
Non-Interactive, Secure Verifiable Aggregation
for Decentralized, Privacy-Preserving Learning

Carlo Brunetta1, Georgia Tsaloli1, Bei Liang2, Gustavo Banegas3, and
Aikaterini Mitrokotsa1,4

1 Chalmers University of Technology, Gothenburg, Sweden
{brunetta, tsaloli}@chalmers.se

2 Beijing Institute of Mathematical Sciences and Applications, Beijing, China
lbei@bimsa.cn

3 Inria and Laboratoire d’Informatique de l’Ecole polytechnique, Institut
Polytechnique de Paris, Palaiseau, France

gustavo@cryptme.in
4 University of St. Gallen, School of Computer Science,

St. Gallen, Switzerland
katerina.mitrokotsa@unisg.ch

Abstract We propose a novel primitive called NIVA that allows the
distributed aggregation of multiple users’ secret inputs by multiple un-
trusted servers. The returned aggregation result can be publicly verified
in a non-interactive way, i.e. the users are not required to participate
in the aggregation except for providing their secret inputs. NIVA allows
the secure computation of the sum of a large amount of users’ data and
can be employed, for example, in the federated learning setting in order
to aggregate the model updates for a deep neural network. We imple-
ment NIVA and evaluate its communication and execution performance
and compare it with the current state-of-the-art, i.e. Segal et al. pro-
tocol (CCS 2017) and Xu et al. VerifyNet protocol (IEEE TIFS 2020),
resulting in better user’s communicated data and execution time.

Keywords: secure aggregation, privacy, verifiability, decentralization

1 Introduction

Smartphones, wearables and other Internet-of-Things (IoT) devices are all inter-
connected generating a lot of data, that often need to be aggregated to compute
statistics in order to improve services. These improvements are often achieved
by relying on machine learning (ML) algorithms, that simplify the prediction
and/or inference of patterns from massive users’ data. Given the high volume
of data required, the ML paradigm creates serious privacy and security con-
cerns [15,20] that require a careful security analysis in order to guarantee the
minimization of private information leakage while, concurrently, allowing the ag-
gregation of the collected users’ data. The growing storage and computational
power of mobile devices as well as the increased privacy concerns associated with



sharing private information, has led to a new distributed learning paradigm, fed-
erated learning (FL) [21]. FL allows multiple users to collaboratively train learn-
ing models under the orchestration of a central server, while providing strong
privacy guarantees by keeping the users’ data stored on the source, i.e. the user’s
devices. More precisely, the central server collects and aggregates the local pa-
rameters from multiple users’ and uses the aggregated value in order to train a
global training model. The server plays the role of a central trusted aggregator
that facilitates the communication between multiple users and guarantees the
correct execution of the model update which, often, in current FL frameworks,
is obtained by summing the individual users’ parameters.

The shared model must be kept confidential since it might be employed to in-
fer secret user information or disrupt the correct model update, e.g. a malicious
server might bias the final result according to its preferences [15,20,27,35,20,13].
Furthermore, when the aggregation process is orchestrated by a single central
server, this may lead to single points-of-failure. Our aim is to maximise the dis-
tributed nature of the learning process by: (i) decentralizing the aggregation
process between multiple servers; (ii) providing the ability to verify the correct-
ness of the computed aggregation; and (iii) guaranteeing the confidentiality of
the users’ inputs. Fig. 1 depicts the described scenario.

Nurse

P
u
b
li
sh

User Verification Value

Publish

y1

y2

y3

y1

y2

y3

y1

y2

y3

y1

y2

y3

y1

y2

y3

Is the
Result

Correct?
???

Figure 1: Several users delegate the secure aggregation of their inputs to inde-
pendent servers. A threshold amount of server’s outputs is necessary to publicly
reconstruct and verify the resulting aggregated value.

2



1.1 Our Contributions

We define NIVA: a Non-Interactive, decentralized and publicly Verifiable se-
cure Aggregation primitive inspired by the verifiable homomorphic secret sharing
primitive introduced by Tsaloli et al. [33] but differs in both the construction and
hypothesis. NIVA achieves decentralization by allowing the users to split their
secret inputs and distribute the shares to multiple servers; while only a subset
(threshold) of these servers need to collaborate in order to correctly reconstruct
the output. Furthermore, NIVA allows the public verification of the computed ag-
gregated value and contrary to existing work [25,34], NIVA is non-interactive,
i.e. the users participate in the aggregation by releasing the appropriate messages
and their participation is not required for the rest of the aggregation process.
This allows NIVA to simplify the handling of users’ dropping out from the aggre-
gation process, which is a complex problem to handle in the case of interactive
protocols. We further discuss possible optimizations to the verification algorithm
as well as extensions useful for realistic applications, e.g. verification of users’
shares, multiple executions and how to introduce a differentially private [10]
mechanism. We implement NIVA, evaluate the communication costs, execution
time, and perform a detailed experimental analysis. Furthermore, we compare
our primitive with the current state-of-the-art, i.e. the secure aggregation pro-
tocols PPML and VerifyNet proposed by Segal et al. [25] and Xu et al. [34]
correspondingly. NIVA optimizes the users’ output and execution time making it
multiple orders of magnitude more suitable than PPML and VerifyNet for the
FL setting that requires a big amount of users, i.e. more than 105 users.

1.2 Related Work

This work addresses a general problem that lies in the intersection of “decentral-
ized aggregation” and “verifiable delegation of computations”.

Secret Sharing. A threshold secret sharing (SS) scheme allows a user to split
a secret x into multiple shares (x1, x2, . . . , xm) that are distributed to different
servers. Whenever at least a threshold number t of servers collaborates by ex-
changing their shares, they are able to reconstruct the original secret. If any
malicious adversary controls less than this threshold, it is impossible to recon-
struct x. The first instantiation was provided by Shamir [26]. In the following
decades, several publications [1,4,14,17] expanded Shamir’s concept by providing
schemes with additional properties such as verification and homomorphism.

An additive homomorphic secret sharing (additive HSS) allows the server to
aggregate several shares coming from different users into a single one which, when
correctly reconstructed, will allow the reconstruction of the sum of the original
secrets. Besides Shamir’s, the first instance of such a scheme was proposed by
Benealoh [2] and many other variations can be found in the literature [3,11,18].

Generally, the verifiability property describes the possibility to verify that
some specific value is “correctly evaluated”. Whenever considering this property
in the context of SS, it must be specified if (a) the server wants to verify the

3



user’s received shares; or (b) anyone wants to check if the servers’ reconstructed
secret is indeed the correct one. Chor et al. [8] provided the first SS scheme
that is able to identify the existence of a “cheating” user, while Stadler [28]
extended it in order to detect both cheating users and servers. Tsaloli et al. [32]
proposed a verifiable homomorphic secret sharing (VHSS) scheme in which the
verifiability property holds by assuming the user’s honesty in generating the
shares but allows the verification of the server’s aggregation correctness. In this
paper, we consider the properties of verifiability and homomorphic secret sharing
as considered by Tsaloli et al. [32,31]. Our primitive NIVA is inspired by Tsaloli
et al.’s primitive [33], however, it is based on a completely different construction.

Federated Learning and Cryptography. The setting posed by federated learning
(FL) is similar to the aggregation problems we consider. Concretely, every time
the FL model must be updated, the users send their parameters to the server that
must provide the final aggregated model back. The work in Bonawitz et al. [25]
proposes a secure aggregation protocol, called PPML, that achieves security and
privacy with a major focus on maintaining high efficiency. This solution provides
a procedure to correctly handle users’ drop-outs, i.e. users that are unable to
correctly terminate the protocol. In the same spirit, Xu et al. [34] introduced Ver-
ifyNet, an (conceptually) extended version of PPML that introduces a public ver-
ification procedure to check the correctness of the aggregation process. However,
these solutions are based on a single central server, and they are therefore suscep-
tible to single points-of-failure, i.e. if the central server crashes, the whole proto-
col aborts. To avoid this, it is required to distribute/decentralise the role of the
central server, e.g. by either introducing threshold cryptographic primitives be-
tween multiple aggregators [29] or by completely decentralising the aggregation
using a blockchain [5]. Recently, privacy-preserving aggregation problems have
gained substantial attention in the past few years [30,13,34,5,29,27,23,25]. The
solutions presented achieve different properties related to security, privacy, and
verifiability by considering specific cryptographic assumptions, security models,
and/or application requirements. Our primitive allows to publicly verify the cor-
rectness of the final output, handles the users’ drop-outs as well as possible
servers’ failure by distributing the aggregation computation among several in-
dependent servers.

