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ABSTRACT
Many security properties of interest are captured by instrumented
semantics that model the functional behavior and the leakage of pro-
grams. For several important properties, including cryptographic
constant-time (CCT), leakage models are sufficiently abstract that
one can define instrumented semantics for high-level and low-level
programs. One important goal is then to relate leakage of source
programs and leakage of their compilation—this can be used, e.g.
to prove preservation of CCT. To simplify this task, we put forward
the idea of structured leakage. In contrast to the usual modeling of
leakage as a sequence of observations, structured leakage is tightly
coupled with the operational semantics of programs. This coupling
greatly simplifies the definition of leakage transformers that map
the leakage of source programs to leakage of their compilation and
yields more precise statements about the preservation of security
properties. We illustrate our methods on the Jasmin compiler and
prove preservation results for two policies of interest: CCT and
cost.

KEYWORDS
Secure Compilation, Cryptographic Constant-Time, Cost

1 INTRODUCTION
Modern compilers are designed to carry aggressive program opti-
mizations, while respecting the input-output behavior of programs.
In simple settings, where behaviors aremodelled as execution traces,
compiler correctness, is thus stated as an inclusion between the
set of traces of the target program and the set of traces of source
programs. However, this approach suffers from three shortcomings
in a security context: first, many common security properties are
hyperproperties [14], i.e. sets of sets of traces, rather than proper-
ties, i.e. sets of traces; in particular, information flow properties,
which cover a broad range of applications are relational properties,
i.e. sets of pairs of traces. Second, several security properties of
interest, including popular notions of side-channel resistance are
modelled by an instrumented semantics that collects (an abstraction
of) the adversarially visible physical leakage. Third, the inclusion of
instrumented traces fail for most common compiler optimizations,
e.g. register allocation and dead store elimination that may add,
modify or remove atomic leakages. These shortcomings are not
purely theoretical, as documented by multiple security vulnera-
bilities caused by popular compilers; see, e.g. [17, 23]. To address
these shortcomings, researchers have developed the foundations

of secure compilation, where compilers are required to preserve
both the functional behavior and the security of programs; these
studies often consider broad classes of security properties and are
not tied to specific compiler passes. In parallel, other works have
explored compiler preservation and compiler-based mitigations
for specific security properties. In this paper, we consider crypto-
graphic constant-time (CCT), a popular software-based countermea-
sure to protect cryptographic implementations against devastating
cache-based timing side-channel attacks. On the mitigation side,
the FACT compiler [12] transforms an information flow secure pro-
gram into cryptographic constant-time (CCT) programs that are
protected against cache-based timing side-channels. On the preser-
vation side, Barthe et al. [8] develop a richer form of a simulation
method for proving preservation of CCT and apply their method
to toy compiler inspired from Jasmin [3]. Informally, their method
requires establishing a “commuting cube” rather than a “commut-
ing square” reflecting the fact that CCT is a relational property.
While powerful, this method induces a significant proof overhead.
CompCertCT [7] is a minimally modified variant of CompCert that
preserves CCT. Unlike [8], preservation of CCT is proved using
a simpler set of methods than the “commuting cube”. Informally,
these methods can be used to prove that a compiler pass preserves
leakage or only modifies it in very specific ways. These methods are
easier to apply, but they are less broadly applicable than [8]; more
fundamentally, it emphasizes reusing CompCert proof scripts at the
expense of providing more robust methods for proving preservation
of CCT and similar properties.

Contributions. The main contribution of this paper is a novel
approach for proving preservation of non-functional properties.
Our approach is based on the following ideas:

Structured leakage We model leakage using a dedicated data
structure that collects atomic leakages. Our new data struc-
ture is closely aligned with the operational semantics of
programs, a key benefit over the flat list structure used in
prior work;

Leakage transformers We define a language of leakage trans-
formers, that transform leakage of source programs into
leakage of target programs. Although our language of leak-
age transformers is simple; yet we can define leakage trans-
formers for many common optimizations. A key benefit of
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leakage transformers is that they yield an algorithm for com-
puting the leakage of target programs from leakage of source
programs.

Leakage transformers are naturally endowed with a rigorous defi-
nition of correctness: specifically, a leakage transformer 𝜏 is correct
for a source program, if for every set of inputs, we have ⟦𝜏⟧ℓ = ℓ ′,
where ℓ represents the leakage of the source program on the cho-
sen inputs, ⟦𝜏⟧· interprets the algorithmic description of the trans-
former 𝜏 as a function from leakage to leakage, and ℓ ′ represents the
leakage of the compiled program on the chosen inputs. Surprisingly,
many leakage transformers achieve this strong notion of correct-
ness. This provides an effective method for proving preservation
of CCT and other non-functional properties. The method is more
generally applicable than “CT-simulations” [8], and simpler and
more principled than the proof technique applied to CompCert [7].

To illustrate its benefits, we implement our approach on top of
the Jasmin framework [3, 4] for high-assurance and high-speed
cryptography. The Jasmin framework is a natural target for our
approach for three reasons. First, Jasmin puts a strong emphasis on
cryptographic constant-time and efficiency, two prime examples of
non-functional properties. Second, verification of Jasmin programs
(CCT, functional correctness, cryptographic strength, and cost) is
carried at source-level, to benefit from the verification-friendly na-
ture of the “assembly in the head” paradigm supported by Jasmin.
Third, the Jasmin compiler comes with a mechanized proof (in the
Coq proof assistant) that generated assembly programs have the
same behavior as their source programs, but there is no mecha-
nized proof of preservation of CCT, and no prior study of the impact
of compilation on cost. Using leakage transformers, we overcome
these two shortcomings: we obtain a formal proof that the Jasmin
preserves CCT, and a certified algorithm to compute the cost of
compiled assembly programs from the cost of source Jasmin pro-
grams1. A surprising aspect of our certified cost transformer is that
it yields an exact cost rather than an upper bound for the generated
programs (for all transformations except loop unrolling, where our
transformer yields an upper bound); to our best knowledge, we are
the first to provide formally verified exact cost transformers for a
realistic compiler.

In summary, our main contributions include:

• the definition of structured leakage and leak transformers;
• formal proofs of correctness of leak transformers for all the
passes of the Jasmin compiler;
• a proof that the Jasmin compiler preserves CCT;
• a certified algorithm for computing the cost of assembly
programs from the cost of Jasmin programs.

All results presented in this paper have been formally verified using
the Coq Proof Assistant. The complete development is provided as
supplementary material2.

1As shall be explained shortly, our cost model is abstract and only provides an estimate
of the efficiency of the generated assembly. In particular, it does not provide cycle-
accurate estimates of the program’s true execution cost
2Supplementary material has md5 checksum 890bc3a64ee66f6828fc65f8e0820069 and
is available for download at: http://bit.ly/supplementary_material

2 METHODOLOGY
This section outlines our methodology and its applications to cryp-
tographic constant-time and cost.

2.1 Compiler correctness
Certified compilers are high-assurance compilers that come with a
machine-checkable proof that the compiler is correct, i.e. preserves
the behavior of programs. The statement of compiler correctness
relies on operational semantics, which formalizes the execution of
source and assembly programs. For the purpose of this section, we
assume given big-step semantics for source and target programs;
these semantics are expressed by judgments of the form 𝑝 : 𝑠 ⇓ 𝑠 ′
(resp. 𝑝 : 𝑠 ⇓ 𝑠 ′ ), stating that execution of source program 𝑝 (resp.
target program 𝑝) on initial state 𝑠 terminates with final state 𝑠 ′.
Using this notation, compiler correctness is informally stated as:
for all source programs 𝑝 with compilation 𝑝 , and for all states 𝑠
and 𝑠 ′,

𝑝 : 𝑠 ⇓ 𝑠 ′ =⇒ 𝑝 : 𝑠 ⇓ 𝑠 ′.
Note that our informal definition assumes that source and target
programs operate over the same state space; the assumption sim-
plifies the discussion, but our approach applies (and is formally
verified) to the more general setting where source and target pro-
grams operate over different state spaces.

