
Tight Setup Bounds for Identifiable Abort

Nicholas Brandt

Department of Computer Science, ETH Zurich, nicholas.brandt@inf.ethz.ch

Abstract. We present fundamental (in-)feasibility results for the strongest security notion
for Secure Multi-Party Computation (MPC) that is achievable when a majority of parties
is malicious, i.e. security with Identifiable Abort. As general Universally Composable (UC)
MPC requires a setup, typically in the form of a Common Reference String or Common-
Randomness, we investigate whether the setup must provide randomness to all parties.
Given broadcast, we give tight bounds for the necessary and sufficient setup cardinality, i.e.
number of participating parties, for UC-MPC protocols with Identifiable Abort. Concretely,
we improve previous upper bounds by constructing Secure Function Evaluation for n parties
(h of which are honest) from setups of cardinality β := min(n, bn/hc + b(n − 1)/hc − 1) and
broadcast.
Conversely, we present the first general lower bound on the minimal setup cardinality for
Identifiable Abort by proving that setups of cardinality β − 1 plus broadcast are insufficient
even for a commitment among n parties. Somewhat surprisingly, we show that Oblivious
Transfer plus broadcast is sufficient for n = 2h ≥ 2 which is consistent with the fact that
in two-party MPC Identifiable Abort comes for free. We present the results in the Univer-
sal Composability (UC) framework and assume the setup functionalities to be secure with
Identifiable Abort.
Our constructions yield an efficient (poly-time) protocol for any n ∈ poly(λ) where λ is the
security parameter if at least a constant fraction h ∈ Θ(n) of parties is honest. However for
h ∈ o(n) our results suggest that for efficient protocols the overall number of parties n is
limited quite severely by

(
n
β

)
∈ poly(λ).

Keywords: Multi-Party Computation · Identifiable Abort · Dishonest Majority · Con-
flict Graph

1 Introduction

Because a Universally Composable (UC) commitment is impossible in the plain model [CF01], a
setup is necessary—typically in the form of a Common Reference String that involves all parties.
An important question is whether all parties must be involved in the setup, or if setups with fewer
parties suffice for general MPC. Since “smaller” setups may require less communication and may
be more efficiently realizable via hardware assumptions or through smaller security parameters
[GIS+10; CK88; Cré97], protocols based on smaller setups may be much more efficient in practice.

This question of the Minimal Complete Cardinality has been formally posed by Fitzi, Garay,
Maurer, and Ostrovsky [FGM+01] for MPC with guaranteed output delivery without a broadcast.
In the honest-majority case Ben-Or, Goldwasser, and Wigderson [BGW88] showed that pairwise
setups suffice iff t < n/3, and Beaver [Bea90] and Rabin and Ben-Or [RB89] showed that pairwise
channels plus broadcast suffice for t < n/2. On the other hand, Cleve [Cle86] showed that in the
dishonest-majority case the notion of fairness is impossible, and hence also guaranteed output de-
livery. To sidestep this impossibility protocols that are secure against a dishonest majority settle
for security with abort [IPS08] where the adversary can abort the protocol at any point. Here
Oblivious Transfer (OT), a two-party setup, allows for secure protocols even against a dishonest
majority. While this ensures that the adversary cannot tamper with the parties’ outcome, i.e. ma-
nipulate the outcome of a coin-toss, it opens the door for Denial-of-Service attacks. To mitigate
this caveat the main idea has been to identify some dishonest party upon abort. This has been
considered—among others—by Hofheinz and Müller-Quade [HM04] as cheater identification, Au-
mann and Lindell [AL07] in the form of covert security, and by Ishai, Ostrovsky, and Seyalioglu
[IOS12] and Ishai, Ostrovsky, and Zikas [IOZ14] as Identifiable Abort (IA). In the light of the
impossibility of fairness, the notion of IA is the strongest one that is possibly achievable in the
dishonest-majority setting.

Motivation: a case for small setups. We want to motivate the relevance of MPC from small
setups in both theory in practice. On a theoretical level, one might view the result of a Secure
Function Evaluation as a large truth table and the protocol itself as a circuit that computes that
truth table. Suppose the protocol has runtime at most r ∈ poly(λ) and each party i has input and
randomness xi ∈ {0, 1}λ then the overall input to the circuit is a matrix {0, 1}n×r(λ) composed of n
rows per λ bits. Local operations on the input and randomness of a party may then be represented
by any gate operating on a single row. For the circuit computing non-local functions, i.e. values
that depend on all parties’ inputs, the circuit also need gates that operator on multiple rows
simultaniously. For example the Correlated Randomness setup of [IOZ14] may be viewed as a gate
operating on all rows at once. However, one might ask the question: what is the minimal gate size
that allows for poly-sized SFE-circuits? A lower bound for the minimal complete cardinality for
SFE with IA directly translates into a lower bound for the minimal gate size for circuits realizing
SFE with IA. Since circuit lower bounds are notoriously hard to prove, we think this connection
legitimizes the quest for minimal complete setups in MPC.

