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Abstract. Guillou-Quisquater (GQ) signature is an efficient RSA-based
digital signature scheme amongst the most famous Fiat-Shamir follow-
ons owing to its good simplicity. However, there exist two bottlenecks for
GQ hindering its application in industry or academia: the RSA trapdoor
n = pq in the key generation phase and its high bandwidth caused by
the storage-consuming representation of RSA group elements (3072 bits
per one element in 128-bit security).

In this paper, we first formalize the definition and security proof of class
group based GQ signature (CL-GQ), which eliminates the trapdoor in
key generation phase and improves the bandwidth efficiency from the
RSA-based GQ signature. Then, we construct a trustless GQ multi-
signature scheme by applying non-malleable equivocable commitments
and our well-designed compact non-interactive zero-knowledge proofs
(NIZK). Our scheme has a well-rounded performance compared to exist-
ing multiparty GQ, Schnorr and ECDSA schemes, in the aspects of band-
width (no range proof or multiplication-to-addition protocol required),
rather few interactions (only 4 rounds in signing), provable security in
dishonest majority model and identifiable abort property. Another in-
teresting finding is that, our NIZK is highly efficient (only one round
required) by using the Bezout formula, and this trick can also optimize
the ZK proof of Paillier ciphertext which greatly improves the speed of
Yi’s Blind ECDSA (AsiaCCS 2019).

Keywords: Guillou-Quisquater signature, multi-signature, zero-knowledge
proof, remove trusted setup

1 Introduction

Guillou-Quisquater signature, also called GQ signature, was proposed by Guillou
and Quisquater in 1988 [23]. Together with Schnorr signature [38], GQ signature
scheme is amongst the most efficient and famous Fiat-Shamir [17] follow-ons. GQ
has some applications in cryptographic protocols such as forward-secure signa-
ture [29], identity-based signature with bounded life-span [14], distributed certifi-
cate status protocol [44], distributed authentication algorithm for mobile ad-hoc
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network [41], GQ1 (identity-based) and GQ2 schemes in ISO/IEC 14888-2 stan-
dard [27] and etc. GQ has already been used to construct distributed signing
protocols, including multi-signature schemes [2,3,13,39] and threshold signature
schemes [11,32,40]. Nevertheless, GQ’s application scenarios and research discus-
sions are still rather limited when compared with Schnorr and ECDSA which are
the most widely used two digital signature schemes by virtue of Schnorr’s great
simplicity and ECDSA’s application in blockchains like Bitcoin and Ethereum.

Drawbacks of RSA-based GQ. One obvious flaw of all the aforemen-
tioned GQ applications is that all these applications require a trusted setup to
generate the public/private key pair through generating two large primes p and
q secretly and setting n = pq publicly as the group order. This is prohibitive
for practical adoption of GQ in a trustless environment, like a public blockchain
or a digital wallet where no trusted third party (TTP) is involved. In 2000,
Hamdy and Möller [24] informally pointed out that class groups of imaginary
of quadratic fields (IQC) proposed by Buchmann and Williams [7] can be ap-
plied in GQ signature, thus shedding light on how to remove the RSA trapdoor
in GQ signature scheme, i.e., replacing the RSA group in GQ signature with a
class group. Yet, such a class group based GQ signature lacks a formal definition
and a rigorous security proof for EUF-CMA (Existential Unforgeability under
Chosen Message Attack) along with a suitable hardness assumption. Another
shortcoming for GQ protocols is that, since all the elements in RSA group of
order n have to be represented by a 3072-bit string for 128-bit security, it is not
bandwidth efficient, especially in a multi-user setting. On the class group side,
to achieve 128-bit security, a group element only needs a tuple (a, b) which can
be represented by a 1665-bit string, with a 1665-bit discriminant ∆ which only
needs to be declared for once. Thus, switching from RSA group to class group
can save the bandwidth by 45.8% per each group element, which makes applying
GQ in a trustless distributed setting more appealing.

Multi-signature and its applications. Multi-signature is firstly proposed
in [28] which is a joint signing protocol that allows a group of signers to collab-
oratively generate a compact signature on a common message and requires that
the verification time and signature size is constant. Two important applications
of multi-signature are digital wallet and asset custody. Digital wallet usually re-
quires its user to split his secret key into multiple devices and use all (or some)
of them to transfer the currencies he holds. Asset custody is a bank service of
protecting customer’s currencies or real assets. For security consideration, any
one single entity (bank, customer, or some third party institution) can not access
the secret key directly, especially for some large amount of currencies protected,
so the secret key should be also divided into multiple shares. Here are two major
concerns: can we resist misbehaved devices/parties? And can we identify who is
misbehaving?

Intuitions. In this work, we focus on constructing a trustless multi-signature
scheme, allowing key aggregation and identifiable abort properties. The trust-
less property requires a non-trusted setup and security against the existence of
any number of malicious participants during all phases. Although the dishon-
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est majority model in [22] can well capture this security requirement, abort is
not a violation of its security definition. Then, a malicious adversary can easily
initiate DoS (Denial of Service) attack on the system. Thus we require an iden-
tifiable abort property, which is defined in [26], ensuring that the identities of
the malicious participants leading to system abort are detectable to any partici-
pants or external entities, which is significant to detect broken or hacked devices
or misbehaving banks or institutions which cause the failure the joint signing.
Additionally, we hope our scheme supports key aggregation, which means that a
signer, instead of using a full list of the public keys (or key shares), only needs an
aggregated public key for everyone to verify a signature, thus saving computa-
tions and storage for devices with limited computing resources. In this work, we
give a pretty nice solution with enough security and promising efficiency using
GQ and class group.

1.1 Related Work

Now, we review the multiparty signature protocols built on top of GQ, Schnorr
and ECDSA in the past few years.

The state-of-the-art GQ multi-signature (identity based) is proposed by Bel-
lare and Neven (CT-RSA 2006 [3]). It is highly efficient in computation and
proved secure using the forking lemma, although the bandwidth is heavier when
compared to Schnorr-based multi-signatures which will be discussed later. But
they adopted a fragile security model where all the signers are required honest,
which is unrealistic to make it work in the presence of dishonest adversaries.
We do not consider the key aggregation property since it is an identity based
scheme, where there is only one secret key required to initialize the system by a
trusted centre.

Bellare and Neven proposed an efficient Schnorr multi-signature scheme (ACM-
CCS 2006 [2]) under a plain public-key model allowing the existence of dishonest
signers. But it does not support key aggregation. In plain public-key model, the
security against rogue-key attack1 can be achieved without relying on KOSK
(Knowledge of Secret Key) assumption like [5, 33] and accordingly reduce some
burdensome computation2. Maxwell et. al. adopted the same plain public-key
model and proposed a variant of Bellare and Neven’s Schnorr multi-signature,
called MuSig, which adds the property of key aggregation [34] (DCC 19). Later
on, MuSig2 [36] and MuSig-DN [35] are proposed both of which optimize the
round complexity of MuSig from 3 rounds to 2 rounds. However, MuSig and
MuSig2 have a considerable reduction loss led by a double-forking technique [34].
MuSig-DN achieves a deterministic signing at a cost of expensive zero-knowledge
proofs. All of them cannot support identifiable abort.

1 Rogue-key attack refers to that an adversary can forge multi-signature by arbitrarily
choosing his public key, or using a function of the public keys of honest signers.

2 KOSK well resists rogue-key attack but it requires the proof of knowledge of secret
key when mounting attacks by submitting corresponding public keys, and thus incurs
expensive computation.
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Table 1: Comparison with existing multiparty signing schemes. rds is the abbre-
viation of rounds; n denotes the number of sigining parties;each round allowing
broadcasting and a point-to-point message sending is considered one round.

scheme range proof key aggregate identifiable abort sign rds.
ECDSA (CCS 18) [19]

√ √
× 9

ECDSA (CCS 18) [31]
√ √

× 8
ECDSA (S&P 19) [16] ×

√
× 6+log(n)

ECDSA (PKC 20) [10] ×
√

× 8
ECDSA (PKC 21) [43] ×

√
× 8

ECDSA (G.G. 20) [20]
√ √ √

7
ECDSA (CCS 20) [8]

√ √
× 4

ECDSA (G.K.S.S. 20) [18] ×
√ √

13
Schnorr (CCS 06) [2] × × × 3

Schnorr (DCC 19) [34] ×
√

× 3
Schnorr (CCS 20) [36] ×

√
× 2

Schnorr (N.R.S. 20) [35] ×
√

× 2
GQ (CT-RSA 06) [3] × - × 3

GQ (This paper) ×
√ √

4

Lindell et. al. proposed the first practical threshold ECDSA (ACM-CCS 2018
[31]) and Gennaro et. al. proposed a parallel work: the first efficient threshold
ECDSA construction relying on game-based security proof (ACM-CCS 2018
[19]), there has been an abundance of follow-up work [8, 10, 16, 18, 20, 43] to
improve these two schemes and made remarkable improvements on different
aspects, like waiving expensive range proofs, lowering the signing rounds, adding
the identifiable abort functionality. All the mentioned threshold ECDSA schemes
operate in the dishonest majority model, which is much more secure than plain
public-key model, especially for decentralized and trustless settings.