2.2 Instrumented semantics
Many properties of interest are expressed relative to an instru-
mented semantics, which tracks visible effects of program execu-
tions —since one main motivation of our work is protection against
side-channel attacks, from now on we use the term leakage generi-
cally to refer to program’s effects. The instrumented semantics is
based on a leakage model describing what is leaked during program
execution, leading to a judgment of the form 𝑝 : 𝑠 ⇓ℓ 𝑠 ′, stating
that executing program 𝑝 on initial state 𝑠 yields a final state 𝑠 ′ and
leaks ℓ .

Unfortunately, compiler correctness does not readily extend to
instrumented semantics. Indeed, for most leakage models and com-
pilers of interest, source and target programs have different leakage.
However, one can meaningfully extend the statement of compiler
correctness by requiring the existence of a function 𝐹 that trans-
forms leakage of 𝑝 into leakage of 𝑝 . There are many ways to
exhibit such a function 𝐹 ; the approach taken in this paper is that
the function 𝐹 is generated by the compiler. Under this approach,
one can define instrumented compiler correctness as: for all source
programs 𝑝 with compilation 𝑝 and producing leakage transformer
𝐹 , and for all states 𝑠 and 𝑠 ′,

𝑝 : 𝑠 ⇓ℓ 𝑠 ′ =⇒ 𝑝 : 𝑠 ⇓𝐹 (ℓ) 𝑠 ′

Our notion assumes that 𝐹 does not depend on the initial state of the
program. This holds for most common compiler passes. However,
in some cases, the definition of the function 𝐹 may depend on the
initial state, requiring additional steps. This shall be explained later.

2.3 Cryptographic constant-time
Cryptographic constant-time (CCT) is a software countermeasure
against cache-based timing attacks, an effective class of side-channel
attacks that exploit the latency between cache hits and cache misses

2

http://bit.ly/supplementary_material


to retrieve cryptographic keys and other secrets from program exe-
cution. The two rules of CCT programming are:
• do not branch on secrets;
• does not perform secret-dependent memory accesses.

These rules are very effective: in particular, they guarantee that a
victim program is immune against cache-based timing attacks from
a powerful low-level adversary with control over the cache and the
scheduler, provided the victim program and the adversary execute
in different processes, and memory isolation between processes are
guaranteed [6]. Moreover, it has been proved experimentally that
one can implement efficient cryptographic libraries that follow the
CCT discipline.

CCT is an instance of observational non-interference [8], a gen-
eral class of information flow policies that ensure that programs do
not leak their secrets through observable leakage. As such, the CCT
property is formalized using a leakage model such that control-flow
instructions leak the branch in which they jump, and memory-
accessing instructions leak the address (not the value) being ac-
cessed. In addition to the leakage model, the CCT property is stated
relative to security declarations that tag the memory’s public and
private parts. The declarations induce an equivalence relation on
states; it is denoted by ∼ and called indistinguishability: informally,
two states are indistinguishable if they only differ in their public
parts. The CCT property for a program 𝑝 is then stated as: for all
initial states 𝑠1 and 𝑠2,

𝑝 : 𝑠1 ⇓ℓ1 𝑠 ′1
𝑝 : 𝑠2 ⇓ℓ2 𝑠 ′2

}
=⇒ 𝑠1 ∼ 𝑠2 =⇒ ℓ1 = ℓ2.

Under this formalization, preservation of CCT for a program 𝑝 with
compilation 𝑝 is stated as: for all initial states 𝑠1 and 𝑠2,

𝑝 : 𝑠1 ⇓ℓ1 𝑠 ′1
𝑝 : 𝑠2 ⇓ℓ2 𝑠 ′2
𝑝 : 𝑠1 ⇓ℓ1

𝑠 ′1
𝑝 : 𝑠2 ⇓ℓ2

𝑠 ′2


=⇒ 𝑠1 ∼ 𝑠2 =⇒ ℓ1 = ℓ2 =⇒ ℓ1 = ℓ2.

The definition readily extends to instrumented compilers that out-
put leakage transformers.

Theorem 2.1 (Informal). Any compiler that verifies instrumented
correctness preserves constant-time.

2.4 Cost
Programmers often rely, specially in the initial stages of devel-
opment, on a cost model that provides a crude estimate of the
efficiency of their code. Arguably one of the simplest cost models is
the instruction counting model, which tracks how many times each
instruction is executed in a program run. The instruction count-
ing model is the basis of many approaches for computing upper
bounds on the cost of the program. These approaches are generally
developed for source programs. However, our framework offers a
means to transfer the results of the analysis to target programs.

Specifically, note that for many cost models of interest, including
the instruction counting cost model, it is possible to compute the
cost of an execution as a function of its leakage, i.e. 𝜅 = tocost (ℓ),
where 𝑝 : 𝑠 ⇓ℓ 𝑠 ′. Therefore, any function 𝐹 that correctly trans-
forms the leakage of 𝑝 satisfies 𝜅 = tocost (𝐹 (ℓ)). Thanks to the

explicit representation of 𝐹 , it is, therefore, possible to compute
the cost of a target Jasmin program from analyzing the source pro-
gram. (Our description suggests a way to compute the cost of the
generated program from the leakage of the source program; we
later explain why the cost, rather than the leakage, of the source
program, suffices for this purpose.)

Theorem 2.2 (Informal). Any compiler that verifies instrumented
correctness correctly transforms cost.

Strikingly, this approach is precise, i.e. for most optimization
passes, one can compute the cost of the target program from the
cost of the source program. In other words, the cost of the target
program is exact if the cost of the source program is exact. Moreover,
the cost of the target program is a sound overapproximation if the
cost of the source program is a sound approximation. Note that in
all cases, the cost is understood in the context of the cost model
rather than a concrete value based on the number of execution
cycles. Nevertheless, and although this is beside the point of this
paper, even a simple model like the instruction counting model
gives a coarse but meaningful estimate of the number of execution
cycles for the class of programs we consider.

3 BACKGROUND ON JASMIN
The Jasmin framework was introduced in [3] and further developed
in [4]. Two of its main components are the Jasmin language and
the Jasmin compiler, which we briefly describe below. Other main
components are the verification tools for functional correctness,
CCT, and cryptographic strength; however, they are not directly
relevant to the work presented here, so we refer the interested
reader to [3, 4].

The Jasmin language is a verification-friendly programming lan-
guage that supports “assembly in the head”. It combines high-level
facilities —that simplify the writing, reading, analysis and verifica-
tion of programs— with tight control over low-level details of the
generated assembly —that empowers the programmers to obtain
aggressively optimized code. For instance, programmers choose
whether values stay in registers or are stored in the stack mem-
ory (through the reg and stack annotations), decide which loops are
unrolled at compile-time, and have direct access to assembly instruc-
tions through the use of intrinsics. High-level constructs include
variables, functions —that are fully inlined—, structured control
flow, compile-time computations, support for vectorized operations
(simd), and arrays. Register arrays are particularly convenient in
combination with unrolled loops and compile-time computations of
array indices. Stack arrays dramatically simplify static analyses and
manual verification of programs: since array addresses cannot be
involved in pointer arithmetic, arrays with different names, neither
alias nor overlap.

Source Jasmin programs compute over several kinds of values:
boolean (written 𝑡𝑡 and 𝑓𝑓 ), unbounded integers (for compile-time
computations only), machine integers of various sizes (from 8 to
256-bit), and arrays of machine integers. Strikingly, arrays are a
first-class value: functions can take them as arguments and return
them as results. Arguments are passed by value: an array passed to
a function is not modified unless it is also returned by this function.
This considerably simplifies the reasoning about program behaviors.
Of course, this is just a convenience for the programmers and
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Figure 1: Jasmin architecture

𝑒 ∈ Expr ::= 𝑥 variable
| 𝑐 constant
| 𝑎 [𝑒 ] array access
| [𝑒 ] memory load
| op(𝑒, . . . , 𝑒) operator

𝑑 ∈ Lval ::= 𝑥 variable
| 𝑎 [𝑒 ] array store
| [𝑒 ] memory store

𝑖 ∈ Instr ::= 𝑑 := 𝑒 assignment
| if 𝑒 then 𝑖 else 𝑖 conditional
| while 𝑒 do 𝑖 while loop
| {𝑖; . . . ; 𝑖 } sequencing

𝑎 ∈ A ranges over array variables;𝑥 ∈ X ranges over scalar variables

Figure 2: Syntax of programs

verification tools: the compiler ensures that no copy happens at
run-time.