1.3 Paper Organisation

Sec. 2 contains the necessary preliminaries used throughout the paper. Sec. 3
introduces our primitive NIVA, its security and verifiability properties, further
discusses additional properties and compares to the related work. Sec. 4 describes
NIVA’s implementation details and showcases relevant performance statistics,
e.g. execution timing and bandwidth usage in relation to scaling the amount of
users and servers. Furthermore, we compare our implementation with Segal et
al. [25] and Xu et al. [34] for similar evaluation parameters.

4



2 Preliminaries

In this section, we show the definitions used throughout the paper.
Denote with Pr [E] the probability that the event E occurs. Let the natural

number be denoted by N, the integer number ring with Z, the real number field
with R and the positive ones with R+. Let [a, b] denote intervals between a and
b. Let |X| ∈ N indicate the cardinality of the set X and rk (A) the rank of the

matrix A. Let
∑y∈Y
x∈X be the sum

∑
x∈X,y∈Y , respectively

∏y∈Y
x∈X is

∏
x∈X,y∈Y .

Theorem 1 (Rouché-Capelli [6]). An n-variable linear equation system Ax =
b has a solution ⇔ rk (A) = rk (A|b) where A|b is the augmented matrix, i.e. A
with appended the column b.

Key Agreement. Let G be a cyclic group of order p prime with generator g,
e.g. groups based on elliptic curves [16]. Let us report the Diffie-Hellman key
agreement [9] and the related assumptions.

Assumption 1 (Diffie-Hellman Assumptions) Consider a cyclic group G
of prime order p with generator g and a, b ∈ [0, p−1]. Given elements (A,B) =(
ga, gb

)
, the computational Diffie-Hellman problem (CDH) requires to

compute the element gab ∈ G. The decisional Diffie-Hellman problem (DDH)
requires to correctly distinguish between (g, A,B, gab) and (g, A,B, gc) for some
random c ∈ [0, p−1]. We assume the advantage of solving the CDH and the DDH
problems to be negligible, i.e. εCDH < negl and εDDH < negl.

Definition 1 (Diffie-Hellman Key Exchange). The Diffie-Hellman key
agreement scheme is defined with the following algorithms:
– KSetup(λ) → pp: the setup algorithm takes as input the security parameter

and outputs the public parameters pp which contains a prime p, the descrip-
tion of a cyclic group G of order p and a generator g for the group G.

– KGen(pp) → (sk, pk): the key generation algorithm samples the secret key
sk∈[0, p−1] and computes the public key pk=gsk. It outputs (sk, pk) =

(
sk, gsk

)
.

– KAgree(ski, pkj) → sij: the key agreement algorithm takes as input a secret

ski and public key pkj=gskj and outputs the shared secret sij=pkskij =gskj ·ski .
The scheme is said to be correct if for any pp ← KSetup(λ), (ski, pki) ←
KGen(pp) and (skj , pkj)← KGen(pp), it holds that KAgree(ski, pkj) = sij = sji =
KAgree(skj , pki). The scheme is said to be secure if for any pp ← KSetup(λ),
and keys (ski, pki)← KGen(pp,Ui), (skj , pkj)← KGen(pp,Uj), it holds that any
PPT adversary A has negligible probability to compute sij from (pki, pkj) which
reduces to the CDH Assumption 1.

For our primitive, we use the shared secret sij as a pseudorandom integer
despite being an element of the group G. This is possible by considering a generic
hash function H mapping the group G to the integers Z, which translates sij into
a pseudorandom integer. To avoid heavy notation, we denote this output as sij .

Additionally, consider the discrete logarithm problem for a subset I, i.e. the
dLog problem where the solution is contained in a subset I ⊆ [0, p−1].

5



Assumption 2 (Discrete Logarithm in Subset I Problem) Consider G a
cyclic group of prime order p with generator g and a subset I ⊆ [0, p−1]. Given
y ∈ G, the discrete logarithm problem for the subset I (dLogI) requires
to find the value x ∈ I such that gx = y.

In order to assume the dLogI problem to be computationally hard, the cardi-
nality of I needs to be “big enough”,i.e. if |I| > 2160 then the kangaroo Pollard’s
rho algorithm [24] has complexity ∼280 which we consider to be infeasible.

Secret Sharing. We report the additive homomorphic SS scheme’s definition.

Definition 2 (Additive Homomorphic SS Scheme). Let n,m, t ∈ N such
that 0 < t < m. For each i ∈ [1, n], let xi ∈ F be the secret input of the user
Ui for some input space F. Consider the set of servers S = {Sj}j∈[1,m]. Define
(t,m)-threshold additive homomorphic secret sharing scheme as:
– SS.Share

(
xi, t,S

)
→ {xij}j∈[1,m] : given the secret input xi, the threshold

value t and the list of servers S, the share generation algorithm outputs a
list of m shares xij for j ∈ [1,m], one for each server Sj.

– SS.Eval
(
{xij}i∈[1,n]

)
→ yj : given as input a set of shares xij for the same

server Sj, the evaluation algorithm outputs an aggregated share yj.
– SS.Recon

(
t, {yj}j∈T

)
→ y : given as input the threshold value t and a list

of shares yj for a subset of servers Sj ∈ T ⊆ S such that |T | > t, the
reconstruction algorithm outputs the reconstructed secret y.
A (t,m) additive homomorphic secret sharing scheme is said to be correct if

for all i ∈ [1, n], any choice of secrets xi ∈ F, for all the shares SS.Share
(
xi, t,S

)
→

{xij}j∈[1,m], aggregated shares SS.Eval
(
{xij}i∈[1,n]

)
→ yj, for all the servers’ re-

construction subset T such that |T | > t, it holds that the reconstructed value
SS.Recon

(
t, {yj}j∈T

)
→ y is equal to y =

∑n
i=1 xi.

A (t,m) additive homomorphic secret sharing scheme is secure if for all i ∈
[1, n], any secrets xi ∈ F, for all the shares SS.Share

(
xi, t,S

)
→ {xij}j∈[1,m], ag-

gregated shares SS.Eval
(
{xij}i∈[1,n]

)
→yj, an adversary A that controls a servers’

subset T ⊆ S, such that |T | ≤ t, is unable to obtain the reconstructed value y.

3 NIVA

In this section, we describe the decentralised aggregation problem’s setting as
well as the security and privacy requirements and how they must guarantee
public verifiability of the aggregated computations. We instantiate NIVA and
define the security and verifiability properties.

Consider n users Ui, each owns a secret input xi, and m servers Sj . The goal
is to distribute the computation of the sum of the users’ secret inputs’

∑n
i=1 xi

between the m servers of which only a designed threshold amount t+ 1 ≤ m of
servers is required to obtain the aggregated value. Formally:

Definition 3. Let the algorithms (Setup,SGen,Agg,Ver) defined as:

6



– Setup(λ) → (skI , pkI) : given the security parameter λ, the setup algorithm
provides a keypair (skI , pkI) associated to the user/server I.

– SGen
(
xi, skUi , t, {pkSj}

m
j=1

)
→
(
pkUi , {x̂ij}

m
j=1, Ri, {τij}mj=1

)
: given a secret in-

put xi ∈ I and the user’s Ui secret key skUi , the designed threshold amount
0 < t < m−1 and the list of servers’ public keys {pkSj}

m
j=1 from which we

obtain the list of servers’ identities {Sj}mj=1, the share generation algorithm
outputs the shares x̂ij, additional information Ri and the verification coeffi-
cients τij to be either shared with the server Sj or publicly released.