1.2 Contributions

We give a brief comparison between our proposed GQ multi-signature scheme
and the above-mentioned multi-signature/threshold signature schemes in Table
1, which demonstrates that our protocol is well-rounded, with a competitive
signing round complexity (4 rounds of interaction), supporting key aggregation
and identifiable abort, secure in the dishonest majority model. Our construction
can achieve a highly trustless digital wallet and asset custody. We summarize
our contributions as follows.

(1) Formal definition and security proof for class group based GQ
signature (CL-GQ). Applying class group to GQ signature can make GQ
trapdoorless as mentioned in [24] but no formal discussion is given. We first
formalize the definition of GQ signature over class group of imaginary quadratic
fields, find the suitable hardness assumption prime root assumption for CL-GQ,
and prove that the existential unforgeability under chosen message attack (EUF-
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CMA) in the random oracle model (ROM) under the prime root assumption
implied by the root assumption in generic group in [12].

(2) Compact one-round NIZK proofs to resist malicious adversaries
and achieve identifiable abort. In order to detect the malicious behaviour
during the multi-party signing and the protocol can abort once misbehaving is
detected, we design two tailored ZK proofs including ZKPoKRoot and ZKPoK-
Sig following the 3 moves in the traditional Σ-protocol. They promise any mes-
sages sent during interactions are verifiable. Our ZK proofs are highly efficient,
since no repetition is required after adopting a Beout trick, although the ZK
proofs work in an unknown order class group, unlike the binary challenge based
ZK proofs in [9,10]. This Bezout trick nicely solves the open problem of how to
accelerate the ZK proof of Paillier ciphertext used in Yi’s blind ECDSA [42].

(3) Provably secure trustless CL-GQ multi-signature in dishonest
majority model. We generalize CL-GQ to a multi-user setting and combine
non-malleable equivocable commitment and our ZK proofs to build up our trust-
less CL-GQ multi-signature scheme. We reduce the unforgeability of our new
multi-signature in dishonest majority model to the EUF-CMA of CL-GQ under
ROM. Our proof enjoys smaller reduction loss than [34,36] since we only require
one time rewinding when reducing the CL-GQ to prime root assumption and no
rewinding when reducing the CL-GQ multi-signature to CL-GQ, differing the
double-forking technique which needs a two-layer rewinding framework, and it is
much more concise than the ECDSA schemes [10, 19] since our simulator does
not need to distinguish any non semi-correct executions.

(4) Implementation and efficiency analysis. We implement our protocol
in Rust3 to demonstrate the practical efficiency. One signer only needs 2.1/3.6
seconds to sign a document for 112/128-bit security level in a 5-user setting. We
also analyze the concrete bandwidth needed in our scheme. In 128-bit security,
our protocol only costs 6 kB (kilobytes) and 10 kB bandwidth for the interactive
key generation and interactive signing phases respectively in a 5-signer setting.
For signing, the bandwidth of our scheme is about one-third of the bandwidth
in [19] since we do not have expensive range proofs led by Paillier encryption or
tedious MtA (Multiplication-to-Addition) protocol led by the non-linear struc-
ture of ECDSA. Both running time and bandwidth are promising.

2 Preliminaries

2.1 Adversary Model and Security Definitions

Our proposed multi-signature scheme works in a dishonest majority model allow-
ing static corruption which was used in [10,19,20,31]. Following [21], we present
a game-based definition of security analogous to EUF-CMA: multi-signature
unforgeability under chosen message attacks (MU-CMA). We review the defi-
nitions of digital signature, multi-signature, zero-knowledge proof system and
non-malleable equivocable commitment in Appendix A.

3 https://www.rust-lang.org/
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Dishonest majority model with static corruption. In dishonest majority
model, there can exist a majority of malicious adversaries who may arbitrarily
deviate from the protocol and abort is not deemed as violating the security,
assuming the existence of both broadcast channel and point-to-point channel
among each participant, and assuming the static corruption that requires adver-
saries to select the participants to corrupt ahead of the start of the protocol.

Definition 1 (Multi-signature Unforgeability). Consider a multi-signature
scheme MS = (MKeyGen,MSign,Verify) with N parties and a PPT malicious
adversary A who corrupts at most N − 1 players, given the view of MKeyGen
and MSign on inputs of adaptively chosen messages, denoted by M, and the
corresponding signatures on those messages. The multi-signature scheme MS
is said to be existentially unforgeable (EUF-CMA) if there is no such a PPT
adversary A that can produce, except with negligible probability, a valid signature
on a message m /∈M.

2.2 Guillou-Quisquater Signature (GQ)

We review the original GQ signature scheme in [23].

– KeyGen. Choose randomly two large primes p and q and compute n = pq.
Select an integer v s.t. 0 < v < φ(n) and gcd(v, φ(n)) = 1, where φ(n) is
the Euler function. Select a hash function H : {0, 1}∗ → Zv−1. Randomly
select the secret key B from Zn and compute J = B−v mod n. Set PK =
(n, v, J,H) and SK = (p, q, B).

– Sign. Randomly select r from Zn, then compute T = rv mod n, h = H(M,T )
and t = rBh mod n, where M is the message to be signed. Output signature
σ = (t, h).

– Verify. Upon receiving a signature σ = (t, h) of message M , compute T ′ =
tvJhmod n. If h = H(M,T ′), output 1; otherwise, output 0.

The correctness is by T ′ = tvJh = (rBh)vJh = rv(JBv)h = rv = T mod n.
According to [4], GQ identification is secure under RSA-OMI (RSA one-more
inversion) assumption and after applying Fiat-Shamir transformation, GQ sig-
nature is secure under RSA-OMI assumption in ROM (random oracle model).
RSA Trapdoor. If knowing the p and q, a malicious PKG can easily obtain the
secret key B from public J through simply computing d = v−1 mod (p−1)(q−1)
and then B = J−d. This RSA trapdoor makes the GQ signature infeasible to be
used in trustless scenarios.

2.3 Class Group of Imaginary Quadratic Field

Let −∆ be a random (large) λ-bit prime such that ∆ ≡ 1 mod 4. The ring

O∆ = Z + ∆+
√
∆

2 Z is an imaginary quadratic order of discriminant ∆. Its field

of fractions is Q(
√
∆). The fractional ideals of O∆ are of the form q(aZ+ b+

√
∆

2 Z)
with q ∈ Q, α ∈ Z+, b ∈ Z and 4a|(b2 −∆). An ideal is integral if q = 1, and it
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can be represented by a pair (a, b). Two factional ideals a, b ∈ O∆ are equivalent
if for some non-zero α ∈ Q(

√
∆), a = αb. The set of equivalence classes form an

Abelian group under ideal multiplication, which is known as the class group of
imaginary quadratic order CL(∆). Sometimes we denote the group as Di, where
i = −∆. One set of equivalence classes can be represented by a unique (a, b)
form through a reduction algorithm satisfying that gcd(a, b, c) = 1,−a < b ≤
a ≤ c,and b ≥ 0 if a = c. The class group of imaginary quadratic order Di is an
Abelian group with ideal multiplication. Meanwhile, class group is always finite
and the group order is unknown. More description can be found in [24,25].

3 GQ Signature Scheme without Trapdoor (CL-GQ)

When we replace the RSA group by class group of imaginary quadratic field
CL(∆), the group order and thus factoring of group order are unknown even to
the authority or user who generates the group. Hence, this n = pq trapdoor is
perfectly removed. The GQ signature based on class group is portraited below.
The main difference between GQ and CL-GQ is in the KeyGen phase, where v
has to be a prime and the group is initialized by a prime ∆. Procedures in sign
and verification are basically the same as GQ’s. Group operations in class group
and the necessity of computing modulo. We now describe the details.

– KeyGen. Given the security parameter λ, find a λ-bit prime −∆ s.t. ∆ ≡ 1
mod 4 and a λ-bit prime v. Randomly sample a generator B from class group
of imaginary quadratic field CL(∆). Compute J = B−v. Notice that all the
multiplication and exponentiation in class group should be finalized to a
reduced form. It is for the unity of representation and to lower computation
cost. Choose a hash function H : {0, 1}∗ → Zv−1. Set PK = (∆, v, J,H)
and SK = (B).

– Sign. On input the secret key B and a message M , randomly selects r from
CL(∆), then compute T = rv, h = H(M,T ) and t = rBh . Output signature
σ = (t, h).

