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Abstract. In CRYPTO 2019, Chen et al. have initiated an interesting research
direction in designing PRF based on public permutations. They have proposed two
beyond the birthday bound secure n-bit to n-bit PRF constructions, i.e., SoEM22
and SoKAC21, which are built on public permutations, where n is the size of the
permutation. However, both of their constructions require two independent instances
of public permutations. In FSE 2020, Chakraborti et al. have proposed a single
public permutation based n-bit to n-bit beyond the birthday bound secure PRF,
which they refer to as PDMMAC. Although the construction is minimal in the number
of permutations, it requires the inverse call of its underlying permutation in their
design. Coming up with a beyond the birthday bound secure public permutation
based n-bit to n-bit PRF with a single permutation and two forward calls was left as
an open problem in their paper. In this work, we propose pEDM, a single permutation
based n-bit to n-bit PRF with two calls that do not require invertibility of the
permutation. We have shown that our construction is secured against all adaptive
information-theoretic distinguishers that make roughly up to 22n/3 construction and
primitive queries. Moreover, we have also shown a matching attack with similar query
complexity that establishes the tightness of our security bound.
Keywords: Public Permutations · EDM · PDMMAC · Expectation Method.

1 Introduction
Luby and Rackoff [44], in their seminal work, have shown how to construct a keyed
pseudorandom permutation (PRP) or, in other words, block cipher from secret keyed
pseudorandom functions (PRF). Their work was a theoretical model for formally arguing
the security of DES block cipher, which consists of r rounds of Feistel constructions
invoking independent instances of keyed functions. However, it was soon realized the
necessity of designing PRFs out of PRPs as primitives of cryptographic designs [5]. Because
we usually seek PRF security from a mode of operation and it is generally easier to design
PRPs than PRFs. One of the biggest challenges in designing PRFs is to design a secure
non-invertible round function that can be iterated multiple times to produce a secure
PRF. However, iterating the non-invertible round function multiple times is hard to get
right, as collision probabilities are amplified with each iteration [12, 49]. Nevertheless,
Mennink and Neves [49] designed a dedicated PRF called FastPRF from scratch, even
though their design is based on grouping the round functions of a PRP. Moreover, there
are plenty of cryptographic modes that do not require the invertibility of its underlying
primitives [47, 14, 43, 54, 17, 10, 32, 29, 30, 24, 46]. Hence, in such cases, for realizing the
PRF security of a mode of operation, it is a better and economical choice to use PRFs as
the underlying primitive of the mode over PRPs, which are designed to be efficient in both
forward and inverse direction. In fact, as substantial evidence of our argument, counter
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mode of encryption generally offers a better security guarantee when instantiated with a
PRF over a PRP because one can distinguish counter mode with PRP from the random
encryption with 2n/2 queries, where n is the block size of the PRP. On the other hand, the
counter mode with PRF behaves identically with the random encryption scheme modulo
the PRF advantage of the keyed function.

Due to the classical result of PRF-PRP switching lemma [20, 4, 6], a PRP Ek can be
replaced with a PRF Fk until the number of invocations to the primitive exceeds 2n/2,
where n is the block size of the permutation. Such a solution is adequate when the block size
of the permutation is large, (e.g., AES 128). However, the solution may not be good enough
when the block size is small (e.g., block size of 64 bits). This is paricularly relevant when
one instantiate cryptographic schemes using lightweight block ciphers like PRESENT [16],
GIFT [2] etc. The block size of such lightweight block ciphers is typically 64 bits. As a
result, if one uses these block ciphers as PRF in cryptographic designs, it can ensure only
32 bits of security, which is not practical in today’s world of computational power. As
a remedy of this, exploring the cryptographic designs, which retains security even after
invoking the primitive more than 2n/2 times, started to begin. Such designs are popularly
known as beyond birthday bound (BBB) secure designs. In this direction, Hall et al. [41]
have proposed a BBB secure PRF, called Truncation that takes an n-bit block cipher Ek
and truncates the result to a bits. This construction was later proven to be secured upto
2n−a/2 queries [3, 37]. Bellare et al. [5] have proposed the Sum of Permutations (SoP)
constructions which returns the xor of the outputs of two n-bit independent permutations.

SoPP1,P2(x) ∆= P1(x)⊕ P2(x).

This construction was proven to be secured upto 22n/3 queries [45] and recently it has
been shown to be secured upto 2n queries [28]. Cogliati and Seurin [24] have proposed
another candidate of beyond birthday bound secure PRF which they call Encrpted Davis
Meyer (EDM) construction and they have shown that EDM achieves 2n/3 bit security.

EDMP1,P2(x) ∆= P2(P1(x)⊕ x).

Later in [48], Mennink and Neves showed an optimal security of the consruction. In the
same paper, they also proposed a dual variant of EDM which he referred to as EDMD

EDMDP1,P2(x) ∆= P2(P1(x))⊕ P1(x),

and showed its optimal PRF security. However, the proof of both the constructions are
inherently based on a debated result of Mirror theory for general ξmax [35]. Guo et al. [39]
have proposed SUMPIP, a contender of SoP construction

SUMPIPP(x) ∆= P(x)⊕ P−1(x).

In contrast to the single permutation variant of SoP which takes n− 1 bit input, SUMPIP
is the first single permutation based PRF that takes n-bit input and returns n-bit output.
In the same paper, authors have also shown that single permutation variant of EDM and
EDMD achieves 2n/3-bit security. Concurrent to this, Cogliati and Seurin [25] have also
shown 2n/3 bit security for the single-keyed EDM construction. Very recently, Gunsing
and Mennink [38] proposed a new approach to design a block cipher based PRF which
they refer to as Summation-Truncation Hybrid (STH) technique. STH takes an (n− 1)-bit
input x, truncates the leftmost a bits of E(x‖0),E(x‖1), and sums the discarded n− a bits
of E(x‖0) and E(x‖1) to produce an (n + a)-bit output. They showed the construction
provides 2n−a/2 bits of security, where n− a is the number of discarded bits.
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1.1 Permutation Based Cryptography
All the above-discussed PRFs are built using block cipher as their underlying primitive
and even stronger in most constructions this primitive is evaluated only in the forward
direction. As block ciphers are designed to be efficient in both the forward and the
inverse direction, block ciphers are thus over-engineered primitives for such purpose [22].
On the other extreme, cryptographic public permutations are particularly designed to
be fast in the forward direction, but not necessarily in the inverse. Examples of such
permutations include Keccak [8], Gimli [7], SPONGENT [15] etc. Moreover, in most of
the cases evaluating an unkeyed public permutation is faster than evaluating a keyed block
cipher, as the latter involves evaluating the underlying key scheduling algorithm each
time the block cipher is invoked in the design. 1 Moreover, we do not need to store the
round keys in permutation based designs, and designing permutation is usually simple over
designing a block cipher. In this regard, we would like to quote the following statements
of Bertoni et al. [9]

“ . . . the inverse mapping of block ciphers imposes a separation of the processing of the
n+ k bits of the input. The key is processed in a key schedule and the data in the data
path, and there can be no diffusion from the data path to the key schedule, which strongly
limits the potential diffusion . . . Such a restriction is not present in the design of
cryptographic permutations as they do not make a distinction between the processing of key
and data input as there is no specific key input.”

With the advent of public permutation based designs and the efficiencies of evaluating
it in the forward direction, numerous public permutation based inverse-free hash and
authenticated encryption designs have been proposed [53, 17, 50, 32, 7, 31, 19, 26]. The
use of cryptographic permutation gained momentum during SHA-3 competition [53].
Furthermore, the selection of the permutation based Keccak sponge function as the SHA-3
standard has given a high level of confidence in using this primitive in the community.
Today, the permutation based sponge construction has become a successful and full-fledged
alternative to the block cipher based modes. In fact, in the first round of the ongoing
NIST lightweight competition [52], 24 out of 57 submissions are based on cryptographic
permutations, and out of 24, 16 permutation based proposals have qualified for the second
round. These statistics depict the wide adoption of permutation based designs [17, 7, 10,
19, 26, 32] in the community.
However, most of the permutation based cryptographic schemes generally provide lower
security bound with respect to the permutation state size. For example, most of the sponge-
based modes, in general, provides c/2 bits of security (exceptions are [17, 27]), where c < b
is the capacity part of the permutation, and b is its total state size. Nevertheless, the state
size of a permutation is typically larger than the block size of a message (e.g., state size of
KECCAK is 1600 bits), allowing the adequacy of the birthday bound in practice. However,
the state size of lightweight permutations such as SPONGENT [15] and PHOTON [40] go
as low as 88 and 100 bits, respectively. For these types of permutations, birthday bound
solutions are inadequate. Thus, it can be highly interesting to design public permutation
based cryptographic schemes that provide beyond the birthday bound security with respect
to the permutation state size.
This line of research was initiated by Chen et al. in [23] where they proposed two fixed-input
and fixed-output length beyond birthday bound secure PRFs based on public permutations
- one is in the parallel mode and the other is in the sequential mode. (i) For the parallel
mode, they have shown that the sum of two independent instances of Even-Mansour [36]

1One might argue that caching the round keys of the block cipher eliminate the problem. But it requires
more storage space than storing the master key of the block cipher, e.g., storing the round keys of AES-128
requires ten times more space than storing its master key.
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cipher, which they refer to as SoEM22,

SoEM22P1,P2
k1,k2

(x) ∆= P1(x⊕ k1)⊕ P2(x⊕ k2)⊕ k1 ⊕ k2,

provides a tight 2n/3-bit security. This construction was later extended by Bhattacharya
et al. [11], where they showed the beyond birthday bound security of the domain separated
variant of SoEM22. They have also proved that one cannot reduce the number of keys of
SoEM22 without degrading the security bound to the birthday limit. (ii) For the sequential
mode, Chen et al. proposed SoKAC21,

SoKAC21P1,P2
k (x) ∆= P2(P1(x⊕ k)⊕ k)⊕ P1(x⊕ k)⊕ k,

which was proven to have a tight 2n/3-bit security. However, later in [51], Nandi exhibited
a birthday bound attack on SoKAC21 and hence falsifying the security claim of the
construction. In [18], Chakraborti et al. have proposed PDM MAC, a beyond birthday
bound secure single permutation based fixed input and fixed output length PRF that
opearates in sequential mode. The design of PDM MAC is motivated from the Decrypted
Davis-Meyer (DDM) construction,

DDMk(x) ∆= P−1(P(x)⊕ x).

PDM MAC requires an n-bit key k and an n-bit public permutation P to generate the
output as follows:

PDMP
k(x) ∆= P−1(P(x⊕ k)⊕ (x⊕ 3k))⊕ 2k.

They extended the construction towards designing a BBB secure single permutation
and single keyed variant of nonce based MAC 2. Although, minimally structured, PDM
MAC and its related MAC constructions, i.e., PDM∗ MAC [18] and 1K-PDM∗ MAC [18]
require the invertiblity of the permutation P (similar to the design of DWCDM [30]).
However, inverse call in PDM MAC somewhat brings down one of the advantages of using
cryptographic permutations in a mode, i.e, the efficiency of evaluating the permutation in
forward direction. In fact, it was stated as an open problem [18] to design a BBB secure
single permuation based PRF with two forward calls. Not only this, inverse-free designs
become one of the important design aspects in today’s cryptography as designs that rely
solely on the forward call of the permutation makes a very low footprint in a combined
implementation of the mode [13]. Therefore, until now we do not have any beyond birthday
bound secure single permutation based fixed input and fixed output length PRF that
opearates in sequential mode with two forward calls 3.

1.2 Our Contribution
In this paper, we propose pEDM, the first fixed-input and fixed-output length single
permutation based beyond the birthday bound secure PRF that operates in a sequential
mode without requiring the inverse call of the permutation. Our design is motivated by the
EDM construction. In particular, pEDM with 2n-bit keys and n-bit public permutation,
takes an n-bit input and returns an n-bit output as follows:

pEDMP
k1,k2

(x) ∆= P(P(x⊕ k1)⊕ (x⊕ k1)⊕ k2)⊕ k1.

2Single permutation based nonce based MAC was also proposed in [34] that does not require invertibility
of the permutation

3Chen et al. [23] shown a n/2-bit attack on SoKAC1 construction, SoKAC1P
k1,k2

(x) = P(P(x ⊕ k1) ⊕
k2) ⊕ P(x ⊕ k1) ⊕ k2 ⊕ k1. However, Chakraborti et al. [18] claimed that the attack is possibly wrong and
shown a 2n/3-bit attack on it. They also conjectured that this attack bound is indeed tight.
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We have shown that pEDM is secured against all adaptive information-theoretic distinguishers
that make roughly up to 22n/3 construction and primitive queries. We also show a matching
attack of the same complexity and establish the tightness of the security bound. Note that
we could directly realize a permutation based PRF by instantiating the block cipher of
the single-keyed variant of the EDM construction with 2-round Even-Mansour cipher. But
that leads to having 4 permutation calls in total with 6n-bit keys. Compared to such a
straightforward solution, our construction altogether saves 2 permutation calls and 4n-bit
keys. Although pEDM uses a single permutation call with no inverse functionality, the
number of keys required is one more than the number of keys required in PDM MAC.
Currently, we do not know whether our construction is prone to the birthday attack with
a single key. However, we believe that it can be proven secure beyond the birthday bound
with only an n-bit key. We show the PRF advantage of this construction through an
extended distinguishing game and apply the expectation method to bound its distinguishing
advantage. In table 1, we compare the structures of several public permutation based PRFs
with single-block input, single-block output and multi-block input, multi-block output
designs.