From a more practical point of view, consider a scenario where n parties want to compute some
function but they only have a unstable connection to the network which sporadically allows them
to communicate with other parties that are online at the same time. Say at any given time i ∈ N
each party j ∈ [n] is online with probability p < 1, and suppose that any setup can be computed
within one timestep. To realize an n-party Correlated Randomness setup all n parties need to be
online at the exact same time, i.e. the probability of success at each timestep is pn and hence the
expected number of timesteps En = p−n is exponential in n. Conversely, for excepted polynomial
runtime En ∈ poly(λ) in the security parameter λ only logarithmically many n ∈ O(ln λ) parties
are supported.
On the other hand, suppose that an arbitrarily small constant fraction of parties is honest, i.e.
h ∈ Θ(n). Then the probability of realizing one setup of cardinality β ∈ Θ(1) is constant pβ ∈ Θ(1)
at each timestep. Hence the expected number of timesteps until all

(
n
β

)
succeed is polynomially

bounded by Eβ ≤
(

n
β

)
p−β ∈ poly(n). As such, for expected polynomial runtime Eβ ∈ poly(λ)

polynomially many n ∈ poly(λ) parties are supported.
This exponential gap in the expected runtime resp. number of supported parties should exemplify
the importance of small setups in a practical scenario. We adapt the question of the Minimal
Complete Cardinality originally posed by [FGM+01] to the setting of IA with broadcast.

Related work on Identifiable Abort.
• Ishai, Ostrovsky, and Seyalioglu [IOS12] give a universal n-party setup functionality based on

identifiable secret sharing and rule out any two-party setup plus broadcast for t ≥ 2n/3.
• Ishai, Ostrovsky, and Zikas [IOZ14] give a universal n-party setup functionality—the Correlated

Randomness Model. This allows to split the protocol in a offline and an online phase where
the computationally secure offline phase is oblivious to the actual function and the inputs and
the online phase enjoys statistical security.

• Brandt, Maier, Müller, and Müller-Quade [BMM+20] give a first upper bound by constructing
a protocol from setups of cardinality n − 1 and broadcast for t ≤ n − 3. Their construction
is based on the observation that replacing two-party OT in the IPS-compiler [IPS08] with an
n-party committed OT [Cré90; CvT95] directly lifts the resulting protocol to Identifiable Abort.

• Simkin, Siniscalchi, and Yakoubov [SSY21] improve this result slightly by constucting a Cor-
related Randomness setup for n parties from setups of cardinality n− 1 for t ≤ n− 2. To this
end they introduce a new kind of identifiable secret sharing based on [IOZ14].

Moreover, the settings of Identifiable Abort has recently been adopted to quantum MPC [ACC+20].

Our Contribution. We explore the dishonest-majority setting for Identifiable Abort in the UC
framework thoroughly.
In Appendix A we prove that no setup of cardinality min(n− 1, bn/hc+ b(n− 1)/hc − 2) is suffi-
cient for a commitment among n parties (at least h of which are honest) even when a broadcast
is available. To this end we prove an abort-lemma that provides a strategy for the environment
to abort setups in such any protocol must either violate the hiding or binding property of the
commitment.
On the positive side, in Appendix B we show that our bound is tight by giving a protocol to real-
ize a commitment among n parties from setups of cardinality β and broadcast. In a second step,

2

we construct a committed version of OT1 for n parties from setups for β parties and an n-party
commitment.
We note that our results are strong in the sense that our impossibility holds even for computa-
tionally bounded (efficient) environment, and our constructions are secure against computationally
unbounded environments.
Finally, in Section 5 we discuss the limitation

(
n
β

)
∈ poly(λ) of the number of parties that seems

inherent in constructions from smaller setups, and given an outlook.
As such our results subsume or improve upon all previously listed constructions and impossi-

bilities in a unified way.
• The lower bound of 3 from [IOS12] is raised to 4 for t ≥ 2n/3 ≥ 4.
• The upper bound of n− 1 from [SSY21] reduced to the optimal n− 2 for t ≥ n− 2.
• The upper bound of n from [IOZ14] is shown to be tight for t ≥ n− 1.

Finally, we want to remark that while one might regard broadcast as an unwarranted assumption
for constructing MPC it is still an intuitively weaker assumption than a Common Reference String
[CF01] or even arbitrary Common Randomness [IOZ14]. Furthermore, the broadcast makes our
impossibility result stronger than an impossibility for the settings where parties can only commu-
nicate via pairwise channels.

2 Setting

We focus on static corruptions of an arbitrary number of parties at the onset of the protocol.
The maximal number of malicious parties is denoted by t and the minimal number of honest parties
by h := n− t.
Our constructions enjoy statistical security and our impossibility holds against any adversary,
in particular for computationally bounded ones. No computational assumptions are made since we
only assume the existence of hybrid functionalities (setups).
We assume that all messages sent between parties and ideal functionalities are authenticated.

2.1 The UC Framework & Identifiable Abort

We perform our analysis in the Universal Composability (UC) framework of Canetti [Can01]. In this
strong version of simulation-based security, an environment (distinguisher) controls the adversary
interactively, in particular the simulator cannot rewind the enviroment. This notion ensures that
protocol instances can be composed arbitrarly.