– Verify. Upon receiving a signature σ = (t, h) of message M , compute T ′ =
tvJh and h′ = H(M,T ′). If h′ = h, output 1; otherwise, output 0.

Security. Damg̊ard and Koprowski defined root assumption [12] working in
generic group model, as a generalization of RSA assumption, by describing that
given a group element x ∈ G and a number e, finding a group element y s.t.
ye = x is intractable, where G is a finite Abelian group in which the inverse
and multiplication can be efficiently computed. Thus, we define a prime root
assumption as below, working in class group, which rules out composite exponent
and can be directly implied by root assumption. By Theorem 1, the EUF-CMA
security of CL-GQ can be reduced to prime root assumption in ROM.

Definition 2 (Prime root assumption). We say that a class group of imag-
inary quadratic fields satisfies prime root assumption for any efficient A if

Pr
[
uv = g : u← A(∆, g, v), v ← Primes(λ), g

$←− CL(∆), ∆
$←− Primes∗(λ)

]
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is negligible in λ, where Primes(λ) is the set of primes less than 2λ and Primes∗(λ)
is the set of λ-bit primes which are equal to 3 modulo 4.

Theorem 1. If prime root assumption holds and H is a random oracle, the
CL-GQ signature is provably secure in the EUF-CMA model.

Proof. Suppose B is given a prime root problem instance (∆, J∗, v), J∗ is a
group member in CL(∆) and v is a prime. B tries to find a B∗ from CL(∆)
s.t. B∗v = J∗ by using an EUF-CMA adversary A against the CL-GQ signature
scheme.

Setup. B prepares an empty list H, set p as the length of each element in H. B
picks a random index i′ ∈ [1, qH ], where qH denotes the number of hash queries.
B sends (∆, v, J∗, H) to adversary A as the public key.

Oracle Query. B answers the oracle queries as follows:

– Sign: On input a message Mi, if i = i′, abort. Otherwise, B picks some
random t ∈ CL(∆), h ∈ Zp and computes T = tvJh. B puts (h, T,Mj) in
the list H. (If the value of h is already set in H, B picks another h and
repeats the previous step.) B returns σ = (t, h).

– H: On input (T,M), if (h, T,M) is in the list H, B returns h. Otherwise, B
picks a random h ∈ Zp. B puts (h, T,M) in the list H and returns h.

Output. Finally A outputs an a message M∗ and a signature σ∗ = (t∗, h∗). If m∗

is not the i-th queried message in the hash list, abort. Otherwise, B can compute
h∗ = H(T ∗,M∗) s.t. T ∗ = t∗vJ∗h

∗
.

B rewinds H to the point that (T ∗,M∗) was queried, and returns a different
h′ 6= h∗. B eventually obtains another forgery (t′, h′) from A. Therefore, we have

t∗vJ∗h
∗

= t′
v
J∗h

′
and it can be transformed into J∗h

∗−h′ = (t′/t∗)v.

According to Bezout formula, there exists a unique pair of non-zero integers
(k,m) where 0 ≤ |k| ≤ v−1 and 0 ≤ |m| ≤ |h∗−h′|−1 which is easily computed
by Euclidean algorithm s.t.:

mv − k(h∗ − h′) = gcd(v, h∗ − h′) = 1.

Raise equation J∗h
∗−h′ = (t′/t∗)v to power k, we have:

J∗k(h
∗−h′) = (t′/t∗)vk

J∗mv−1 = (t′/t∗)vk

J∗ = {J∗m(t∗/t′)k}v

Hence, B successfully extracts B∗ = J∗m(t∗/t′)k to solve the problem instance.
ut
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4 Our Multi-Signature Scheme

In this section, we give the construction of our multi-signature scheme, which
is a trustless GQ multi-signature with identifiable abort, secure in dishonest
majority model. Both distributed key generation and distributed signing have
six phases, they will either abort or output a CRS and a valid signature in each
phase. We also utilize two zero-knowledge proofs ZKPoKRoot and ZKPoKSig
in our protocol, which will be described in details in next section. Here we note
that a plausible idea to achieve trustless setup is to use Boneh’s distributed RSA
key generation method [6] which will not compromise any secret information of
each signer to others. The reason why we did not adopt this fashion to construct
our GQ multi-signature is that this key generation is only secure assuming all
the parties are honest. This contradicts our dishonest majority setting.

Parameters and notations. For the security level of 80/112/128-bit security,
we set λ (the bit length of the discriminant ∆ of class group) 958/1208/1665
according to Appendix C and set η(λ)=160/224/256 bits. Considering the re-
quirement in [23] that h is smaller than v, h and v are set η(λ) and η(λ) + 1 bits
respectively. NextPrime(x) (resp. PrevPrime(x)) is a function using Miller-Rabin
prime test to generate the next (resp. previous) nearest prime. NextPrime*(x)
(resp. PrevPrime*(x)) is a function using Miller-Rabin prime test to generate
the next (resp. previous) nearest prime r such that r ≡ 1 mod 4 after the in-
put integer x. Com(x) is a non-malleable commitment for a committed value
x and Reveal(c, d) opens the underlying committed value of the non-malleable
equivocal commitment where c is a commitment and d is a decommitment.

4.1 Distributed Key Generation

Our distributed key generation algorithm (Table 2) will either abort or output
a CRS. ZKPoKRoot is used to promise that public key Ji broadcasted by party
Pi is correctly generated. We describe the details as follows.

Phase 1. Each party Pi picks δi
$←− {0, 1}λ and vi

$←− {0, 1}η(λ)+1. Pi com-

putes the commitment [ci, di]← Com(δi) and [ĉi, d̂i]← Com(vi). Each Pi broad-
casts to all other parties the commitment (ci, ĉi).

Phase 2. Each Pi broadcasts the decommitment (di, d̂i) to all other parties.

Phase 3. After each Pi received all the (δj , vj) generated by every Pj(j 6= i),
a collaboratively generated (∆, v) is computed by ∆ = NextPrime∗(⊕ni=1δi) and

v = NextPrime(⊕ni=1vi). Then, each Pi generate its key pair (Bi, Ji) by Bi
$←−

CL(∆) and Ji = B−vi . Pi computes the commitment [c∗i , d
∗
i ] ← Com(Ji) and

broadcasts to all other parties the commitment c∗i .

Phase 4. Each Pi broadcasts the decommitment d∗i along with a non-
interactive zero-knowledge proof πi for the relation {(Ji, v) : Bi|Ji = B−vi }
to all other parties.

Phase 5. Upon receiving πi from Pj(j 6= i), each Pi checks the validity of
πj . If passing the check, Pi accepts πj ; otherwise, abort.
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Table 2: Interactive Key Generation Protocol IKeyGen
IKeyGen(λ)

Pi All users {Pj}, i 6= j

δi
$←− {0, 1}λ

vi
$←− {0, 1}η(λ)+1

[ci, di]← Com(δi)

[ĉi, d̂i]← Com(vi)
ci,ĉi−−−→
di,d̂i−−−→ δi ← Reveal(ci, di)

vi ← Reveal(ĉi, d̂i)
∆ = NextPrime∗(⊕ni=1δi)
v = NextPrime(⊕ni=1vi)

Bi
$←− CL(∆)

Ji = B−v
i

[c∗i , d
∗
i ]← Com(Ji)

c∗i−→
d∗i−→ Ji ← Reveal(c∗i , d

∗
i )

πi = ZKPoKRoot((Ji, v) : Bi|Ji = B−v
i )

πi←→ Abort if proof π fails
J =

∏n
i=1 Ji

Set CRS = (∆, v, J,H),
and PKi = Ji;SKi = Bi

Phase 6. After each Pi received all the πj generated by every Pj(j 6= i) and
every πj ’s validity is proved, a common J is computed by J =

∏n
i=1 Ji. Each

party Pi sets CRS = (∆, v, J), PKi = Ji;SKi = Bi.

4.2 Distributed Signing

Our distributed signing algorithm (Table 3) will either abort or output a valid
signature. We use ZKPoKRoot to ensure the well-formedness of commitment Ti
and use ZKPoKSig to ensure the well-formedness of response ti, thus preventing
malicious behaviors during the signing phase. We describe the details as follows.

Phase 1. Each party Pi picks ri
$←− CL(∆) and compute Ti = rvi . Pi com-

putes the commitment [ci, di]← Com(Ti). Each Pi broadcasts to all other parties
the commitment ci.

Phase 2. Each Pi broadcasts the decommitment di along with a non-interactive
zero-knowledge proof πi for the relation {(Ti, v) : ri|Ti = rvi } to all other parties.

Phase 3. Upon receiving πj from Pj(j 6= i), Pi checks the validity of each
πj . If it is valid, Pi accepts πj ; otherwise, abort.