– Agg
(
{(pkUi , x̂ij , Ri)}i∈N , skSj

)
→ (yj , πj , RSj , ρj) : given a set of public keys,

shares and additional information (x̂ij , Ri, pki) for a list of users Ui in the
subset N ⊆ [1, n], the aggregation algorithm outputs the partial evaluation
yj, a partial verification proof πj and additional information (RSj , ρj).

– Ver
(
t, {τij}j∈Mi∈N ,

{
(yj , πj , RSj , ρj)

}
j∈M

)
→
{
y,⊥} : given the threshold t, a

set of servers M with t+1≤ |M | ≤m, given partial evaluations, proofs and
additional information (yj , πj , RSj , ρj) and a set of verification coefficients

{τij}j∈Mi∈N for a subset of users N , the verification algorithm outputs the ag-
gregated value y =

∑
i∈N xi if the servers correctly computed the aggregation

of their shares. Otherwise, it outputs ⊥.

The primitive must be correct, i.e. the verification always outputs y =∑
i∈N xi whenever using correctly aggregated outputs computed from correctly

generated shares of the secrets {xi}i∈N . Additionally, the users’ input must
be secure. The security experiment describes a realistic scenario in which the
adversary A must recover the secret inputs xi, which are randomly sampled by
the challenger C. The amount of servers that A is able to compromise is at most t
since this servers’ subset is not enough for using the secret share’s reconstruction
algorithm SS.Recon. Our experiment includes the single-user input privacy, i.e.
whenever A requests a challenge for n = 1, the property holds for the input xi.

Definition 4 (Security). Consider the primitive of Def. 3 to be defined be-
tween n users and m servers and threshold t. Let A be a PPT adversary that
maliciously controls t servers, w.l.o.g. {Sj}tj=1. Consider the security experiment
Expsec (A):

1. For every j ∈ [1, t], the challenger C executes Setup(λ) and sends to A all the
corrupted servers’ key-pairs (skSj , pkSj ), while for the remaining j ∈ [t+1,m]
servers, it returns only the non-corrupted server’s public key pkSj .

2. A outputs to C the number of users n to be challenged on.
3. C executes Setup(λ) and generates the key pairs (skUi , pkUi) and randomly

samples an input xi ∈ I for each user Ui.
4. C computes the shares SGen

(
xi, skUi , t, {pkSj}

m
j=1

)
and outputs to A the com-

promised servers’ shares
(
pkUi , {x̂ij}

t
j=1, Ri

)
plus all the verification values

{τij}mj=1 for each i ∈ [1, n].
5. A outputs the aggregated secret y∗.
6. If y∗ =

∑n
i=1 xi, the experiment outputs 1, otherwise 0.

The primitive is said to be secure if Pr [Expsec (A) = 1] < negl.

7



Finally, we require to publicly verify the computations of the servers, i.e.
the servers must provide a proof of the correct computation. In other words, the
verifiability property requires the impossibility for an adversary A to force the
correct verification of a wrong aggregated value. This property holds whenever
there exists at least one honestly computed partial evaluation, regardless of the
number of servers that A compromises. On the other hand, whenever A controls
more than t servers, the security property does not hold, thus obtaining a po-
tentially verifiable primitive but definitely not secure. For this reason, we design
the verifiability experiment in which, before obtaining the correct partial evalu-
ations, A is allowed to select the subset of inputs N∗ to be aggregated and, after
receiving the non-compromised partial evaluations, A outputs tampered partial
evaluations for the compromised servers and selects a set M∗ of evaluations to
be used in the verification challenge. The adversarial set M∗ must contain at
least one honestly generated partial evaluation and it is used to describe the
realistic attack scenario in which the adversary denies the verifier to obtain all
the partial evaluations but at least an honest one is present.

Definition 5 (Verifiability). Consider the primitive of Def. 3 to be defined
between n users, m servers and threshold t. Let A be a PPT adversary that
maliciously controls k < m servers, w.l.o.g. {Sj}kj=1. Consider the experiment
Expver (A):

1. For every j ∈ [1, k], the challenger C executes Setup(λ) and sends to A all the
corrupted servers’ key-pairs (skSj , pkSj ), while for the remaining j ∈ [k+1,m]
servers it returns only the non-corrupted server’s public key pkSj .

2. A outputs to C the number of users n to be challenged on.

3. C executes Setup(λ) and generates the key pairs (skUi , pkUi) and randomly
samples an input xi ∈ I for each user Ui.

4. C computes the shares SGen
(
xi, skUi , t, {pkSj}

m
j=1

)
and outputs to A the com-

promised servers’ shares
(
pkUi , {x̂ij}

k
j=1, Ri

)
plus all the verification values

{τij}mj=1 for each i ∈ [1, n].

5. A provides to C the list of inputs N∗ to be challenged.

6. For each non compromised server Sj where j ∈ [k+1,m], C returns to A the
Sj’s partial evaluations (yj , πj , RSj , ρj)← Agg

(
{(pkUi , x̂ij , Ri)}i∈N∗ , skSj

)
.

7. A outputs tampered evaluations {yj∗, πj∗, RSj
∗, ρj

∗}kj=1.

8. A provides to C the list of verifying servers M∗ in which there exists a non-
compromised server Sl ∈M∗ with l ∈ [k + 1,m].

9. The experiment computes the verification algorithm

Ver
(
t, {τij}j∈M

∗

i∈N∗ ,
{

(yj , πj , RSj , ρj)
}
j∈M∗

)
→ y∗

and outputs 1 if y∗ 6= y =
∑
i∈N∗ xi, otherwise 0.

The primitive is said to be verifiable if Pr [Expver (A) = 1] < negl.

8



3.1 NIVA Instantiation

In this section, we provide our instantiation of Def. 3, called NIVA. In a nutshell,
NIVA incorporates into the Shamir’s SS scheme of Sec. 2, the usage of a key-
agreement scheme between the users and the servers. This allows the creation
of a “proving value” used during the verification phase which must be correctly
computed by the servers or, otherwise, the verification process fails.

Definition 6 (NIVA). Let (KSetup,KGen,KAgree) be a key agreement (Def. 1)
with public parameters pp← KSetup(λ), defined over a cyclic group G with prime
order p. Let n ∈ N be the number of users Ui and m ∈ N be the number of
servers Sj. Let I be a secret input’s space closed under summation such that the
dLogI problem of Assumption 2 is hard. Let N ⊆ [1, n] be a users’ subset and
M ⊆ [1,m] a servers’ subset. We refer to Sj ∈M with j ∈M . Let t ∈ N be the
evaluation threshold such that 0 < t < m. Define NIVA with algorithms:

– Setup(λ) → (skI , pkI) : given the security parameter λ, the setup algorithm
executes KGen(pp) and outputs the result (skI , pkI) =

(
skI , g

skI
)
. The Setup

algorithm is evaluated by each user Ui and server Sj. All the public keys of
the servers {pkSj}

m
j=1 are publicly released.

– SGen
(
xi, skUi , t, {pkSj}

m
j=1

)
→
(
pkUi , {x̂ij}

m
j=1, Ri, {τij}mj=1

)
: given a secret in-

put xi ∈ I and the user’s Ui secret key skUi , the designed threshold amount
0 < t < m−1, the list of servers’ public keys {pkSj}

m
j=1 from which we obtain

the list of servers’ identities {Sj}mj=1, the share generation algorithm instan-
tiates a (t,m)-threshold additive homomorphic secret sharing scheme by exe-
cuting SS.Share

(
xi, t, {Sj}mj=1

)
which returns the shares x̂ij for all j ∈ [1,m].