Technically, the desired behaviour of a computation is specified by an ideal functionality, usu-
ally denote by F , and security of a protocol π is proved by giving a simulator S that produces a
simulated protocol transcript only using the ideal functionality. In other words, everything that a
real adversary A can do in a protocol the simulator can pretend to do with the ideal functionality.
Due to a fundamental impossibility of UC commitments by Canetti and Fischlin [CF01] proto-
cols are often formulated as hybrid protocols that allow the parties access to setups which are
again modeled as ideal (hybrid) functionalities. By the Composition Theorem, these hybrid setup
functionalities may in turn be realized by any secure protocol.

Because an asynchronous network is essentially susceptible to Denial-of-Service attacks [CM89;
BCG93] we assume a synchronous communication network.2 For the sake of simplicity we omit ex-
plicit use of the functionality FSYN in our analysis. Instead we assume that the parties are activated
in rounds, although the order of activations within one round is controlled by the environment. In
particular, we assume that parties are implicitly aware of the current round number. The round
based communication model is particularly useful in the setting of Identifiable Abort with broad-
cast as it allows parties to check whether a party honestly responded to detected misbehaviour.
We describe this in more detail in Section 4.

As described in Section 1 Identifiable Abort (IA) is the strongest security notion that is not
ruled out by Cleve [Cle86]. Formally introduced in [IOZ14] an ideal functionality with IA allows
the adversary to send (abort, P) where P is a malicious party—which we call disruptor—so that
1 The idea of a committed OT was first introduced by Crépeau [Cré90] and Crépeau, van de Graaf, and

Tapp [CvT95].
2 Compare Section 6.2.3 of the 2020 version 20200212:021048 of [Can00]

3

https://eprint.iacr.org/2000/067/20200212:021048

all parties receive (abort, P). The main idea is that although the protocol is aborted, the parties all
agree on a common malicious party. So that they can restart the protocol and replace the identified
party with so default input.
In particular, we assume that all setups have Identifiable Abort themselves and also allow multiple
parties to be identified at once. That is for any protocol with parties P , the adversary can input
(abort, C ′) into any setup with participating parties P ′ ⊆ P where ∅ 6= C ′ ⊆ P ′ is the set of
identified disruptors, and all parties P ′ obtain (abort, C ′).
The work [BMM+20] formalized the following natural and intuitive way of handling aborts of
setups. Specifically, whenever a setup functionality with parties P′ is aborted with (abort, C ′), we
can require all honest parties in P ′ to declare a conflict with all parties in C ′. At the onset of the
next round each honest party can check if indeed all parties P ′ \C ′ declared the required conflicts.
Any honest party should then—by design of our protocol—also declare conflict with any party
in P′ that did not declare with all disruptors C ′—we call these parties loyalists. If honest parties
behave this way, then after the abort of a setup with parties P ′ the broadcasted conflicts are always
two partitions P 1 ·∪ P 2 = P ′ such that all parties in P 1 are in conflict with all parties from P 2.
This condition is called biseparation in [BMM+20]. We recall the graph-theoretical properties of
[BMM+20] in more detail in Section 4.

Remark 1. We note that for two-party functionalities, such as OT, security with abort is equivalent
to IA.

Similar in effect to the n-party Universal Black Box setup of [FGM+01] for guaranteed output
delivery [IOZ14] give an n-party Correlated Randomness setup for IA—both are oblivious to the
evaluated functionality and inputs. There has also been much effort in producing practical MPC
protocols with IA in [DPS+12; SF16; BOS16; BOS+20] among others. However, we are primarily
interested in the fundamental (in-)feasibility of achieving MPC with IA from minimal setups. In
particular, we do not consider the round complexity of our protocols and leave the optimization
to future work.

3 Preliminaries

3.1 Notation

We use λ for the (statistical) security parameter, n for the overall number of parties, h for the
number of (guaranteed) honest parties and t for the number of (potentially) malicious parties. We
also use negl(x) and owhl(x) to denote the set of negligible resp. overwhelming functions w.r.t. x.

Notation 1 (Subsets). For any set V and k ∈ N s.t. k ≤ |V | we denote by
(

V
k

)
the set of subsets

of cardinality k.

Notation 2 (Union of disjoint sets). For any two disjoint sets V and V ′ s.t. V ∩ V ′ = ∅ we
emphasize their disjointness in the union operation as V ·∪ V ′.

In particular, we use the fact that |V ·∪ V ′| = |V |+ |V ′|.
We use the following notation to clarify our Identifiable Abort property:

Notation 3 (Functionalities with IA). We denote by Fn an n-party functionality with Iden-
tifiable Abort.

Notation 4 (Protocol construction). For any set of ideal functionalities F and any ideal
functionality F we write F F , iff there is a protocol πF that securely UC-realizes F in the
F -hybrid model. More formally:

F F ⇐⇒ ∃πF : πF ≥ F . (1)

Conversely, we write
F 6 F ⇐⇒ ∀πF : πF 6≥ F . (2)

We furthermore use the additional notation F
stat
 F resp. F

comp
 F to denote the contruction is

secure against an computationally unbounded resp. efficient environment.