Phase 4. After each Pi received all the Tj and πj generated by every Pj(j 6=
i) and πj is proved valid, a common T =

∏n
i=1 Ti is computed. Then, calculate

h = H(M,T ). Each Pi computes ti = riB
h
i and the commitment [ĉi, d̂i] ←

Com(ti). Each Pi broadcasts to all other parties the commitment ĉi.
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Table 3: Interactive Signing Protocol ISign
ISign(λ, SK,M)

Pi All users {Pj}, i 6= j

ri
$←− CL(∆)
Ti = rvi

[ci, di]← Com(Ti)
ci−→
di−→ Ti ← Reveal(ci, di)

πi = ZKPoKRoot((Ti, v) : ri|Ti = rvi )
πi←→ Abort if proof π fails

T =
∏n
i=1 Ti

h = H(M,T )

ti = riB
h
i

[ĉi, d̂i]← Com(ti)
ĉi−→
d̂i−→ ti ← Reveal(ĉi, d̂i)

π̂i = ZKPoKSig((Ti, Ji, ti, h, v) : (ri, Bi)|
ti = riB

h
i , Ti = ri

v, Ji = Bi
−v)

π̂i←→ Abort if proof π̂ fails
t =

∏n
i=1 ti

Output σ = (t, h)

Phase 5. Each Pi broadcasts the decommitment d̂i along with a non-interactive
zero-knowledge proof π̂i for the relation {(Ti, Ji, ti, h, v) : (ri, Bi)|ti = riB

h
i , Ti =

ri
v, Ji = Bi

−v} to all other parties.

Phase 6. Upon receiving π̂j from Pj(j 6= i) , each Pi checks the validity of π̂i.
If it is valid, Pi accepts π̂i; otherwise, abort. Each party computes t =

∏n
i=1 ti.

Output the collaborative signature σ = (t, h).

4.3 Verification

When receiving a signature σ = (t, h) for the message M , the verification is simi-
lar to the original GQ signature scheme. Accept if and only h is equal to H(M,T ′)
where T ′ = tvJh. The correctness follows by T ′ = tvJh = (

∏n
i=1 ti)

v(
∏n
i=1 Ji)

h =
(
∏n
i=1 riB

h
i )v(

∏n
i=1B

−v
i )h = (

∏n
i=1 ri)

v = rv = T . Since the operation is based
on an unknown order class group and the results produced by class group multi-
plication and exponentiation is normalized when output, we do not need to mod-
ulo the result by any integer. Since the validity of the signature can be checked
by any Pj , it is possible for Pi to send Pj the signature if it confirms the validity
of this signature. This will not affect security at all. Moreover, non-malleable
commitments and zero-knowledge proofs promise that each party cannot deny
the message it broadcasts to the network and each message contributing to col-
laboratively generated signature is well-formed, and thus no malicious behaviors
can affect the joint signing. Note that, the verification phase only needs the
aggregated key J =

∏n
i=1 Ji, not the full list of signers’ public keys {Ji}i∈[1,n].
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4.4 Rogue-Key Attack Resistant

In the IKeyGen phase, an adversary, Pj∗ for example, cannot choose its PKj∗

after seeing the public keys of other parties to initiate rogue-key attack. More
specifically, he cannot set his public key as Jj∗ = B−vj∗ (

∏n
i=1,i6=j∗ Ji)

−1 and thus

make the aggregated key equal his arbitrarily selected public key B−vj∗ , in which
case he can forge valid multi-signature by himself easily, since he cannot prove the
knowledge of the discrete logarithm of Jj∗ by submitting valid ZKPoKRoot. This
rules out the possibility of rogue-key attack following the KOSK assumption.

4.5 Identifiable Abort or Not

If we simply achieve dishonest majority security without identifiable abort, there
is no need to generate and verify the well-formedness ZK Proof of ti in ISign,
namely, the ZKPoKSig. Instead, after obtaining ti, each party directly computes
t =

∏n
i=1 ti, and verify the validity of σ = (t, h), then output this σ if it is valid,

abort if it is invalid. This does not violate the dishonest majority model we
used. However, without using ZKPoKSig the identity of malicious party cannot
be detected in the Phase 5, and thus our scheme cannot reach the property of
identifiable abort.

5 Security Proof of Our Multi-Signature Scheme

The security proof of our multi-signature scheme is a reduction to the unforge-
ability of CL-GQ. If there is a PPT adversary A which breaks our multi-party
CL-GQ, then we can construct a forger F to use A to break CL-GQ. F must
simulate the environment of A. Namely, when A corrupts {Pj} where j 6= 1, we
can construct a F to simulate honest party P1 s.t. A’s view of interaction with F
is indistinguishable from A’s view of interaction with P1. Let F have the public
key (∆, v, J,H) of CL-GQ and owns the access to the signing oracle of its choice.
After a series of queries from F , it can output a forgery signature σ = (t, h) for
a message M chosen by itself which has never been queried. Different from the
security proof of the multiparty ECDSA in [10], F does not need to distinguish
a semi-correct or non semi-correct execution of A (δi in Phase 3, Fig 5 in [10]
sent from adversary can be malicious) which makes our proof more concise.

Simulating P1 in IKeyGen. F obtains a public key (∆, v, J,H) from its CL-
GQ challenger and he must set up in its simulation with A this same public
key (∆, v, J,H). This will allow F to subsequently simulate interactively signing
messages with A, using the output of its CL-GQ signing oracle. F repeats the
following steps by rewinding A until A sends the correct decommitments for
P2, ..., Pn on both iterations.

1. F randomly selects δ1 ∈ {0, 1}λ and v1 ∈ {0, 1}η(λ)+1, computes [c1, d1] ←
Com(δ1) and [ĉ1, d̂1]← Com(v1) and broadcasts (c1, ĉ1). F receives {cj , ĉj}j∈[n],j 6=1.
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2. F broadcasts (d1, d̂1) and receives {dj , d̂j}j∈[n],j 6=1. For i ∈ [n], let δi ←
Reveal(ci, di) and vi ← Reveal(ĉi, d̂i).

3. F randomly selects δ′1, v
′
1 ∈ {0, 1}λ, subject to the condition ∆ = NextPrime∗

(δ′1 ⊕ (⊕n2 δi)) and v = NextPrime(v′1 ⊕ (⊕n2 vi)). Then F computes equivo-

cated decommitment (d′1, d̂
′
1) which reveal δ′1, v

′
1, rewinds A to step 2 and

broadcasts (d′1, d̂
′
1).

4. All parties compute the common output ∆ = NextPrime∗(δ′1 ⊕ (⊕n2 δi)) and
v = NextPrime(v′1 ⊕ (⊕n2 vi)).

5. F randomly selects B1 ∈ CL(∆) and computes J1 = B−v1 . Then F computes
[c∗1, d

∗
1] ← Com(J1) and broadcasts to all other parties the commitment c∗1.

F receives {c∗j}j 6=i.
6. F broadcasts d∗1 and performs a ZKPoKRoot for relation {(J1, v) : B1 :
|J1 = B−v1 }. F then receives {d∗j}j 6=i. For i ∈ [n], let Ji ← Reveal(c∗i , d

∗
i ) be

the opened commitment value of each party.
7. F rewinds A to step 6 and equivocates P1’s commitment to d∗

′

1 so that
the revealed value now is J ′1 = J(

∏n
i=2 Ji)

−1 and broadcasts d∗
′

1 . Then F
simulates ZKPoKRoot.

8. If all the proofs and commitments are correct the protocol continues with
J ′ = J ′1

∏n
i=2 Ji = J .

Theorem 2. If the commitment scheme is non-malleable and equivocal and
ZKPoKRoot is honest verifier zero-knowledge proof of knowledge, then the IKey-
Gen simulation above is indistinguishable from a real execution in the view of
potentially corrupted parties P2, P3, . . . , Pn. Moreover, when the simulation does
not abort, all parties output ∆, v in step 4 and J in step 8.

Simulating P1 in ISign Phase.

1. As in a real execution, F randomly selects r1 ∈ CL(∆) and computes T1 =
rv1 . Then F computes [c1, d1]← Com(T1) and broadcasts to all other parties
the commitment c1. F receives {cj}j 6=i.

2. F broadcasts d1 and performs a ZKPoKRoot for relation {(T1, v) : r1 :
|T1 = rv1}. F then receives {dj}j 6=i. For i ∈ [n], let Ti ← Reveal(ci, di) be the
opened commitment value of each party.

3. F requests a signature (t, h) for a message M from its CL-GQ signing oracle
and computes T = tvJh (note that h = H(M,T )).