Table 1: Comparison table for permutation based PRFs. n denotes the state size of
the permutation. Inv denotes whether the construction requires an inverse call of the
permutation. s

∆= n − log(w + 1), where w ≥ 1, is the size of chunk in CENC based
construction. The last three constructions require a keyed hash function with at most
` blocks input. The number of keys for those constructions includes the hash keys as
well. All the constructions except CENCPP∗ and DS-CENCPP∗ requires two permutation
calls. Although SoKAC1 has been shown to have a birthday bound attack and SoKAC21 is
beyond the birthday bound secure [23], Chakraborti et al. [18] believed that the birthday
bound attack on SoKAC1 is possibly wrong and shown an attack on it with 22n/3 query
complexity. Moreover, Nandi [51] has shown a birthday bound attack on SoKAC21.

Constructions (perm, keys) Inv (i/p, o/p) Sec
SoEM1 [23] (1, 2) x (n, n) Θ(n/2)
SoEM21 [23] (2, 1) x (n, n) Θ(n/2)
SoEM22 [23] (2, 2) x (n, n) Θ(2n/3)

SoKAC1 [23] (†) (1, 2) x (n, n) Ω(2n/3)
SoKAC21 [23] (2, 1) x (n, n) Θ(n/2)
PDMMAC [18] (1, 1) X (n, n) Θ(2n/3)
DS-SoEM [11] (1, 2) x (n− 1, n) Θ(2n/3)

pEDM [This Paper] (1, 2) x (n, n) Θ(2n/3)
CENCPP∗ [11] (w + 1, 2) x (n,wn) O(2n/3)

DS-CENCPP∗ [11] (1, 2) x (s, wn) O(2n/3)
nEHtMp [34] (1, 2) x (n− 1 + `n, n) Θ(2n/3)

PDM∗MAC [18] (1, 2) X (n+ `n, n) Θ(2n/3)
1K-PDM∗MAC [18] (1, 1) X (n+ `n, n) O(2n/3)

We would like to mention here that DS-CENCPP∗ with w = 1 is a parallel construction
with n− 1 bit input, requires field multiplication with a primitive element to derive 2n-bit
keys. However, our proposed construction is sequential with n bit input and does not
require field multiplication to derive the keys. Although both of them comes with similar
security bound (i.e., 22n/3), but due to the sequential nature, pEDM requires less state
size in hardware over the parallel construction DS-CENCPP∗.
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2 Preliminaries
Basic Notations. For a set X , x←$X denotes that x is sampled uniformly at random
from X and is independent to all other random variables defined so far. We write x← y
to denote that y is assigned in variable x. For any natural number q, [q] denotes the
set {1, . . . , q}. We denote an empty set as ∅. We say two sets X and Y are disjoint if
X ∩ Y = ∅. We denote their union as X t Y (which we refer to as disjoint union). Let
X = (X1, . . . ,Xs) be a finite collection of finite sets. We say X is a disjoint collection if for
each j 6= j′ ∈ [s], Xj and Xj′ are disjoint. The size of X, denoted as |X| = |X1|+ . . .+ |Xs|.
For a disjoint collection X = (X1, . . . ,Xs,Xs+1), we write X \Xs+1 to denote the collection
(X1, . . . ,Xs). For two disjoint collections X = (X1, . . . ,Xs) and Y = (Y1, . . . ,Ys′), we say
X is inter disjoint with Y if for all j ∈ [s], j′ ∈ [s′], Xj is disjoint with Yj′ . If X is inter
disjoint with Y, then we denote their union as X tY. Moreover, |X tY| = |X|+ |Y|. For
a set S and for a finite disjoint collection of finite sets X = (X1, . . . ,Xs), we write S \ X
to denote S \ (X1 t . . . t Xs). For a finite set X ⊆ {0, 1}n and for an arbitrary non-zero
element a ∈ {0, 1}n, X ⊕ a denotes the set {x⊕ a : x ∈ X}.
For any natural number n, {0, 1}n denotes the set of all binary strings of length n. We
denote |{0, 1}n| as N = 2n througout the paper. For integers 1 ≤ b ≤ a, (a)b denotes
a(a − 1) . . . (a − b + 1), where (a)0 = 1 by convention. We denote the set of all n-bit
permutations P as P(n). Let Z1 = (z1

1 , . . . , z
1
q ) and Z2 = (z2

1 , . . . , z
2
q ) be two finite tuples

of length q such that for each i ∈ [q], z1
i , z

2
i ∈ {0, 1}n. We say an n bit permutation

P ∈ P(n) maps Z1 to Z2, denoted as Z1
P7→ Z2, if for all i ∈ [q], P(z1

i ) = z2
i . We say Z1 is

permutation compatible to Z2 if there exists at least one P ∈ P(n) such that Z1
P7→ Z2.

For a given tuple of ordered pairs Q = ((x1, y1), . . . , (xq, yq)), where the xi’s and the
yi’s are pairwise distinct n-bit strings, we define the following two sets: Dom(Q) =
{xi ∈ {0, 1}n : (xi, yi) ∈ Q} and Ran(Q) = {yi ∈ {0, 1}n : (xi, yi) ∈ Q}. Clearly,
|Dom(Q)| = |Ran(Q)| = q. We say that an n-bit permutation P ∈ P(n) extends Q, which
we denote as P 7→ Q, if for all i ∈ [q],P(xi) = yi. We say that Q is extendable if there
exists at least one P ∈ P(n) such that P 7→ Q.

We generalize this notion for more than one tuple of ordered pairs. Let Q̃ = (Q1, . . . ,Qs)
such that for each j ∈ [s], Qj is defined as Qj = ((xj1, y

j
1), . . . , (xjqj , y

j
qj )), where the xji ’s

and the yji ’s are pairwise distinct n-bit strings. Now, for each j ∈ [s], we define the
following two sets: Dom(Qj) = {xji : (xji , y

j
i ) ∈ Qj} and Ran(Qj) = {yji : (xji , y

j
i ) ∈ Qj}.

Clearly, for each j ∈ [s], |Dom(Qj)| = |Ran(Qj)| = qj . Moreover, for all j 6= j′ ∈ [s],
Dom(Qj) is disjoint with Dom(Qj′) and Ran(Qj) is disjoint with Ran(Qj′). Then X =
(Dom(Q1), . . . ,Dom(Qs)) and Y = (Ran(Q1), . . . ,Ran(Qs)) becomes two disjoint collection
of finite sets. We say that an n-bit permutation P ∈ P(n) extends Q̃, which we denote
as P 7→ Q̃, if for all j ∈ [s],P 7→ Qj . As an alternative notation of P 7→ Q̃, we also write
X

P7→ Y.

2.1 A Simple Result on Probability
In this section, we recall two simple probability results from [33] that will be used while
proving the security of the construction.

Proposition 1. Let Q̃ = (Q1, . . . ,Qs+1) be an s + 1 tuple of ordered pairs such that
for j ∈ [s + 1], Qj is defined as Qj = ((xj1, y

j
1), . . . , (xjqj , y

j
qj )). Moreover, for each

j, j′ ∈ [s + 1], Dom(Qj) ∩ Dom(Qj′) = ∅ and Ran(Qj) ∩ Ran(Qj′) = ∅. Therefore,
X = (Dom(Q1), . . . ,Dom(Qs+1)) and Y = (Ran(Q1), . . . ,Ran(Qs+1)) be two disjoint
collection of finite sets such that for each j ∈ [s+ 1], |Dom(Qj)| = |Ran(Qj)| = qj. Then,
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we have

Pr[P←$ P(n) : X \ Dom(Qs+1) P7→ Y \ Ran(Qs+1) | P 7→ Qs+1] = 1
(N − qs+1)q1+...+qs

.

By setting s = 1 in the above proposition gives the following simple corollary:

Corollary 1. For two sets Q1 and Q2, where Q1 = ((x1
1, y

1
1), . . . , (x1

q1
, y1
q1

)) of cardinality
q1 and Q2 = ((x2

1, y
2
1), . . . , (x2

q2
, y2
q2

)) of cardinality q2, such that Dom(Q1)∩Dom(Q2) = ∅
and Ran(Q1) ∩ Ran(Q2) = ∅. Then, we have

Pr[P←$ P(n) : P 7→ Q1 | P 7→ Q2] = 1
(N − q2)q1

.

2.2 Public Permutation Based Pseudorandom Functions
Let F : K ×X → Y be a keyed function where K,X and Y are the key space, input space
and the output space respectively. We assume that F makes internal calls to the public
random permutations P = (P1, . . . ,Pd) for d ≥ 1, where all of the d permutations are
independent and uniformly sampled from P(n) for some n ∈ N. Similarly, we write P−1 =
(P−1

1 , . . . ,P−1
d ) to denote the d tuple of inverse permutations. For simplicity, we write FPk

to denote F with uniform k and uniform P.
A distinguisher D is given access to either of the oracle FPk to denote F with uniform k
and uniform P in the real world or a random function RF that maps elements from X to
Y in the ideal world. Apart from making query to either of these two oracles, D can also
make queries to the permutations P and P−1 in both of these worlds. Query of the former
type, where the distinguisher is interacting with either FPk or RF is called construction
query and the query of the later type is called primitive query. A primitive query to the
permutation is called forward primitive query and to the inverse of the permutation is
called inverse primitive query. The prf advantage of D against F in the public permutation
model is defined as

Advprf
F (D) ∆= | Pr

[
D(FPk ,P,P−1) ⇒ 1

]
− Pr

[
D(RF,P,P−1) ⇒ 1

]
|,

where (i) DO ⇒ 1 denotes that the distinguisher D is given access to the oracle O to which
it interacts with and after the interaction it outputs 1 and (ii) the above probability is
defined over the randomness of k←$K, P1, . . . ,Pd←$ P(n) and the randomness of the
distinguisher (if any). We say D is a (q, p, t) distinguisher if D makes total q construction
queries, p primitive queries and runs in at most t steps. We write

Advprf
F (q, p, t) ∆= max

D
Advprf

F (D),

where the maximum is taken over all (q, p, t)-distinguishers D. In this paper, we skip the
time parameter of the distinguisher as we will assume throughout the paper that the
distinguisher is computationally unbounded, and hence it is deterministic.

2.3 Sum Capture Lemma
In this section, we state a variant of the sum capture lemma [1] used in [21]. Informally,
the results states that when choosing a random subset A of GF(2n) (or more generally
any abelian group) of size q, the value

µ(A) ∆= max
B,C⊆GF(2n)

|{(a, b, c) ∈ A× B × C : a = b⊕ c}|,
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is at most q|B||C|/N , except with negligible probabilty. Chen et al. [21] proved the result
for a different setting where A arises from the interaction of an adversary with a random
permutation P, namely A = x⊕ y : (x, y) ∈ Q, where Q is the transcript of the interaction
between the adversary and the permutation. We employ the similar result in our setting
which is stated as follows:

Lemma 1. Let RF be a random function that maps elements from {0, 1}n to {0, 1}n.
Let D be some probabilitistic distinguisher that makes q adaptive queries to RF. Let
Q = ((x1, y1), . . . , (xq, yq)) denotes the transcript of the interaction with RF to D. For any
two subsets U and V of {0, 1}n, let

µ(Q,U ,V) = |{((x, y), u, v) ∈ Q× U × V : x⊕ u = y ⊕ v}|.

Then assuming 9n ≤ q ≤ N/2, we have

Pr
RF,ω

[
∃U ,V ⊆ {0, 1}n : µ(Q,U ,V) ≥ q|U||V|

N
+ 3
√
nq|U||V|

]
≤ 2
N
, (1)

where the probability is taken over the random choices of RF and the random coins ω of D.

As most part of its proof is similar to that of [21], we defer the proof of the above lemma
in Supplementary Sect. 7.

3 pEDM: Permutation Based Encrypted Davis Meyer
Construction

In this section, we propose pEDM, the first permutation based sequential beyond birthday
bound secure pseudorandom function with two forward permutation calls. Our construction
is permutation variant of the Encrypted Davis-Meyer (EDM) construction with 2n bit
masking keys. pEDM takes an n-bit input x which is masked with an n-bit round key k1
to generate the input of the first permutation call. Let this input be x′ = x ⊕ k1. The
permutation output P (x′) is then masked with k2⊕x′ to generate the input for the second
permutation call, which we denote as x′′, where k1 and k2 are two independent n-bit round
keys. Then the second permutation output P(x′′) is masked with the round key k1 to
generate the final output y. Schematic diagram of the construction is shown in Fig. 3. In

x ⊕ P ⊕ P y

k2k1 k1

⊕

Figure 3.1: pEDM Construction with k1 and k2 indepedent keys and P is an n-bit
permutation.

the following, we prove that pEDM is 2n/3-bit secure in the public permutation model,
where n is the state size of the permutation.

3.1 Security of pEDM
We show that pEDM is secure against all adversaries that make roughly N2/3 construction
and primitive queries in the random permutation model, where N = 2n. In the following,
we state the security result of pEDM, proof of which is deferred in Sect. 4.
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Theorem 1. Let P←$ P(n) be an n-bit public random permutation and let k1, k2←$ {0, 1}n
be two independent n-bit keys. Then the PRF advantage for any (q, p)-distinguisher against
the construction pEDMP

k1,k2
that makes at most q construction queries and p primitive

queries, is given by

Advprf
pEDM(q, p) ≤ 12q2

N4/3 + 2pq
N4/3 + 15q

N2/3 +
2√q
N1/3 + 32pq2

N2 + 7qp2

N2 + 24q3

N2

+ 2q3/2

N
+ 2p
N4/3 +

3p√nq
N

+
2p√q
N

+
q
√
p

N
+ p3/2

N
+ 2
N
.