The compiler produces efficient assembly code for x86_64 plat-
forms (other platforms are under development). The overall com-
pilation chain is presented in Figure 1. It is formally verified for
correctness in Coq, except the front-end (parsing, type checking,
and expansion of parameters) and the assembly pretty-printer that
are trusted. Throughout the compilation, five different intermedi-
ate representations (IR) are used. At the highest-level, the jasmin-
source language is verification friendly: it is structured and has a
clean semantics. Formal verification of Jasmin programs is done on
this intermediate representation. The middle-end manipulates the
jasmin IR: it has the same syntax (presented in Figure 2) as jasmin-
source but a more flexible semantics that allows more optimizations.
The last pass of the middle-end uses jasmin-stack as output: this IR
again has the same structured syntax but also features an explicit
stack pointer. The back-end outputs unstructured IR: jasmin-linear
with labels and gotos after linearization, and assembly at the end. In
this paper, we focus on the compiler middle-end; therefore, we only
present the semantics of jasmin and not of the lower languages. Of
course, our implementation of leakage transformers carries all the
way to assembly.

(_, _)

(_, _)

• [0]

•

(_, _)

[0] •

(_, _)

𝜋1 id(0 + 𝑎[0]) + 1 𝑎[0] + 1

Figure 3: Example: Structured leakage for expression

In order to remain predictable, the compiler does not perform op-
timizations that potentially affect efficiency, e.g. instruction sched-
uling or register spilling. For the latter, the Jasmin compiler instead
performs a weaker form of register allocation that fails when too
many registers are used. Nonetheless, the compilation chain is
complex and features many passes that can dramatically impact
leakage and cost; among them: inlining turns a program into a
single function, unrolling fully unrolls all for loops, constant propa-
gation simplifies expressions and conditionals, dead-code elimina-
tion removes some redundant computations, instruction selection
replaces high-level operators by sequences of machine instructions,
statck-allocation turns accesses to variables into memory opera-
tions, linearization fixes the program layout and introduces jumps.

4 ILLUSTRATIVE EXAMPLES
Theorems 2.1 and 2.2 highlight the benefits of instrumented com-
piler correctness. However, two challenges must be addressed in
order to realize these benefits. First, one must define the leakage
transformer 𝐹 . Second, applications such as cost require an algo-
rithmic description of 𝐹 , in order to compute the cost of the target
program. We address these challenges by using structured leak-
age, and a syntax for describing leakage transformers. This section
introduces deliberately simple examples that illustrate our repre-
sentations of leakage and leakage transformers, and their benefits.
We first consider expressions, then turn to instructions.

Expressions. Figure 3 introduces two code snippets represent-
ing the source and target code for addition operation and their
associated leakages. Figure 3 also presents the leakage transformer
that will be produced during this transformation. The first addition
operation adds 0 to the value present at index 0 in the array a and
the second addition adds 1 to the result obtained from the first
addition. The compiler knows statically that the result of the first
operation will be 𝑎[0]; hence the target code is just one addition
operation with operands 𝑎[0] and 1. The leakage for (0+𝑎[0]) +1 is
((•, [0]), •) representing that evaluation of a constant produces no
leakage and an array access leaks the index accessed. The leakage
for the compiled expression 𝑎[0] + 1 is ( [0], •). The compiler pro-
duces leakage transformer (𝜋2, id) where 𝜋2 projects the leakage
at index 1 from the source leakage (•, [0]) and id preserves the
leakage. If the leakage produced by the addition operation was
represented as a concatenation of its sub-parts’ leakages, it would
be difficult to project at the corresponding index as concatenating
with an empty leakage returns the original leakage. The flattened
source leakage of the above example will be concatenation of •, [0]
and •, which will get reduced to [0]. From the flattened list, it is
hard to depict the leakages belonging to the sub-parts.
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if𝑡𝑡

• :=

[0] •

:=

[0] •

ceval𝑡𝑡

:=

id idif 𝑡𝑡 then 𝑥 [0] := 0 else 𝑥 [0] := 1 𝑥 [0] := 0

Figure 4: Example: Structured leakage for conditional

ℓ𝑒 ::= • empty
| [𝑧 ] index
| ∗𝑝 address
| (ℓ𝑒 , . . . , ℓ𝑒 ) sub-leakage

ℓ ::= ℓ𝑒 := ℓ𝑒 assignment
| if𝑏 (ℓ𝑒 , ℓ) conditional
| whilet (ℓ𝑒 , ℓ, ℓ) iteration
| whilef (ℓ𝑒 ) loop end
| {ℓ ; . . . ; ℓ } sequence

Figure 5: Syntax of leakages

Instructions. Figure 4 presents a conditional instruction with a 𝑡𝑡
guard, that is reduced to its then branch after compilation. This kind
of transformation is carried out when compiler statically knows the
value of boolean condition. The leakage for conditional instruction
at the source level is if𝑡𝑡 (•, [0] := •). The structure of the source
leakage is closely aligned with the structure of the conditional in-
struction, with 𝑡𝑡 indicating that the boolean condition is satisfied
and [0] := • indicating that the then branch is an assignment in-
struction. The target leakage is [0] := •, which gives us information
that conditional instruction is reduced to an assignment instruction.
The leakage transformer produced during this transformation is
ceval𝑡𝑡 id := id, where 𝑡𝑡 indicates the branch taken and id := id
transforms the leakage for the then branch from the source. De-
signing the leakage transformer was straightforward because of
the structured notion of leakages. If the leakage generated from
conditional instruction was a concatenation of its sub-parts then it
would be hard to detect, which part in the list, belongs to the then
or else branch.

5 INSTRUMENTED CORRECTNESS FOR
JASMIN COMPILER

This section details how we apply our methodology for the Jas-
min compiler. We present our representation of leakage and our
instrumented operational semantics, and our syntax for leakage
transformers. Finally, we discuss instrumented correctness for some
of the Jasmin compiler passes. For the clarity of presentation, we
provide a simplified treatment of the semantics of leakage trans-
formers.

5.1 Instrumented semantics
In this section, we introduce the formal notion of structured leak-
ages, and the instrumented semantics of a core fragment of the
Jasmin language shown in Figure 2—our Coq formalization is for
the full language, including other forms of loops and procedure
calls.

Expression semantics:

𝑐 ↓𝑠• 𝑐
𝑣 = 𝑠 (𝑥)
𝑥 ↓𝑠• 𝑣

𝑒𝑖 ↓𝑠
ℓ𝑖𝑒

𝑣𝑖 𝑣 = op(𝑣1, . . . , 𝑣𝑛)

op(𝑒1, . . . , 𝑒𝑛) ↓𝑠(ℓ1
𝑒 ,...,ℓ

2
𝑒 )

𝑣

𝑒 ↓𝑠ℓ𝑒 𝑧 𝑠 (𝑎) = 𝑡

𝑎 [𝑒 ] ↓𝑠(ℓe,[z]) 𝑡 [𝑧 ]
𝑒 ↓𝑠ℓ𝑒 𝑝

[𝑒 ] ↓𝑠(ℓe,∗i) 𝑠 [𝑝 ]

Assignment semantics:

𝑥 := 𝑣 ↓𝑠• 𝑠 {𝑥 ← 𝑣 }

𝑒 ↓𝑠ℓ𝑒 𝑧 𝑠 (𝑎) = 𝑡 𝑡 ′ = 𝑡 {𝑧 ← 𝑣 }
𝑎 [𝑒 ] := 𝑣 ↓𝑠(ℓe,[z]) 𝑠 {𝑎 ← 𝑡 ′ }

𝑒 ↓𝑠ℓ𝑒 𝑝

[𝑒 ] := 𝑣 ↓𝑠(ℓe,∗p) 𝑠 {𝑝 ← 𝑣 }

Instruction semantics:

{} : 𝑠 ⇓{} 𝑠
𝑖 : 𝑠 ⇓ℓ1 𝑠1 {𝑐 } : 𝑠1 ⇓{ℓ𝑐 } 𝑠2

{𝑖;𝑐 } : 𝑠 ⇓{ℓ ;ℓ𝑐 } 𝑠2

𝑒 ↓𝑠ℓ𝑒 𝑣 𝑑 := 𝑣 ↓𝑠ℓ𝑑 𝑠′

𝑑 := 𝑒 : 𝑠 ⇓ℓ𝑑 :=ℓ𝑒 𝑠′

𝑒 ↓𝑠ℓ𝑒 𝑏 𝑐𝑏 : 𝑠 ⇓ℓ𝑐 𝑠′

if 𝑒 then 𝑐𝑡𝑡 else 𝑐 𝑓𝑓 : 𝑠 ⇓if𝑏 (ℓ𝑒 ,ℓ𝑐 ) 𝑠
′

𝑒 ↓𝑠ℓ𝑒 𝑓𝑓

while 𝑒 do 𝑐 : 𝑠 ⇓whilef (ℓ𝑒 ) 𝑠

𝑒 ↓𝑠ℓ𝑒 𝑡𝑡 𝑐, 𝑠 ⇓ℓ𝑐 𝑠1 while 𝑒 do 𝑐 : 𝑠1 ⇓ℓ𝑤 𝑠2

while 𝑒 do 𝑐 : 𝑠 ⇓whilet (ℓ𝑒 ,ℓ𝑐 ,ℓ𝑤 ) 𝑠2

Figure 6: Instrumented semantics.