4. F rewinds A to step 2 and equivocates P1’s commitment to d′1 so that
the revealed value now is T ′1 = T (

∏n
i=2 Ti)

−1 and broadcasts d
′

1. Then F
simulates ZKPoKRoot.

5. If all the proofs and commitments are correct, all parties compute T ′ =
T ′1

∏n
i=2 Ti = T , h′ = H(M,T ) = h. F computes t1 = r1B

h′

1 . and [ĉ1, d̂1]←
Com(t1). F broadcasts to all other parties the commitment ĉ1. F receives
{ĉj}j 6=i.

6. F broadcasts d̂1 and performs a ZKPoKSig for relation {(T1, J1, t1, h) :

(r1, B1)|t1 = r1B
h
1 , T1 = r1

v, J1 = B1
−v}. F then receives {d̂j}j 6=i. For

i ∈ [n], let ti ← Reveal(ĉi, d̂i) be the opened commitment of each party.
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7. F rewinds A to step 5 and equivocates P1’s commitment to d̂′1. The revealed
value is t′1 = t(

∏n
i=2 ti)

−1 and broadcasts d̂′1. Then F simulates ZKPoKSig.
8. If all the proofs and commitments are correct, all parties compute t′ =
t′1
∏n
i=2 ti = t and output σ = (t′, h).

Theorem 3. If the commitment scheme is non-malleable and equivocal and
ZKPoKRoot and ZKPoKSig are honest verifier zero-knowledge proof of knowl-
edge, then the ISign simulation above is indistinguishable from a real execution
in the view of potentially corrupted parties P2, P3, ..., Pn and on input M the
simulation outputs a valid signature σ = (t, h) or aborts.

Finally, we capture the security of our protocol by Theorem 4.

Theorem 4. Assuming standard CL-GQ is an existentially unforgeable signa-
ture scheme; the ZKPoKRoot and ZKPoKSig are honest verifier zero-knowledge
proof of knowledge; and the commitment scheme is non-malleable and equivoca-
ble, then our GQ multi-signature protocol (IKeyGen, ISign) is an existentially
unforgeable multi-signature scheme.

6 Zero-knowledge Proofs

In this section, we give the detailed construction of ZKPoKRoot and ZKPoKSig
which are used in our multi-signature protocol. At the first glance, both ZK
proofs seem easy to construct. But one problem of ZK proofs in an unknown
order group is that it requires that the challenge is a binary string and thus
should be repeated for many rounds to achieve an acceptable soundness error,
like the one-bit challenge ZK proofs in [9, 42]. We observe an interesting thing
that the Bezout formula utilized in the EUF-CMA of CL-GQ can also be adopted
when proving the special soundness of our ZK proofs, which accordingly waive
the repetition of our protocol, the additional constraint is that the length of
the challenge space should be smaller than v. This trick also answers the open
problem in Yi’s blind ECDSA scheme [42], that how to speed up their ZK proof
of Paillier ciphertext and in Appendix E we give a slightly modified version of
the ZK proof they used, which waives any repetition.

6.1 Zero-knowledge Proof for the −v-th Root

We define a relation for the −v-th root of a class group element x where v is a
prime:

Rroot = {(X, v) : x|X = x−v}.
We put forward a zero-knowledge proof of knowledge (ZKPoK) protocol named
ZKPoKRoot (Table 4) which is needed in our multi-signature scheme. It should
run for only one round to achieve a soundness error of 2−γ where γ is the length
of the challenge space we set in the ZKPoKRoot protocol, additionally required
that 1 ≤ γ ≤ v − 1. x and X are class group elements and v is a prime.

Theorem 5. The protocol ZKPoKRoot is an honest verifier zero-knowledge proof
of knowledge with soundness error 2−γ where 1 ≤ γ ≤ v − 1.
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Table 4: Zero-knowledge Proof ZKPoKRoot for relation Rroot

ZKPoKRoot(X, v)
Pi Pj(j 6= i)

r
$←− CL(∆)

t = rv
t−→
k←− k

$←− {0, 1}γ

u = x−kr
u−→ Check: uv = Xkt

Table 5: Zero-knowledge Proof ZKPoKSig for relation Rsig

ZKPoKSig(Ti, Ji, ti, h, v)
Pi Pj(j 6= i)

ρ1, ρ2
$←− CL(∆)

τ1 = ρv1
τ2 = ρv2

τ3 = ρ−h1 ρ2
τ1,τ2,τ3−−−−−→

k←− k
$←− {0, 1}γ

u1 = B−k
i ρ1

u2 = rki ρ2
u1,u2−−−−→ Check: uv1 = Jki τ1

Check: uv2 = T ki τ2
Check: u−h

1 u2 = tki τ3

6.2 Zero-knowledge Proof of a CL-GQ Signature

We need another one-round ZKPoK protocol named ZKPoKSig (Table 5) for the
following relation, where Ti, Ji, Bi are class group elements, h is a positive integer
and v is a prime. We set γ as the challenge space which can be used to adjust
the soundness error of ZKPoKSig, additionally required that 1 ≤ γ ≤ v − 1.

Rsig = {(Ti, Ji, ti, h, v) : (ri, Bi)|ti = riB
h
i , Ti = ri

v, Ji = Bi
−v}

Theorem 6. The protocol ZKPoKSig is an honest verifier zero-knowledge proof
of knowledge with soundness error 2−γ where 1 ≤ γ ≤ v − 1.

Remarks. To reduce the unnecessary interactions, we adopt Fiat-Shamir trans-
formation [17] to make both ZKPoKRoot and ZKPoKSig non-interactive by
replacing the challenge k in each ZKPoK with H(t) and H(τ1, τ2, τ3) respec-
tively where H is a secure hash function. Due to the security level concern, we
will set v larger than 161 bits in the joint signing protocol while γ is usually
required to be 40/60/80 bits in the industry. Hence, for either ZKPoKRoot or
ZKPoKSig, the additional requirement of 1 ≤ γ ≤ v − 1 is practical.
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6.3 ZKPoK with Lower Soundness

Consider an extreme scenario that we want to achieve a strict soundness error,
2−1000 for example, Bezout trick can not be applied in the soundness with extrac-
tor proof since the additional requirement of 1 ≤ γ ≤ v − 1 does not hold (v is
smaller than 257 in our real use, as claimed in Section 4). The γ can only be set 1
to construct the successful extractor. Hence, ` repetitions of either ZKPoKRoot
or ZKPoKSig are compulsory when we want to achieve a soundness 2−` where
` is a positive integer. The massive running time undermines its practical appli-
cation. In this case, if a low soundness error should be satisfied, with reasonable
computational cost, the LCM (lowest common multiple) trick used in [10] can be
used to reduce the repeating time and thus remarkably improve the efficiency. To
adopt this LCM trick, we need to modify the original ZKPoK protocols in two
places: i) change the challenge space of k from {0, 1} to {0, 1}C for some positive
integer C and ii) change the repeat time from ` to `/C. Through the revisited
ZKPoK protocols, the relations, where y= lcm(1, 2, 3, ..., 2C), are proved.

R′root = {x : Xz = (xy)v}

R′sig = {(Ti, Ji, ti, h, v) : (ri, Bi)|tzi = ryi (Byi )h, T zi = (ryi )v, Jzi = (Bi
y)v}

Caveat. The major concern of such an LCM trick is that the modified relation
is a loosed relation and thus it is questionable if we can initiate any potential
attacks, more specifically, forge a witness which holds in the loosed relation but
does not hold in the standard relation and this issue is not well discussed in [10].

7 Implementation and Evaluation

We implemented the original GQ signature, the CL-GQ signature, and our multi-
party GQ signature without trusted setup in Rust language. We use the Rust
library Class4 to conduct the class group operations, including sampling, re-
duction, exponentiation and multiplication. It should be noted that this Rust
library calls the C library Pari and thus it basically ensures the efficiency of the
heavy arithmetic computations for class groups, but can still be improved. We
benchmark the running times of both KeyGen and Sign for three schemes. All
the programs are executed in a single thread on a MacBook Pro with Intel Core
i5 1.4GHz and 16GB RAM.

7.1 Standard GQ v.s. CL-GQ

We compare the standard GQ and CL-GQ in three security levels: 80-bit, 112-bit,
128-bit security, where 80-bit security is insecure and over 112-bit is generally
deemed as secure. We set v as η(λ)+1 bits for both GQ and CL-GQ schemes.
We compare the signature sizes, running times of both schemes. As observed

4 It is a library for building cryptography based on class groups of imaginary quadratic
orders. https://github.com/ZenGo-X/class.
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Table 6: Running time of original GQ and CL-GQ in different security levels.
Level GQ’s |σ| GQ KeyGen GQ Sign CL-GQ’s |σ| CL-GQ KeyGen CL-GQ Sign
80-bit 1184 bits 30.375 ms 96.130 us 847 bits 221.77 ms 99.250 ms
112-bit 2272 bits 147.94 ms 472.44 us 1433 bits 2.0269 s 300.61 ms
128-bit 3328 bits 455.42 ms 1.1299 ms 1921 bits 6.9179 s 564.09 ms

from results in Table 6, removing the RSA trapdoor is obviously a trade-off of
computational efficiency. CL-GQ is much slower for both KeyGen and Sign due
to the complicated arithmetic operations for class group in CL-GQ. For signature
size, our CL-GQ is much shorter than GQ. Details of computing bandwidth are
given in Appendix D.