Remarks 1.1. We would like to mention here that one can realize a construction by
omitting the involvement of key k1 in the feed-forward connection of pEDM. In other
words, P(P(x ⊕ k1) ⊕ x ⊕ k2) ⊕ k1 = y is an another valid construction with similar
level of security. Viewed in another way, our proposed construction can be viewed as
a 2-round key-alternating cipher based on permutation based Davis-Meyer construction
and a permutation, whereas the construction P(P(x ⊕ k1) ⊕ x ⊕ k2) ⊕ k1 = y can be
equivalently viewed as Even-Mansour cipher based Davies-Meyer construction followed
by an application of permutation. We believe that both are similar in performance and
results to the similar security bound.

3.2 Matching Attack on pEDM
In this section, we show a matching key-recovery attack on pEDM with a total of 22n/3+1

construction queries and 22n/3+2 primitive queries. The idea of the attack is to collect a
triplet of query indices (i, j, k) ∈ [q]×[p]×[p] for each key k1 in a set Sk1 , where q = 22n/3+1

is the number of construction queries and p = 22n/3+1 is the number of primitive queries
that distinguisher will make to the permutation P, such that xi ⊕ k1 = u1

j , yi ⊕ k1 = v2
k.

We consider k1 to be a potential candidate key if the number of triplets (i, j, k) in Sk1 is
at least two such that

u1
j ⊕ v1

j ⊕ u2
k = u1

j′ ⊕ v1
j′ ⊕ u2

k′

holds. We show that the true key belongs to the set of potential candidate keys with high
probability and the size of the set of the candidate keys is not very large. We construct
a deterministic adversary A that recovers the key of pEDM by making a total of 22n/3+1

construction queries and 22n/3+2 primitive queries as follows:
Notation: For a tuple (x1, x2, . . . , xs) of length s, where each xi ∈ {0, 1}n, we write
(x1, x2, . . . , xs)

wor←−− {0, 1}n to denote that xi←$ {0, 1}n \ {x1, . . . , xi−1} for i ≥ 2 with
x1←$ {0, 1}n. Similarly, (x1, x2, . . . , xs)

wr←− {0, 1}n denotes that xi←$ {0, 1}n, independent
to all x1, . . . , xi−1 for i ≥ 2 with x1←$ {0, 1}n.
Attack Algorithm:

1. A chooses 22n/3+1 construction queries (x1, . . . , x22n/3+1) wor←−− {0, 1}n.

2. A chooses 22n/3+2 forward primitive queries (u1, . . . , u22n/3+2) wor←−− {0, 1}n.

3. A creates two lists: U1 that stores uj for j ∈ [22n/3+1] and another list U2 that stores
uj for j ∈ [22n/3+1 + 1, 22n/3+2]. We denote the elements of U1 as u1

j , i.e., u1
j ← uj

for 1 ≤ j ≤ 22n/3+1 and denote the elements of U2 as u2
k, i.e., u2

k ← uk+22n/3+1 for
1 ≤ k ≤ 22n/3+1.

4. Then A makes queries to the primitive P with u1
j for j ∈ [22n/3+1] and obtains the

responses v1
j ← P(u1

j ). A makes another set of queries to the primitive P with u2
k for

k ∈ [22n/3+1 + 1, 22n/3+2] and obtains the corresponding responses v2
k ← P(u2

k).
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5. For each k1, A construct a set Sk1 = {(i, j, k) ∈ [22n/3 + 1]× [22n/3 + 1]× [22n/3 + 1] :
xi ⊕ u1

j = k1 = yi ⊕ v2
k}. We initialize K to the empty set ∅, which we call the set of

candidate keys.

6. For all key k1 ∈ {0, 1}n with |Sk1 | ≥ 2, check if the following holds: for every pair
(i, j, k) 6= (i′, j′, k′) ∈ Sk1 , one has

u1
j ⊕ vj ⊕ u2

k ⊕ u1
j′ ⊕ v1

j′ ⊕ u2
k′ = 0. (2)

If the above holds, then add k1 ∈ K.

Claim 1. Let (k∗1 , k∗2) be the true key, i.e., the pair of keys used in the construction. Then,
we have

Pr[k∗1 ∈ K] ≥ 0.687 (3)
Pr[|K \ {k∗1}| ≥ 128] ≤ 0.5. (4)

We defer the proof of the claim in the following section. However, the first equation of the
claim says that the true key k∗1 belongs to the set of candidate keys with high probability,
and the second equation says that the probability of the number of candidate keys is at
least 128 is at most 1/2. Before proceeding with the analysis of the attack, we recall the
Chernoff-bound for the sum of independent Bernoulli trial as follows:

Lemma 2. Let X1, X2, . . . , Xn be independent random variables following the bernoulli
distribution such that Xi takes the value 1 with probability pi and 0 with probability (1−pi).
Let X = X1 +X2 + . . .+Xn and µ = E[X]. Then, for any 0 < δ < 1,

Pr[X ≤ (1− δ)µ] ≤ e−µδ
2/2.

3.3 Analysis of the Key-Recovery Advantage
In this section, we prove Claim 1. In particular, we carry out the above two probability
analysis of Claim 1 in the following two steps:

Step I: True key belongs to the set of candidate keys. According to step (6) of
the algorithm, an element k1 gets included in the set K if the following two conditions
hold:

(a) |Sk1 | ≥ 2, (b) u1
j ⊕ v1

j ⊕ u2
k = u1

j′ ⊕ v1
j′ ⊕ u2

k′ , (i, j, k), (i′, j′, k′) ∈ Sk1 ,

where Sk1 is the set of all triplets (i, j, k) ∈ ([22n/3+1])3, as defined in step (5) of the
algorithm such that the following holds:

(§) =
{
k1 = xi ⊕ u1

j

k1 = yi ⊕ v2
k

For the true key (k∗1 , k∗2), Let zi be the input variable of the second permutation call of
the construction, i.e.,

zi
∆= P(xi ⊕ k∗1)⊕ (xi ⊕ k∗1 ⊕ k∗2).

Note that all the xi’s are without replacement variables and so are xi ⊕ k∗1 . Moreover, the
variables P(xi ⊕ k∗1) are again sampled in without replacement manner and indepenent
to variables xi ⊕ k∗1 . Therefore, each zi is a sum of two independently sampled without
replacement random variables and due to the result of the sum of two independent
permutations [35, 28], distribution of all zi’s are uniform.
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Now note that, for the first part k∗1 of the true key pair (k∗1 , k∗2), if it happens that for
some (i, j, k) ∈ ([22n/3+1])3, (§) holds, where k1 in (§) is replaced by the true key k∗1 , then
one can reveal the second part k∗2 of the true key pair (k∗1 , k∗2) as k∗2 = u1

j ⊕ v1
j ⊕ u2

k. As a
result, for the true key k∗1 and for (i, j, k), (i′, j′, k′) ∈ Sk∗1 , the relation

u1
j ⊕ v1

j ⊕ u2
k = u1

j′ ⊕ v1
j′ ⊕ u2

k′

gets automatically satisfied. Therefore, to bound Eqn. (3), it is enough to bound the
probability that there exists at least two distinct tuples (i, j, k), (i′, j′, k) exists such that

(F) =
{
k∗1 = xi ⊕ u1

j = yi ⊕ v2
k

k∗1 = xi′ ⊕ u1
j′ = yi′ ⊕ v2

k′ .

Again, for the first part k∗1 of the true key pair (k∗1 , k∗2), if it happens that for some
(i, j, k), (i′, j′, k′) ∈ ([22n/3+1])3, the following equations are satisfied, namely

(†) =


k∗1 = xi ⊕ u1

j

k∗1 = xi′ ⊕ u1
j′

zi = u2
k

zi′ = u2
k′ ,

then it also satisfies (F). As a result, it is enough to bound the probability that there
exists at least two distinct tuples (i, j, k), (i′, j′, k′) such that (†) is satisfied. We bound the
probability in two stages. In the first stage, we bound the number of i such that zi ∈ U2
and we store such i in list L1. Let Lx be the set of all xi ⊕ k∗1 such that i ∈ L1. In the
second stage, we lower bound the probability that the number of j such that u1

j ∈ Lx is at
least 2.
Stage-I: Let Zi be the indicator random variable that takes the value 1 if zi ∈ U2. It is
easy to see that Zi are indepedent bernoulli random variables with success probability
2/2n/3. Let Z = (Z1 + . . . + Z22n/3+1).Then Z ∼ Bin(22n/3+1, 2/2n/3) and therefore,
E[Z] = 4 · 2n/3. By applying the Chernoff-bound as stated in Lemma (2) with δ = 1/2, we
have

Pr[Z > 2n/3+1] ≥ 1− 1
e2n/3−1 . (5)

Therefore, Eqn. (5) says that the size of list L1 and in turn the size of list Lx is at least
2n/3 + 1 holds with high probability.
Stage-II: Let Lx be the list of all xi ⊕ k∗1 such that i ∈ L1. Therefore, to bound the
probability that there exists at least two distinct tuples (i, j, k), (i′, j′, k) exists such that
such that (F) holds, we bound the following:

Pr[|j : u1
j ∈ Lx| ≥ 2]. (6)

We write Eqn. (6) as

(6) = 1−
(

Pr[u1
j /∈ Lx,∀j ∈ [22n/3+1]]︸ ︷︷ ︸

(A)

+
22n/3+1∑
j=1

Pr[u1
j ∈ Lx ∧ u1

k /∈ Lx,∀k 6= j]︸ ︷︷ ︸
(B)

)
. (7)

Bounding A: To bound A, we would like to note here that u1
1, . . . , u

1
22n/3+1 are without

replacement samples of {0, 1}n. Moreover, |Lx| = 2n/3+1. By using a simple algebra, we
have

(A) = Pr[u1
1, . . . , u

1
22n/3+1 /∈ Lx] ≤ (2n − 2n/3+1)22n/3+1

(2n)22n/3+1
≤
(

1− 2
22n/3

)2·22n/3

≤ 1
e4 . (8)
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Bounding B: Bounding B is similar to that of A.

(B) =
22n/3+1∑
j=1

Pr[u1
j ∈ Lx] · Pr[u1

k /∈ Lx,∀k 6= j] ≤
22n/3+1∑
j=1

2n/3+1

(2n − 22n/3+1 + 1)
·
(

1− 2
22n/3

)2·22n/3−1

≤ 8
(

1− 2
22n/3

)−1
·
(

1− 2
22n/3

)2·22n/3

≤ 16
e4 , (9)

where the last inequality follows from 1
(1−2/22n/3) ≤ 2 as n ≥ 3. Therefore, from Eqn. (7),

Eqn. (8), Eqn. (9) and by plug-in the value of e ≤ 3, we have

Pr[k∗1 ∈ K] ≥ 1− 17
e4 . (10)

Step-II: Bounding the cardinality of K \ {k∗1}. To upper bound the probability
that |K \ {k∗1}| ≥ 128, we use the Markov’s inequality. In particular, we have

Pr[|K \ {k∗1}| ≥ 128] ≤ E[|K \ {k∗1}|]
128 . (11)

Therefore, it is enough to upper bound the expected size of the set of candidate keys
K \ {k∗1}. For each k1 ∈ {0, 1}n, let Ik1 be the indicator random variable that takes the
value 1 if there exists (i, j, k), (i′, j′, k′) such that the following holds:

(§§) =



u1
j ⊕ v1

j ⊕ u2
k = u1

j′ ⊕ v1
j′ ⊕ u2

k′

k1 = xi ⊕ u1
j

k1 = yi ⊕ v2
k

k1 = xi′ ⊕ u1
j′

k1 = yi′ ⊕ v2
k′ .

Otherwise, the indicator random variable Ik1 takes the value 0. It is easy to see using the
linearity of expectation that∑

k1∈{0,1}n\{k∗1}

Ik1 = |K \ {k∗1}| ⇒ E[|K \ {k∗1}|] =
∑

k1∈{0,1}n\{k∗1}

Pr[Ik1 = 1]. (12)

Therefore, it boils down to upper bound the probability that Ik1 takes the value 1. For
a fixed choice of indices i, j, k and i′, j′, k′, the above system of equations hold with
probability at most 2−5n as all the random variables are independent to each other. The
number of choices of indices is at most (2n/3+1)6. Therefore, we have

Pr[Ik1 = 1] ≤ 64
2n . (13)

From Eqn. (12) and Eqn. (13), we have the expected size of the set of candidate keys is at
most 8. By plug-in this value into Eqn. (11), we have

Pr[|K \ {k∗1}| ≥ 128] ≤ 1/2,

which concludes the proof of Claim 1.
Note that in the above attack, the distinguisher is information theoretically bounded. The
run time of the attack 4 is more than 2n. In particular, for each key k1, the number of

4Note that the time complexity of the adversary here does not account for the number of times adversary
makes offline primitive queries. The time complexity of the adversary solely means the time required to
compute local operations.
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steps required to populate set Sk1 is roughly 22n. Therefore, altogether step (5) of the
algorithm takes at most 24n operations. For each key k1 in step (6), algorithm takes at
least one checking operation for Eqn. (2) in each set Sk1 . Therefore, altogether step (5) of
the algorithm takes 2n operations. Therefore, the overall time complexity of the algorithm
is roughly O(24n). Nevertheless, the number of construction queries is 22n/3+1, and the
total number of primitive queries is 22n/3+2.