We distinguish between leakage ℓe for expressions and leakage ℓ
for instructions. Figure 5 presents the syntax of structured leakages.
As the notations suggest, the leakage’s syntax is closely related to
the syntax of programs and their semantics. In the case of expres-
sions, ℓe be can •, an array index [𝑧], a memory address ∗𝑝 or a
tuple of leakage (ℓ1

𝑒 , . . . , ℓ
𝑛
𝑒 ). In the case of instructions, there is one

constructor per semantic rule.
The instrumented semantics is produced from the original se-

mantics by annotating the judgments with leakage. The semantic
uses three judgments. The first, 𝑒 ↓𝑠

ℓ𝑒
𝑣 , provides the semantic of

the expression 𝑒 in the state 𝑠 , it produce a leakage ℓ𝑒 and a value 𝑣 .
The second, 𝑑 := 𝑣 ↓𝑠

ℓ𝑒
𝑠 ′ provides the semantic of assigning a

value 𝑣 to a destination 𝑑 in a state 𝑠 ; it generates a new state 𝑠 ′ and
some leakage ℓ𝑒 (leakage for assignments is the subset of the one
for expressions). The last judgment, 𝑖, 𝑠 ⇓ℓ 𝑠 ′, provides the semantic
of instructions; it takes an instruction 𝑖 and a state 𝑠 and returns
an instruction’s leakage ℓ and a state 𝑠 ′. The three judgments are
presented in Figure 6.

Informally a state is a pair of a memory (a mapping from ad-
dresses to value), and a valuation for variables (a mapping from
variables to value). 𝑠 (𝑥) is the value associated to 𝑥 in 𝑠 (which can
be an array). 𝑠 [𝑝] loads the value stored in memory at an address
𝑝 . When a value 𝑣 is an array, 𝑣 [𝑖] denotes the value at index 𝑖 in
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this array. 𝑠{𝑥 ← 𝑣} updates the value associated to 𝑥 with 𝑣 and
𝑠{𝑝 ← 𝑣} writes 𝑣 in memory at address 𝑝 .

The instrumented semantics of expressions is presented Figure 6.
Variables leak •, i.e. a mark indicating that a variable has been eval-
uated. The evaluation of an array access 𝑎[𝑒] leaks a pair (ℓ𝑒 , [𝑧])
where ℓ𝑒 is the leakage corresponding to the evaluation of the in-
dex 𝑒 and 𝑧 is the value of 𝑒 . Memory accesses work in the same
way. Operators leak the tuple composed by the leakages of their
arguments. A destination can be either a variable, an array desti-
nation or a memory destination. The semantic of assignment also
generates leakages due to memory and array stores. It follows the
same pattern as for expressions.

Except for the leakage, the non-instrumented rules are mostly
standard; hence we only discuss the parts related to leakage. An
assignment instruction produces a leakage ℓ𝑑 := ℓ𝑒 composed of
the leakage generated during the evaluation of the expression 𝑒

and the one generated during the evaluation of the assignment
𝑑 := 𝑣 . The leakage of a sequence is composed of the leakage of
each of its components. For conditionals, the leakage is if𝑏 (ℓ𝑒 , ℓ𝑐𝑏 ),
so it contains the leakage ℓ𝑒 generated by the evaluation of the
condition, the value 𝑏 of the condition and the leakage ℓ𝑐𝑏 gener-
ated by the evaluation of the taken branch. We have two rules for
the evaluation of loop instructions. If the condition evaluates to
false, the loop exits, and the leakage is whilef (ℓ𝑒 ). Otherwise the
leakage is whilet (ℓ𝑒 , ℓ𝑐 , ℓ𝑤), where ℓ𝑐 is the leakage generated by
the body and ℓ𝑤 is the leakage obtained by iterating the loop. The
instrumented semantics is deterministic, both with respect to states
and with respect to leakages.

5.2 Leakage transformers
The (partial) syntax of leakage transformers is shown in Figure 7.
Naturally, the syntax distinguishes between leakage transformers
for expressions (𝜏𝑒 ) and instructions (𝜏). Informally, leakage trans-
formers are functions that take a source leakage and return a target
leakage. This intuition is made formal using two interpretations
⟦𝜏𝑒⟧ℓ𝑒𝑒 (for expressions) and ⟦𝜏⟧ℓ (for instructions). Their formal
definitions are provided Figure 8.

We start by explaining the syntax and semantics of leakage
transformers for instructions. First, observe that many (but not
all) compilation passes are structure-preserving and are defined
recursively on the structure of the program. For such passes, the
compilation of instruction consists of applying a transformation on
its sub-expressions and sub-instructions. In this case, the leakage
of the resulting instruction will also have the same structure as the
source leakage, and only its sub-components will be modified. To
account for these cases, the syntax of leakage transformer includes
a constructor per instruction. This constructor will recursively tra-
verse leakage without modifying its structure and only applying
the transformation on the sub-leakages. The sub-transformations
are themselves described using leakage transformers. For example,
the leakage transformer 𝜏𝑑 := 𝜏𝑒 will expect a leakage of the form
ℓ𝑑 := ℓ𝑒 and will apply its sub-transformers to the sub-leakages
so that the resulting leakage will be of the form ⟦𝜏𝑑⟧ℓ𝑑 := ⟦𝜏𝑒⟧ℓ𝑒 .
For conditional instructions, the leakage transformer if (𝜏𝑒 , 𝜏𝑡𝑡 , 𝜏𝑓𝑓 )
is built from leakage transformers for the condition and for each

branch. Notice that only 𝜏𝑡𝑡 or 𝜏𝑓𝑓 will be used to transform the leak-
age (depending on which branch will be taken, but this cannot be
known at compile-time). It is the interpretation of ⟦if (𝜏𝑒 , 𝜏𝑡𝑡 , 𝜏𝑓𝑓 )⟧
that selects which leakage transformer should be used. The con-
structors seq (for sequence) and while (for loop) work similarly.

In addition, we have leakage transformers corresponding to a
change in the control flow of a program. The first transformer of
this kind is remove which is used when an instruction is removed,
e.g. in dead-code elimination. Assume that we have a program
of the form 𝑖; 𝑐 , let 𝑐 ′ and 𝜏 be the code and leakage transformer
obtained by the compilation of 𝑐 . Assume that the compiler is able
to statically prove that the instruction 𝑖 is redundant, then the
compiler will remove it and the compilation of 𝑖; 𝑐 will be 𝑐 ′. The
leakage of the 𝑖; 𝑐 (resp. 𝑐 ′) is of the form ℓ𝑖 ; ℓ𝑐 (resp. ℓ𝑐′ ). In this
case, the leakage transformer for 𝑖; 𝑐 can be remove;𝜏 . The remove
will throw away ℓ𝑖 and then 𝜏 will be used to transform ℓ𝑐 into ℓ𝑐′ .

The transformer ceval𝑏 is used when a conditional instruction
is replaced by one of its branches. This is typically used when the
compiler replaces an instruction if 𝑒 then 𝑐𝑡𝑡 else 𝑐 𝑓𝑓 by 𝑐𝑏 when
the value of 𝑒 is statically known to be equal to 𝑏.