Then, Ui uses its secret key skUi to compute the shared secrets w.r.t. each
server Sj, i.e. KAgree(skUi , pkSj ) → sij. The algorithm samples a random
value ri ∈ [0, p−1], computes Ri = gri , and the verification coefficients

τij = pkxiSj ·R
sij
i = gskSjxi+ri·sij (1)

The algorithm outputs
(
pkUi , {x̂ij}

m
j=1, Ri, {τij}mj=1

)
. Each user publicly re-

leases the values {τij}mj=1.

– Agg
(
{(pkUi , x̂ij , Ri)}i∈N , skSj

)
→ (yj , πj , RSj , ρj) : given a set of public keys,

shares and random values (x̂ij , Ri, pki) for a list of users Ui in the subset N ⊆
[1, n], the aggregation algorithm performs all the key-agreements between Ui
and Sj as KAgree(skSj , pkUi)→ sij, the partial evaluation and proofs as:

yj ← SS.Eval
(
{x̂ij}i∈N

)
πj =

∑
i∈N

sij

RSj =
∏
i∈N

Ri ρj =
∏
i∈N

R
−

∑k 6=i
k∈N skj

i

(2)

The algorithm outputs (yj , πj , RSj , ρj).

– Ver
(
t, {τij}j∈Mi∈N ,

{
(yj , πj , RSj , ρj)

}
j∈M

)
→
{
y,⊥} : given the threshold t, a

set of servers M with t+1≤ |M | ≤m, given partial evaluations and proofs

9



(yj , πj , RSj , ρj) and a set of verification coefficients {τij}j∈Mi∈N for a subset of
users N , the verification algorithm verifies that for any Sj ,Sj

′ ∈M , it holds
RSj = RSj ′ = R. If not, Ver outputs ⊥. Otherwise, the algorithm verifies that
for all the subsets Ti ⊆ M of t+1 partial evaluations, the reconstruction
algorithm SS.Recon

(
t, {yj}j∈Ti

)
returns always the same output y. If not,

Ver outputs ⊥. Otherwise, the algorithm computes

i∈N∏
j∈Ml

τij
?
=

 ∏
j∈Ml

pkSj

y

·
∏
j∈Ml

Rπj · ρj (3)

for all the |M | subsets Ml ⊂ M such that |Ml| = |M | − 1. If any check
fails, then the verification algorithm outputs ⊥. Otherwise, the verification
algorithm outputs y.

Corollary 1. NIVA allows the definition of the algorithm:

– OptVer
(
t, {τij}j∈Mi∈N ,

{
(yj , πj , RSj , ρj)

}
j∈M

)
→
{
y,⊥} : given the threshold

t, a set of servers M with t+1≤ |M | ≤m, given partial evaluations and proofs

(yj , πj , RSj , ρj) and a set of verification coefficients {τij}j∈Mi∈N for a subset of
users N , the verification algorithm verifies that for any Sj ,Sj

′ ∈M , it holds
RSj = RSj ′ = R. If not, Ver outputs ⊥. Otherwise, the algorithm verifies
that for all the subsets Ti ⊆M of t+1 partial evaluations, the reconstruction
algorithm SS.Recon

(
t, {yj}j∈Ti

)
returns always the same output y. If not, the

algorithm outputs ⊥. Otherwise, the algorithm computes, for each Sl ∈M :∏
i∈N

τij
?
=
(
pkSl

)y ·Rπl · ρl
If any check fails, then the algorithm outputs ⊥. Otherwise, it outputs y.

Remark 1. The main difference w.r.t. Ver is that OptVer takes the |M | different
subsets Ml to be defined as servers’ singletons, i.e. Ml = {Sl} and |Ml| = 1. This
reduces the amount of computation needed to verify Eq. (3). The possibility
of using OptVer might depend on application constraints, e.g. the server Agg’s
outputs might not be directly published but further aggregated by a third party
before reaching the final public verification.

NIVA’s is correct for both the verification algorithms Ver and OptVer.

Proof (NIVA Correctness). For any list of key pairs Setup(λ)→ (skI , pkI), for any
party I being a user Ui or server Sj for i ∈ [1, n], j ∈ [1,m], for any user choice of
secret inputs xi ∈ [0, p−1], for all computed shares SGen

(
xi, skUi , t, {pkSj}

m
j=1

)
→(

pkUi , {x̂ij}
m
j=1, Ri, {τij}mj=1

)
, and for all the aggregated values (yj , πj , RSj , ρj)

computed as Agg
(
{(pkUi , x̂ij , Ri)}i∈N , skSj

)
, for any subset of users N , for any

servers’ subset M ⊆ S such that |M | ≥ t + 1, the verification algorithm, i.e.

Ver
(
t, {τij}j∈Mi∈N ,

{
(yj , πj , RSj , ρj)

}
j∈M

)
, finds that for any Sj ,Sj

′ ∈M , and for

10



any subset Ti of t + 1 partial evaluations, SS.Recon
(
t, {yj}j∈Ti

)
always returns

the same y from the correctness of the secret sharing scheme.
Finally, consider Eq. (1), the verification algorithm correctly verifies

i∈N∏
j∈Ml

τij =

i∈N∏
j∈Ml

pkxiSjR
sij
i =

 ∏
j∈Ml

pkSj


∑
i∈N xi ∏

i∈N
R

∑
j∈Ml

sij

i

=

 ∏
j∈Ml

pkSj

y ∏
i∈N

R
∑j∈Ml
k=i skj+

∑j∈Ml
k∈N,k 6=i skj−

∑j∈Ml
k∈N,k 6=i skj

i

=

 ∏
j∈Ml

pkSj

y

·
∏
i∈N

R
∑j∈Ml
i∈N sij

i

(∏
i∈N

Ri

)−∑j∈Ml
k∈N,k 6=i skj

(4)

=

 ∏
j∈Ml

pkSj

y

·
∏
j∈Ml

(∏
i∈N

Ri

)∑
i∈N sij ∏

j∈Ml

ρj =

 ∏
j∈Ml

pkSj

y

·
∏
j∈Ml

Rπjρj

for each subset Ml ⊂ M with |Ml| = |M | − 1. The verification algorithm
outputs y, thus proving the correctness of the scheme.

Trivially, the same is true whenever considering the subsets Ml = {Sl}, i.e.
the verification executed by the OptVer algorithm. ut

Theorem 2 (NIVA Security). If we assume the negligible probability εdLogI of
solving the dLogI problem for the input subset I and the additive homomorphic
secret sharing scheme’s security, then NIVA is secure (Def. 4).

Proof. Let dLogI be a hard problem and assume the existence of an adversary
A able to break the ExpsecNIVA (A) experiment of Def. 4.

The reduction R receives a dLogI challenge Z = gz, creates the m servers’
key-pairs (skSj , pkSj ) and provides the corrupted to A. A replies with the amount
of challenged user n. The reduction therefore obtains the n users’ key-pairs
(skUi , pkUi) and samples n− 1 secret inputs {xi}ni=2 such that

∑n
i=2 xi = 0.

Of these secrets, the reduction correctly computes the shares, for i ∈ [2, n],
as
(
pkUi , {x̂ij}

t
j=1, Ri

)
← SGen

(
xi, skUi , t, {pkSj}

m
j=1

)
.

Regarding i = 1, R samples m uniformly random values x̂1j to be proposed
as shares, correctly randomly sample r1 and computes R1 = gr1 . R computes
the shares secrets s1j and verification values τ1j computed as:

τ1j = ZskSj ·Rs1j
1 ∀ j ∈ [1,m] (5)

Observe that the computed τ1j are equal to the correct verification coefficient
obtained by using x1 = z as the secret input, formally:

τ1j = ZskSj ·Rs1j
1 = pkzSj ·R

s1j
i ∀ j ∈ [1,m] (6)

The reduction returns toA the shares
(
pkUi , {x̂ij}

t
j=1, Ri

)
and all the verification

coefficients {τij}mj=1 for each i ∈ [1, n].