4 Proof of Theorem 1
Let us consider k = (k1, k2) ∈ {0, 1}2n be a pair of n-bit keys. We consider any information
theoretic deterministic distinghisher D that interacts with the following oracles in either
the real world or in the ideal world: in the real world it interacts with (pEDMP

k,P) and
in the ideal world it interacts with (RF,P), where RF is the random function over {0, 1}n
to {0, 1}n. We call the first oracle as construction oracle and the second one as primitive
oracle. Query to the construction oracle is called the construction query and to that of the
primitive oracle is called the primitive query. We summarize the construction queries in a
transcript τc, where τc = {(x1, y1), . . . , (xq, yq)} and the primitives queries in transcript
τp = {(u1, v1), . . . , (up, vp)}, where we assume that D makes total q construction and p
primitive queries. For primitive queries, D can either make forward query u to its primitive
P and receives response v or can make inverse query v to P−1 and receives response u.
Since, we assume that D never makes pointless queries, none of the transcripts contain
any duplicate elements.
We modify the experiment by releasing internal information to D after it has finished
the interaction but has not output yet the decision bit. In the real world, we reveal the
key k which is used in the construction and in the ideal world, we sample a pair of n-bit
dummy keys k = (k1, k2) uniformly at random from the keyspace {0, 1}n and reveal it
to the distinguisher. In all the following, the complete transcript is τ = (τc, τp,k). Note
that, the modified experiment only makes the distinguisher more powerful and hence the
distinguishing advantage of D in this experiment is no way less than its distinguishing
advantage in the former one. Let Xre denotes the random variable that takes a transcript τ
realized in the real world. Similarly, Xid denotes the random variable that takes a transcript
τ realized in the ideal world. The probability of realizing a transcript τ = (τc, τp,k) in the
ideal (resp. real) world is called ideal (resp. real) interpolation probability. A transcript τ
is said to be attainable with respect to D if its ideal interpolation probability is non-zero.
Let Θ denotes the set of all attainable transcripts and φ : Θ→ [0,∞) be a non-negative
function that maps any attainable transcripts to a non-negative real value. Following these
notations, we state the main theorem of the Expectation Method [42] as follows:

Theorem 2 (Expectation Method). Let Θ = GoodT t BadT be some partition of the
set of attainable transcripts. Let τ = (τc, τp,k) ∈ GoodT be an arbitrary good transcript
such that

pre(τ)
pid(τ)

∆= Pr[Xre = τ ]
Pr[Xid = τ ] ≥ 1− φ(τ),

and there exists εbad ≥ 0 such that Pr[Xid ∈ BadT] ≤ εbad. Then,

Advprf
pEDM(D) ≤ E[φ(Xid)] + εbad. (14)

Note that, the expectation method trivially boils down to the H-Coefficient technique if φ
becomes a constant function such that for any attainable good transcripts τ , φ(τ) = c for
0 ≤ c ≤ 1. Having explained the Expectation Method in the view of our construction, we
now state the following result.
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Lemma 3. Let τ = (τc, τp,k) ∈ Θ be an attainable transcript. Let p(τ) ∆= Pr[P←$ P(n) :
pEDMP

k 7→ τc | P 7→ τp]. Then, we have

ρ(τ) ∆= pre(τ)
pid(τ) = p(τ) ·Nq.

Recall that pEDMP
k 7→ τc denotes pEDMP

k(xi) = yi for all (xi, yi) ∈ τc, i.e., for all
(xi, yi) ∈ τc, it must hold that P(P(xi ⊕ k1)⊕ xi ⊕ k1 ⊕ k2)⊕ k1 = yi, where k = (k1, k2).
Proof of this lemma is trivial to follow as the ideal interpolation probability for a good
transcript is 1

(N)pNq , as the random function RF always outputs uniform random n-bit
strings on each input query.

4.1 Definition and Probability of Bad Transcripts
In this section, we define and bound the probability of bad transcripts in the ideal world.
For a transcript τ = (τc, τp, k1, k2), we define the following sets:

U ∆= {u ∈ {0, 1}n : (u, v) ∈ τp},

V ∆= {v ∈ {0, 1}n : (u, v) ∈ τp},

α
∆= |{(x, y) ∈ τc : x⊕ k1 ∈ U}|,

β
∆= |{(x, y) ∈ τc : y ⊕ k1 ∈ V}|,

C ∆= |{{(x, y), (x′, y′)} : (x, y), (x′, y′) ∈ τc, y = y′}|,

σ
∆= |{{(x, y), (x′, y′), (x′′, y′′)} : (x, y), (x′, y′), (x′′, y′′) ∈ τc, y ⊕ x′ ⊕ k2 = x′′ ⊕ k1}|,

θ
∆= |{{(u, v), (u′, v′)} : (u, v), (u′, v′) ∈ τp, u⊕ v = u′ ⊕ v′}|.

We say that a construction query (x, y) ∈ τc is non-colliding if ∀(x′, y′) ∈ τc, y 6= y′. Now,
we characterize the set of bad transcripts as follows. The main crux of identifying bad
events is to identify the two-fold collisions, as depicted in Fig. 4.1

Definition 1. An attainable transcript τ = (τc, τp,k) is called a bad transcript if any
one of the following holds:

1. Inputs (resp. outputs) to the two consecutive permutation calls for a particular
construction query are not fresh.

- B.1: ∃ (x, y) ∈ τc, (u, v), (u′, v′) ∈ τp such that x⊕ k1 = u, v ⊕ u⊕ k2 = u′.
- B.2: ∃ (x, y) ∈ τc, (u, v), (u′, v′) ∈ τp such that y⊕k1 = v, u⊕ (x⊕k1)⊕k2 = v′.
- B.3: ∃ (x, y), (x′, y′) ∈ τc, (u, v) ∈ τp such that x⊕ k1 = u, v ⊕ u⊕ k2 = x′ ⊕ k1.
- B.4: ∃ (x, y), (x′, y′) ∈ τc, (u, v) ∈ τp such that y ⊕ k1 = v, u⊕ (x⊕ k1)⊕ k2 =
y′ ⊕ k1.

2. Both the input and output of a construction query are not fresh.

- B.5: ∃ (x, y) ∈ τc, (u, v), (u′, v′) ∈ τp such that x⊕ k1 = u, y ⊕ k1 = v′.

3. Inputs (resp. outputs) to the first (resp. second) permutation call of two construction
queries collides with the input (resp. output) of two primitive queries, and the inputs
(resp. outputs) to the second (resp. first) permutation call for those two construction
queries collides.

- B.6: ∃ (x, y), (x′, y′) ∈ τc, (u, v), (u′, v′) ∈ τp such that x ⊕ k1 = u, x′ ⊕ k1 =
u′, u⊕ v = u′ ⊕ v′.
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u v u′ v′

B.1

u v u′ v′

B.2

u v x′ ⊕ k1

B.3

y′ ⊕ k1 u′ v′

B.4

u v

u′ v′

B.6

u v

u′ v′

B.7

u v u′ v′

B.5

u v

B.8

Figure 4.1: Different cases of two-fold collisions. Red edge denotes the input / output
collides with prmitive input / output. Blue edge denotes that input collides with the input
of some construction query or output of some construction query. Green edge denotes the
collision among themselves.

- B.7: ∃ (x, y), (x′, y′) ∈ τc, (u, v), (u′, v′) ∈ τp such that y ⊕ k1 = v, y′ ⊕ k1 =
v′, u⊕ x = u′ ⊕ x′.

4. Additional Bad events.

- B.8: ∃ (x, y), (x′, y′) ∈ τc, (u, v) ∈ τp such that x⊕ k1 = u, y = y′.
- B.9: σ ≥ q2/N1/3.
- B.10: C ≥ q/N1/3.
- B.11: α ≥ √q.
- B.12: β ≥ √q.
- B.13: θ ≥ √p.

Recall that BadT ⊆ Θ be the set of all attainable bad transcripts and GoodT = Θ \ BadT
be the set of all attainable good transcripts. We bound the probability of bad transcripts
in the ideal world as follows.

Lemma 4. Let τ = (τc, τp,k) be any attainable transcript. Let Xid and Θb be defined as
above. Then

Pr[Xid ∈ BadT] ≤ 3qp2

N2 + 4pq2

N2 +
3p√nq
N

+
2p√q
N

+
q
√
p

N
+ p3/2

N
+ 2q
N2/3 + 2

N
.

Proof. Let τ = (τc, τp, k1, k2) be any attainable transcript. Recall that, in the ideal world
k1 and k2 are sampled uniformly and independently from the keyspace. Using the union
bound, we have

Pr[Xid ∈ BadT] ≤ Pr[B.7 ∨ B.13] +
∑

1≤i≤13
i 6=7,13

Pr[B.i]. (15)
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In the following, we bound the probabilities of all the bad events individually. The lemma
will then follow by adding the individual bounds.
Bounding B.1. We consider the event B.1. For a fixed (x, y) ∈ τc and for a fixed
(u, v), (u′, v′) ∈ τp, the probability that

k1 = x⊕ u, k2 = u′ ⊕ v ⊕ u

is N−2 due to the randomness of the key k1 and k2. By summing over all possible choices
of (x, y) ∈ τc, (u, v), (u′, v′) ∈ τp, we have

Pr[B.1] ≤ qp2

N2 . (16)

Bounding B.2. We consider the event B.2. For a fixed (x, y) ∈ τc and for a fixed
(u, v), (u′, v′) ∈ τp, the probability that

k1 = y ⊕ v, k2 = v′ ⊕ u⊕ (x⊕ k1)

is N−2 by using the randomness of k1 and k2. By summing over all possible choices of
(x, y) ∈ τc, (u, v), (u′, v′) ∈ τp, we have

Pr[B.2] ≤ qp2

N2 . (17)

Bounding B.3. We consider the event B.3. For a fixed (x, y), (x′, y′) ∈ τc and for a fixed
(u, v) ∈ τp, the probability that

k1 = u⊕ x, k2 = v ⊕ (x′ ⊕ k1)⊕ u

is N−2 by using the randomness of k1 and k2. By summing over all possible choices of
(x, y), (x′, y′) ∈ τc, (u, v) ∈ τp, we have

Pr[B.3] ≤ pq2

N2 . (18)

Bounding B.4. Using the similar reasoning as that of B.3, we have

Pr[B.4] ≤ pq2

N2 . (19)

Bounding B.5. We consider the event B.5. To bound the event we consider the following
set

BadK1 = {k1 ∈ {0, 1}n : ∃(x, y) ∈ τc, (u, v), (u′, v′) ∈ τp such that k1 = x⊕ u = y ⊕ v′}.

Note that k ∈ BadK1 ⇔ ∃(x, y) ∈ τc, (u, v), (u′, v′) ∈ τp : k = x ⊕ u = y ⊕ v′. Therefore,
for any ∆ > 0, we have,

Pr[B.5] = Pr[k1 ∈ BadK1]
= Pr[k1 ∈ BadK1 ∧ |BadK1| ≥ ∆] + Pr[k1 ∈ BadK1 ∧ |BadK1| < ∆]

≤ Pr[|BadK1| ≥ ∆]] + ∆
N
. (20)

Now, it is easy to see that

|BadK1| ≤ Z
∆= |{((x, y), u, v′) ∈ τc × U × V : x⊕ u = y ⊕ v′}|.
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Now, from Lemma 1, we have

Pr[|Z| ≥ qp2/N + 3p√nq] ≤ 2/N.

Therefore, by setting ∆ = qp2/N + 3p√nq and by using Eqn. (20), we have

Pr[B.5] ≤ qp2

N2 +
3p√nq
N

+ 2
N
. (21)

Bounding B.6 ∨B.13. We bound the event B.6 ∨ B.13. For this, we have the following:

Pr[B.6 ∨ B.13] ≤ Pr[B.13] + Pr[B.6 ∧ B.13]. (22)

To bound the probability of the event B.13, we define an indicator random variable Iij
which is set to 1 if and only if (ui, vi), (uj , vj) ∈ τp such that ui ⊕ vi = uj ⊕ vj . Therefore,
we have

θ =
∑
i,j

Iij .

Now, for a fixed i, j, we have Pr[Iij = 1] = N−1. This is due to the fact that either both
of (ui, vi), (uj , vj) are backward queries in which ui, uj are random values or at least one
of them is a forward query (w.l.og we assume (uj , vj) is a forward query) in which vj is
random. Hence, using the linearity of expectation, we have

E[θ] =
∑
ij

E[Iij ] =
∑
ij

Pr[Iij = 1] ≤ p2

N
. (23)

Therefore, using Markov’s inequality, we have

Pr[B.13] = Pr[θ ≥ √p] ≤ E[θ]
√
p

(1)
≤ p3/2

N
, (24)

where (1) follows from Eqn. (23). Now, we bound the probability of B.6 ∧ B.13. To bound
the event, for a fixed pair of (x, y), (x′, y′) ∈ τc and for a fixed pair of (u, v), (u′, v′) ∈ τp
the probability that x⊕ k1 = u, x′⊕ k1 = u′, u⊕ v = u′⊕ v′ is N−1 due to the randomness
of k1. Note that as u 6= u′, the probability of the event is well defined. Since, we consider
the probability of the conditional event B.6 conditioned on the event B.13, the number
of such pairs of (u, v), (u′, v′) ∈ τp satisfies the the event is at most √p. Moreover, the
number of choices for (x, y) ∈ τc is q which makes the choice for (x′, y′) ∈ τc is at most 1,
as choosing an (x, y) determines (x′, y′), namely, x′ = u′ ⊕ u⊕ x. Hence,

Pr[B.6 ∧ B.13] ≤
q
√
p

N
. (25)

By combining Eqn. (22), Eqn. (24) and Eqn. (25), we have

Pr[B.6 ∨ B.13] ≤
q
√
p

N
+ p3/2

N
. (26)

Bounding B.7. To bound the event B.7 we need to bound the event y = v ⊕ k1, y
′ =

v′ ⊕ k1, u⊕ x = u′ ⊕ x′. For a fixed pair of (x, y), (x′, y′) ∈ τc and (u, v), (u′, v′) ∈ τp, the
above event holds with probability N−2 due to the independence of y and y′. Now, the
number of choice for (x, y), (x′, y′) is at most q2 and the number of choice for (u, v) is at
most p which makes the number of choice for (u′, v′) is at most 1. Hence, by varying over
all possible choices of (x, y), (x′, y′) ∈ τc and (u, v), (u′, v′) ∈ τp, we have

Pr[B.7] ≤ pq2

N2 . (27)
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Bounding B.8. To bound the event B.8, we fix (x, y), (x′, y′) ∈ τc and (u, v) ∈ τp, the
probability that

k1 = u⊕ x, y = y′

is N−2. By summing over all possible choices of (x, y), (x′, y′) ∈ τc, (u, v) ∈ τp, we have

Pr[B.8] ≤ pq2

N2 . (28)

Bounding B.9. To bound the event B.9, we define an indicator random variable Iijk
which is set to 1 if and only if (xi, yi), (xj , yj), (xk, yk) ∈ τc such that yi⊕xj⊕k2 = xk⊕k1.
Therefore, we have

σ =
∑
i,j,k

Iijk.

