
Learnability of Multiplexer PUF and SN -PUF : A

Fourier-based Approach

Durba Chatterjee, Debdeep Mukhopadhyay, and Aritra Hazra

Indian Institute of Technology Kharagpur, India
durba@iitkgp.ac.in, debdeep@iitkgp.ac.in, aritrah@cse.iitkgp.ac.in

Abstract

In this work, we prove that Multiplexer PUF (MPUF) and SN -PUF are learnable in
the PAC model. First, we show that both the designs can be represented as a function
of Linear Threshold Functions. We show that the noise sensitivity of (n, k)-MPUF and
SN -PUF can be bounded by O(2k√ε) and O(N

√
ε) respectively. Finally, we show that as a

result of bounded noise sensitivity, both the designs can be accurately approximated using
low degree algorithm. Also, the number of labelled examples (challenge-response pairs)
required by the algorithm is polynomial in the input length and PAC model parameters.

1 Introduction

Ever since the emergence of Physically Unclonable Functions, the primitive has been subjected
to an array of attacks starting from invasive to non-invasive attacks. One of the commonly
applied non-invasive attacks on PUFs is model building attack. In this attack, an adversary
uses empirical machine learning algorithms to create an accurate mathematical simulation of
an instance. However, these algorithms do not allow a formal analysis of the primitive. The
first formal mathematical framework for modelling of PUFs was proposed in [2]. It proves the
learnability of several PUFs such as Arbiter PUF (APUF), XOR Arbiter PUF (XOR PUF),
Ring Oscillator PUF (ROPUF), Bistable Ring PUF (BR-PUF) in the Provably Approximately
Correct (PAC) model. An automated framework for the learnability assessment of PUFs was
proposed in [1]. It proves the PAC learnability of Interpose PUF (IPUF), Double Arbiter
PUF (DAPUF), Multiplexer PUF (MPUF), Feed-forward PUF (FF-APUF) and Feed-forward
XOR PUF (FF-XOR PUF).

In this work, we provide a corrigendum for PAC learnability of MPUF (given in [1]) along
with the learnability proof for a new PUF construction, named SN -PUF [11]. It is to be
noted that we use a Fourier based approach for this analysis, as in [3]. We provide a brief
background on PUFs and Fourier Analysis of Boolean functions and then proceed to prove the
PAC learnability of both designs.

2 Background

This section briefly describes the concept of PUFs, LTF, Low degree algorithm and PAC model.

2.1 Physically Unclonable Functions

In this section, we give a brief description of some of the silicon PUFs, namely Arbiter PUF (APUF),
Multiplexer PUF (MUX PUF) and the recently proposed SN -PUF.

Learnability of MPUF and SN -PUF : A Fourier-based Approach

r3
s3

y

C = (c1,c2,c3,...,cn)
c1=0 c2=1 c3=0 cn=0

Clk

D Q

Figure 1: Block diagram of an Arbiter PUF

Arbiter PUF

Arbiter PUF is one of the first PUFs developed and henceforth has been used as a fundamental
component is various other PUFs. It consists of a series of multiplexers followed by an arbiter.
A signal passing in two identical paths through the multiplexers controlled by the challenge
bits, reach the arbiter, which decides the output of the PUF, depending on whether the signal
reaches the top or bottom input first. An n-bit APUF, consists of n multiplexers, each of which
is controlled by a challenge bit. The schematic of an Arbiter PUF is shown in Figure 1.

The challenge-response behaviour of an APUF can be represented using a linear delay
model [5]. Let c ∈ {−1, 1}n be a challenge and y ∈ {−1, 1} be the response where n be the
number of switches in the APUF. Let ci ∈ {−1, 1} be the ith challenge bit. The total delay
difference at the end of (n)th stage can be given by :

∆(n) = 〈w, φ〉 (1)

where w denotes the weight vector comprising of the propagation delays and φ is the parity
vector or the transformed challenge vector. The APUF output is given by y = sign(∆(n)).

Multiplexer PUF (MPUF)

Multiplexer PUF (MPUF) as a variant of APUF, which was proposed with the objective of
enhancing modelling resistance without compromising on reliability [10]. It combines 2k + k
APUFs (2k APUFs connected to data lines and k APUFs connected to select lines) using a
2k × 1 MUX as shown in Fig. 2. The 2k × 1 MUX is realized using (2k − 1) 2 × 1-MUXes.
Each of the APUFs are provided with the same challenge and the output of the MUX is the
MPUF response. For a given challenge, the k-bit select input only one of the APUF output
gets propagated to the final response. Thus, MPUF response depends on only k + 1 APUF
outputs, which explains the improved reliability.