7.2 Performance of Trustless GQ Multi-signature

We evaluate the running time and bandwidth of multi-party GQ without trusted
setup in Tables 7 and 8. The running time is obtained from the median running
time among 20 test samples each of which sequentially executes the computation
of each signer (in fact the protocol can be executed in parallel but here we
consider achieving a fair comparison). In a 5-user setting without considering
the network constraint, each signer only needs around 2.1 and 3.6 seconds to
sign a message in 112-bit and 128-bit security levels respectively. We computed
the concrete Bytes needed for multi-party GQ in 112-bit and 128-bit asymmetric
security levels, and gave the calculation formula (Notice that in the given formula
λ means the length of ∆, instead of a security level 112 or 128). The details of
computing the bandwidth are given in Appendix D. Both bandwidth and running
time confirm that our trapdoorless GQ multi-signature is very practical in use.
Our bandwidth is only about one-thirds of the bandwidth of joint signing in [19].

Comm.cost(IKeyGen) = n× {10× dλ− 1

2
e+ 6× η(λ) + 5} (bits)

Comm.cost(ISign) = n× {18× dλ− 1

2
e+ 4× η(λ) + 9} (bits)

Impacts from the number of users. Consider an N-party setting, since we
assume the existence of broadcast channel, each party only computes their com-
mitments and NIZK proofs once, and thus N computations in total are needed.
On the receiver’s side, however, each party should de-commit the commitments
and verify the NIZK proofs received from all other parties, and thus N(N − 1)
computations in total are needed. The accumulations of δi, vi, Ji, Ti, ti are also
in O(N2) complexity. Hence, the computational burden increases in a non-linear
way when participants increase. Besides, as the increasing of the size of ∆ and
v, the uncertainty of computing NextPrime∗ and NextPrime is larger, leading to
a noticeable variance of running time of IKeyGen. For example, in our 20 test
samples of 5-user experiment, the longest running time is up to 70 seconds. On
the other hand, the variance of the running time of ISign is trivial.
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Table 7: Benchmarks of trustless GQ multi-signature.
security level # Party Comp. IKeyGen Comp. ISign Comm. IKeyGen Comm. ISign

2 10.908 s 3.139 s 1848 Bytes 2945 Bytes
112-bit 3 15.006 s 5.253 s 2771 Bytes 4417 Bytes
security 4 19.947 s 7.663 s 3695 Bytes 5889 Bytes

5 35.295 s 10.505 s 4619 Bytes 7361 Bytes
2 29.206 s 5.569 s 2466 Bytes 4003 Bytes

128-bit 3 36.594 s 9.298 s 3698 Bytes 6004 Bytes
security 4 40.168 s 13.372 s 4931 Bytes 8005 Bytes

5 47.825 s 17.991 s 6164 Bytes 10006 Bytes

8 Conclusion

In this paper, we first formalize the class group based GQ signature and then
propose a trapdoorless GQ multi-signature scheme with identifiable abort prop-
erty and only 4 rounds of interaction in the signing phase, secure in the dishonest
majority model. We have concise security proof (no need for the simulator to
detect a non semi-correct execution) and two compact one-round NIZKs (remov-
ing repetitions led by binary challenge). We give a detailed implementation and
efficiency analysis which demonstrate that our scheme has promising running
time and extraordinary bandwidth.
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A Background

A.1 Recall multi-signature

We recall the definitions of signature scheme and multi-signature scheme in [5].

Signature scheme. A signature scheme S consists of three algorithms {KeyGen,
Sign,Verify}. The randomized key generation algorithm KeyGen takes a global
information I and outputs a pair (sk, pk) of a secret and a public keys. The
global information can contain, for example, a security parameter, a descrip-
tion of the group and its generator, and the description of the hash function.
We do not focus on who generates these parameters and assume that they are
publicly available. A (possibly) randomized signature generation algorithm S
takes a message M to sign and global info I and a secret key sk and outputs
M along with a signature σ. A deterministic verification algorithm Verify takes
a public key pk, a message M and a signature σ and outputs 1 (accepts) if the
signature is valid and 0 (rejects) otherwise. In the random oracle model both
signing and verification algorithms have access to the random hash oracle. Usu-
ally M ∈ {0, 1}∗. The common requirement is that Verify(pk,Sign(I, sk,M)) = 1
for all M ∈ {0, 1}∗.
Definition 3 (Existential Unforgeability under Chosen Message At-
tack (EUF-CMA)). Given a digital signature scheme S = {KeyGen,Sign,Verify},
consider a PPT adversary A who is given a public key generated by KeyGen and
the oracle access to the Sign which it can adaptively send query messages. Let
M be the set of messages queried by A. The digital signature scheme S is said
to be existentially unforgeable under chosen message attack if there is no such
a PPT adversary A that can produce, except with negligible probability, a valid
signature on a message m /∈M.

Multi-signature scheme. Let P = {P1, P2, ..., Pn} be a group of n players. Let
I be the global information string. The algorithms of a multi-signature scheme
MS = (MKeyGen,MSign,Verify) are defined as follows. A randomized key gen-
eration algorithm MKeyGen takes a global information I and outputs a pair
(sk, pk) of a secret and a public keys. Each player Pi ∈ P runs MKeyGen and as
a result obtains a pair of secret and public keys (ski, pki). A possibly random-
ized multi-signature generation algorithm MSign is an interactive protocol run
by an arbitrary subset of players L ⊆ P The input of each Pi ∈ L is a message
M ∈ {0, 1}∗, the global info I and the player’s secret key ski. The output of
the algorithm is a triple T = (M,L, σ) consisting of the message, description of
the subgroup L and the multi-signature. A deterministic verification algorithm
Verify takes (M,L, σ) and public keys of all players in L and T and outputs 1
(accepts) or 0 (rejects).
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A.2 Zero Knowledge Proof System

A proof system for a relation R ⊂ X ×W is a triple of randomized polynomial
time algorithms (Setup,P,V), where Setup takes a security parameter 1λ and
outputs a common reference string (CRS) param. P takes as input the param, a
statement x ∈ X and a witness w ∈ W. V takes as input the param and x and
after interaction with P outputs 0 or 1. The transcript between the prover and
the verifier is denoted as 〈V(param, x),P(param, x, w)〉, and it is equal to 1 if V
accepted the transcript. The zero knowledge proof system we use is a canonical
Σ Protocol with 3 moves between prover P and verifier V where the first message
(from V to P) is a commitment, denoted by t, the second message (from V to P)
is a random coin of V, denoted by c, and the third message (from P to V) is a
response denoted by z. We require the following properties for our Σ protocol.

Completeness. If (x,w) ∈ R, prover P with auxiliary input w convinces V with
overwhelming probability.
Special soundness. Given two transcripts (t, c, z) and (t, c′, z′) where c′ 6= c
and z 6= z′ for a statement x, there exists an extractor which produce w s.t.
(x,w) ∈ R in polynomial time with non-negligible probability.
Honest verifier zero-knowledge (HVZK). Given x and c, there exists a
simulator without knowing w which outputs (t, z) such that (t, c, z) is indis-
tinguishable to the real transcript between P with auxiliary input w and V in
polynomial time with non-negligible probability.

A.3 Non-Malleable Equivocable Commitment

A non-interactive trapdoor commitment scheme consists of four algorithms KG,
Com, Ver, Equiv:

– KG is the key generation algorithm. Given the security parameter, it out-
puts (pk, tk), pk is the public key of the commitment scheme and tk is the
trapdoor.

– Com is the commitment algorithm. Given pk and message M , it outputs
[CM , DM ] = Com(pk,M,R) where R is obtained by coin tossing. CM is the
commitment string and DM is the decommitment string.

– Ver is the verification algorithm. On input pk, C and D, it either outputs
M or ⊥.

– Equiv is the algorithm revealing a commitment in any possible way given the
trapdoor. It takes as input pk, stringsM ,R with [CM , DM ] = Com(pk,M,R),
a message M ′ 6= M and a string T . If T = tk then Equiv outputs D′ such
that Ver(pk,CM , D

′) = M ′.

The correctness holds if [CM , DM ] = Com(pk,M,R), then we have Ver(pk,CM ,
DM ) = M . Now we review the properties] of information theoretic security, se-
cure binding and non-malleability.