Now, for a fixed i, j and k, we have Pr[Iijk = 1] = N−1 by using the randomness of k1.
Using the linearity of expectation, we have

E[σ] =
∑
ijk

E[Iijk] =
∑
ijk

Pr[Iijk = 1] ≤ q3

N
. (29)

Therefore, using Markov’s inequality, we have

Pr[B.9] = Pr[σ ≥ q2/N1/3] ≤ E[σ]
q2/N1/3

(2)
≤ q

N2/3 , (30)

where (2) follows from Eqn. (29).
Bounding B.10. To bound the event B.10, we define an indicator random variable Iij
which is set to 1 if and only if (xi, yi), (xj , yj) ∈ τc such that yi = yj . Therefore, we have

C =
∑
i,j

Iij .

Now, for a fixed i, j, we have Pr[Iij = 1] = N−1 by using the independence of yi and yj .
Using the linearity of expectation, we have

E[C] =
∑
ij

E[Iij ] =
∑
ij

Pr[Iij = 1] ≤ q2

N
. (31)

Therefore,

Pr[B.10] = Pr[C ≥ q/N1/3] ≤ E[C]
q/N1/3

(3)
≤ q

N2/3 , (32)

where (3) follows from Eqn. (31).
Bounding B.11. To bound the event B.11, we define an indicator random variable Iij
which is set to 1 if and only if (xi, yi) ∈ τc, (uj , vj) ∈ τp such that xi ⊕ k1 = uj . Therefore,
we have

α =
∑
i,j

Iij .

Now, for a fixed i, j, we have Pr[Iij = 1] = N−1 by using the randomness of k1. Using the
linearity of expectation, we have

E[α] =
∑
ij

E[Iij ] =
∑
ij

Pr[Iij = 1] ≤ qp

N
. (33)
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Therefore, using Markov’s inequality, we have

Pr[B.11] = Pr[α ≥ √q] ≤ E[α]
√
q

(4)
≤
p
√
q

N
, (34)

where (4) follows from Eqn. (33).
Bounding B.12. To bound the event B.12, we define an indicator random variable Iij
which is set to 1 if and only if (xi, yi) ∈ τc, (uj , vj) ∈ τp such that yi ⊕ k1 = vj . Therefore,
we have

β =
∑
i,j

Iij .

Now, for a fixed i, j, we have Pr[Iij = 1] = N−1 by using the randomness of k1. Using the
linearity of expectation, we have

E[β] =
∑
ij

E[Iij ] =
∑
ij

Pr[Iij = 1] ≤ qp

N
. (35)

Therefore, using Markov’s inequality, we have

Pr[B.12] = Pr[β ≥ √q] ≤ E[β]
√
q

(5)
≤
p
√
q

N
, (36)

where (5) follows from Eqn. (35). Using the Eqn. (15)-Eqn. (36), the result follows.

4.2 Analysis of Good Transcripts
In this section, we state that for a good transcript τ = (τc, τp,k), realizing τ is almost as
likely in the real world as in the ideal world. More formally,

Lemma 5 (Good Lemma). Let τ = (τc, τp,k) ∈ GoodT be a good transcript. Let Xre
and Xid be defined as above. For some positive integer 0 ≤ t ≤ q/N1/3, we have

Pr[Xre = τ ]
Pr[Xid = τ ] ≥ 1−

(
12q2

N4/3 + 2pq
N4/3 + 13q

N2/3 + 2pt
q2 +

2√q
N1/3 + 28pq2

N2 + 4p2q

N2

+ 24q3

N2 + 2q3/2

N

)
.

Proof of this lemma is the most difficult part of the paper. Hence, we devote the following
separate section for proving it. Therefore, by applying H-Coefficient technique (i.e.,
Theorem 2) with Lemma 4 and Lemma 5, the result follows.

5 Proof of Good Lemma
In this section, we prove that for a good transcript τ = (τc, τp,k), realizing it in the real
world is as likely as realizing it in the ideal world. Note that, we have shown in Lemma 3
that to compute the ratio of real to ideal interpolation probability for a good transcript τ ,
one needs to compare

p(τ) ∆= Pr[P←$ P(n) : pEDMP
k 7→ τc | P 7→ τp]

with Nq. Therefore, it is enough to establish a lower bound of p(τ).
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5.1 Establishing Lower bound on p(τ )
First of all, for a good transcript τ = (τc, τp,k) recall that U is the set of all domain points
of primitive queries and V is the set of all range points of it. Since, τ = (τc, τp, k1, k2) is a
good transcript, we can partition the set of construction queries τc ∈ τ into a finite number
of disjoint groups as follows:

QU
∆= {(x, y) ∈ τc : x⊕ k1 ∈ U}

QV
∆= {(x, y) ∈ τc : y ⊕ k1 ∈ V}

Q0
∆= {(x, y) ∈ τc : x⊕ k1 /∈ U , y ⊕ k1 /∈ V}

Having defined the sets, we claim that the sets are disjoint and they exhaust the entire set
of attainable good transcripts. By the definition of bad transcripts, we have QU ∩QV = ∅
and by definition we have QU ∩Q0 = ∅,QV ∩Q0 = ∅. Hence, we have the following result:

Proposition 2. Let τ = (τc, τp, k1, k2) ∈ GoodT be a good transcript. Then the sets
(QU ,QV ,Q0) are pairwise disjoint.

Note that, since τ is a good transcript, we have, α = |QU | ≤
√
q and β = |QV | ≤

√
q. Let

EU denote the event pEDMP
k 7→ QU . Similarly, EV denote the event pEDMP

k 7→ QV and
finally, E0 denote the event pEDMP

k 7→ Q0. Now, it is easy to see that

p(τ) = Pr[EU ∧ EV ∧ E0 | P 7→ τp]
= Pr[EU ∧ EV | P 7→ τp]︸ ︷︷ ︸

p1(τ)

·Pr[E0 | EU ∧ EV ∧ P 7→ τp]︸ ︷︷ ︸
p2(τ)

(37)

Thus, it is enough to establish a good lower bound on p1(τ) and p2(τ) for a good transcript
τ .

5.2 Lower Bound of p1(τ )
To lower bound p1(τ), we define the following sets:

S1
∆= {x⊕ k1 : (x, y) ∈ QU}, S2

∆= {x⊕ k1 : (x, y) ∈ QV}

D1
∆= {y ⊕ k1 : (x, y) ∈ QU}, D2

∆= {y ⊕ k1 : (x, y) ∈ QV}

Note that, S1 ⊆ U and |S1| = α. Similarly, D2 ⊆ V and |D2| = β. Conditioned on
P 7→ τp, P is fixed on exactly p input-output pairs. For each (x, y) ∈ QU , there is a unique
(u, v) ∈ τp such that x ⊕ k1 = u, so that P(x ⊕ k) is well defined, which is equal to v.
Similarly, for each (x, y) ∈ QV , there is a unique (u, v) ∈ τp such that y ⊕ k1 = v, so that
P−1(y ⊕ k1) is well defined, which is equal to u. This leads us to define the following two
additional sets:

X1
∆= {P(x⊕ k1)⊕ x⊕ k1 ⊕ k2 : (x, y) ∈ QU}

X2
∆= {P−1(y ⊕ k1)⊕ x⊕ k1 ⊕ k2 : (x, y) ∈ QV}.

In the following we state that every element of D1 is distinct and does not collide with any
primitive query output. Similarly, every element of S2 is distinct and does not collide with
any primitive query input.

Proposition 3. Every element of D1 is distinct and does not collide with any primitive
query output. Similarly, every element of S2 is distinct and does not collide with any
primitive query input.
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Proof. The distinct property of D1 follows from ¬B.6. Moreover, if any elements of D1
collides with any primitive query output then it would satisfy condition B.2. This says
that D1 ∩ V = ∅ ⇒ D1 ∩ D2 = ∅ and hence |D1| = α.
By definition every element of S2 is unique and does not collide with any primitive query
input (otherwise satifies condition B.2). Hence, S2 ∩ U = ∅ ⇒ S2 ∩ S1 = ∅ and hence
|S2| = β.
However, the above result says that |D1| = α and |S2| = β. Now, we have the following
proposition which states that every element of X1 and X2 are distinct and X1 is pairwise
disjoint with S1 and S2. Similarly, every element of X2 is distinct and pairiwise disjoint
with D1 and D2.

Proposition 4. Every element of X1 is distinct and X1 ∩ S1 = ∅,X1 ∩ S2 = ∅. Moreover,
every element of X2 is distinct and X2 ∩ D1 = ∅,X2 ∩ D2 = ∅.

Proof. For the sake of contradiction, let us assume that P(xi ⊕ k1) ⊕ xi ⊕ k1 ⊕ k2 =
P(xj⊕k1)⊕xj⊕k1⊕k2 for some (xi, yi), )(xj , yj) ∈ QU . But this implies the condition B.7
to hold, which implies that τ is not a good transcript. Thus, every element of X1 is distinct.
Moreover, none of the elements of X1 collides with any primitive query input, othwerwise
it would satisfy condition B.1. This implies that X1∩S1 = ∅. Moreover, X1∩S2 = ∅ which
follows due to ¬B.4. Thus, we have, X1 ∩ U = ∅ ⇒ X1 ∩ S1 = ∅ and X1 ∩ S2 = ∅. Hence,
|X1| = α. For the second part of the proof, for the sake of contradiction, let us assume that
P−1(yi⊕k1)⊕ (xi⊕k1)⊕k2 = P−1(yj⊕k1)⊕ (xj⊕k1)⊕k2 for some (xi, yi), (xj , yj) ∈ QV .
But this implies the condition B.8 to hold, which implies that τ is not a good transcript.
Thus, every element of X2 is distinct. Moreover, none of the elements of X2 collides
with any primitive query output, otherwise it would satisfy condition B.3. This implies
that X2 ∩ D2 = ∅. Moreover, X2 ∩ D1 = ∅ which follows due to ¬B.5. Thus, we have,
X2 ∩ V = ∅ ⇒ X2 ∩ D2 = ∅ and X2 ∩ D1 = ∅. Hence, |X2| = β.
Now, from Proposition 3 and Proposition 4, we have |S1| = |X1| = |D1| = α and
|S2| = |X2| = |D2| = β. Also recall that |U| = |V| = p. Now, we consider the following two
sequences:

Q1
∆=

(
(P(xi ⊕ k1)⊕ xi ⊕ k1 ⊕ k2, yi ⊕ k1) : (xi, yi) ∈ QU

)
.

Q2
∆=

(
(xi ⊕ k1,P−1(yi ⊕ k1)⊕ xi ⊕ k1 ⊕ k2) : (xi, yi) ∈ QV

)
.

From Proposition 3 and Proposition 4, it follows that the domain of Q1 is disjoint with the
domain of Q2. Moreover, they are individually disjoint with U . Similarly, the range of Q1 is
disjoint with the range of Q2 and they are individually disjoint with V . Therefore, we have
X = (U ,X1,S2) and Y = (V,D1,X2) are disjoint collections. Thus, from Proposition 2 one
has,

p1(τ) ∆= Pr[P←$ P(n) : X \ U P7→ Y \ V | P 7→ τp] = 1
(N − p)α+β

. (38)

5.3 Lower Bound on p2(τ )
In the last section, we have seen that P has been fixed on α+ β input-output (apart from
p input-output primitive pairs). Moreover, the collection of input and output sets of P
that have been explored in the last section is X = (U ,X1,S2) and Y = (V,D1,X2). Recall
that, we have defined the set

Q0 = {(x, y) ∈ τc : x⊕ k1 /∈ U , y ⊕ k1 /∈ V}.

For the sake of simplicity, we rename the elements ofQ0 asQ0 = {(x1, y1), (x2, y2), . . . , (xq′ , yq′).
It is easy to see that |Q0| = q′ = q − (α + β). Let us define two sets X = {x ∈ {0, 1}n :



Avijit Dutta and Mridul Nandi and Suprita Talnikar 21

(x, y) ∈ (τc \ QU )} and Y = {y ∈ {0, 1}n : (x, y) ∈ Q0}, where Y is the set of the distinct
number of responses. Let r = |Y| and let us denote

S = {(x, y) ∈ Q0 : ∀(x′, y′) 6= (x, y) ∈ Q0, y 6= y′}

be the set of non-colliding queries of Q0 and s′ = |S|. Since, τ is a good transcript,
s′ ≥ q −M where M = q/N1/3, otherwise B.10 would be satisfied. Now, we bound the
probability that a permutation P realizes Q0, i.e., we need to lower bound the number of
permutations P which are already fixed on α+ β input-output pairs such that

∀(x, y) ∈ Q0,P(P(x⊕ k1)⊕ x⊕ k1 ⊕ k2)⊕ k1 = y (39)

holds. Note that the equations in Eqn. (39) are not independent as two permutations
are identical. For example, if there exists two queries (x, y) and (x′, y′) in Q0 such that
P(x⊕ k1)⊕ x⊕ k1 ⊕ k2 = x ⊕ k1, then one must have P(x′ ⊕ k1) = y ⊕ k1. Similarly, if
P(x⊕k1) = y′⊕k1, then one must have P(x′⊕k1)⊕x′⊕k1⊕k2 = x⊕k1. For simplicity, one
could count only permutations P which are already fixed on α+β input-output pairs, such
that for any query (x, y) ∈ Q0 , P(x⊕k1)⊕x⊕k1⊕k2 /∈ X ⊕k1, however this only leads to
a birthday bound. Hence, to get a bound beyond the birthday, we need to allow collisions
and a more precise counting. For doing this, we will be considering permutations P which
are already fixed on α+ β input-output pairs, such that P(x⊕ k1)⊕ x⊕ k1 ⊕ k2 = x′ ⊕ k1
for t pairs of ((x, y), (x′, y′)) of distinct non-colliding queries, where t is some sufficiently
large value. However, we must be careful in choosing the t-pairs of distinct non-colliding
queries that do not create any incompatibility with other queries.