S-PUF and SN -PUF

S-PUF [11] is an arbiter based PUF construction consisting of two n-stage APUFs, whose
outputs are combined using an XOR gate. The input C = {c1, c2, · · · , cn} to the first APUF
is shifted by n

2 bits and fed to the second APUF. Thus the input to the second APUF is

C̃ = {cn
2
, cn

2 +1, · · · , cn, c1, · · · , cn2−1}. The schematic of S-PUF with two arbiters is given
in Figure 3. The rationale behind this construction is to reduce the response bias, thereby
improving the SAC property.

SN -PUF [11] is a composition of N S-PUFs, whose outputs o1, o2, · · · , oN are combined us-
ing a Maiorana-McFarland (M-M) Bent [7] function to produce a 1-bit response. The schematic

2

Learnability of MPUF and SN -PUF : A Fourier-based Approach

2 k : 1 M
U

X

z

C
n

Figure 2: Block diagram of Multiplexer PUF (MPUF)

Clk

D Q

Clk

D Q

Figure 3: Block diagram of S-PUF with two APUFs

of SN -PUF is given in Figure 4. Maiorana-McFarland (M-M) Bent function is given by,

f : F
N
2
2 × F

N
2
2 → F2

f(x, y) = x.π(y) + g(y), for all (x, y) ∈ F
N
2
2 × F

N
2
2

(2)

where x = (o1, o2, · · · , oN
2

) and y = (on
2 +1, oN

2 +2, · · · , oN) and π(y) is a permutation func-

tion and g is a Bent function. Let z = (z1, z2, · · · , zN
2

) be the N
2 -bit product where zi = xiyπ(i).

In [11], the authors have considered g(y) = 0 for better reliability. The rationale behind this
construction is to boost modelling robustness, without hampering the reliability.

2.2 Fourier Analysis of Boolean Functions

A Linear Threshold Function h : Rn → {0, 1} is given by:

h =

{
1, if

∑n
i=1(w[i].φ[i]) ≥ θ

0, if
∑n
i=1(w[i].φ[i]) < θ

(3)

3

Learnability of MPUF and SN -PUF : A Fourier-based Approach

S-PUF

S-PUF

S-PUF

S-PUF

M-M Bent Function

Figure 4: Block diagram of SN -PUF where N is the number of constituent S-PUFs

where φ ∈ Rn is the input vector and w represents the weight vector. The sets of positive and
negative examples of h form two halfspaces S0 and S1 where S1 = {φ ∈ Rn|

∑n
i=1(w[i].φ[i]) ≥ θ}

and S0 = {φ ∈ Rn|
∑n
i=1(w[i].φ[i]) < θ}. Mapping {0, 1} → {1,−1}, including the constant

in the weight vector w and appending 1 to the input vector φ, we get h = sign(w.φ) where
w = (w1, w2, · · · , wn, θ) and φ = (φ[1], · · · , φ[n], 1). Decision hyperplane is given by P : w.φ = 0

Noise sensitivity of Boolean functions The noise sensitivity of a Boolean function f is
given by

NSε(f) = Prx∈X [f(x) 6= f(x′)] (4)

where x′ is obtained by flipping each bit of x independently with a probability of ε.
The Fourier expansion of a Boolean function is given by

f(c) =
∑
S⊂[n]

f̂(S)χS(c) (5)

where χS(c) =
∏
i∈S ci, [n] = {1, 2, · · · , n} and f̂(S) = Ec∈U [f(c)χS(c)].

The relationship between noise sensitivity of a function f : {+1,−1}n → {+1,−1} and its
Fourier spectrum is given by [9]

NSε(f) =
1

2
− 1

2

∑
S⊂[n]

(1− 2ε)|S|f(S)2 (6)

For any function f : {+1,−1}n → {+1,−1}, 0 < ε < 1
2∑

|S|≥ 1
ε

f̂(S)2 ≤ 2.32NSε(f) (7)

Corollary 1: [8] Let f : {+1,−1}n → {+1,−1} be any Boolean function and let α : [0, 12]→
[0, 1] be an increasing function such that NSε(f) ≤ α(ε). Then,∑

|S|≥d

f̂(S)2 ≤ ε for d =
1

α−1(ε
2.32)

(8)

The following result connects the Fourier spectrum analysis and learning theory.

4

Learnability of MPUF and SN -PUF : A Fourier-based Approach

Fact 1: [8] Let C be a concept class with a Fourier concentration bound of d. Then there exists
a uniform distribution PAC learning algorithm for C which runs in time nO(d). The sample
complexity of the learning algorithm is nO(d)ln(1/δ).
The bound on noise sensitivity of an LTF and any function of constant number of LTFs is given
as follows:
Corollary 2: [4] For any halfspace h : {+1,−1}n → {+1,−1} we have,

NSε(f) ≤ 8.54
√
ε (9)

Theorem 1: [4] Let f : {+1,−1}k → {+1,−1} be any function of k halfspaces. ThenNSε(f) ≤
O(k
√
ε).

