BC calls, but also the inputs. Using
such information proves to be critical in constructing forgeries using nonces that
may have never appeared in any encryption queries. Assume the adversary know
that V = EK(P ). The adversary can use P as a nonce and would know that the
input the initial state of the algorithm before absorbing A or M , as well as the
initial value of the mask L. An attacker can choose A and C to be one block
each, such that if L∗ = truncate(V ) is the leftmost n/2 bits of V , then

P = 3L∗‖0n/2 ⊕G(V )⊕A1

and
P = 32L∗‖0n/2 ⊕G(V )⊕ V ⊕ C1.

The decryption query (N∗, A∗, C∗, T ∗), where N∗ = P , A∗ = A1, C∗ = C1,
T ∗ = V , will succeed with probability 1, outputting M1. Once M1 is retrieved,
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the adversary can ask for the encryption query (P,A1,M
′
), where M

′
= M1‖M2

and M2 can take any value. If the ciphertexts are uniformly distributed, then
the probability of the first n-bit block to be equal to C1 is 2−n, while the prob-
ability is 1 in the case of GIFT-COFB. The challenge with this attack is that
the adversary does not have such access to the inputs of the BC calls during
encryption. The adversary can go around this by guessing the value of L. The
full attack operates as follows:

1. A asks for the encryption query (N,A,M) where M consists of one block
and for simplicity A = ε (empty string).

2. A guesses the value 32L, and stores V = T , P = G(M1⊕C1)⊕M1⊕32L‖0n/2
and L∗ = truncate(V )

3. A assigns N∗ = P , A∗ = P ⊕ 3L∗‖0n/2 ⊕ G(V ), C∗ = P ⊕ 32L∗‖0n/2 ⊕
G(V )⊕ V and T ∗ = V .

4. A asks for the decryption of (N∗, A∗, C∗, T ∗) and if the forgery is unsuccess-
ful, repeats from step 2.

It is easy to see that if the guess of 32L is correct, then the attack succeeds.
The critical observation is that if the guess is incorrect, step 1 does not need to
be repeated. The adversary can simply guess a different value. The probability
of success of this forgery attack is qf/2

n/2. After 2n/2 guesses the adversary is
bound to have guessed the correct value. Consequently, if N∗ = P has never been
used in any encryption query, the adversary can perform the following attack:

1. A asks for the encryption of (N∗, A∗,M
′
) where M

′
= M∗‖M2 and M2 can

take any value.
2. If the first n bits of the ciphertext are identical to the C∗ then A decides

the ciphertext was generated using GIFT-COFB.

The probability that N∗ = P is high and in some scenarios can be forced to 1
by the adversary, while the overall complexity of the attack is a single encryption
query and 2n/2 forgery attempts.

5.1 Analysis and Discussions of the IND-CCA Attack

Effective Tag Size of GIFT-COFB The attack presented in this section holds
some resemblance to the attack described in Section 2.3 [11]. They mainly differ
in two points:

1. The attack in [11] targets algorithms with short tags. It works with 2n/2

forgery attempts against algorithms with n/2-bit tags. Our attack complex-
ity is a function of the mask size rather than the tag size. Given an n/2-bit
mask, the attack works with 2n/2 forgery attempts, even if the tag size is
larger than n/2 bits.

2. The attack in [11] requires only decryption queries, and no encryption queries
except the challenge query. Our attack requires one encryption query at the
beginning. However, this encryption query may consist of one block and
the plaintext can only be known, not necessarily chosen. In practice, this
limitation is very mild and the adversary can achieve it in many cases.
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Given these two differences, it seems that the tag size of GIFT-COFB offers
little immunity compared to algorithms with half the tag size, and by keeping
the tag size n instead of truncating it to n/2 (or a value in between) seems to
offer very minimal security advantage.

Forgery with no encryption no queries It can be shown that it is impossible
to perform successful forgery with non-negligible probability with no encryption
queries at all, while keeping the forgery attempts close to 2n/2. Assume a forgery
attempt uses the tag T ∗ and X is defined as in Section 4. Since the underlying
cipher is a permutation, if T ∗ /∈ X, then the internal state during decryption
corresponding Y ∗

m (where T ∗ = EK(Y ∗
m) has never appeared in any block ci-

pher call during encryption. Assuming the underlying cipher is a PRP, then the
probability that the adversary can guess T ∗ is bounded by

1

2n − σe

By setting σe = 0, the probability is simply 2−n. However, as shown this limita-
tion is simply bypassed by a single known-plaintext query.

Relation to existing security bounds As discussed in Section 1, there are three
security proofs in the literature that cover GIFT-COFB. The attack proposed in
this paper do not contradict the proofs in [2] and [6], whose bound is dominated
by the term nqf/2

n/2. However, it does contradict Theorem 2 in [7]. This is due
to an error in calculating the probability of a collision between the internal state
values in encryption and decryption queries. Let Y ji be the input to the BC at

block i in the encryption query j and Y j
′

i′
be the input to the BC at block i

′
in

the decryption query j
′
. The proof of Theorem 2 of [7] bounds the probability

of a collision on the form Y ji = Y j
′

i′
by

Pr[∃i, j, i′ , j′ , s.t.Y ji = Y j
′

i′
] ≤ (qe + σe)σf

2n

However, this assumes that the internal states are completely random. In reality,
the adversary has almost full control over n/2 bits of the state. For example,
the adversary can force a collision on half the state by forcing half the input
of the BC during a decryption query to a value that has been observed during
encryption. However, once the adversary makes such decision, the probability of
a full collision becomes 2−n/2. The adversary can keep changing the masked half
of the state during decryption until the guess is correct. Hence, the probability
is bounded by

Pr[∃i, j, i′ , j′ , s.t.Y ji = Y j
′

i′
] ≤ σf

2n/2
.

This observation have been communicated to the authors of [7] and has been
verified by them.
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Potential Remedy The IND-CCA attack presented requires the ability to predict
both the internal state and mask corresponding to a nonce N∗, where a successful
guess of an n/2 bit value leaks both. Currently, one PRF is used to generate both
the mask and the initial internal state. In order prevent this, we can use two
different PRF constructions to generate each value. For example, we can use L =
truncate(EK(N)), which is the same as the current situation, while the initial
state (the state XORed with the first associated data block) be EK(EK(N)),
i.e. adding an extra BC call after the mask generation. However, while this may
prevent the presented IND-CCA attack, it will not affect the security bounds and
may introduce additional problems. Hence, this issue requires an independent
study, outside the scope of this article.

Open questions in terms of the tightness of GIFT-COFB security bounds. Fo-
cusing on [2] and [6], we note that while our attack shows the tightness of the
bound on the form qf/2

n/2, the bounds on the form σe/2
n/2 and nqf/2

n. It is
likely that the latter bound is an artefact of the proof methodology and can
be eliminated, as we observe that whatever the attack strategy is the adversary
needs to guess a random n/2-bit value. The questions of whether we can find an
IND-CPA attack whose probability is bounded by σe/2

n/2 or whether we can
find a forgery attack with small σf remain unsolved.

6 Conclusions

In this article, we have analyzed the GIFT-COFB algorithm showing that it is
secure against IND-CCA adversaries at most up to 2n/2 forgery attempts. We
presented a new forgery attack and the first IND-CCA attack against GIFT-
COFB with negligible encryption complexity and 2n/2 forgery attempts. As a
byproduct, we have identified an oversight in [7]. However, we emphasize that
the attacks do not threaten [2], [6] or the security of GIFT-COFB according to
the requirements of the NIST lightweight cryptography standardization project.
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