11



Observe that the adversary A is unable to reconstruct the final aggregated
value y =

∑n
i=1 xi since it only posses t shares out of the necessary t+1 required

by the security of the secret sharing scheme. In other words, the t randomly
generated shares of U1 cannot be used to (even) identify that they are not
correctly computed since the provided communication and a correct execution
have the same distribution. At this point, A replies with the guess y∗ which is
forwarded by R to the dLogI challenger and observe that:

y∗ =

n∑
i=1

xi = x1 +

n∑
i=2

xi = z + 0 = z

If A has a non-negligible advantage to win the ExpsecNIVA (A) experiment, R
has the same non-negligible advantage to break dLogI which is assumed to be
hard, which is a contradiction. Thus Pr [ExpsecNIVA (A) = 1] = εdLogI < negl. ut

Theorem 3 (NIVA Verifiability). Consider n users and m servers, with
threshold t such that the order p of the cyclic group G used for the key-agreement
does not divide m−1. Let A be a PPT adversary that maliciously controls k < m
servers, w.l.o.g. {Sj}kj=1. It holds that NIVA is verifiable (Def. 5).

Proof. The adversary A provides N∗, it is unable to reconstruct the final aggre-
gated value y =

∑n
i=1 xi since it only posses t shares out of the necessary t+ 1

required by the security of the secret sharing scheme. Additionally, the choice of
N∗ does not have any security impact and it is only necessary for the challenger
C to correctly compute the partial evaluations.

Consider {yj , πj , RSj , ρj}kj=1 the honestly computed partial evaluations and

observe that A’s tamper {yj∗, πj∗, RSj
∗, ρj

∗}kj=1 must, when reconstructed, ob-
tain the final output y∗ to be y +∆ for any subset of t+1 partial evaluation in
M∗ for some ∆ 6= 0. We can denote the tampers as, for any j, πj

∗ = πj + εj and
ρj
∗ = ρj · ξj . Observe that, all the RSj

∗ must be equal to the correct R obtained
from the mandatory uncorrupted server S ∈M∗.

Let us focus on Eq. (3), and observe that for the subset Ml,

i∈N∏
j∈Ml

τij =

 ∏
j∈Ml

pkSj

y∗

·
∏
j∈Ml

Rπj
∗
ρj
∗

=

 ∏
j∈Ml

pkSj

y

·
∏
j∈Ml

Rπjρj ·

 ∏
j∈Ml

pkSj

∆

·
∏
j∈Ml

Rεjξj
∗

where, in order to be correctly verified, it must hold, for each Ml,∏
j∈Ml

pk∆Sj ·R
εjξj

∗ = 1 ∀Ml ⊂M (7)

where each Ml can be split into the corrupted and the honest servers subsets,
i.e. Ml

∗=Ml∩
{
Sj
}
j∈[1,k] and M̃l=Ml∩

{
Sj
}
j∈[k+1,m]

where µl = |Ml
∗|. We can

12



therefore expand Eq. (7) and obtain the system of equations:



∏
j∈M1

∗

pk∆Sj ·R
εjξj

∗ =
∏
j∈M̃1

pk−∆Sj

...∏
j∈Mµ

∗

pk∆Sj ·R
εjξj

∗ =
∏
j∈M̃µ

pk−∆Sj

(8)

which can be seen as |M | = µ equations in |Ml
∗| ≤ µ−1 variables, i.e. A sees

pk∆SjR
εjξj

∗ as the variable gxj for each Sj ∈ Ml
∗. This system has the same

solution space as the one obtained by considering the exponents. In other words,



∏
j∈M1

∗

gxj =
∏
j∈M̃1

g−∆skSj

...∏
j∈Mµ

∗

gxj =
∏
j∈M̃µ

g−∆skSj

⇐⇒



∑
j∈M1

∗

xj =
∑
j∈M̃1

−∆skSj

...∑
j∈Mµ

∗

xj =
∑
j∈M̃µ

−∆skSj

(9)

Denote the vector of variables with x = (x1, . . . , xµl) and the known coeffi-
cient with b = (−skSj∆)µj=µl .By properly ordering the servers, Eq. (9) form the
non-homogeneous linear system

(
Dµl

1µl(µ−µl)

)
· x =

(
1
(µ−µl)
µl

D(µ−µl)

)
b (10)

which can be seen as the homogeneous system

Dµ ·
(
x
b

)
=

(
Dµl 1

(µ−µl)
µl

1µl(µ−µl) D(µ−µl)

)
·
(
x
b

)
= 0µ (11)

where 1cr denotes a matrix of r rows and c columns with all entries equal to
one, 0µ is the zero vector of length µ, idk is the identity matrix and Dk = 1kk−idk,
i.e. a k-square matrix of ones and null diagonal. Observe that we can verify the
existence of a solution for Eq. (10) by using the Rouché-Capelli’s theorem of
Thm. 1. To do so, let us first prove that Dk always has maximum rank.

Lemma 1. Consider the matrices defined over a field of characteristic p prime.
For any k ∈ N, k > 0 and such that p does not divide k − 1, Dk has maximum
rank, i.e. Dk is invertible.

13



Proof. By reducing the matrix via the Euclidean algorithm,

Dk =⇒



1 1 . . . 1 0

1 . . .
... 0 1

...
...

...

1 0
... . . . 1

0 1 . . . 1 1


=⇒



1 1 . . . 1 0

0 . . .
... −1 1

...
...

...
0 −1 0 . . . 0
0 1 . . . 1 1

 =⇒


1 1 . . . 1 0
0 1 . . . 0 −1
...

. . .
...

0 0 . . . 1 −1
0 0 . . . 0 (k − 1)


Thus, the determinant of Dk is det(Dk) = k − 1. Since p does not divide k − 1,
we have that det(Dk) 6= 0 thus Dk is invertible and of maximum rank. ut

By applying the lemma, we conclude that the system of Eq. (11) has rank µ while
the one in Eq. (10) has rank µl = |Ml

∗| ≤ µ−1 < µ. Rouché-Capelli guarantees
that no solution exists that satisfies the system. Thus, A is unable to provide
a correct tamper, thus NIVA is verifiable and Pr [ExpverNIVA (A) = 1] = 0. ut

Observe that in the definition of the verification algorithm Ver, the servers’
subset M always allows the existence of |M | = µ different subsets Ml ⊂M with
|Ml| = µ−1 obtained as Ml = M \ {Sl} for each Sl ∈M . We require M to have
at least t+ 1 elements in order to execute the SS reconstruction SS.Recon.

Corollary 2. NIVA achieves verifiability even in the case of using OptVer as the
verification algorithm.

Proof. The OptVer’s correspondent system of Eq. (10) is(
idµl

0µl(µ−µl)

)
· x =

(
0µl(µ−µl)
id(µ−µl)

)
b

where 0cr denotes a matrix of r rows and c columns with all entries equal to zero.
This can be seen as the homogeneous system

idµ ·
(
x
b

)
=

(
idµl 0µl(µ−µl)

0µl(µ−µl) id(µ−µl)

)
·
(
x
b

)
= 0µ

Since the identity function has maximal rank, the two systems have different
ranks and, exactly as in the proof, Rouché-Capelli guarantees us that no solution
exists thus A is unable to provide a correct tamper. ut

3.2 Additional Properties and Extensions

In this subsection, we discuss how additional properties presented by concurrent
primitives/protocols [32,33,34,25] apply to NIVA.

Multiple Executions. In the FL setting, it is required to execute the aggre-
gation multiple times. NIVA is described for a single execution but the same
generated key pairs allow the execution of multiple aggregation/verification calls.

14



Decentralization. Several published protocols [34,25] do not consider this de-
centralized scenario making their server a single point-of-failure, i.e. if the cen-
tralized server halts, the protocol cannot be terminated. NIVA decentralizes the
aggregation between several servers and only a predefined amount is necessary for
the correct reconstruction and verification of the output. This allows to overcome
realistic problems such as “complete the aggregation in case of failing servers”
or introduce “responsibilities distribution”, i.e. the servers might be owned by
different independent entities and not by a single organisation.