We also have leakage transformers corresponding to loop un-
rolling and inlining of function calls. They are not described here
for space reasons. Another kind of leakage transformer is when the
compiler replaces one instruction by a sequence of instructions, as
in the instruction-selection pass of the Jasmin compiler. We will
provide more explanation of them in section 5.4.

We now turn to leakage transformers for expressions. Broadly
speaking, these transformers work similarly. We have a leakage
transformer that is used for recursion (𝜏1

𝑒 , . . . , 𝜏
𝑛
𝑒 ), • produces the

constant leakage •, and id is used when the compiler does not
modify the expression, so its leakage remains the same. We also use
two other leakage transformers 𝜋𝑖 and 𝜏1

𝑒 ◦𝜏2
𝑒 . The first allows access

to sub-leakage, and the second allows to compose leak transformers.
The following table illustrates their usage with small examples
based on constant propagation on expressions:

Expression Leakage Leakage
source target transformer source target
0 × 𝑒 0 • (•, ℓ) •
0 + 𝑒 𝑒 𝜋2 (•, ℓ) ℓ

𝑒1 + 𝑒2 𝑒 ′1 + 𝑒
′
2 (𝜏1

𝑒 , 𝜏
2
𝑒 ) (ℓ1, ℓ2) (ℓ ′1, ℓ

′
2)

𝑒1 + 𝑒2 𝑒 ′2 𝜏2
𝑒 ◦ 𝜋2 (ℓ1, ℓ2) ℓ ′2

In the second line, the sub-expression 𝑒 is not modified, so the leak-
age transformer is a projection. In the third line, the addition is kept,
and both sub-expressions are transformed, so we use a structural
leakage transformer to combine the leakage transformers corre-
sponding to the sub-expressions. In the fourth line, the addition
is removed (as in the second line), and the second sub-expression
is recursively transformed, so we compose a projection with the
leakage transformer for the sub-expression.

5.3 Formal statement
The correctness proof of leakage transformers is stated as follows.
For each source program 𝑝 , if the compilation succeeds and pro-
duces target program 𝑝 and leakage transformer 𝜏 , then for every
instrumented execution of the source producing a leakage ℓ then
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𝜏𝑒 ::= • empty
| (𝜏𝑒 , . . . , 𝜏𝑒 ) map
| id identity
| 𝜋𝑖 proj
| 𝜏𝑒 ◦ 𝜏𝑒 composition
| . . . . . .

𝜏 := 𝜏𝑒 := 𝜏𝑒 assign
| if (𝜏𝑒 , 𝜏, 𝜏) cond
| while(𝜏𝑒 , 𝜏) while
| 𝜏 ;𝜏 sequence
| remove remove
| ceval𝑏 𝜏 cond-eval
| . . . . . .

Figure 7: Leakage Transformers

⟦𝑖𝑑⟧ℓ𝑒𝑒 = ℓ𝑒 ⟦•⟧ℓ𝑒𝑒 = •

⟦𝜏1⟧ℓ𝑒𝑒 = ℓ′𝑒

⟦𝜏1 ◦ 𝜏2⟧ℓ𝑒𝑒 = ⟦𝜏2⟧ℓ
′
𝑒
𝑒

⟦𝜋𝑖⟧(ℓ1,...,ℓ𝑛 )𝑒 = ℓ𝑖

⟦𝜏𝑖⟧ℓ𝑖𝑒 = ℓ′𝑖

⟦(𝜏1, . . . , 𝜏𝑛)⟧(ℓ1,...,ℓ𝑛 )𝑒 = (ℓ′1, . . . , ℓ′𝑛)

⟦𝜏𝑑⟧
ℓ𝑑
𝑒 = ℓ′

𝑑
⟦𝜏𝑒⟧ℓ𝑒𝑒 = ℓ′𝑒

⟦𝜏𝑑 := 𝜏𝑒⟧ℓ𝑑 :=ℓ𝑒 = ℓ′
𝑑

:= ℓ′𝑒

⟦𝜏𝑒⟧ℓ𝑒𝑒 = ℓ′𝑒 ⟦𝜏𝑏⟧ℓ𝑏 = ℓ′
𝑏

⟦if (𝜏𝑒 , 𝜏𝑡𝑡 , 𝜏𝑓𝑓 )⟧if𝑏 (ℓ𝑒 ,ℓ𝑏 ) = if𝑏 (ℓ′𝑒 , ℓ′𝑏 )

⟦𝜏⟧ℓ𝑏 = ℓ′
𝑏

⟦ceval𝑏 𝜏⟧if𝑏 (ℓ𝑒 ,ℓ𝑏 ) = ℓ′
𝑏

⟦𝜏𝑒⟧ℓ𝑒𝑒 = ℓ′𝑒 ⟦𝜏⟧ℓ𝑐 = ℓ′𝑐 ⟦while(𝜏𝑒 , 𝜏)⟧ℓ𝑤 = ℓ′𝑤

⟦while(𝜏𝑒 , 𝜏)⟧whilet (ℓ𝑒 ,ℓ𝑐 ,ℓ𝑤 ) = whilet (ℓ′𝑒 , ℓ′𝑐 , ℓ′𝑤 )

⟦𝜏𝑒⟧ℓ𝑒𝑒 = ℓ′𝑒

⟦while(𝜏𝑒 , 𝜏)⟧whilef (ℓ𝑒 ) = whilef (ℓ′𝑒 )

⟦𝜏𝑖⟧ℓ𝑖 = ℓ′𝑖
⟦𝜏1; . . . ;𝜏𝑛⟧ℓ1 ;. . . ;ℓ𝑛 = ℓ′1; . . . ; ℓ′𝑛 ⟦remove⟧ℓ = {}

Figure 8: Semantics for leakage transformers

the instrumented execution of the target program is defined and
produces a target leakage, which is equal to the leakage obtained
by applying the leakage transformer to the source leakage.

Theorem 5.1 (Instrumented correctness).

𝑝 : 𝑠 ⇓ℓ 𝑠 ′ =⇒ 𝑝 : 𝑠 ⇓⟦𝜏⟧ℓ 𝑠 ′.

The correctness of the leakage transformer is proved on top of
the correctness proof of the Jasmin compiler. Jasmin compiler is
formally verified and hence proves that each compiler pass behaves
as it is supposed to behave. The structure of the correctness proof
follows the design of the compiler itself. Since the instrumented
semantics produces leakages that are deterministic in nature. The
proof boils down to proving that the function ⟦.⟧.𝑒 and ⟦.⟧. com-
putes the correct leakage based on the source leakage.

5.4 Proof outline
The Jasmin compiler and its correctness proof are structured as a
sequence of passes —depicted on Figure 1. Each pass is indepen-
dently verified and comes with its dedicated correctness theorem
and proof: we update them all to turn them into instrumented
correctness.

These passes modify the compiled program in various ways: they
may preserve its structure or change it; they may even completely
remove some instructions. The leakage transformers are designed
to cover all these kind of transformations. We concisely designed
the leak transformers so that a single leakage transformer can serve
the purpose of multiple compiler passes.

Most of the passes preserve or reduce the leakage; they can be
justified using the leakage transformers presented in section 5.2.
Notable exceptions are the two final passes (linearization and as-
sembly generation); they produce unstructured programs (that do
not follow the syntax described in this paper) and therefore require
a specific set of leakage transformers. Nonetheless, even though
the correctness proofs of these passes are a bit tricky; extending
them to the instrumented semantics is relatively easier.

In the rest of this section, we put the emphasis on two special
cases: instruction selection3 and stack allocation.

5.4.1 Instruction selection. Instruction selection (a.k.a. lowering)
replaces high-level constructions by low-level instructions that are
closer to the assembly. For example, the instruction 𝑥 := 𝑥+𝑦 will be
transformed into (. . . ,CF, . . . , 𝑥) := ADD(𝑥,𝑦), i.e. the + operator
is replaced by a low level instruction ADD that will perform the
addition (but also computes extra data like the carry flag). The
assignment of the flags will create extra • leakage that has to be
justified.

Similarly the instruction if 𝑥 < 𝑦 then 𝑐1 else 𝑐2 (where < is the
unsigned comparison) is transformed into the sequence:

. . . ,CF, . . . := CMP(𝑥,𝑦);
if CF then 𝑐1 else 𝑐2

From the point of view of the leakage transformation, this means
that the leakage generated by the expression 𝑥 < 𝑦 needs to be used
to create the leakage for the CMP instruction. Therefore this pass
relies on leakage transformers that can, on one hand split leakages
into smaller parts and, on the other hand, construct fresh leakages
from these parts and from the • constant.