4

Notation 5 (Minimal complete cardinality generalized from [FGM+01]). For any num-
ber of parties n ∈ N≥2 let k ∈ N be the smallest number such that ∀Fn ∃Fk : {Fk} ∪ F Fn,
then k is the minimal complete cardinality for n-party MPC relative to some set of ideal setup
functionalities F .

The original work [FGM+01] defined the minimal complete cardinality relative to F = ∅ while we
consider F = {Fn

BC}.

Notation 6 (Lists). For any list γ := (γi)i∈l of length l ∈ N we denote the list at index set
H ⊆ [l] by γH := (γi)i∈H .

Definition 1 (Threshold secret sharing). For any a, b ∈ N : a ≤ b an (a, b)-threshold se-
cret sharing scheme for message space M is defined by a probabilistic algorithm Sharea,b and a
deterministic algorithm Recovera with syntax

• Sharea,b : M → ({0, 1}λ)b : m 7→ µ = (µκ)κ∈[b]
• Recoverb : ({0, 1}λ)b →M : µ 7→ m

for any H ∈
([b]

a

)
. That is, Sharea,b takes a message m ∈ M and outputs b shares such that any

a of them reconstruct the message but a − 1 shares perfectly hide the secret. Formally, we require
correctness: i.e. for all messages m ∈M it should hold that

Pr[Recoverb(µ) = m | µ← Sharea,b(m)] ∈ owhl(λ) .

Additionally, we require privacy: i.e. for all possible shares µ output by Sharea,b, for all messages
m and m′ of the same bitlength and for all sets of indices H ′ ∈

([b]
a−1

)
it should hold that

|Pr[µH′ = µ′
H′ | µ′ ← Sharea,b(m)]− Pr[µH′ = µ′

H′ | µ′ ← Sharea,b(m′)]| ∈ negl(λ) .

For example, we could use Shamir’s secret sharing [Sha79] with b = 4a. An important feature
that we require for our construction is that shares of sharings for message x and y can be homo-
morphically combined to produce a sharing of the message x + y. The purpose of these threshold
sharing is to ensure that parties input the same shares across multiple setups.3 To this end, we use
the following lemma which bounds the probability that a sufficiently manipulated sharing stays
undetected.

Lemma 1 (Error-detection). Let u, w, s ∈ N≥1 s.t. s, w ≤ u and let W ∈
([u]

w

)
.

PrS

[
W ∩ S = ∅

∣∣∣∣ S ∈
(

[u]
s

)]
=

s−1∏
i=0

u− w − i

u− i
≤

s−1∏
i=0

u− w

u
≤ (1− w/u)s ≤ 2−sw/u (3)

Notation 7 (Complement graph). For any undirected irreflexive graph G = (V, E) we use the
notation G := (V, E) for the undirected, reflexive complement graph with E :=

(
V
2
)
\ E .

Notation 8 (Neighbors). For an undirected irreflexive graph G = (V, E) we use the following
notation for neighbors:

NG(v) := {v′ | {v, v′} ∈ E} . (4)

For an conflict graph G = (P , E) we call NG(P) the associates of P ∈ P .

3.2 Functionalities / Setup

We use the following ideal functionalities. First we define a (one-to-many) bit commitment, again
in the spirit of [CLO+02], adapted to the IA setting.

3 The idea is conceptually similar to public verifiability [AO12].

5

Functionality Fn
COM

Fn
COM proceeds as follows, running with security parameter λ, parties P = {S, R1, . . . , Rn−1},

malicious parties C ⊆ P and adversary S. Messages not covered here are ignored.
• When receiving (commit, m ∈ {0, 1}λ) from party S, send (receipt commit) to all parties.

Ignore further messages (commit, ·) from S.
• When receiving (open) from party S, send (open, m) to all parties and terminate.
• When receiving (abort, C ′) from S with C ′ ⊆ C , then output (abort, C ′) to all parties and

terminate.

In the proof of Theorem 1 we use a one-to-one variant, which is essentially the same, except that
only one fixed receiver obtains the opened value.

Functionality Fn
COM,1:1

Fn
COM,1:1 proceeds as follows, running with security parameter λ, parties P = {S, R, . . .}, ma-

licious parties C ⊆ P and adversary S. Messages not covered here are ignored.
• When receiving (commit, m ∈ {0, 1}λ) from party S, send (receipt commit) to all parties.

Ignore further messages of the type (commit, ·) from S.
• When receiving (open) from party S, send (open, m) to R and (open,⊥) to all other parties

and S, and terminate.
• When receiving (abort, C ′) from S with C ′ ⊆ C , then output (abort, C ′) to all parties and

terminate.