5.3.1 Counting Collisions

To this end, we define an index set I = {i ∈ [q′] : (xi, yi) ∈ S} and I(2) denotes the set of
all ordered pairs of distinct elements of I, i.e., I(2) = {(i, j) : i, j ∈ I, i 6= j}.

Definition 2. For a fixed positive integer t, an unordered set of t ordered pair of indices

It = {(i1, j1), (i2, j2), . . . , (it, jt)} ⊆ I(2),

is good if it satisfies the following conditions:

1. for l ∈ [t], xjl ⊕ xil are distinct.

2. for l ∈ [t], yil ⊕ xjl are distinct.

3. for l ∈ [t], xjl ⊕ xil ⊕ k2 /∈ V.

4. for l ∈ [t], yil ⊕ xjl ⊕ k2 /∈ U .

5. for l ∈ [t], yil ⊕ k2 ⊕ xjl /∈ X ⊕ k1.

6. for l ∈ [t], xil ⊕ k2 ⊕ xjl /∈ Y ⊕ k1.

7. for l ∈ [t], xjl ⊕ xil ⊕ k2 /∈ X2.

8. for l ∈ [t], yil ⊕ xjl ⊕ k2 /∈ X1.

Note that It is the set of t ordered pair of indices of non-colliding queries. We justify
below why the above-listed conditions, if obeyed by the elements of It, do not create any
incompatibility with the other queries.
Rationale for the Conditions. We elaborate here the conditions stated in the Defn. 2
and justify why they ensure the compatibilities with other queries. We call an element in
the set It a dependency pair. A dependency pair (il, jl) ∈ It are dependent in one of the
following two ways:
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(a) P(xil ⊕ k1)⊕ (xil ⊕ k1)⊕ k2 = xjl ⊕ k1 or

(b) P(xil ⊕ k1) = yjl ⊕ k1.

for some permutations P which are already fixed on α + β input-output pairs. Such a
dependency pair is said to be of length 1. Now, from (a) and (b), we have the following
two equalities:

(̂a) P(xil ⊕ k1) = xil ⊕ xjl ⊕ k2, (̂b) P(xjl ⊕ k1) = xil ⊕ xjl ⊕ k2.

Both these equalities impose the distinctness of the permutation output, i.e., xil ⊕ xjl ⊕ k2
as its input, i.e, xil ⊕ k1 or xjl ⊕ k1 are distinct which justifies condition (1) of Defn. 2.
Similarly, (̂a) and (̂b) also imposes that the permutation outputs should not collide with
any primitive output (i.e., the elements of V), as their corresponding input does not collide
with any primitive input (i.e., elements of U), which justifies condition (3) of Defn. 2.
Similarly, xil ⊕ xjl ⊕ k2 should not collide with any elements of Y ⊕ k1, which justifies
condition (6) of Defn. 2. Moreover, xil ⊕ xjl ⊕ k2 should not collide with any elements of
X2, as (xil , yil), (xjl,yjl ) /∈ QV . This justifies conditions (7) of Defn. 2. Note that Eqn. (a)
also imposes the following equality:

(̂c) P(xjl ⊕ k1) = yil ⊕ k1.

Now, we require that P(xjl ⊕ k1)⊕ (xjl ⊕ k1 ⊕ k2) or equivalently yil ⊕ xjl ⊕ k2 should be
distinct, which justifies condition (2) of Defn. 2. Moreover, it should not collide with any
other elements of X ⊕ k1, otherwise that would extend the length of the dependency pair
by 1. This phenomena justifies the condition (5) of the definition. Similarly yil ⊕ xjl ⊕ k2
should not collide with any primitive inputs, as yjl ⊕ k1 does not collide with any primitive
output. This justifies condition (4) of the definition. We also require that yil ⊕ xjl ⊕ k2
should not collide with any elements of X2, otherwise yjl ⊕ k1 ∈ D1 which is not possible
as (xjl , yjl) /∈ QU . This justifies the condition (8) of Defn. 2.

Lemma 6. Fix a positive integer t such that 0 ≤ t ≤M . Then the number of good sets It
of t pairs of non-colliding queries is at least

|It| ≥
(s′)2t

t!

(
1− 4q

N2/3 −
2pt
q2 −

2√q
N1/3

)
.

Proof. First, observe that among the s′(s′ − 1) possible pairs of non-colliding query
indices (i1, j1), at most (2σ+ 2p+α+ β) of them do not satisfy conditions (3)-(8). Indeed,
by definition of a good transcript (more precisely, condition (B.9)), there cannot be more
than σ pairs ((xil , yil), (xjl , yjl)) such that yil ⊕ xjl ⊕ k2 ∈ X ⊕ k1 and there cannot be
more than σ pairs ((xil , yil), (xjl , yjl)) such that xil ⊕ xjl ⊕ k2 ∈ Y ⊕ k1. Similarly, by
condition (B.11), there cannot be more than α pairs such that yil ⊕ xjl ⊕ k2 ∈ X1. By
condition (B.12), there cannot be more than β pairs such that xjl ⊕ xil ⊕ k2 ∈ X2. Hence,
we can lower bound It as follows:

- we can choose (i1, j1) among at least s′(s′ − 1)− 2σ − 2p− α− β possibilities

- once (i1, j1) is fixed, we can choose i2 freely from the remaining (s′ − 2) possibilities;
then, j2 must be different from i1, j1 and i2. Moreover, we also have xj2 ⊕ xi2 6=
xj1 ⊕xi1 and yi2 ⊕xj2 6= yi1 ⊕xj1 . Hence, the choice for j2 is (s′− 5); after removing
the at most 2σ + 2p+ α+ β pairs of queries not satisfying (3)-(8), there remains at
least (s′ − 2)(s′ − 5)− 2σ − 2p− α− β possibilities for the pair (i2, j2)

- assume (i1, j1), (i2, j2), (il−1, jl−1) have been chosen, we can choose il freely from the
(s′−2l+2) remaining possibilities; then, jl must be different from i1, j1, . . . , il−1, jl−1, il.
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Moreover, it must be such that xjl ⊕ xil 6= xjd ⊕ xid for d ∈ [l − 1] and yil ⊕ xjl 6=
yid ⊕ xjd for d ∈ [l − 1]. Thus, overall there are at least (s′ − 4l + 3) possibilities for
jl; after removing the at most 2σ + 2p + α + β pairs not satisfying (3)-(8), there
remains at least (s′ − 2l + 2)(s′ − 4l + 3)− 2σ − 2p− α− β possibilities for the pair
(il, jl)

Since It is unordered set of t pairs, the number |It| of good sets is at least

|It| ≥
1
t!

t−1∏
l=0

(
(s′ − 2l)(s′ − 4l − 1)− 2σ − 2p− α− β

)
.

Then, we have

|It| ≥
(s′)2t

t!

t−1∏
l=0

(s′ − 2l)(s′ − 4l − 1)− 2p− 2σ − α− β
(s′ − 2l)(s′ − 2l − 1)

≥ (s′)2t

t!

t−1∏
l=0

(
1− 2ls′ − 4l2 + 2p+ 2σ + α+ β

(s′ − 2l)(s′ − 2l − 1)

)
(1)
≥ (s′)2t

t!

t−1∏
l=0

(
1− 2ls′ + 2p+ 2σ + α+ β

(s′ − 2M)2

)

≥ (s′)2t

t!

(
1−

t−1∑
l=0

2ls′ + 2p+ 2σ + α+ β

(s′ − 2M)2

)
(2)
≥ (s′)2t

t!

(
1− 2s′M2 + 2pt+ 2σM + αM + βM

q2

)
(3)
≥ (s′)2t

t!

(
1− 2M2

q
− 2pt

q2 −
2σM
q2 − βM

q2 −
αM

q2

)
(4)
≥ (s′)2t

t!

(
1− 2q

N2/3 −
2pt
q2 −

2q
N2/3 −

2
√
qN1/3

)
(5)
≥ (s′)2t

t!

(
1− 2q

N2/3 −
2pt
q2 −

2q
N2/3 −

2√q
N1/3

)
≥ (s′)2t

t!

(
1− 4q

N2/3 −
2pt
q2 −

2√q
N1/3

)
.

Note that, (1) follows as l ≤ t ≤M . (2) follows as t ≤M and s′ − 2M ≤ q. Moreover, (3)
follows as s′ ≤ q. (4) follows as M ≤ q/N1/3, σ ≤ q2/N1/3 and α, β ≤ √q. Moreover, (5)
follows as q ≥ 1 and hence the result follows.
From now on we fix a positive integer t such that 0 ≤ t ≤ M and a good set It =
{(i1, j1), . . . , (it, jt)}. Now, for a good set It, we define the following set

QIt
∆= {(xi, yi) ∈ Q0 : (i, ?) ∈ It ∨ (?, i) ∈ It}.

We are now interested to lower bound the number of permutations P that are already fixed
on α+ β input output pairs and satisfying the following

P(P(x⊕ k1)⊕ x⊕ k1 ⊕ k2)⊕ k1 = y,∀(x, y) ∈ Q0 (40)

such that for any l ∈ [t], P(xil⊕k1)⊕xil⊕k1⊕k2 = xjl⊕k1. Note that such a permutation
P which is already fixed on α+ β input output pairs and satisfying Eqn. (40) for the 2t
queries appearing in It if and only if ∀l ∈ [t] we have the following:
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1. P(xil ⊕ k1) = xjl ⊕ xil ⊕ k2

2. P(xjl ⊕ k1) = yil ⊕ k1

3. P(yil ⊕ xjl ⊕ k2) = yjl ⊕ k1

Note that this set of 3t equalities is input-output compatible as It is a good set. Now,
it is easy to see that the collection of the following sets are pairwise disjoint: X+ =
{X ⊕ k1,U ,X1, {yil ⊕ xjl ⊕ k2 : l ∈ [t]}}. Similarly, all the sets in the following collection
are pairwise disjoint: Y+ = {Y⊕k1,V,X2, {xjl⊕xil⊕k2 : l ∈ [t]}, {xil⊕xjl⊕k2 : l ∈ [t]}}.
Thus, we define the following sets:

X ′ = X ⊕ k1 ∪ U ∪ X1 ∪ {yil ⊕ xjl ⊕ k2 : l ∈ [t]}
Y ′ = Y ⊕ k1 ∪ V ∪ X2 ∪ {xjl ⊕ xil ⊕ k2 : l ∈ [t]} ∪ {xil ⊕ xjl ⊕ k2 : l ∈ [t]}

It is easy to see that |X ′| = q′ + p + α + t and |Y ′| = r + 2t + p + β, where recall that
r = |Y|. Now, it remains to consider the remaining q′ − 2t queries (x, y) ∈ Q0 such that
(x, y) /∈ QIt . To this end, let q′′ = q′ − 2t = q − α− β − 2t be the number of remaining
queries in Q0 \ QIt , s′′ = s′ − 2t be the number of non-colliding queries in Q0 \ QIt and
r′ = r − 2t be the numbr of distinct oracle responses appearing in these queries.
By following the approach of [25], we regroup the elements of Q0 \QIt such that all queries
with the same output becomes consecutive. We write the queries as follows:

τ ′ =



(
(x11, y1), . . . , (x1q1 , y1),

(x21, y2), . . . , (x2q2 , y2),
...

...
...

...

(xr′,1, yr′), . . . , (xr′,qr′ , yr′)
)
,

where y1, . . . , yr′ are distinct. Moreover, we also have (q1 + . . .+ qr′) = q′′. For the ease of
later computations, we assume that in these grouping all the non-colliding queries appear
first followed by colliding quries, i.e., qi = 1 for i ∈ [s′′] and qi > 1 for i ∈ {s′′ + 1, . . . , r′}.
Now, our goal is to lower bound the number of permutations P ∈ P(n) which are already
fixed on α+ β input output pairs and in addition to satisfying above 3t equalities, also
satisfies the following.

∀(x, y) ∈ τ ′,P(P(x⊕ k1)⊕ x⊕ k1 ⊕ k2)⊕ k1 = y. (41)

For this, we sample all intermediate values z = P−1(y ⊕ k1), which leads us to the second
step of the proof.

5.3.2 Sampling Intermediate Values

Let us consider a sequence z = (z1, z2, . . . , zr′) of r many n-bit values. We say z is good if
it satisfies the following conditions:

1. each zi’s are distinct

2. for all i ∈ [r′], zi /∈ X ′

3. for all i ∈ [r′] and j ∈ [qi], zi ⊕ xi,j are distinct

4. for all i ∈ [r′] and j ∈ [qi], zi ⊕ xi,j ⊕ k1 ⊕ k2 /∈ Y ′
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Note that for any good tuple z = (z1, . . . , zr′), the set of the following equalities{
∀i ∈ [r′],∀j ∈ [qi],P(xi,j ⊕ k1) = zi ⊕ k2 ⊕ xi,j ⊕ k1

∀i ∈ [r′],P(zi) = yi ⊕ k1

is compatible with previously defined all input output pairs. Moreover, a permutation P
satisfying the equations is such that P(P(x⊕ k1)⊕ x⊕ k1 ⊕ k2) = y⊕ k1 for all (x, y) ∈ τ ′.
In the following, we count the number of good tuples z.