Non-Interactivity and User Drop-Out. The aggregation problem discussed
in this section can be solved either with an interactive protocol or a non-
interactive primitive. The first allows the use of a “challenge-response” interac-
tion that facilitates the computation of more complex verification protocols but
introduces the users’ drop-out problem, i.e. the user might drop-out during
the communication thus are not able to finish the aggregation protocol, forcing
the servers to abort the protocol. To overcome this issue, the protocol must be
able to identify the drop-outs and recover the user’s information to complete the
aggregation or, if not possible, having a procedure for removing the user’s initial
participation. In a non-interactive solution, such as NIVA, a user cannot drop-out
since there is no interaction. A dropping user in the non-interactive communi-
cation is equivalent to a user that never participated. Thus any non-interactive
solution is trivially able to overcome the users’ drop-out problem. On the other
hand, interactivity allows to easily introduce input’s range proof [22,7,19], i.e.
a proof, generally in zero-knowledge, that allows the server to verify that the
values obtained are indeed related to the user’s secret input without revealing
it. It might be possible to transform these zero-knowledge protocols into non-
interactive proofs at the cost of introducing additional assumptions, e.g. the
random oracle model for the Fiat-Shamir’s transformation [12]. NIVA design’s
principle is simplicity with a small amount of assumption required; thus, allowing
a more general deployment for different application/security models.

Authentication and Publishing. In this work, we do not consider malicious
adversaries that are able to diverge from the correct communication. Similarly to
the non-interactivity discussion, it might be possible to prevent active attacks by
achieving communication authentication by, for example, force the registration of
the servers’ public keys on a public key infrastructure and using authenticated
communications, e.g. communicating over a TLS channel. Additionally, NIVA
requires the existence of an untamperable public “space” (e.g. a bulletin board)
in which the partial proofs τij to be used in the verification phase, will be stored.
These requirements must be carefully considered whenever NIVA is used in a
framework where active adversaries are a possibility.

Differential Privacy. Specific applications related to privacy preserving ag-
gregation require a higher-level of privacy, especially when multiple aggregation
outputs are published and from which it might be possible to infer information on
a specific user/group. This is the case study for differential privacy [10] and the
framework that implements it. Without entering tedious details, it is possible to

15



utilize NIVA for differential private and distributed aggregation since it is possi-
ble to introduce the correctly sampled noise by using the additive-homomorphic
property. The specific protocol for fairly and publicly generating the noise are
tangent to NIVA’s definition and to other abstract frameworks.

4 Implementation and Comparisons

In this section, we provide relevant statistics and performance measurements re-
trieved after implementing our primitive NIVA. We conclude by comparing NIVA
with the results obtained by Segal et al.’s protocol [25] and Xu et al.’s Veri-
fyNet [34]. NIVA is implemented as a prototype in Python 3.8.3 and we execute
the tests on MacOS 10.13.6 over a MacBookPro (mid 2017) with processor Intel
i5-7267U CPU @ 3.1GHz, with 16GB LPDDR3 2133MHz RAM, 256kB L2 cache
and 4MB L3 cache. The source code of our implementation is publicly released5.
For our experiments, the key agreement used is Diffie-Hellman over the elliptic
curve secp256k1 and the additive homomorphic SS is Shamir’s SS. The execution
time is expressed in milliseconds (ms) and the bandwidth in kilobytes (kB).

The NIVAprimitive is executed with respect to n users, m servers with the
threshold parameter t and µ denoting the size of the verification set M . The
total communication cost, i.e. users and servers’ output data, is expected to be
linearly dependent w.r.t. the numbers m and n, since each server has a constant
size output, while the users are in total communicating nm shares xij and
verification values τij . Fig. 2 reports the expected behaviour.

50

150

250

350

450

550

650

750

850

950

100 200 300 400 500

Users

T
o

ta
l 
D

a
ta

 C
o

m
m

u
n

ic
a

ti
o

n
 (

k
B

)

2

4

6

8

10
Servers

Figure 2: NIVA’s total communication bandwidth for a different number n of
users and m of servers and fixed t = 1 and µ = 2.

Consider the metrics for a single user U and a server S, depicted in Figures 3a
and 3b. As expected, U’s output data depends linearly on the amount of servers
m. The same applies for S’s bandwidth and execution time, since they are linear
w.r.t. the n users. Despite expecting S’s input data to be always constant when
considering different amount of servers and fixed n, our experiments present a

5 https://bitbucket.org/CharlieTrip/nivacode/src/main/

16

https://bitbucket.org/CharlieTrip/nivacode/src/main/


decreasing S’s data when increasing the amount of server. This is due to the
approximation introduced by the Python data-measuring package used.

0.5

0.7

0.9

1.1

1.3

1.5

1.7

2 4 6 8 10

Servers

U
s
e

r 
O

u
tp

u
t 

D
a

ta
 (

k
B

)

3

5

7

9

11

13

2 4 6 8 10

Servers

U
s
e

r 
O

u
tp

u
t 

T
im

e
 (

m
s
)

100

200

300

400

500
Users

(a) User’s data and computation time for a different number m of servers .

20

30

40

50

60

70

80

90

100

110

120

130

100 200 300 400 500

Users

S
e

rv
e

r 
In

p
u

t 
D

a
ta

 (
k
B

)

200

300

400

500

600

700

100 200 300 400 500

Users

S
e

rv
e

r 
In

p
u

t 
T

im
e

 (
m

s
)

2

4

6

8

10
Servers

(b) Server’s input data and timing per server for a different number n of users’.

Figure 3: User and server’s bandwidth and computation time performance.

As represented in Fig. 4b, the verification algorithm Ver has input data size
proportional to the number µ of servers used in the verification. By considering
the maximum verification set possible, Ver’s execution time increases quadrati-
cally in the number of users and servers. In Fig. 4a, we observe that the optimal
choice for µ is always µ = t+ 1. This is true because, for every µ ∈ [t+ 1,m], a
successful verification requires (1) µ checks of the form of Eq. (3); and (2)

(
µ
t+1

)
calls to SS.Recon. The first is proportional w.r.t. the parameters n and µ, but it
does not depend on t, while the latter has a maximal number of calls whenever
µ is near the integer 2(t + 1). This consideration suggests that it is optimal to
minimise the verification set size µ to be µ = t+1. Additionally, the optimized
verification algorithm OptVer of Corollary 1 is always faster than Ver, due to the
reduced amount of multiplications required during the verification of Eq. (3).

4.1 Comparison to Related Work

We compare the performance of our solution with Segal et al.’s PPML [25] and
Xu et al.’s VerifyNet [34] protocols. Segal et al.’s results are obtained from a
Java implementation running on an Intel Xeon E5-1650 v3 CPU @ 3.50GHz,
with 32 GB of RAM while, Xu et al.’s are obtained from an Intel Xeon E5-2620

17



10

15

20

25

30

35

2 4 6 8 10

M size Mu

V
e

ri
fi
c
a

ti
o

n
 D

a
ta

 (
k
B

)

0

5

10

15

20

25

30

35

40

45

50

55

2 4 6 8 10

Servers

V
e

ri
fi
c
a

ti
o

n
 T

im
e

 (
m

s
)

100

200

300

400

500
Users

(a) Ver input data size and computation time for a different number n of users ,
verification set’s size µ and amount of servers m.

0
5

10
15
20
25
30
35
40
45
50
55
60
65
70
75
80

1 2 3 4 5 6 7 8 9

Threshold t

V
e

ri
fi
c
a

ti
o

n
 T

im
e

 (
m

s
)

2

4

6

8

10
M size mu

0

10

20

30

40

50

2 3 4 5 6 7 8 9 10

M size mu

V
e

ri
fi
c
a

ti
o

n
 t

im
e

 (
m

s
) Algorithm

OptVer

Ver

(b) Ver’s computation time for different µ and t and comparison between Ver and
OptVer’s computation time for different µ (t = 1).

Figure 4: Communication cost and execution time for Ver and OptVer.