Furthermore, we use a verifiable OT originating from [Cré90; CvT95] formulated as an ideal func-
tionality in [BMM+20]: Fully Committed Oblivious Transfer (FCOT). The FCOT has a specific
structure with a dedicated sender and receiver with makes it conceptually easier to construct than
to provide general MPC protocols directly. Lemma 14 from [BMM+20] claims that general SFE can
be based on FCOT via the IPS-compiler [IPS08]. Note that this functionality assigns dedicated role
to the participating parties. Because the functionality are modeled in the UC framework, multiple
instances can be arbitrarily composed to allow OTs between any two parties.

6

Functionality Fn
FCOT

Fn
FCOT proceeds as follows, running with security parameter λ, parties P =
{S, R, W1, . . . , Wn−2}, malicious parties C ⊆ P and adversary S. Messages not covered here
are ignored.
• When receiving (messages, m0, m1 ∈ {0, 1}λ) from S, store m0, m1 and send

(receipt messages) to all parties and S if (receipt choice) has not been sent. Ignore
further messages of the type (messages, ·, ·) from S.

• When receiving (choice, c ∈ {0, 1}) from R with c ∈ {0, 1}, store c and send
(receipt choice) to all parties and S if (receipt messages) has not been sent. Ignore
further messages of the type (choice, ·) from R.

• When both m0, m1 and c are stored, send (output, mc) to R, and (receipt transfer) to
all other parties and S.

• When receiving (open message, b ∈ {0, 1}) from S and m0, m1 are stored, send
(open message, b, mb) and to all parties and S. Ignore further messages (open message, b)
from S.

• When receiving (open choice) from R and c is stored, send (open choice, c) and to all
parties and S. Ignore further messages from R.

• When receiving (abort, C ′) from S with C ′ ⊆ C , then output (abort, C ′) to all parties and
terminate.

Next, we define variants of the commitment and OT functionality that operate on sharings of
the inputs instead of the inputs themselves. First, we define an Externally Verifiable Commitment
(EVCOM) functionality that enables the verification of consistency of inputs across instance classes.
The idea is that the sender of the commitment commits to a threshold sharing instead of the
message directly. Then shares at some indices (chosen uniformly by honest parties) can be opened
to ensure that the same sharing was input into multiple setups. This way a commitment to few
parties can be extended to many parties. For notational convenience we define the functionality
such that any party can perform an OT with any other party.

Functionality Fβ
EVCOM

Fn
EVCOM proceeds as follows, running with security parameter λ, sharing parameter `, par-

ties P = {P1, ..., Pβ}. malicious parties C ⊆ P , adversary S. Messages not covered here are
ignored.
• When receiving (commit, µi ∈ {0, 1}4`×λ) from Pi, send (receipt commit, Pi) to each party

P ∈ P and S. Ignore further messages (input, ·) from Pk.
• When receiving (open, κ ∈ [4`]) from Pi, send (output, Pi, κ, µi,κ) to each party P ∈ P and
S. Ignore further messages (open, κ) from Pi.

• When receiving (abort, C ′) from S with C ′ ⊆ C , then output (abort, C ′) to all parties and
terminate.

Next, we define an Externally Verifiable Oblivious Transfer (EVOT) functionality—similar to
FCOT—that enables all parties to verify that the inputs encoded in the sharings are consistent
with the inputs of some other functionality session, in particular a one-to-many commitment. The
notation Pi → Pj signifies an OT with sender Pi and receiver Pj .

7

Functionality Fβ
EVOT

Fn
EVOT proceeds as follows, running with security parameter λ, sharing parameter ` and probes

ρ, parties P = {P1, ..., Pβ}. malicious parties C ⊆ P , adversary S. Messages not covered here
are ignored.
• When receiving (messages, Pi → Pj , µ0

i , µ1
i ∈ {0, 1}4`×λ) from Pi, store (Pi → Pj , µ0, µ1)

and send (receipt messages, Pi → Pj) to each party P ∈ P and S. Ignore further messages
of this type from Pi.

• When receiving (choice, Pi → Pj , γ ∈ {0, 1}4`×λ) s.t. Recover4`(γ) ∈ {0, 1} from Pj , store
(Pi → Pj , γ) and send (receipt choice, Pi → Pj) to each party P ∈ P and S. Ignore
further messages of this type from Pi.

• When both (Pi → Pj , µ0, µ1) and (Pi → Pj , γ) are stored, send (output, Pi → Pj , µc)
to Pj where c ← Recover4`(γ). Draw H ′ ←

([4`]
ρ

)
and send (receipt transfer, Pi →

Pj , H ′, µ0
i,H′ , µ1

i,H′ , γi,H′) all parties and S.
• When receiving (abort, C ′) from S with C ′ ⊆ C , then output (abort, C ′) to all parties and

terminate.

So, far all functionalities have were defined for a single session only. To reduce notational overhead
we omit the session ids whenever the session is clear from the context.
Next, we describe the functionalities usually related to the actual model of communication among
parties.

Functionality Fn
BC

Fn
BC proceeds as follows, running with security parameter λ, parties P = {P1, ..., Pn}, malicious

parties C ⊆ P and adversary S. Messages not covered here are ignored.
• When receiving (input, m ∈ λ) from party Pj , send (output, Pj , m) to all parties.
• When receiving (abort, C ′) from S with C ′ ⊆ C , then output (abort, C ′) to all parties and

terminate.