Information theoretic security. For every message pair (M , M ′) the dis-
tributions CM and CM ′ are statistically close.
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Secure binding. We say that an adversary A wins if it outputs (C,D,D′)
s.t. Ver(pk, C,D) = M , Ver(pk, C,D′) = M ′, M ′ 6= M , M 6= ⊥, M ′ 6= ⊥.
We require that for all efficient algorithms A, the probability that A wins is
negligible.

Non-Malleability [15]. A commitment is non-malleable if no adversary A,
given a commitment C to message M , is able to produce another commitment
C ′ s.t. after the revealing of C to M , A can successfully decommit to a related
message M ′.

Remarks. As in [19], we can use any secure hash function H : {0, 1}∗ →
{0, 1}n and instantiate the commitment to x as h = H(x, r), where r is the
blind factor uniformly chosen from {0, 1}n, assuming that H behaves as a ran-
dom oracle. The decommitment contains a blind factor and the committed value
x. For a user receiving a commitment h, it can use the later received decommit-
ment (x, r) to check the validity of the commitment x. The validation passes if
and only if h = H(x, r). We adopt this efficient random oracle version in our
implementation.

B Security Proofs

B.1 Proof of Theorem 2

Proof. In simulation, F does not know the δ1 and v1 chosen in real execution,
but it chooses a δ′1 and v′1 such that ∆ = NextPrime∗(δ′1 ⊕ (⊕n2 δi)) and v =
NextPrime(v′1 ⊕ (⊕n2 vi)). Let D = ⊕n2 δi and V = ⊕n2 vi. Let Sδ = {x ∈ {0, 1}λ :
PrevPrime∗(∆) < x ⊕ D < ∆ − 1} be the set of all element x such that ∆ =
NextPrime∗(x⊕D) and Sv = {x ∈ {0, 1}λ : PrevPrime(v) < x⊕V < v−1} be the
set of all element x such that v = NextPrime(x⊕ V ). Since δ1 and v1 belong to
Sδ and Sv respectively and they are chosen uniformly at random, and δ′1 and v′1
are chosen uniformly at random in the same sets, simulation and real execution
are indistinguishable in simulation setp 1-4. The only difference in step 5-8 is
that F computes J ′1 instead of using J1. J1 and J(

∏n
i=2 Ji)

−1 follow the same
distribution. Hence, simulation and real execution are indistinguishable.

Moreover, the simulation may fail due to that someone may refuse to decom-
mit after rewinding in step 2 and 7 and that some πi fails. Since the commitment
scheme is non-malleable and equivocal, in step 2 F can rewind and equivocate
the commitment to δ1 and v1, and if there are not aborts, all parties decommit
to their correct values. As a consequence, all parties output δ and v at the end
of step 4. In step 7, all parties compute the correct J using δ and v from the
deterministic setup of CL, if not there is an abort caused by the soundness of
the proof πi corresponding to the corrupted Pi. Finally, if no abort has occurred,
F can equivocate the decommitment to J1 and all parties decommit to the cor-
rect values thanks to the non-malleability of the scheme. If no party refuses to
decommit after rewinding, the protocol ends with J ′ = J ′1

∏n
i=2 Ji = J . ut
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B.2 Proof of Theorem 3

Proof. The only difference in this simulation is that F computes t′1 and T ′1
instead of using t1 and T1. Since t1 and t(

∏n
i=2 ti)

−1 follow the same distribution;
T1 and T (

∏n
i=2 Ti)

−1 follow the same distribution. Hence, simulation and real
execution are indistinguishable.

Let (t, h) be the signature that F receives from its signing oracle in step 5.
This is a valid signature for message M . We prove that if the protocol termi-
nates, it does so with output (t′ = t, h), which is due to the non-malleability
property of commitment scheme. Indeed, the revealing should be the same with
overwhelming probability if the adversary decommits correctly. ut

B.3 Proof of Theorem 4

Proof. By Theorem 2 and 3, F always knows how to simulate A’s view and all
simulations are indistinguishable of real executions of the protocol. Moreover
if A, having corrupted up to n − 1 parties in the GQ multi-signining protocol,
outputs a forgery, since F set up with A the same public key as it received from
its’ CL-GQ challenger, F can use this signature as its own forgery, thus breaking
the existential unforgeability of standard CL-GQ.

Denoting Advmu−cmaΠ,A , A’s advantage in breaking the existential unforgeabil-

ity of our multi-signature protocol, and Adveuf−cmacl−gq,A the forger F ’s advantage
in breaking the existential unforgeability of standard CL-GQ, from Theorem
2 and 3 it holds that if ZKPoKRoot and ZKPoKSig are zero-knowledge and
the commitment scheme is non-malleable and equivocable then |Advmu−cmaΠ,A −
Adveuf−cmacl−gq,A | is negligible in λ. Under the security of the CL-GQ signature scheme

proved in Theorem 1, Adveuf−cmacl−gq,A is negligible, which implies that Advmu−cmaΠ,A
is negligible as well, contradicting the assumption that A has non-negligible ad-
vantage of forging a signature for our protocol. Hence the theorem holds. ut

B.4 Proof of Theorem 5 for ZKPoKRoot

Proof. We prove completeness, special soundness and honest verifier zero-knowledge
of our ZKPoKRoot protocol.

Completeness. The equation Xkt = x−vkrv = (x−kr)v = uv always holds for
any ((X, v) : x) ∈ Rroot.

Special soundness. Assuming that the extractor E can send two challenges
k and k′ respectively to the prover for a same commitment t, it receives two
responses u and u′. We have uv = Xkt and u′

v
= Xk′t. We have Xk′−k =

(u/u′)v. According to Bezout formula, there exists a unique pair of (α, β) where
0 ≤ |α| ≤ |k′− k|− 1 and 0 ≤ |β| ≤ v− 1 which is easily computed by Euclidean
algorithm s.t.:

αv − β(k′ − k) = gcd(v, k′ − k) = 1

The rightmost equation holds since v is a prime much larger than either k or k′.
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Raise equation Xk′−k = (u/u′)v to power β, we extract the witness x by:

Xβ(k′−k) = (u/u′)βv

Xαv−1 = (u/u′)βv

X = {Xα(u′/u)β}v

x = Xα(u′/u)β

This has a soundness error of 1/2γ for running one round. The γ is usually
set to 40, 60, 80 for different soundness requirements, but in any case γ is smaller
than the bit size of v.

Honest verifier zero-knowledge. Given S randomly chooses ũ ∈ CL(∆), k̃ ∈
{0, 1}γ . the simulator S computes t̃← ũv/X k̃. Clearly, the distribution of t in a
real execution is statistically close to t̃. ut

B.5 Proof of Theorem 6 for ZKPoKSig

Proof. We prove completeness, special soundness and honest verifier zero-knowledge
of ZKPoKSig protocol.

Completeness. For any ((Ti, Ji, ti, h, v) : (ri, Bi)) ∈ Rsig. The following equa-
tions always hold:

Jki τ1 = B−vki ρ1
v = (B−ki ρ1)v = uv1;

T ki τ2 = ri
vkρ2

v = (xkρ2)v = uv2;

tki τ3 = (riB
h
i )kρ−h1 ρ2 = (B−ki ρ1)−hrki ρ2 = u−h1 u2.

Special soundness. Assuming that the extractor E can send two challenges k
and k′ respectively to the prover for a same commitment (τ1, τ2, τ3), it receives
two responses (u1, u2) and (u′1, u

′
2). We have uv1 = Jki τ1, u

v
2 = T ki τ2, u

−h
1 u2 = tki τ3

and u′
v
1 = Jk

′

i τ1, u
′
2
v

= T k
′

i τ2, u
′−h
1 u′2 = tk

′

i τ3. Observe the τ1, τ2, τ3 are the same
in both groups of equations, we have:

Jk
′−k

i = (u′1/u1)
v

= (u1/u
′
1)−v; (1)

T k
′−k

i = (u′2/u2)
v
; (2)

tk
′−k
i = [(u′1/u1)

−h
(u′2/u2)] = (u1/u

′
1)
h
(u′2/u2). (3)

According to Bezout formula, there exists a unique pair of (α, β) where 0 ≤
|α| ≤ |k′ − k| − 1 and 0 ≤ |β| ≤ v − 1 and (W.L.O.G. assuming k ≥ k′ ) which
is easily computed by Euclidean algorithm s.t.:

αv − β(k′ − k) = gcd(v, k′ − k) = 1
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Raise equations (1) and (2) to power β:

J
β(k′−k)
i = (u1/u

′
1)−βv

Jαv−1i = (u′1/u1)βv

Ji = {J−αi (u′1/u1)β}−v (4)

T
β(k′−k)
i = (u′2/u2)βv

Tαv−1i = (u′2/u2)βv

Ti = {Tαi (u2/u
′
2)β}v (5)

Apply the u1/u
′
1 = J

(k−k′)/v
i and u′2/u2 = T

(k′−k)/v
i implied by (1) and (2) and

the results of (4) and (5), we imply ti by the following:

t
(k′−k)
i = (u1/u

′
1)
h
(u′2/u2)

t
(k′−k)
i = (J

(k−k′)/v
i )hT

(k′−k)/v
i

ti = J
−h
v
i T

1
v
i

ti = {J−αi (u′1/u1)β}−v
−h
v {Tαi (u2/u

′
2)β}v 1

v

ti = Tαi (u2/u
′
2)β{J−αi (u′1/u1)β}h

Hence, we extract the witness (ri, Bi):

ri = Tαi (u2/u
′
2)β ; Bi = J−αi (u′1/u1)β .