Applying Corollary 1, we get Fourier concentration bound d = O(k2/ε2) for class of k
halfspaces (ε < 1/k2).

2.3 PAC Model

The Probably Approximately Correct (PAC) model of learning is a general model which enables
us to formally analyse machine learning algorithms [12]. It consists of a learning algorithm (A),
which is provided with a set of examples picked from the input space X as per distribution
D and labelled using the target function f . The objective of the algorithm is to deliver an
approximately correct hypothesis with high probability. It can be formally stated as follows:

Let Cn be a concept class defined over an instance space Xn = {0, 1}n and let X = ∪n≥1Xn
and C = ∪n≥1Cn. Let f be the target function in Cn. Let Hn be the hypothesis class and
H = ∪n≥1Hn. The concept class Cn is said to be PAC Learnable if there exists a learning
algorithm A, polynomial p(·, ·, ·) and values ε and δ with the following property: For every
ε, δ ∈ (0, 1)2, for every distribution D over Xn and every target concept f ∈ Cn, when A is pro-
vided with p(n, 1/ε, 1/δ) independent examples drawn with respect to D and labelled according
to f , then with probability atleast 1−δ the algorithm A returns a hypothesis h ∈ Hn such that
error(h) ≤ ε. The smallest polynomial p satisfying this condition is the sample complexity of
A. If the above condition holds only for uniform distribution over X , A is known as a uniform
distribution PAC Learning algorithm.

3 PAC Learning of PUFs using Fourier Approach

In this work, we prove that MPUF and SN -PUF are learnable in the PAC model under uniform
input distribution. To demonstrate this, we use the low degree algorithm proposed in [8] that
generates a close approximation of a Boolean function given that the Fourier distribution of the
function is concentrated to a small number of terms. The learning algorithm can approximate
the function by focusing on only a small fraction of the Fourier coefficients. We leverage
this algorithm and the relationship between noise sensitivity and Fourier spectrum of Boolean
functions to provide a polynomial time learning algorithm for the above mentioned PUF designs.
This attack methodology was first used in the PUF literature to learn APUF, ROPUF and BR-
PUF constructions [3].

First, we present the Low Degree algorithm that generates a hypothesis function h which is
ε-close to the function f after observing polynomial number of labelled examples.

Theorem 2: Low Degree Algorithm (LMN algorithm) [3, 8] Let f : {0, 1}n → {0, 1} be a

Boolean function. Given a set S ⊆ 2[n] consisting of subsets of [n] such that
∑
s∈S f̂(S)2 ≥ 1−ε,

5

Learnability of MPUF and SN -PUF : A Fourier-based Approach

a confidence level δ and access to a polynomial number of input output pairs of f chosen
uniformly at random, the low degree algorithm delivers a Boolean function h with a probability
1− δ that is an ε-approximator of f ,∑

S⊂[n]

(
f̂(S)− ĥ(S)

)2
≤ ε

For more details on the algorithm, its sample complexity and proof of the theorem, we refer
the readers to [6, 8].

3.1 PAC Learning of Multiplexer PUF (MPUF)

An (n, k)-MPUF comprises of 2k n-stage APUFs whose outputs are connected to data lines and
k n-stage APUFs whose outputs are connected to select lines as shown in Fig. 2. The output of
the MUX network is the final response. LTF is a well known representation for APUF, owing to
its linear delay model [5]. It has a bounded noise sensitivity and therefore can be PAC learned
by the Low Degree algorithm. Here, we prove that a composition of APUFs using a MUX
network is also PAC Learnable by virtue of the noise sensitivity bound given in [4]. Formally,
we prove the following:

Theorem 3: For an (n, k)-MPUF represented by a function g, the Low degree algorithm can
deliver a Boolean function h approximating g with a probability of 1− δ. The running time of
the algorithm is poly(n, 22k/ε2, log2(1/δ)).
Proof: An APUF can be represented using a LTF, owing to its linear delay model [5]. The
noise sensitivity of an LTF f is bounded by NSε(f) ≤ 8.54

√
ε [4].

An (n, k)-MPUF comprises of 2k + k APUFs whose outputs are combined using a MUX
network. For a given k, a MPUF can be considered as a function of constant number of
LTFs (2k). Thus, noise sensitivity of (n, k)-MPUF is bounded by O(2k

√
ε) using Theorem 1.