Lemma 7. Fix a positive integer t such that 0 ≤ t ≤ M and a good set It. Then the
number of good tuples z = (z1, . . . , zr′) is at least

Nz(t) ≥ (N−q−p−α−β−3t−r)s′′
s′′−1∏
i=0

(
1− p+ i

N − (5q + p)− i

)
(N)r

′−s′′
(

1− 6q2

N4/3−
2pq
N4/3

)
.

Proof. To count the number of good tuples z, the number of valid choices for z1 is at
least N − (q + p+ α+ t)− q1(r + 2t+ p+ β) as z1 /∈ X ′ and z1 ⊕ x1,j ⊕ k1 ⊕ k2 /∈ Y ′ for
j ∈ [q1], where recall that |X ′| = q + p+ α+ t and |Y ′| = r + 2t+ p+ β.

Once the value of z1 is fixed, z2 can be chosen in the following way:

• z2 6= z1

• z2 /∈ X ′

• z2 ⊕ k2 ⊕ x2,j ⊕ k1 /∈ Y ′ for j ∈ [q2]

• z2 6= z1 ⊕ x1,j ⊕ x2,j′ for j ∈ [q1], j′ ∈ [q2].

Thus, the number of valid choices for z2 is at least N−1−(q+p+α+t)−q2(r+2t+p+β+q1).
In general after choosing the values for z1, . . . , zi−1, we choose the value for zi. In that
case, the number of valid choices for zi is at least

N − (i− 1)− (q + p+ α+ t)− qi
(
r + 2t+ p+ β +

i−1∑
j=1

qj
)
.

This is because zi cannot be equal to z1, . . . , zi−1 which accounts for i− 1 terms in the
above equation. Moreover, zi /∈ X ′ introduces (q + p + α + t) in the equation. For
j ∈ [qi], zi ⊕ k2 ⊕ xi,j ⊕ k1 /∈ Y ′ which includes qi(r + 2t + p + β) term in the equation
and zi 6= zl ⊕ xl,j ⊕ xi,j′ for l ∈ [i − 1], j ∈ [ql], j′ ∈ [qi] which introduces the term
qi(q1 + . . .+ qi−1) in the above equation. Therefore, overall the number of good tuples z is
at least

Nz(t) ≥
r′−1∏
i=0

(
N − (q + p+ α+ t)− i− qi+1

(
r + 2t+ p+ β +

i∑
j=1

qj
))
. (42)

For the ease of the computation, we split up Eqn. (63) into two parts: the first part is
comprised of s′′ many non-colliding queries and the next part is comprised of colliding
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queries. Therefore, we have

Nz(t) ≥
s′′−1∏
i=0

(
N − (q + p+ α+ t)− i− r − 2t− p− β − i

)
r′−1∏
i=s′′

(
N − (q + p+ α+ t)− i− qi+1

(
r + 2t+ p+ β +

i∑
j=1

qj
))

≥
s′′−1∏
i=0

(
N − (q + 2p+ α+ β + 3t)− 2i− r

)
︸ ︷︷ ︸

A
r′−1∏
i=s′′

(
N − (q + p+ α+ t)− i− qi+1

(
r + 2t+ p+ β +

i∑
j=1

qj
))

︸ ︷︷ ︸
B

. (43)

Computing A: To compute A, we have the following.

A = (N − q − p− α− β − 3t− r)s′′ ·
s′′−1∏
i=0

N − q − 2p− α− β − 3t− 2i− r
N − q − p− α− β − 3t− r − i

= (N − q − p− α− β − 3t− r)s′′ ·
s′′−1∏
i=0

(
1− p+ i

N − q − p− α− β − 3t− r − i

)
(1)
≥ (N − q − p− α− β − 3t− r)s′′ ·

s′′−1∏
i=0

(
1− p+ i

N − (5q + p)− i

)
, (44)

where (1) follows as α, β ≤ q, r ≤ q and 3t ≤ q. Now, we compute B as follows:

Computing B: To compute B, we need the following inequalities: for i ∈ {s′′, s′′ +
1, . . . , r′ − 2, r′ − 1}, we have

q + p+ α+ t+ i
(2)
≤ q + p+ α+ t+ r′ − 1 (3)= q + p+ α+ r − t− 1

(4)
≤ 3q + p(45)

r + 2t+ p+ β +
i∑

j=1
qj

(6)
≤ r + 2t+ p+ β + q′′

(7)= r + p+ β + q′
(8)
≤ 3q + p. (46)

Note that, (2) follows as i ≤ r′1. (3) and (7) follows as r′ = r − 2t and q′′ = q′ − 2t
respectively. (4) follows as α ≤ q, r− t− 1 ≤ q. Moreover, (6) follows as (q1 + . . . qr′) = q′′
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and (8) follows as q′ ≤ q, β ≤ q and r ≤ q. Now, we have the following:

B =
r′−1∏
i=s′′

(
N − (q + p+ α+ t)− i− qi+1

(
r + 2t+ p+ β +

i∑
j=1

qj
))

≥
r′−1∏
i=s′′

(
N − (3q + p)− qi+1(3q + p)

)
(By applying Eqn. (45), Eqn. (46))

≥ (N)r
′−s′′

r′−1∏
i=s′′

(
N − (3q + p)− qi+1(3q + p)

N

)

≥ (N)r
′−s′′

r′−1∏
i=s′′

(
1− qi+1(6q + 2p)

N

)
≥ (N)r

′−s′′
(

1−
r′∑

i=s′′

qi+1(6q + 2p)
N

)

≥ (N)r
′−s′′

(
1−

(6q + 2p)
r′∑

i=s′′
qi+1

N

)
(9)
≥ (N)r

′−s′′
(

1− (6q + 2p)M
N

)
(10)
≥ (N)r

′−s′′
(

1− 6q2

N4/3 −
2pq
N4/3

)
, (47)

where (9) holds as
r′−1∑
i=s′′

qi+1 ≤ M and (10) holds as M ≤ q/N1/3. Therefore, the result

follows from Eqn. (43), Eqn. (44) and Eqn. (47).

5.3.3 Final Calculation

Now we come to the final part of the proof. We have seen from Sect. 5.3.1 that P has
been fixed on 3t input-output pairs. Moreover, from Sect. 5.3.2, it is trivial to check that
P has been additionally fixed on q′′ + r′ input-output pairs. Thus, in total P is fixed on
3t+q′′+r′ = q′+ t+r′ input-output pairs where the last equality arises due to q′′ = q′−2t.
Also recall that P has already been fixed on p+ α+ β input-output pairs. Therefore, from
Lemma 6 and Lemma 7, we have

p2(τ) ≥
∑

0≤t≤M

|It| · Nz(t)
(N − p− α− β)q′+t+r′

≥ (N)r
′−s′′ ·

(
1− 6q2

N4/3 −
2pq
N4/3

) ∑
0≤t≤M

[
(s′)2t

t! ·
(

1− 4q
N2/3 −

2pt
q2 −

2√q
N1/3

)

·
s′′−1∏
i=0

(
1− p+ i

N − (5q + p)− i

)
· · (N − q − p− α− β − 3t− r)s′′

(N − p− α− β)q′+t+r′

]
. (48)
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Therefore, from Lemma 3, Eqn. (37), Eqn. (38) and Eqn. (48), we have

ρ(τ) ≥ Nq+r′−s′′

(N − p)α+β
·
(

1− 6q2

N4/3 −
2pq
N4/3

) ∑
0≤t≤M

[
(s′)2t

t! ·
(

1− 4q
N2/3 −

2pt
q2 −

2√q
N1/3

)

·
s′′−1∏
i=0

(
1− p+ i

N − (5q + p)− i

)
· · (N − q − p− α− β − 3t− r)s′′

(N − p− α− β)q′+t+r′

]

≥ Nα+β

(N − p)α+β︸ ︷︷ ︸
≥1

· (N)r′−s′′

(N − p− α− β − q′)r′−s′′︸ ︷︷ ︸
≥1

· Nq′

(N − p− α− β)q′
·
s′′−1∏
i=0

(
1− p+ i

N − (5q + p)− i

)
︸ ︷︷ ︸

D.1

·
(

1− 6q2

N4/3 −
2pq
N4/3

)
·
(

1− 4q
N2/3 −

2pt
q2 −

2√q
N1/3

)
·
[ ∑

0≤t≤M

(s′)2t · (N − q − p− α− β − 3t− r)s′′
t! · (n− p− α− β − q′ − r′ + s′′)s′′+t

]
︸ ︷︷ ︸

D.2

. (49)

Computing D.1.

D.1 = Nq′

(N − p− α− β)q′
·
s′′−1∏
i=0

(
1− p+ i

N − (5q + p)− i

)
(1)
≥

q′−1∏
i=0

(
1 + p+ i

N − p− i

)
·
s′′−1∏
i=0

(
1− p+ i

N − (5q + p)− i

)
(2)
≥

q′−1∏
i=0

[(
1 + p+ i

N − p− i

)
·
(

1− p+ i

N − i− 5q − p

)]

≥
q′−1∏
i=0

[
1−

(
5q(p+ i) + p2 + 2pi+ i2

(N − p− i)(N − p− i− 5q)

)]
(3)
≥

q′−1∏
i=0

[
1− 20q(p+ i)

N2 − 4p2

N2 −
8pi
N2 −

4i2

N2

]
≥

(
1− 20pq2

N2 − 20q3

N2 −
4p2q

N2 −
8pq2

N2 −
4q3

N2

)
≥

(
1− 28pq2

N2 − 4p2q

N2 −
24q3

N2

)
, (50)

where (1) holds as N − p − α − β ≤ N − p. (2) holds as s′′ ≤ q′ and (3) holds as
p+ i ≤ N/2, p+ i+ 5q ≤ N/2.
Computing D.2.

D.2 =
∑

0≤t≤M

(s′)2t · (N − q − p− α− β − 3t− r)s′′
t! · (N − p− α− β − q′ − r′ + s′′)s′′+t

(1)
≥

∑
0≤t≤M

(s′)2t

(s′)t(s′)t︸ ︷︷ ︸
E.1

· (s
′)t(s′)t
t! · (N − q − p− α− β − s′)s′−t

(N − q − p− α− β)s′︸ ︷︷ ︸
E.2

· (N − q − p− α− β)s′
(N − q − p− α− β − s′)s′−t

· (N − q − p− α− β − 3t− r)s′′
(N − p− α− β − q′ − r + s′)s′′+t︸ ︷︷ ︸
E.3

, (51)



Avijit Dutta and Mridul Nandi and Suprita Talnikar 29

where (1) holds as r′ = r − 2t and s′′ = s′ − 2t. Now, we individually bound E.1 and E.3
as follows:

Computing E.1.

E.1 = (s′)2t

(s′)t(s′)t
≥ (s′ − 2M)2t

(s′)2t ≥ 1− 4tM
s′

(2)
≥ 1− 4M2

q −M
(3)
≥ 1− 8M2

q

(4)
≥
(

1− 8q
N2/3

)
, (52)

where (2) follows as s′ ≥ q −M , (3) follows as q − 3M ≤ q/2 and finally (4) follows as
M = q/N1/3.

Computing E.3.

E.3 = (N − q − p− α− β)s′
(N − q − p− α− β − s′)s′−t

· (N − q − p− α− β − 3t− r)s′′
(N − p− α− β − q′ − r + s′)s′′+t

(5)= (N − q − p− α− β)s′′+2t

(N − q − p− α− β − s′)s′′+t
· (N − q − p− α− β − 3t− r)s′′

(N − p− α− β − q′ − r + s′)s′′+t

= (N − q − p− α− β)s′′+t
(N − q − p− r + s′)s′′+t

· (N − q − p− α− β − s′′ − t)t
(N − q − p− α− β − s′)t

· (N − q − p− α− β − 3t− r)s′′
(N − q − p− α− β − s′ − t)s′′

(6)= (N − q − p− α− β)s′′+t
(N − q − p− r + s′)s′′+t︸ ︷︷ ︸

E.3.1

· (N − q − p− α− β − s
′ + t)t

(N − q − p− α− β − s′)t︸ ︷︷ ︸
≥1

· (N − q − p− α− β − 3t− r)s′′
(N − q − p− α− β − s′ − t)s′′︸ ︷︷ ︸

E.3.2

,

where (5) and (6) follows as s′′ = s′ − 2t. Now, we individually bound E.3.1 and E.3.2 as
follows:

Computing E.3.1.

E.3.1 = (N − q − p− α− β)s′′+t
(N − q − p− r + s′)s′′+t

=
s′′+t−1∏
i=0

N − q − p− α− β − i
N − q − p− r + s′ − i

=
s′′+t−1∏
i=0

(
1− α+ β − r + s′

N − q − p− i− r + s′

)

=
s′′+t−1∏
i=0

(
1− α+ β − (r − s′)

N − q − p− i− r + s′

)
(7)
≥

s′′+t−1∏
i=0

(
1− 2(α+ β)

N

)
(8)
≥

s′′+t−1∏
i=0

(
1−

2√q
N

)
(9)
≥
(

1− 2q3/2

N

)
, (53)

where (7) follows as q + p + i + r − s′ ≤ N/2, (8) follows as α, β ≤ q and (9) follows as
s′′ + t ≤ q.

Computing E.3.2.