The extraction has a soundness error of 1/2γ for running one round.
Honest verifier zero-knowledge. Given ũ1, ũ2 ∈ CL(∆), k̃ ∈ {0, 1}γ , the simu-

lator S computes τ̃1 ← ũ1
v/Ji

k̃, τ̃2 ← ũ2
v/Ti

k̃, τ̃3 ← (ũ1
−hũ2)/ti

k̃. Clearly, the
distribution of (τ1, τ2, τ3) in a real execution is statistically close to (τ̃1, τ̃2, τ̃3).

ut

C Description of Security Level

To depict the security level of class group-based cryptographic system, Safuat
and Bodo in [24] gave the expected number of MIPS (Million Instruction Per
Second) years using GFNS algorithm [37] to factor large integer and using Cl-
MPQS algorithm [30] to compute discrete logarithms in class groups should use,
as shown in Table 8. They provided an algorithm to compute the order of a
class group element, after which both roots and discrete logarithms can be com-
puted by Pohlig-Hellman algorithm, thus showing the equivalence of hardnesses
of computing roots and discrete logarithms in class groups. According to [1],
the difficulties of factoring |n| = 21024, 22048, 23072 are equivalent to 80, 112 and
128 bits asymmetric security level. Thus we obtain that the difficulties of com-
puting the discrete logarithms in class group under |∆| = 2687, 21208, 21665 are
respectively 80, 112 and 128 bits secure.
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Table 8: Expected computational cost of factoring integers and computing dis-
crete logarithms in class groups

n ∆ Expected number of MIPS-years
768 bits 540 bits 4.99× 107

1024 bits 687 bits 6.01× 1010

1536 bits 958 bits 5.95× 1015

2048 bits 1208 bits 7.05× 1019

3072 bits 1665 bits 2.65× 1026

4096 bits 2084 bits 5.87× 1031

D Details of Computing Bandwidth

For computing class group size, according to [24], each reduced class group rep-
resented by (a, b,∆) satisfies that −a < b ≤ a and a <

√
|∆|/3. Let λ denote

the bit length of ∆. Then, a and b can be denoted by a dλ−12 e-bit string and

a dλ−12 e + 1-bit string (b needs one more bit to represent its sign). Since ∆ is
already stored in the common public key which is available for every party, we
directly use Cl = 2 × dλ−12 e + 1 to represent the bit size of one class group
element.

Recall that denote by η(λ) the length of h under our security parameter
λ, i.e., the bit size of discriminant ∆. More precisely, we have η(1208) = 224
and η(1665) = 256 corresponding to the 112-bit and 128-bit security respec-
tively. We use the rightmost η(λ) bits of SHA256 as our hash function H and as
the commitment of which the blind factor is also a η(λ)-bit binary string. For
zero-knowledge proofs, we require a soundness error of 2−40. Fiat-Shamir trans-
formation is used to make our ZKPoKRoot and ZKPoKSig non-interactive. For
bandwidth, each broadcast message or received message is counted as one trans-
mission and we compute the total bandwidth for one participant. We set v as
η(λ)+1 bits when running our protocol. The bit lengths of one ZKPoKRoot
proof and one ZKPoKSig proof can be represented by 2 × Cl bits and 5 × Cl
bits respectively, in the non-interactive setting where the challenge is computed
by the verifier with the predefined hash function and the received commitments,
and thus is not included in the proof size.

E Optimization of the ZK Proof in Yi’s Blind ECDSA

E.1 Zero-knowledge for well-formedness of Paillier ciphertext

We review the ZK proof which ensures the correctness of the ciphertext en-
crypted from a modified paillier encryption scheme proposed in [42], where (N, g)
is the public key, C is a ciphertext, (m, r) is the witness. The relation and the
ZK protocol is described as follows:

R = {(N, g, C) : (m, r)|C = gmrN mod N2}
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1. Prover randomly chooses m′ ∈ Zq and r′ ∈ Z∗N2 and computes C ′ = gm
′
r′
N

mod N2 and sends C ′ to the verifier;
2. Verifier randomly chooses c ∈ {0, 1} and sends c to prover.
3. Prover computes u = m′+ cm mod q, v = rcr′ mod N2 and sends (u, v) to

verifier.
4. Verifier outputs 1 if CC ′ = guvN mod N2; outputs 0 otherwise.

Necessity of repeatition. This is a classic Σ protocol, including three
phases of commit, challenge and response. To achieve a soundness error 2`, this
ZK should be repeated by ` times. We demenstrate the necessity of such a repeti-
tion here: when proving the special soundness, the extractor can manipulate the
random tape of the verifier. After a commitment of randomness r′ by prover and
a challenge c1 by verifier, extractor rewinds the protocol to commitment phase
again where the prover still uses the same randomness r but the verifier uses
another challenge c2. Now we obtain two equations: v1 = rc1r′ and v2 = rc2r′.
Then we have rc1−c2 = v1

v2
mod N2. If ci=1,2 ∈ {0, 1}k and k is an integer larger

than 1, we have to solve the (c1 − c2)− th root of v1
v2

mod N2. It is intractable
to compute such a root without knowing the factorazation of N according to the
DCRA assumption. Thus, ci=1,2 has to be sampled from {0, 1} and ` repeatitions
are required to achieve soundness error 2−`.

E.2 ZK waiving repeatition

We change the modified paillier in [42] a little bit by requiring that an R = rN
2

mod N2 should be published along with the ciphertext C = gmrN mod N . In
another word, we adjust the original ciphertext for a message m to a tuple (C,R)

where C = gmrN mod N and R = rN
2

mod N2. The modified relation R∗ and
corresponding ZK as follows.

R∗ = {(N, g, C,R) : (m, r)|C = gmrN , R = rN
2

mod N2}

1. Prover randomly chooses m′ ∈ Zq and r′ ∈ Z∗N2 and computes C ′ = gm
′
r′
N

mod N2, R′ = r′N
2

mod N2;
2. Verifier randomly chooses c ∈ {0, 1}k and sends c to prover.
3. Prover computes u = m′+ cm mod q, v = rcr′ mod N2 and sends (u, v) to

verifier.
4. Verifier outputs 1 if CC ′ = guvN

2

mod N2 and RcR′ = vN
2

mod N2;
outputs 0 otherwise.

Theorem 7. The ZK proof for for relation R∗ with challenge c is sampled from
{0, 1}k where 1 < k < min{|p|, |q|, |t|} has special soundness with soundness
error of 1

2k
when repeated for one round.

Proof. By rewinding, we obtain:

Rc1R′ = vN
2

1 , Rc2R′ = vN
2

2 mod N2

u1 = m′ + c1m, u2 = m′ + c2m mod q



A Trustless GQ Multi-Signature Scheme with Identifiable Abort 29

We easily extract m by m = u1−u2

c1−c2 mod q.

Next, we extract r. We have Rc1−c2 = (v1v2 )N
2

mod N2. Since (c1 − c2) <

min{p, q, t}, then gcd(N2, c1 − c2) = 1.
According to Bezout formula, there exists a unique pair of (α, β) where 0 ≤

α ≤ c1 − c2 − 1 and 0 ≤ β ≤ N2 − 1 (W.L.O.G. assuming c1 ≥ c2 ) which is
easily computed from Enclidean algorithm s.t.:

αN2 − β(c1 − c2) = ±gcd(N2, c1 − c2) = ±1.

Raise equation rc1−c2 = v1
v2

mod N2 to power β, we have:

Rβ(c1−c2) = (
v1
v2

)βN
2

mod N2

RαN
2±1 = (

v1
v2

)βN
2

mod N2

R±1 = {R−α(
v1
v2

)β}N
2

mod N2

r = R−α(±v1
v2

)β

ut

Hence, with a single round, the ZK proof for Paillier ciphertext can achieve
suitable soundness with an additional requiretment that the length of challenge
space smaller than min{|p|, |q|, |t|} which is easy to realize, thus grealy improv-
ing the efficiency of their blind ECDSA scheme useful to Bitcoin anonymous
transactions.