Using Corollary 1, we obtain that the running time of the low degree algorithm is polynomial
in O(nd) where d = 1/α−1(ε/2.32) = (2.32 × 2k)2/ε2. The sample complexity of the learning
algorithm is O(ndln(1/δ)).

3.2 PAC Learning of SN -PUF

In this section, we derive the learnability bounds of SN -PUF. We show that the construction
can be accurately modelled with a high probability using the Low degree algorithm. Formally,
we prove the following:

Theorem 4: The low degree algorithm can deliver a Boolean function h approximating a
function representing an SN -PUF with a probability of 1−δ. The running time of the algorithm
is poly(n,N2/ε2, log2(1/δ)).

Proof: An S-PUF can be represented using a LTF, owing to its linear delay model [11].
Consequently, its noise sensitivity is bounded by NSε(f) ≤ 8.54

√
ε [4].

The outputs of N S-PUFs are combined using an MM Bent Function. Thus, an SN -PUF
can be considered as a function of N LTFs. The noise sensitivity of SN -PUF is bounded by
O(N

√
ε) (using Theorem 1). Using Corollary 1, we obtain that the running time of the low

degree algorithm is polynomial in O(nd) where d = 1/α−1(ε/2.32) = (2.32 × N)2/ε2. The
sample complexity of the learning algorithm is O(ndln(1/δ)).

6

Learnability of MPUF and SN -PUF : A Fourier-based Approach

An important point to note is that the Low degree algorithm can learn any function of k
LTFs only when k = O(1). For k >

√
ln n, the learning algorithm fails. This also provides a

practical bound on the size of the PUF compositions.

4 Conclusion

We proved that Multiplexer PUF and SN -PUF are learnable in the PAC model for various
values of accuracy and confidence. To this end, we showed that the noise sensitivity of any
function combining the outputs of a constant number of LTFs can be bounded by a constant
factor, and consequently the construction can be accurately approximated by the Low degree
algorithm. Finally we proved that the sample complexity of the learning algorithm is polynomial
in the number of stages (n), Fourier coefficient bound (d) and the PAC model parameters.

References

[1] Durba Chatterjee, Debdeep Mukhopadhyay, and Aritra Hazra. PUF-G: A CAD framework for
automated assessment of provable learnability from formal PUF representations. In Proceedings
of the 39th International Conference on Computer-Aided Design, pages 1–9, 2020.

[2] Fatemeh Ganji. On the Learnability of Physically Unclonable Functions. Springer, 2018.

[3] Fatemeh Ganji, Shahin Tajik, and Jean-Pierre Seifert. A fourier analysis based attack against
physically unclonable functions. In International Conference on Financial Cryptography and Data
Security, pages 310–328. Springer, 2018.

[4] Adam R Klivans, Ryan O’Donnell, and Rocco A Servedio. Learning intersections and thresholds
of halfspaces. Journal of Computer and System Sciences, 68(4):808–840, 2004.

[5] Daihyun Lim. Extracting secret keys from integrated circuits. 2005.

[6] Nathan Linial, Yishay Mansour, and Noam Nisan. Constant depth circuits, Fourier transform,
and learnability. Journal of the ACM (JACM), 40(3):607–620, 1993.

[7] James A Maiorana. A class of bent functions. R41 Technical paper, 1971.

[8] Yishay Mansour. Learning boolean functions via the fourier transform. In Theoretical advances
in neural computation and learning, pages 391–424. Springer, 1994.

[9] Ryan O’Donnell. Hardness amplification within np. Journal of Computer and System Sciences,
69(1):68–94, 2004.

[10] Durga Prasad Sahoo, Debdeep Mukhopadhyay, Rajat Subhra Chakraborty, and Phuong Ha
Nguyen. A multiplexer-based arbiter puf composition with enhanced reliability and security. IEEE
Transactions on Computers, 67(3):403–417, 2017.

[11] Akhilesh Anilkumar Siddhanti, Srinivasu Bodapati, Anupam Chattopadhyay, Subhamoy Maitra,
Dibyendu Roy, and Pantelimon Stănică. Analysis of the strict avalanche criterion in variants of
arbiter-based physically unclonable functions. In International Conference on Cryptology in India,
pages 556–577. Springer, 2019.

[12] Leslie G Valiant. A theory of the learnable. Communications of the ACM, 27(11):1134–1142, 1984.

7

	Introduction
	Background
	Physically Unclonable Functions
	Fourier Analysis of Boolean Functions
	PAC Model

	PAC Learning of PUFs using Fourier Approach
	PAC Learning of Multiplexer PUF (MPUF)
	PAC Learning of SN-PUF

	Conclusion