The broadcast is essentially the one from [CLO+02], though we only let parties broadcast messages
to all parties not any subset of parties.
Lastly, we define use the two-party functionality Secure Message Transfer (SMT) which often
describes the underlying communication model. However, because we consider larger setups of size
β the two party setup is not an additional assumption.

Functionality F2
SMT

Fn
SMT proceeds as follows, running with security parameter λ, parties P = {P1, P2}, malicious

parties C ⊆ P and adversary S. Messages not covered here are ignored.
• When receiving (input, m ∈ {0, 1}λ) from party Pj , store (m) to P2.
• When receiving (abort, C ′) from S with C ′ ⊆ C , then output (abort, C ′) to all parties and

terminate.

4 Technical Overview

As our main technical tool we use the notion of the Conflict Graphs (CG) from [BMM+20]. Thus,
we give a brief recapitulation of the way in which [BMM+20] uses conflicts to identify cheating
parties in general. To this end we recall two graph-theoretical properties that directly correspond
to Identifiable Abort. Then, we describe two abort lemmas that state which and how many setups

8

the adversary can abort in terms of these graph-theoretical properties. For the impossibility we
show how the the adversary can abort the setups of any protocol attempting to securely UC-
realize a commitment among n-party. For our construction we give two protocols inspired by the
abort lemmas that use the fact that some setups must succeed or otherwise identification becomes
possible for all parties.

Identification via Conflicts.
Definition 2 (Identifiable Abort from [BMM+20] adapted from [IOZ14]). Let Fn be
an ideal n-party functionality with parties P and malicious parties C ⊆ P . Fn has (Multi-
)Identifiable Abort, iff on input

(
abort, C ′) from the adversary Fn sends

(
abort, C ′) to all

parties. If C ′ 6⊆ C ∨ C ′ = ∅, the message is ignored.
We make extensive use of the Conflict Graph (CG) formalism of [BMM+20], therefore we

repeat the corresponding ideal functionality Fn
CG and the relevant graph-theoretical properties.

The intuitive idea of the CG is to capture which parties definitively distrust each other and model
these mutual distrusts (conflicts) as as edges in a undirected graph on the set of parties. The
advantage of this technique is that it allows to formulate graph-theoretical properties of the CG
that translate to necessary resp. sufficient conditions for Identifiable Aborts.

Functionality Fn
CG adapted from [BMM+20]

Fn
CG proceeds as follows, running with parties P = {P1, . . . , Pn}, malicious parties C ⊆ P and

adversary S. Messages not covered here are ignored.
• Upon first activation, initiate the set of conflict edges E := ∅.
• When receiving a message (conflict, Pi ∈ P) from Pj , for i 6= j append the new conflict

edge {Pi, Pj} to the set of conflict edges E and send (conflict, Pj , Pi) to the adversary.
• When receiving a message

(
conflict, P ′ ⊆ P

)
from Pj , for each Pi ∈ P ′ s.t. i 6= j append

the new conflict edge {Pi, Pj} to the set of conflict edges E and send
(
conflict, Pj , P ′)

to the adversary.
• When receiving a message (query) from Pj , output the Conflict Graph G := (P , E) to Pj .
When receiving

(
abort, C ′) from S with C ′ ⊆ C , then Fn

CG outputs
(
abort, C ′) to all parties,

and then terminates.

The object of the Conflict Graph itself is an undirected irreflexive graph on all parties returned by
the Fn

CG functionality. Because Fn
CG is a functionality on all n parties, it is well-defined and unique

at each given time during a protocol execution. By this definition the CG is only formally defined
for protocols in some (F ∪ {Fn

CG})-hybrid model. However Lemmas 8 and 16 of [BMM+20] show
that any secure protocol using broadcast can be augmented to use the Fn

CG in an abort-respecting
way that preserves security and functionality. So, we can make the following remark.
Remark 2. When arguing about the impossibility of any secure protocol in some F -hybrid model
for a certain ideal functionality it suffices to show that no secure abort-respecting protocol exists
in the (F ∪ {Fn

CG})-hybrid model.
Notation 9. We denote the complement of the Conflict Graph G = (P , E) by G := (P , E) where
E := {{P, P′} | {P, P′} 6∈ E}.
Definition 3 (t-settledness from [BMM+20]). Let n be the number of parties of which at
most 0 ≤ t < n are malicious. Let G = (P , E) be the Conflict Graph of a protocol π. Let M (G, t)
be the set of all Minimal Vertex Covers (MVCs) of G with size t or less, and let X(G, t) be the
intersection of all of these MVCs, that is, the set of parties which are present in all MVCs of size
≤ t. We call X(G, t) the settled set of G. We call G t-settled, iff X(G, t) 6= ∅.
The notion of t-settledness describe the situation where—given a CG of a protocol—even an
outsider can tell some subset of parties to be malicious. In particular, we use the fact that if
any party has strictly more that t conflicts, it must be malicious since no honest-honest conflicts
are allowed. Another way to put it is that honest parties always form a clique of size h = |H | in
the complement graph G. Consequently, if two parties are not in such a clique, then it is obvious
to all parties that at least one of the two is malicious.