E.3.2 = (N − q − p− α− β − 3t− r)s′′
(N − q − p− α− β − s′ − t)s′′

=
s′′−1∏
i=0

(
1− 2t+ r − s′

N − q − p− α− β − s′ − t− i

)
(10)
≥
(

1− 2s′′(2M + r − s′)
N

)
(11)
≥

(
1− 6s′′M

N

)
(12)
≥
(

1− 6q2

N4/3

)
, (54)
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where (10) follows as t ≤M and q+p+α+β+s′+ t+ i ≤ N/2. (11) follows as r−s′ ≤M
and (12) follows as s′′ ≤ q and M = q/N1/3. Therefore, from Eqn. (53) and Eqn. (54) and
by using the inequality (1− a)(1− b) ≥ (1− a− b) for a, b ≤ 1, we have

E.3 ≥
(

1− 2q3/2

N
− 6q2

N4/3

)
. (55)

Now by combining Eqn. (51), Eqn. (52) and Eqn. (55) and by using the inequality
(1− a)(1− b) ≥ (1− a− b) for a, b ≤ 1, we have

D.2 ≥
(

1− 8q
N2/3 −

2q3/2

N
− 6q2

N4/3

)
·
∑

0≤t≤M
E.2. (56)

Note that, for a fixed t, E.2 = Hyp(t)N ′,s′,s′ , where N ′ = N−q−p−α−β with parameters
N ′, s′ and s′. It is a folklore result that the expectation of the hypergeometric distribution
with parameters N ′, s′, s′ is s′2/N ′. Therefore, we have

D.2 ≥
(

1− 8q
N2/3 −

2q3/2

N
− 6q2

N4/3

)
·
∑

0≤t≤M
Hyp(t)N ′,s′,s′ .

Now, using Markov’s inequality, we have∑
t>M

Hyp(t)N ′,s′,s′ ≤
s′2

qN2/3 ≤
q

N2/3 , (57)

where the first inequality appears due to the Markov’s inequality and the second inequaluty
follows as s′ ≤ q and M = q/N1/3. Therefore, using Eqn. (56) and Eqn. (57) and by using
the inequality (1− a)(1− b) ≥ (1− a− b) for a, b ≤ 1, we have

D.2 ≥
(

1− 9q
N2/3 −

2q3/2

N
− 6q2

N4/3

)
. (58)

Finally, by combining Eqn. (49), Eqn. (50) and Eqn. (58) and by using the inequality
(1− a)(1− b) ≥ (1− a− b) for a, b ≤ 1, we have

ρ(τ) ≥ 1−
(

12q2

N4/3 + 2pq
N4/3 + 13q

N2/3 + 2pt
q2 +

2√q
N1/3 + 28pq2

N2 + 4p2q

N2 + 24q3

N2 + 2q3/2

N

)
︸ ︷︷ ︸

φ(τ)

.

This completes the proof of Lemma 5. Now it only remains to compute the expectation of
φ(τ) as follows:

Computing the Expectation. We now compute the expectation of φ(τ) over the
randomness of the permutation P as follows:

EP[φ(τ)] =
(

12q2

N4/3 + 2pq
N4/3 + 13q

N2/3 +
2√q
N1/3 + 28pq2

N2 + 4p2q

N2 + 24q3

N2 + 2q3/2

N

)
+ EP

[
2pt
q2

]
=

(
12q2

N4/3 + 2pq
N4/3 + 13q

N2/3 +
2√q
N1/3 + 28pq2

N2 + 4p2q

N2 + 24q3

N2 + 2q3/2

N

)
+ 2p
q2 EP[t].

Now, it remains to compute the expectation of the random variable t over the randomness
of the permutation P. Let ti be the indicator random variable that takes the value 1 if
P(xi ⊕ k1)⊕ xi ⊕ k2 ∈ X , for 1 ≤ i ≤M . Therefore, it is easy to see that

Pr[ti = 1] = Pr[P(xi ⊕ k1)⊕ xi ⊕ k2 ∈ X ] ≤ q′

N
.
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Since, t = t1 + . . .+ tM , due to the linearity of expectation, we have

EP[t] =
M∑
i=1

EP[ti] =
M∑
i=1

Pr[ti = 1] ≤ q′M

N
≤ q2

N4/3 , (59)

where the last inequality appears as M = q/N1/3 and q′ ≤ q. Therefore, from Eqn. (59),
we have

EP[φ(τ)] ≤
(

12q2

N4/3 + 2pq
N4/3 + 13q

N2/3 +
2√q
N1/3 + 28pq2

N2 + 4p2q

N2 + 24q3

N2 + 2q3/2

N
+ 2p
N4/3

)
. (60)

The result of Theorem 1 follows from Theorem 2, Lemma 4 and Eqn. (60) which concludes
the proof of the security result.

6 Conclusion and Future Works
This paper has proposed an inverse free single permutation based beyond the birthday
bound secure PRF that requires 2n bit keys. One could also achieve the same goal using the
single permutation based tweakable Even Mansour cipher [33]. However, the solution comes
at the cost of implementing the costly universal hash functions. Moreover, parallel modes
like nEHtMp, SoEM22 or DS-SoEM also achieves the beyond birthday bound PRF security,
but again the former one requires to implement a universal hash function, SoEM22 requires
two independent permutations and DS-SoEM takes n − 1 bit input. However, it would
be interesting to study the sequential design of an inverse free single permutation based
PRF with only n bit key. We believe that pEDM can be turned to a single permutation
oriented beyond the birthday bound secure nonce based MAC by xoring an almost-xor
universal hash function in between the two permutation calls (similar to the flavour of
EWCDM [24]).
Acknowledgements: We would like to thank all the anonymous reviewers of ToSC for
their constructive and fruitful comments on our paper.
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Supplementary Materials

7 Proof of Lemma 1
To prove the lemma, let us first recall some useful results on Fourier analysis on Zn2 .
Notation: For a given subset S ⊂ {0, 1}n, we denote IS : {0, 1}n → {0, 1} to be the
characteristic function of the set S such that IS(s) = 1 if and only if s ∈ S. Given two

https://csrc.nist.gov/Projects/Lightweight-Cryptography
https://csrc.nist.gov/Projects/Lightweight-Cryptography
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real-valued functions f, g : {0, 1}n → R, we denote the inner product of f and g as

〈f, g〉 = E[fg] = 1
N

∑
x∈{0,1}n

f(x)g(x).

The convolution of f and g is denoted as

(f ? g)(x) =
∑

y∈{0,1}n
f(y)g(x⊕ y),∀x ∈ {0, 1}n.

For a given α ∈ {0, 1}n, the character associated with α is denoted as χα : {0, 1}n →
{+1,−1}, defined as χα(x) = (−1)α·x. χ0 is called the principal character and all other
χ 6= 1 for α 6= 0 are called non-principal character. Now, given a real-valued function
f : {0, 1}n → R and for α ∈ {0, 1}n, we define the fourier coefficient of f corresponding to
α is

f̂(α) ∆= 〈f, χα〉 = 1
N

∑
x∈{0,1}n

f(x)(−1)α·x.

The coefficient corresponding to α = 0 is called the principal fourier coefficient and all
other coefficients are called non-principal fourier coefficients. Note that the principal
fourier coefficient for a characteristic function IS of a set S is

ÎS(0) = |S|
N
.

Having defined the neccessary notations, we now recall three important results on fourier
analysis holds for any functions f, g : {0, 1}n → R, any α ∈ {0, 1}n and any S ⊆ {0, 1}n as
follows: ∑

x∈{0,1}n
f(x)g(x) = N

∑
α∈{0,1}n

f̂(α)ĝ(α), (61)

(f̂ ? g)(α) = Nf̂(α)ĝ(α), (62)∑
α∈{0,1}n

|̂IS(α)|2 = |S|
N
. (63)

Now, we define the following two parameters associated to Q:

Φα,β(Q) ∆= N2 |̂IQ(α, β)| = |
∑

(x,y)∈Q

(−1)α·x⊕β·y|,

Φ(Q) ∆= max
α6=0,β 6=0

Φα,β(Q).

Now, to bound µ(Q,U ,V), let us consider the following two sets: N = U × V = {(u, v) :
u ∈ U , v ∈ V} and K = {(k, k) : k ∈ {0, 1}n}. Note that, ((x, y), u, v) ∈ Q× U × V if and
only if ∃k ∈ {0, 1}n such that

(x, y)⊕ (u, v) = (k, k).
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Therefore, we have

µ(Q,U ,V) =
∑

(x,y)∈({0,1}n)2

∑
(u,v)∈({0,1}n)2

IQ(x, y)IN (u, v)IK(x⊕ u, y ⊕ v)

=
∑

(x,y)∈({0,1}n)2

IQ(x, y)
∑

(u,v)∈({0,1}n)2

IN (u, v)IK(x⊕ u, y ⊕ v)

=
∑

(x,y)∈({0,1}n)2

IQ(x, y)(IN ? IK)(x, y)

(1)= N2
∑

(α,β)∈({0,1}n)2

ÎQ(α, β)( ̂IN ? IK)(α, β)

(2)= N4
∑

(α,β)∈({0,1}n)2

ÎQ(α, β)̂IN (α, β)̂IK(α, β)

(3)= N4 |Q|
N2
|N |
N2
|K|
N2 +N4

∑
(α,β) 6=(0,0)

ÎQ(α, β)̂IN (α, β)̂IK(α, β)

(4)= q|U||V|
N

+N4
∑

(α,β)6=(0,0)

ÎQ(α, β)̂IN (α, β)̂IK(α, β), (64)

where (1) follows from Eqn. (61), (2) follows from Eqn. (62), (3) follows from separating
the principal fourier coefficients from non-principal fourier coefficients and (4) follows from
the cardinality of Q,N and K.
Computing ÎN (α, β). To compute ÎN (α, β), we have the following:

ÎN (α, β) = 1
N2

∑
(u,v)∈({0,1}n)2

IN (u, v)(−1)α·u⊕β·v

= 1
N2

∑
(u,v)∈({0,1}n)2

IU (u)IU (u)(−1)α·u⊕β·v

= 1
N2

( ∑
u∈({0,1}n)

IU (u)(−1)α·u
)( ∑

v∈({0,1}n)

IV(v)(−1)β·v
)

= ÎU (α)̂IV(β). (65)

Computing ÎK(α, β). To compute ÎK(α, β), we have the following:

ÎK(α, β) = 1
N2

∑
(x,y)∈({0,1}n)2

IK(x, y)(−1)α·x⊕β·y

= 1
N2

∑
y∈({0,1}n)

(−1)α·y⊕β·y. (66)

Note that, Eqn. (66) is evaluated to 0 if β = α. Therefore, from Eqn. (64), Eqn. (65) and
Eqn. (66), we have

µ(Q,U ,V) = q|U||V|
N

+N3
∑
α6=0

ÎQ(α, α)̂IU (α)̂IV(α)

≤ q|U||V|
N

+N3
∑
α6=0
|̂IQ(α, α)| · |̂IU (α)| · |̂IV(α)|

≤ q|U||V|
N

+NΦ(Q)
∑
α 6=0
|̂IU (α)| · |̂IV(α)|, (67)
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where the last inequality follows from the definition of Φ(Q) that |̂IQ(α, α)| ≤ Φ(Q)/N2.
Moreover, by using the Cauchy-Schwartz inequality we have,∑

α6=0
|̂IU (α)| · |̂IV(α)| ≤

√∑
α6=0
|̂IU (α)|2 ·

√∑
α6=0
|̂IV(β)|2 ≤ 1

N

√
|U||V|. (68)

By plug-in the Eqn. (68) into Eqn. (66) we have,

µ(Q,U ,V) ≤ q|U||V|
N

+ Φ(Q)
√
|U||V|. (69)

From Lemma 5 of [21] we know that if A1, . . . , Aq is a sequence of random variables taking
values in {+1,−1} such that for all i ∈ [q] and all (a1, . . . , ai−1) ∈ ({+1,−1})i−1 the
following holds:

Pr[Ai = 1 | (A1, . . . , Ai−1) = (a1, . . . , ai−1)] ≤ 1
2 + ε,

for some ε ∈ [0, 1/2]. Then for any δ ∈ [0, 1], one has

Pr[
q∑
i=1

Ai ≥ q(2ε+ δ)] ≤ e
qδ2
12 .

Now, using Lemma 5 of [21] we claim the following:
Claim 1. Assume 9n ≤ q ≤ N/2, let D be some probabilitistic distinguisher that makes
q adaptive queries to RF. Let Q = ((x1, y1), . . . , (xq, yq)) denotes the transcript of the
interaction with RF to D. Then

Pr
RF,ω

[Φ(Q) ≥ 3√nq] ≤ 2
N
,

where the probability is defined over the randomness of RF and the random coin ω of the
distinguisher D.
Proof. Proof of this claim is similar to that of Lemma 6 of [21]. We define the random
variables Ai = (−1)α·xi⊕β·yi where (xi, yi) ∈ Q. Then we have, |(A1 +A2 + . . .+Aq)| =
Φα,β(Q). Now, for the i-th query with input xi, the output yi is a uniform random variable
over a set of size N . Moreover, once xi is fixed, there are exactly N/2 yi’s such that Ai = 1
as β 6= 0. Therefore,

Pr[Ai = 1 | (A1, . . . , Ai−1) = (a1, . . . , ai−1)] = N/2
N

= 1
2 .

Hence, ε = 0 and therefore,

Pr[
q∑
i=1

Ai ≥ qδ] ≤ e−
qδ2
12 .

Using a similar reasoning and by setting A′i = −Ai, we have

Pr[
q∑
i=1

Ai ≤ −qδ] ≤ e−
qδ2
12 .

By combining these two equations, we have

Pr[Φ(Q) ≥ qδ] ≤ 2e−
qδ2
12 .

The result follows by setting δ =
√

12 lnN/q. This makes q ≥ 9n which implies δ ≤ 1 and√
12 ln 2 ≤ 3.
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