The last part of this section discusses a pass that needs even more
sophisticated leakage transformers that can create fresh leakage
out of run-time values.

5.4.2 Stack allocation. Stack allocation allocates some variables
into the stack memory and replaces the corresponding accesses
(read and write) by memory operations (load and store). In this
process, it may create new leakage.

Given a scalar variable 𝑥 that is allocated at constant offset 𝑜𝑥
in the stack, a read from this variable will be compiled into the
memory load [sp+𝑜𝑥 ] where sp is the register containing the value
of the stack pointer. At the source level, the leakage of 𝑥 is • and it
become ∗(𝑣sp + 𝑜𝑥 ) at the target level4 (where 𝑣sp is the value of

3This pass is also referred to as lowering in the Jasmin literature.
4The target leakage is in fact ( (•, •), ∗(𝑣sp + 𝑜𝑥 )) .
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the stack pointer). So the target leakage depends on the constant
𝑜𝑥 and also on the dynamic value of sp.

The case of an array variable 𝑎 allocated at constant offset 𝑜𝑎
is similar. The expression 𝑎[𝑒] is compiled into [sp + 𝑜𝑎 + 𝑛 × 𝑒]
where 𝑛 is the size of an array element. At source level 𝑎[𝑒] leak
[𝑣𝑒 ], where 𝑣𝑒 is the value of 𝑒 , and the target level the leakage is
∗(𝑣sp + 𝑜𝑎 + 𝑛 × 𝑣𝑒 ). So in this transformation, the target leakage
will further depend on the value 𝑣𝑒 that can be recovered from the
source leakage.

These two examples show that in contrast to the other passes,
the target leakage cannot be computed using the source leakage
only. The initial value of the stack pointer is needed. This will have
some consequence for the preservation of constant-time that is ex-
plained in section 6.1: the interpretation of the leakage transformer
is parameterized by the value of the stack pointer, which must be
considered as a public input.

To capture these transformations, the syntax of leakage trans-
formers includes a transformer that can construct new leakages,
and their semantics depends on the value of the stack pointer.

6 APPLICATIONS
This section describes how to leverage correct leakage transform-
ers: we first, prove that the Jasmin compiler always preserves the
constant-time property then show an application to cost analysis.

6.1 Constant-time preservation
The cryptographic constant-time (CCT) property is an effective
counter-measure against practical side-channel attacks. It has been
shown in practice that compilers do not always preserve this prop-
erty and introduce vulnerabilities in otherwise secure programs. We
formally prove that the Jasmin compiler is not subject to this issue:
even though it transforms the control-flow and introduces memory
accesses, it will neither remove counter-measures nor introduce
sensitive information flows.

We have already described informally that preservation of CCT
is a corollary of instrumented correctness (Theorem 5.1). However,
that informal description elided a few practical issues that must be
taken into account when implementing our methodology in the
Jasmin compiler:
• some states are unsafe, i.e., the semantics of a program is a
partial function;
• source and target languages (and states) are different;
• the interpretation of leakage transformers is parameterized
by parts of the initial state (namely the value of the stack
pointer);
• compiler correctness has side conditions (namely, there should
be enough free memory in the initial target state to allocate
the local variables).

We address these issues by using a definition of CCT that is mean-
ingful even in the presence of unsafety and by suitably lifting the
indistinguishability relation to target states.

As described in Section 2.3, the CCT property is parameterized
by an indistinguishability relation on initial states and defined as
follows: the leakage is the same for all indistinguishable states. We
strengthen this definition to imply that indistinguishable states are
safe to execute in constant-time programs.

Definition 6.1 (Cryptographic constant-time). Aprogram 𝑝 is cryp-
tographic constant-time w.r.t. the insdistinguishability relation · ∼ ·
when the following holds:

∀𝑠1 𝑠2, 𝑠1 ∼ 𝑠2 =⇒ ∃𝑠 ′1 𝑠
′
2 ℓ, 𝑝 : 𝑠1 ⇓ℓ 𝑠 ′1 ∧ 𝑝 : 𝑠2 ⇓ℓ 𝑠 ′2.

Moreover, in order to state and prove preservation of the CCT
property, we must define the indistinguishability relation between
target states. In the case of the Jasmin compiler, an initial source
state is made of a memory𝑚 and a list of values ®𝑣 (the arguments of
the main function), whereas a target state is made of a memory𝑚
and a register bank 𝑟 . Fortunately, the source state can be computed
from the target state: the memory is kept, and the values of the
arguments are read in the appropriate registers. This computation
is consistent with the compiler correctness statement. Therefore we
can relate target states by relating the corresponding source states.
The target leakage usually depends on the initial value of the stack
pointer: we must thus require that this value is public, i.e., equal
in indistinguishable states. Finally, to ensure that indistinguishable
states are safe, we have to ensure that the side condition to the
compiler correctness theorem is discharged. In a nutshell, this yield
the following definition.

Definition 6.2 (Indistinguishability of target states). Given an
equivalence relation · ∼ · between source states, its lifting to target
states ·∼̄· is defined as follows.We say that two target states (𝑚1, 𝑟1)
and (𝑚2, 𝑟2) are indistinguishable, and note (𝑚1, 𝑟1)∼̄(𝑚2, 𝑟2), when
all the following conditions hold:
• corresponding initial source states are indistinguishable:
(𝑚1, ®𝑣1) ∼ (𝑚2, ®𝑣2) (where ®𝑣1, resp. ®𝑣2, denotes the program
arguments extracted from register bank 𝑟1, resp. 𝑟2);
• stack pointers agree: 𝑟1 [sp] = 𝑟2 [sp];
• there is enough free stack space to allocate the local variables
in both memories𝑚1 and𝑚2.

We can finally prove that ourmodified compiler always preserves
the CCT property.

Theorem 6.3 (CCT-Preservation). Given a source program 𝑝

that is CCT w.r.t. ∼, if the Jasmin compiler succeeds and produces a
target program 𝑝 and a leakage transformer 𝜏 , then the target program
is CCT w.r.t. ∼̄.

Remark that no optimization has been disabled, no compilation
pass has been fundamentally modified; this means that the original
Jasmin compiler also preserves the constant-time property.

6.2 Cost analysis
The run-time cost of a program — computational complexity, worst-
case execution time (wcet), peak memory usage, etc. — crucially
depends on low-level details hence on decisions made at compile-
time: control-flow transformations and code layout, register spilling
and memory layout of local variables, instruction selection and
scheduling. . . Therefore a precise static cost analysis must be carried
near the end of the compilation pipeline (ideally on assembly code
or even at binary level). However, the estimation of the run-time
cost relies on loop bounds or other flow information (description
of infeasible paths, for instance), either inferred by static analysis
or provided by the programmer as annotations. In both cases, these
flow facts are provided at the source level: programmers are more
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inclined towards annotating source code than target code, and static
analyses are much more precise and efficient when they can rely
on high-level abstractions from the source language.

This section describes how leakage transformers can reconcile
these conflicting requirements: they are a sound way to transport
source-level cost information down to the assembly level. More pre-
cisely, we first introduce a cost model as an abstraction of leakage
and show how to deduce “cost transformers” from leakage trans-
formers. Finally, we show how these cost transformers’ soundness
enables us to use the results of a source-level static analysis at the
assembly level.

6.2.1 Cost models. In order to formally reason about the cost of
program execution at either source or target level, we model it as
the number of times each instruction is executed. In other words, a
cost is a finite map from program points to natural numbers. For
unstructured intermediate languages (linear, assembly), a program
point is simply a position in the program text (i.e., a natural number);
for structured languages, we define a language of paths to describe
positions in the abstract syntax tree. Note that the usual order on
natural numbers can be lifted pointwise to costs so that the set of
costs forms a partial order.

The cost is defined bymeans of a function that evaluates a leakage
trace into a cost map. Here again, the structure of the leakage is
beneficial: it enables to perform this evaluation without looking at
the program.

Definition 6.4 (Cost). Each intermediate language is equipped
with an tocost (·) function that, given a leakage, computes a cost,
i.e., a count for each program point. Given a execution 𝑝 : 𝑠 ⇓ℓ 𝑠 ′,
its cost is tocost (ℓ).