9

Definition 4 (Biseparation from [BMM+20]). A Conflict Graph G = (P , E) is called bisep-
arated, iff there exists a subset of edges E ′ ⊆ E that forms a complete bipartite graph (biclique) on
P . Formally, ∃P 1, P 2 ⊂ P : P 1 ·∪ P 2 = P ∧ E ′ := {{P, P′} | P ∈ P 1 ∧ P′ ∈ P 2} ⊆ E .

The notion of biseparation describes the situation where participating parties can tell some subset
of parties to be malicious (but not necessarily an outsider).

Remark 3. The complement graph G =
(
P , E

)
of a CG G = (P , E) is connected, iff G is not

biseparated.

Theorem 6 from [BMM+20] formally establishes the link between the biseparation of the CG
and the Identifiable Abort of a protocol. On a high level it makes two statements. For a protocol
with parties P and honest parties H ⊆ P :
1. When the CG of a protocol is biseparated let the partitions P 1 ·∪P 2 = P be such that w.l.o.g.

P 1 ⊇ H is the largest subset of parties such that all parties in P 1 are in conflict with all
parties in P 2. Then all (honest) parties can abort the protocol by outputting (abort, P 2) and
terminating.

2. When a protocol aborts with (abort, C ′), then one can construct a biseparated graph as
G := (P , E) with E := {{P, P′} | P ∈ C ′ ∧ P′ ∈ P \ C ′}.

Additionally, when designing protocols we can require honest parties to declare conflicts with the
identified parties (disruptors) upon abort, then the actual CG of the protocol will be biseparated
after the abort. This behaviour is called abort-respecting in [BMM+20].

As mentioned before, we call an instance class (subset of parties) aborted, iff the Conflict Graph
on this subset of parties is biseparated.

Now that we have recalled the relevant graph property related to Identifiable Abort we can
go ahead and make statements about the CG on a graph-theoretical level and then translate the
results back into the (im-)possibly abort of setups.

Graph-Theoretical Lemmas. Next we present two lemmas in purely graph-theoretical terms
which we prove the lemmas in Appendices A and B.

Lemma 2. Let n, h ∈ N with 1 ≤ h ≤ n. Let G = (V, E) be an undirected irreflexive graph
with n = |V | and let v, v′ ∈ V be some nodes s.t. |NG(v)|, |NG(v′)| ≥ h. Furthermore, let Au :=
{u} ∪

⋃
S⊂NG(u):|S|=h−1 S and let M := {V ′ ⊆ V | V ′ ∩Av 6= ∅ ∧ V ′ ∩Av′ 6= ∅ ∧ |V ′| < β}.

For all n, h ∈ N s.t. h ≤ n such a graph G and some v, v′ ∈ V exists s.t. for all V ′ ∈ M the
subgraph (V ′, E ∩

(
V ′

2
)
) is biseparated, and G is neither biseparated nor (n− h)-settled.

Lemma 3. Let n, h ∈ N with 2 ≤ h ≤ n. Let G = (V, E) be an undirected irreflexive graph
with n = |V | and let v, v′ ∈ V be some nodes s.t. |NG(v)|, |NG(v′)| ≥ h. Furthermore, let Au :=
{u} ∪

⋃
S⊂NG(u):|S|=h−1 S and let M := {V ′ ⊆ V | V ′ ∩ Av 6= ∅ ∧ V ′ ∩ Av′ 6= ∅ ∧ |V ′| = β}.

Additionally, let E∗ := E ∪ {{u, u′} 6∈ E | |NG(u) ∩NG(u′)| < h}.
If the subgraph (V ′, E ∩

(
V ′

2
)
) is biseparated for all V ′ ∈ M , then G∗ = (V, E∗) is biseparated.

Furthermore, the map φ : G 7→ G∗ is efficiently computable.

These lemmas translate into the context of protocols with setups in the following way.

Impossibility of commitments. For our impossibility we want to show that no (abort-respecting)
protocol with setups of cardinality β − 1 plus broadcast can securely UC-realize the commitment
functionality Fn

COM,1:1 which has a dedicated sender S and receiver R. To this end we set V := P ,
v := S and R ∈ H where H are the honest parties. If a setup with parties P ′ is aborted in an
abort-respecting protocol, then the subgraph of the CG on P ′ becomes biseparated as described in
the previous paragraph. Furthermore, as proven in Theorem 6 of [BMM+20] an abort-respecting
protocol can be aborted, iff its CG is biseparated. Now, we can plug in Lemma 2 to see that—even
after all setups of cardinality β−1 that contain the sender and some honest party—the overall CG
remains not biseparated. Hence an abort is not possible yet the sender has to commit towards the
receiver. In a last step we show that any abort-respecting protocol restricted to the non-aborted
setups must be non-hiding or non-binding.