CPU @ 2.10GHz, 16GB RAM on the Ubuntu 18.04 operating system. Both of
them have not publicly released their implementations, thus, making it hard to
fairly compare the computation times. Additionally, since the considered related
works are designed as interactive protocols, we can only compare total band-
width/execution time and we will mainly focus on the user’s and verification
algorithm performance metrics since, in the FL scenario, the server enjoys high
computational power.

In both the PPML and VerifyNet experiments, the users provide secret vec-
tors of length K as input to the aggregation protocol and, additionally, the
entries of the vector might be of small size, e.g. our implementation represents
an integer with B = 36 bytes, while the vector entries considered in the PPML
protocol are b = 3 bytes long. To fairly compare, we repeatedly execute NIVA
K b
B times in order to achieve the same amount of aggregated value bytes. In

other words, we simulate the packing of a vector of small integers into a sin-
gle bigger integer, as described in the VerifyNet’s implementation [34]. PPML
assumes that the vector entries are of length b = 3 bytes, while VerifyNet was
tested on entries of the same size B as NIVA. Since NIVA is the only decentral-
ized primitive compared, we test it at the minimal distributed setting possible,
i.e. m = 2 servers both needed for the reconstruction, or threshold t = 1.

18



VerifyNet uses as standard vector size K = 1000. Fig. 6a depicts that NIVA
is more space efficient than VerifyNet whenever introducing a larger amount of
users. Furthermore, NIVA requires a lower amount of users’ data than VerifyNet.
We should note though that whenever increasing the vector size K, it must be
observed that NIVA has a slightly steeper angle, which means that there exists a
vector size k̂ from which VerifyNet becomes more efficient than NIVA. Differently,
Fig. 6c collects the required user execution (computation) time in which NIVA
results to be always more efficienct than VerifyNet.

PPML is defined with a standard vector of size K = 105, 100 times bigger
than VerifyNet, and does not achieve the verification of the aggregated output.
Additionally, each vector entry is described with b = 3 bytes, 12 times smaller
than NIVA’s input. As shown in Fig. 6b and Fig. 6d, our primitive seems to never
be able to compete with the PPML protocol because of the elevated value K.
PPML’s protocol minimizes the communication cost, thus the execution time,
for bigger vector sizes K, while it is linearly dependent on the number of users. In
contrast, NIVA has a fixed user’s communication cost that only depends on the
vector size K and the amount of servers m. For this reason, we consider K = 105

and extrapolate the PPML’s linear dependency between data and users n. We
observe that NIVA overtakes PPML regarding both the user’s execution time
and the communicated data whenever the user size is ∼104.

2500

3000

3500

4000

4500

5000

5000 7500 10000 12500 15000

Users

U
s
e

r 
D

a
ta

 O
u

t 
(k

B
)

15000

20000

25000

30000

35000

40000

5000 7500 10000 12500 15000

Users

U
s
e

r 
T

im
e

 (
m

s
) PPML

Our Primitive

Figure 5: Extrapolated user’s data usage and execution time for PPML and NIVA
with fixed vector size K = 105.

This allows us to conclude that NIVA is better suited than both PPML and
VerifyNet for scenarios where the number of users n that participate in a FL
model aggregation/update is substantial, i.e. over 105. For example, we have
simulated a scenario where n = 105 users participate with a limited vector of
K = 1000 entries of b = 3 bytes each and found out that NIVA has a constant
user communication cost of ∼43.33kB and execution time of ∼282.5ms. In com-
parison and with the same hypothesis used for Fig. 5, PPML would require each
user to communicate ∼31.55MB for a total of ∼4.33 minutes putting it over 3
order of magnitude worse than NIVA. Of course, NIVA’s servers have a higher
computational demand. In our experiments, each server took ∼106.56 hours to
handle ∼4.00GB of data and the verification algorithm required ∼573.33MB of
data from users and servers and was executed in ∼25.33s. The reason for this

19



0

10000

20000

30000

40000

50000

60000

70000

100 200 300 400 500

Users

U
s
e
r 

D
a
ta

 O
u
t 
(k

B
)

VerifyNet

Our Primitive

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

1000 1500 2000 2500 3000 3500 4000 4500 5000

Vector Size

U
s
e
r 

D
a
ta

 O
u
t 
(k

B
)

(a) User’s data cost comparison between VerifyNet and NIVA for fixed vector
size K = 1000 and number of users n = 100.

0

1000

2000

3000

4000

5000

100 200 300 400 500

Users

U
s
e
r 

D
a
ta

 O
u
t 
(k

B
)

0

2000

4000

6000

8000

10000

12000

14000

16000

18000

20000

22000

1e+05 2e+05 3e+05 4e+05 5e+05

Vector Size

U
s
e
r 

D
a
ta

 O
u
t 
(k

B
)

PPML

Our Primitive

(b) User’s data cost comparison between PPML and NIVA for fixed vector size
K = 105 and number of users n = 500

5000

7500

10000

12500

15000

17500

20000

100 200 300 400 500

Users

U
s
e
r 

D
a
ta

 T
im

e
 (

m
s
)

10000

20000

30000

40000

50000

60000

70000

80000

90000

1000 1500 2000 2500 3000 3500 4000 4500 5000

Vector Size

U
s
e
r 

T
im

e
 (

m
s
) VerifyNet

Our Primitive

(c) Timing comparison between VerifyNet and NIVA for fixed vector size K =
1000 and number of users n = 100.

0

5000

10000

15000

20000

25000

30000

35000

100 200 300 400 500

Users

U
s
e
r 

D
a
ta

 T
im

e
 (

m
s
)

0
10000
20000
30000
40000
50000
60000
70000
80000
90000

100000
110000
120000
130000
140000
150000

1e+05 2e+05 3e+05 4e+05 5e+05

Vector Size

U
s
e
r 

T
im

e
 (

m
s
) PPML

Our Primitive

(d) Timing comparison between PPML and NIVA for fixed vector size K = 105

and number of users n = 500.

Figure 6: Data and time comparisons between PPML, VerifyNet and NIVA.

20



high cost is the necessity to re-execute the primitive K · bB times. This can be
overcome by, for example, increasing B, thus, considering a key agreement based
on very-big cyclic groups G such as an elliptic curve over a finite field of 512
bits which should allow to almost double B from 36 to 64. It remains open if it
is possible to extend NIVA to work more efficiently with vectors as secret inputs.

Acknowledgment. Part of this work was carried out while the third author
was a post-doc at Chalmers University of Technology. This work was partially
supported by the Wallenberg AI, Autonomous Systems and Software Program
(WASP) funded by the Knut and Alice Wallenberg Foundation; and WASP
expedition project “Massive, Secure, and Low-Latency Connectivity for IoT Ap-
plications”.

References

1. Beimel, A.: Secret-Sharing Schemes: A Survey. In: Coding and Cryptology (2011).
https://doi.org/10.1007/978-3-642-20901-7 2

2. Benaloh, J.C.: Secret Sharing Homomorphisms: Keeping Shares of a Secret Se-
cret (Extended Abstract). In: Advances in Cryptology — CRYPTO’ 86 (1987).
https://doi.org/10.1007/3-540-47721-7 19

3. Boyle, E., Gilboa, N., Ishai, Y.: Group-Based Secure Computation: Optimizing
Rounds, Communication, and Computation. In: Advances in Cryptology – EU-
ROCRYPT 2017 (2017). https://doi.org/10.1007/978-3-319-56614-6 6

4. Brickell, E.F.: Some Ideal Secret Sharing Schemes. In: Advances in Cryptology —
EUROCRYPT ’89 (1990). https://doi.org/10.1007/3-540-46885-4 45

5. Cai, C., Zheng, Y., Du, Y., Qin, Z., Wang, C.: Towards Private, Robust, and
Verifiable Crowdsensing Systems via Public Blockchains. IEEE Trans. Dependable
and Secure Comput. (2019). https://doi.org/10.1109/TDSC.2019.2941481