6.2.2 Cost transformers. Program transformations found in com-
pilers introduce, remove, or reorder instructions according to the
program being compiled: they do not make up instructions out of
the blue. Even though predicting how many time each instruction
emitted by a compilation pass will be executed at run-time is usu-
ally not possible, the execution counts for target instructions can
be related to execution counts for the corresponding source execu-
tions. More precisely, for most transformations found in the Jasmin
compiler, the target costs can be precisely described by relating
each target program point to one basic block of the source program.
This link is to be interpreted as follows: “the instruction at this
program point is executed in the target execution as many times
as that basic block is executed in the source execution”. For some
compilation passes, unfortunately, we have to relax this property
and interpret the predicted target count as an upper bound. As
discussed in Section 7.3, this is not an issue in practice5.

Definition 6.5 (Cost transformer). A cost transformer maps target
program points to source basic blocks. It, therefore, enables to
translation of a source-level cost into a target-level cost. A leakage
transformer can be seen as a cost transformer by an interpretation
function ⟦·⟧·𝜅 ; such an interpretation is sound when for all (source)
leakage ℓ and matching leakage transformer 𝜏 , the following holds

5The study of more general languages for cost transformers that could improve the
precision or cover more program transformations is left as further work.

(where ⊑ is a partial order on costs):

tocost
(
⟦𝜏⟧ℓ

)
⊑ ⟦𝜏⟧tocost(ℓ)𝜅 . (1)

The interpretation of a leakage transformer as a cost transformer
is defined from the leakage transformer only: it neither depends on
the program nor on the compilation pass.

Cost transformers are monotone; therefore, they can be soundly
composed. Indeed, given two leakage transformers 𝜏1 and 𝜏2 cor-
responding to two successive compilation passes, the following
inequality holds:

tocost
(
⟦𝜏2⟧⟦𝜏1⟧ℓ

)
⊑ ⟦𝜏2⟧⟦𝜏1⟧tocost(ℓ )𝜅

𝜅 .

It means that a sequence of two leakage transformer can be inter-
preted as a sound cost transformer by composing their interpreta-
tion6.

The actual definition of the interpretation functions (for each of
the three languages of leakage transformers described in this work)
is tedious but unsurprising; the details, as well as the soundness
proofs, can be found in the supplementary material.

As already mentioned, the cost transformers for all but one pass
are exact: the soundness relation (equation (1) above) holds even
when the partial order on costs ⊑ is equality. For loop unrolling,
however, it only holds for the slightly less precise pointwise order-
ing of counters (with natural numbers ordered as usual).

6.2.3 Source-level cost analysis of target programs. In order to il-
lustrate the use of cost transformers, we have implemented a static
analysis of the cost of Jasmin source programs. It infers linear re-
lations between counters, auxiliary variables that are incremented
at the beginning of basic blocks: their final values describe how
many times each basic block has been executed. This method has
already been used in the context of wcet analysis [22]. The value
analysis that is part of the safety checker of Jasmin programs can
be directly used to infer these relations. Notice that the analysis
result, in particular, includes loop bounds.

The soundness of the cost transformer makes it possible to di-
rectly interpret these linear relations about source counters as linear
relations between upper bounds on target counters. We illustrate
this fact by a brief example.

The source code shown on the left of Figure 9 is excerpted from
an implementation of the Poly1305 message authentication code
(MAC). Given a message of arbitrary length and a 32-byte one-time
key, it computes a 16-byte tag that can be used to authenticate
the message. The message is processed in 16-byte chunks in a
first loop; in case the message length is not evenly divisible by
sixteen, the last bytes are finally processed in a second loop. For
the sake of clarity, only this logic is reproduced in the code shown
on the figure; in the actual implementation, the three control-flow
constructions are spread in three distinct functions. The right of
Figure 9 shows the (complete) control-flow graph (CFG) of this
function at the end of the compilation. The leakage transformer
produced by the compilation of this program interpreted as a cost
transformer, proves (among others) that the basic-block labelled A

6The result of this semantic composition may not be the most precise cost transformer,
but we leave the study of syntactic composition of leakage transformers as future
work.
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fn poly1305_ref3(reg u64 out in len k) {
reg u64 j;
// . . .
while (len >=u 16) { // A

// . . .
len -= 16;

}
if len >u 0 {

// . . .
j = 0;
while (j <u len) { // B

// . . .
j += 1;

}
// . . .

}
// . . .

}

A

B

Figure 9: Source code (left, excerpt) and target control-flow
graph (right) of a MAC function (Poly1305)

(resp. B) in the CFG is executed as most as many times as the source
basic-block equally labelled.

The source-level cost analysis infers the following properties,
where𝐴 (resp. 𝐵) is the number of times that the first (resp. second)
loop body is executed, and 𝐿 is the message length (initial value of
the variable len): 0 ⩽ 𝐴, 0 ⩽ 𝐵 ⩽ 15, and 𝐿 = 16 · 𝐴 + 𝐵.

The soundness of the cost transformers implies that these prop-
erties also apply at the assembly level (where 𝐴 and 𝐵 are upper
bounds rather than exact counts). Using these properties, one can
compute at assembly level a more basic notion of cost, for instance,
the number of executed instructions.

7 EVALUATION
In this section, we evaluate our methodology in terms of proof
effort, compile-time overhead, run-time overhead and precision of
the source-level reasoning. We study the following questions.
• How much does the Jasmin compiler (programs & proofs)
need to be modified and expanded to support our methodol-
ogy?
• How much compile-time overhead is incurred by the gener-
ation of explicit leak-transformers?
• Is the code generated by our modified compiler different
than before modifying the compiler?
• How precise is a cost analysis (of the target program) per-
formed at the source level?

7.1 Proof effort
The Jasmin compiler (branch master) features sixteen compilation
passes that are implemented or validated in Coq; they manipulate
five different intermediate languages. Three languages have the
same syntax; three languages have the same semantics for expres-
sions. There are roughly 30 thousands lines of Coq.

In order to reason about non-functional properties like cryp-
tographic constant-time and cost, all semantics have been instru-
mented with leakages as described in Section 5. Accordingly, all
passes are modified to precisely describe how they transform the
leakage. There is a single pass that preserves leakages (elimination

Table 1: Compilation times (s) of selected implementations
of cryptographic primitives with (LT) and without (Ref.)
computation of leak-transformers

Name Ref. (s) LT (s)
xxhash64 0.06 0.06
poly1305 (ref) 0.06 0.06
gimli (avx2) 0.09 0.11
chacha20 (ref) 0.16 0.18
poly1305 (avx2) 0.29 0.32
gimli (ref) 0.8 0.9
bash (avx2) 2.4 2.6
blake2b 2.8 3.0
chacha20 (avx2) 3.9 4.0
bash (ref) 6.5 7.4
curve25519 7.6 8.3

of dead functions) for which there are no modifications to the im-
plementation of the program transformation. Note that for passes
that are implemented as an external oracle and validated in Coq, the
validator infers the correct leak transformer: the program analyses
and transformations that are implemented in OCaml have not been
modified at all.

The correctness statements for each pass have been strengthened,
and their proofs updated accordingly. This is tedious but relatively
straightforward. The main theorems presented in Section 6 are
stated once for the compiler as a whole: they are simple corollaries
of the correctness theorem. Their proofs are, therefore a few lines
long. Globally, the changesmade to the Coq filesmodify 5 thousands
lines and add 6 thousands new lines (i.e., a 20 % increase).

The definitions and proofs related to cost and cost transformers
are built on top of the leakages and leakages transformers only:
they are independent of the number and complexity of the compi-
lation passes. In particular, if the compiler is extended with new
passes, no changes are required to this part. Only extensions of the
language of leak transformers would need to be reflected on the
cost transformers.

7.2 Compiler behavior
When compiling a program, in order to produce accurate leak-
transformers, the compiler computes more data; moreover, the
modifications described above may imply that the generated code
is different. In order to measure the compile-time overhead of the
computation of leak-transformers, we compile a set of Jasmin pro-
grams with two versions of the Jasmin compiler (with and without
our modifications), measure the total compilation time and compare
the generated assembly code.