6. Capelli, A., Garbieri, G.: Corso Di Analisi Algebrica: 1: Teorie Introduttorie (1886)
7. Chaabouni, R., Lipmaa, H., Zhang, B.: A Non-interactive Range Proof with

Constant Communication. In: Financial Cryptography and Data Security (2012).
https://doi.org/10.1007/978-3-642-32946-3 14

8. Chor, B., Goldwasser, S., Micali, S., Awerbuch, B.: Verifiable secret shar-
ing and achieving simultaneity in the presence of faults. In: 26th Annual
Symposium on Foundations of Computer Science (Sfcs 1985) (Oct 1985).
https://doi.org/10.1109/SFCS.1985.64

9. Diffie, W., Hellman, M.E.: New Directions in Cryptography. IEEE Trans. Inf.
Theory 22(6) (1976). https://doi.org/10.1109/TIT.1976.1055638

10. Dwork, C.: Differential Privacy, vol. 4052 (Jul 2006)
11. Fazio, N., Gennaro, R., Jafarikhah, T., Skeith, W.E.: Homomorphic Se-

cret Sharing from Paillier Encryption. In: Provable Security (2017).
https://doi.org/10.1007/978-3-319-68637-0 23

12. Fiat, A., Shamir, A.: How To Prove Yourself: Practical Solutions to Identification
and Signature Problems. In: Advances in Cryptology — CRYPTO’ 86, vol. 263
(2006). https://doi.org/10.1007/3-540-47721-7 12

13. Ghodsi, Z., Gu, T., Garg, S.: SafetyNets: Verifiable execution of deep neural net-
works on an untrusted cloud. In: Advances in Neural Information Processing Sys-
tems 30: Annual Conference on Neural Information Processing Systems 2017 (2017)

21

https://doi.org/10.1007/978-3-642-20901-7_2
https://doi.org/10.1007/3-540-47721-7_19
https://doi.org/10.1007/978-3-319-56614-6_6
https://doi.org/10.1007/3-540-46885-4_45
https://doi.org/10.1109/TDSC.2019.2941481
https://doi.org/10.1007/978-3-642-32946-3_14
https://doi.org/10.1109/SFCS.1985.64
https://doi.org/10.1109/TIT.1976.1055638
https://doi.org/10.1007/978-3-319-68637-0_23
https://doi.org/10.1007/3-540-47721-7_12


14. Gordon, S.D., Katz, J.: Rational Secret Sharing, Revisited. In: Security and Cryp-
tography for Networks (2006). https://doi.org/10.1007/11832072 16

15. Hitaj, B., Ateniese, G., Pérez-Cruz, F.: Deep models under the GAN: Information
leakage from collaborative deep learning. In: Proc. of CCS (2017)

16. Koblitz, N.: Elliptic curve cryptosystems. Math. Comput. 48(177) (1987)
17. Krawczyk, H.: Secret Sharing Made Short. In: Advances in Cryptology —

CRYPTO’ 93 (1994). https://doi.org/10.1007/3-540-48329-2 12
18. Lai, R.W.F., Malavolta, G., Schröder, D.: Homomorphic Secret Sharing for Low

Degree Polynomials. In: Advances in Cryptology – ASIACRYPT 2018 (2018).
https://doi.org/10.1007/978-3-030-03332-3 11

19. Li, K., Yang, R., Au, M.H., Xu, Q.: Practical Range Proof for Cryptocurrency
Monero with Provable Security. In: Information and Communications Security
(2018). https://doi.org/10.1007/978-3-319-89500-0 23

20. Liu, Y., Ma, S., Aafer, Y., Lee, W.C., Zhai, J., Wang, W., Zhang, X.: Trojan-
ing attack on neural networks. In: 25th Annual Network and Distributed System
Security Symposium, NDSS (2018)

21. McMahan, B., Moore, E., Ramage, D., Hampson, S., y Arcas, B.A.:
Communication-efficient learning of deep networks from decentralized data. In:
Proc. of AISTATS (2017)

22. Peng, K., Bao, F.: An Efficient Range Proof Scheme. In: 2010 IEEE
Second International Conference on Social Computing (Aug 2010).
https://doi.org/10.1109/SocialCom.2010.125

23. Phong, L.T., Aono, Y., Hayashi, T., Wang, L., Moriai, S.: Privacy-preserving deep
learning via additively homomorphic encryption. IEEE Trans Inf. Forensics Secur.
13(5) (2018)

24. Pollard, J.M.: Kangaroos, Monopoly and Discrete Logarithms. J. Cryptology 13(4)
(Sep 2000). https://doi.org/10.1007/s001450010010

25. Segal, A., Marcedone, A., Kreuter, B., Ramage, D., McMahan, H.B., Seth, K.,
Bonawitz, K., Patel, S., Ivanov, V.: Practical secure aggregation for privacy-
preserving machine learning. In: CCS (2017)

26. Shamir, A.: How to share a secret. Commun. ACM 22(11) (Nov 1979).
https://doi.org/10.1145/359168.359176

27. Shokri, R., Shmatikov, V.: Privacy-preserving deep learning. In: Proceedings of
the 22nd ACM SIGSAC Conference on Computer and Communications Security
(2015). https://doi.org/10.1145/2810103.2813687

28. Stadler, M.: Publicly Verifiable Secret Sharing. In: Advances in Cryptology —
EUROCRYPT ’96 (1996). https://doi.org/10.1007/3-540-68339-9 17

29. Thompson, B., Haber, S., Horne, W.G., Sander, T., Yao, D.: Privacy-Preserving
Computation and Verification of Aggregate Queries on Outsourced Databases. In:
Privacy Enhancing Technologies, vol. 5672 (2009). https://doi.org/10.1007/978-3-
642-03168-7 11

30. Tramèr, F., Boneh, D.: Slalom: Fast, verifiable and private execution of neural
networks in trusted hardware. In: Proceedings of ICLR (2019)

31. Tsaloli, G., Banegas, G., Mitrokotsa, A.: Practical and provably secure distributed
aggregation: Verifiable additive homomorphic secret sharing. Cryptogr. 4(3), 25
(2020). https://doi.org/10.3390/cryptography4030025

32. Tsaloli, G., Liang, B., Mitrokotsa, A.: Verifiable Homomorphic Secret Sharing. In:
Provable Security (ProvSec), 2018. vol. 11192 (2018). https://doi.org/10.1007/978-
3-030-01446-9 3

33. Tsaloli, G., Mitrokotsa, A.: Sum it up: Verifiable additive homomorphic secret
sharing. In: Information Security and Cryptology – ICISC 2019 (2020)

22

https://doi.org/10.1007/11832072_16
https://doi.org/10.1007/3-540-48329-2_12
https://doi.org/10.1007/978-3-030-03332-3_11
https://doi.org/10.1007/978-3-319-89500-0_23
https://doi.org/10.1109/SocialCom.2010.125
https://doi.org/10.1007/s001450010010
https://doi.org/10.1145/359168.359176
https://doi.org/10.1145/2810103.2813687
https://doi.org/10.1007/3-540-68339-9_17
https://doi.org/10.1007/978-3-642-03168-7_11
https://doi.org/10.1007/978-3-642-03168-7_11
https://doi.org/10.3390/cryptography4030025
https://doi.org/10.1007/978-3-030-01446-9_3
https://doi.org/10.1007/978-3-030-01446-9_3


34. Xu, G., Li, H., Liu, S., Yang, K., Lin, X.: VerifyNet: Secure and verifiable federated
learning. IEEE Trans Inf. Forensics Secur. 15 (2020)

35. Xu, W., Evans, D., Qi, Y.: Feature squeezing: Detecting adversarial examples in
deep neural networks. In: 25th Annual Network and Distributed System Security
Symposium, NDSS 2018, San Diego, California, USA, February 18-21, 2018 (2018)

23


	Non-Interactive, Secure Verifiable Aggregation for Decentralized, Privacy-Preserving Learning