We have run this experiment on a machine running Ubuntu
Linux on an Intel® Xeon® processor (E5-2687W v3 @ 3.10GHz) us-
ing a sample of Jasmin implementations of cryptographic primitives
from various sources (examples available with the compiler, case
studies in published works, private communication with Jasmin
programmers). The compilation times are reported in Table 1. The
compile-time overhead is about 10 %. The run-time overhead is zero
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Table 2: Run-time cost analysis

Program Input size Static bound Measured cost
(octets) (instr.) (kcycles)

Gimli (ref.) 48 2790 0.87
Gimli (avx2) 48 492 0.21
Bash (ref.) 192 9556 2.8
Bash (avx2) 192 1603 0.78
xxhash64 19 80 0.02
xxhash64 255 345 0.11
xxhash64 65 521 55 383 16.5
poly1305 (ref.) 255 726 0.28
poly1305 (ref.) 65 521 151 616 64.6
blake2b (ref.) 255 5397 1.9
blake2b (ref.) 65 521 1 132 483 384

(not shown in the table): the generated assembly is identical with
the two versions of the compiler.

7.3 Cost analysis
With accurate leak-transformers at hand, a range of source-level rea-
soning becomes possible. In this section, we combine (as described
in Section 6.2) a source-level cost analysis with the leak transform-
ers in order to statically compute upper-bounds of run-time cost.
We then compare the results with actual run-time measurements.
The purpose of this experiment is to assess the precision of the leak
transformers and not to design a cycle-accurate cost analysis for x86
assembly programs. In particular, our cost model is fairly simple: we
count the (total) number of executed instructions. Nonetheless, we
are confident that using precise hardware models, it is possible to
use the leak transformers in a similar way to build source analyses
that yield precise results about target programs.

7.3.1 Methodology. We have selected a sample of representative
Jasmin programs (permutations, hash functions, etc.). For each
program, the source-level cost analysis computes a set of linear
constraints between execution counters (at the granularity of basic-
blocks) and initial values of the (main) function arguments. The
leak transformers produced at compile-time yield cost transformers
that map each target instruction to a source basic block. From this
cost-transformer, we compute a symbolic upper bound of the total
run-time cost: an affine combination of source execution counters.

We then fix some run-time parameters (typically, the size of the
inputs) and solve the resulting integer linear program: we search
for the maximal cost satisfying the constraints. This gives a static
numerical estimate of the cost for the given input size.

We also run each compiled program on inputs of the correspond-
ing sizes and measure7 the number of executed instructions and
elapsed CPU cycles. Elapsed time is estimated by a Rust program
that calls the Jasmin functions; it is built on top of Criterion.rs, a
“statistics-driven micro-benchmarking tool”.

7.3.2 Results. The results of this experiment are shown in Table 2.

7by reading Linux performance counters on a laptop running Linux 5.4 on a Intel®
Core™ i7-8665U CPU @ 1.90GHz.

param int N = 10;
fn inc(reg u64 x) −→ reg u64 {

inline int i;
reg u64 r;
r = x;
for i = 0 to N {

if x == i {
r += 1; // A

}
}
return r;

}

Exact cost: 21 +𝐴 instructions; computed bound: 21 + 10 · 𝐴.

Figure 10: Precision loss in cost transformation

The first two programs (Gimli and Bash) are permutations: their
inputs have fixed sizes. Both come in two versions: a reference
and one optimized for platforms with avx2 vectorized instruc-
tions. The next two programs (xxhash64 and poly1305) are a (non-
cryptographic) hash algorithm and a MAC function (respectively).
In both cases the control-flow structure is slightly complex as there
are two different paths for short and long messages, and there are
many loops to handle the input message in chunks of decreasing
sizes. The last program (blake2b) is a cryptographic hash algorithm
that can produce digests of any size between 1 and 64 bytes. It is
also made of several loops to first consume the message and then
produce the digests of the appropriate size. In all cases, the mea-
sured number of executed instructions is exactly predicted by the
static analysis (not repeated in the table). The measurement shows
that the processor executes between 2 and 4 instructions per cycle.

7.3.3 Remark on precision loss. As mentioned in Section 6.2, the
cost-transformer for loop unrolling may loose some precision, as
illustrated in the (artificial) example depicted in Figure 10. When
the loop is unrolled, its body is replicated, and each copy is executed
as many times as the original loop. However, at most, a single copy
of the nested basic block (labeled A) is executed, but the compiler
cannot predict which one, hence the loss of precision, assuming
that each copy may be executed.

Such pathological cases do not occur in practice as conditions
that are nested in unrolled loops and involve the loop counters are
usually resolved at compile-time.

8 RELATEDWORK
Secure compilation, Information Flow and CCT. Abate et al. [1]

provides a systematic classification and comparison of the different
notions of secure compilation. This work is primarily foundational;
it does not target any specific compiler and does not address the
problem of deploying secure compilers. To address the latter prob-
lem, Namjoshi and Tabajara [20] develop a translation validation
framework for hyperproperties, and illustrate its application to
several common optimizations.

The interaction between information-flow and compilation has
been studied extensively. One line of work considers information
flow types preserving compilers, see e.g. [9, 13]. In short, these
works define information-flow type systems for source and target
programs and show that typable source programs are transformed
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into typable target programs. Sison and Murray [24] follow a dif-
ferent approach: they define an information flow type system for
source programs and develop secure refinement methods to prove
that typable source programs are compiled into programs that sat-
isfy (timing-sensitive) non-interference. Their proof is mechanized
using the Isabelle proof assistant.

Our work is more closely related to approaches that focus on
CCT and its variants. We have already mentioned prior works
on the preservation of CCT [7, 8]; both works have mechanized
proofs. Many other works propose an alternative approach based
on compiler-assisted mitigations against timing side-channels [2,
10, 12, 15, 26]; some of these works come with correctness, but the
proofs are not mechanized.

The aforementioned works are cast in a classic model of exe-
cution. Motivated by Spectre and other recent micro-architectural
attacks, Guarnieri and Patrignani [19] show (in)security of several
common compiler-based mitigation techniques, including fence in-
sertion and speculative load hardening, against these attacks. Their
analysis is based on speculative variants of CCT. In concurrent
work, Vassena et al. [25] design and implement a provably sound
automated compiler-based method for mitigating the BCB (bound
check bypass) variant of Spectre attacks. The correctness of their
approach is not machine-checked.

Cost. There is a vast body of work on automatically analyzing
program efficiency. In particular, the fields of WCET (Worst-Case
Execution Time) and cost analyses aim to provide estimates (upper
and lower bounds) of program execution. These estimates use a
broad range of cost models. One of the simplest models is the in-
struction counting model considered in this paper. However, many
works in the WCET community also consider very precise cost
models that account for underlying micro-architectural features.
Analyses are either carried on source programs (prevailing for cost
analysis) and low-level programs (prevailing for WCET), but only
a few works connect the costs of source and target programs. One
of the first works in this direction is [16], which develops a time
bounds-certifying compiler from a safe dialect of C to assembly.
However, their work focuses on upper rather than exact bounds
for assembly programs and follows the principles of certifying
compilation. In contrast, our work is more focused on transferring
the results of source-level cost analysis. In this sense, our work is
more closely related to the CerCo compiler [5], which connects a
cost analysis for source programs with the cost of target programs.
Their work goes beyond the goals of our present study, as their
compiler provides, via annotations in the source program, realistic
estimates of the time and space cost of basic blocks of the target
programs. A similar approach is taken by Carbonneaux et al. [11]
to provide upper bounds on stack usage of assembly programs gen-
erated by the CompCert verified compiler. In a functional setting,
Paraskevopoulou and Appel [21] prove preservation of stack space
by closure conversion, whereas Gómez-Londoño et al. [18] prove a
similar result for the CakeML compiler. To the exception of [16],
all these works support mechanized correctness proofs using proof
assistants.

9 CONCLUSION
We have introduced new tools: structured leakage and leakage
transformers for reasoning about the compilation of non-functional,
quantitative, properties such as cryptographic constant-time and
cost. Using our tools, we have provided the first mechanized proof
that the Jasmin compiler preserves CCT, and a provably correct
method for computing the cost of assembly programs. In the future,
we would like to consider other observational non-interference
properties and to richer execution models that accommodate spec-
ulative and out-of-order execution.
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