10

The high-level idea is that, in order to be committed towards the receiver, the sender has to
send the message to intermediate parties—even when all parties act honestly in the commitment
phase. However, this set of intermediates is small enough that an alternative environment can
corrupt it and thus extract the message of an honest sender during the commitment phase.

Formally, our impossibility result states the following.

Theorem 1 (No transmitted commitment). Let n ∈ N and β := min(n, bn/hc+ b(n− 1)/hc − 1).
No {F2, ...,Fβ−1,Fn

BC}-protocol π can securely UC-realize Fn
COM,1:1 against t = n− h ≥ n/2 mali-

cious parties: {
F2, ...,Fβ−1,Fn

BC
} comp
6 Fn

COM,1:1 (5)

where F2, ...,Fβ−1 stand for an arbitrary functionalities of the respective cardinality.

Corollary 1. In particular, for h = 2 we get
{
F2, ...,Fn−3,Fn

BC
} comp
6 Fn

COM,1:1 showing that the
result

{
Fn−1,Fn

BC
}
 Fn

SFE from [SSY21] is almost tight.4

Contructions of committed OT. For our construction we want to first construct an abort-
respecting protocol that securely UC-realizes a global commitment functionality which has a sender
who commits to all other parties. In particular, we require all honest parties to locally compute
G∗ = φ(G) from Lemma 3 when querying the CG G from Fn

CG. Moreover, we require all parties
to abort according to G∗, so—in effect—the CG of our protocol is actually G∗. This modification
of the abort-condition is justified because the map φ preserve the invariant that no two honest
parties are in conflict.

Without going to too much detail, we outline the idea of the protocol. The sender inputs its
message—in the form of a threshold sharing—into all setups and gives masks to its associates who,
in turn, also commit to them in all setups. The associates also obtain the sharing of the message
masked with the masks of the other associates—again they commit to the masked sharing in all
setups. For V := P , v := S and the set of honest parties H Lemma 3 guarantees that at least
one setup of cardinality β that contains both some associate of the sender and some associate of
the receiver must succeed. Otherwise, if all such setups are aborted, then the CG G∗ becomes
biseparated by Lemma 3 and the (honest) parties can abort the protocol. Two more arguments are
necessary to see that the protocol securely realizes a global commitment.
1. All setups indeed contain sharings of the same (possibly masked) message. This is ensured by

probing some of the shares input into the setups by the sender.
2. Whenever all setups containing some associate of the sender and some associate of the receiver

are aborted, then an honest receiver only has honest associates.
To open the message, all parties open all setups and at least one honest receiver is able to recover
the message either directly from the sender’s sharing of the message, or from the opened masks and
some masked sharing. Those receivers then broadcast the recovered message. Any honest receiver
that did not receive any opening—because all its setups have been aborted—then it outputs the
majority of its associates broadcasted messages.

We state the following theorem.

Theorem 2 (COM expansion). Let n be the number of parties of which at most t = n − h ∈
[n/2, n− 2] are malicious s.t.

(
n
β

)
∈ poly(λ) with β = bn/hc+ b(n− 1)/hc − 1. There is a protocol

πn
COM that statistically securely UC-realizes Fn

COM in the {F2
SMT,Fβ

EVCOM,Fn
BC}-hybrid model:{

F2
SMT,Fβ

EVCOM,Fn
BC

}
stat
 Fn

COM (6)

For the second part of our construction we want to construct an abort-respecting protocol that
securely UC-realizes a committed or verifiable OT5 functionality which has a dedicated sender S
and receiver R. This committed OT variant allows the sender and receiver to opend their inputs
to all parties after the actual OT. Again, we require all honest parties P to locally compute G∗

and abort according to it.
4 We note that [SSY21] state their results in the stand-alone model.
5 The idea originates from [Cré90; CvT95].

11

The main idea of the protocol is to perform the OT directly via some setup containing the sender
and the receiver while both parties also commit to their resp. inputs in the global commitment
setup. To this end, both parties create threshold sharings of their inputs and globally commit
to their shares indiviually. Each party in the setup then request the opening of some shares of
all inputs in both the setup and the global commitments. While these shares do not leak any
information about the encoded input it allows with overwhelming probability to detect significant
inconsistencies in the setup and the global commitments.

If all direct setups are aborted, then the sender and receiver use their associates respectively to
carry out the OT for them. To preserve privacy of the sender’s messages and the receiver’s choice
bit our protocol lets each party use an additive secret sharing of its input. Because at least one
associate of the honest sender resp. receiver is honest as well, this perfectly hides the input. While
this seems straightforward for an honest sender, for an honest receiver it might not be clear how
to share its choice bit. We set up the sender’s messages in a clever way to that the receiver can
still obtain the chosen message while preserving the privacy of the receiver’s choice bit.

To open their input the sender and the receiver simply open their global commitment to the
sharings of their input.

Theorem 3 (FCOT expansion). Let n be the number of parties of which at most t = n− h ∈
[n/2, n− 2] are malicious s.t.

(
n
β

)
∈ poly(λ) with β = bn/hc+ b(n− 1)/hc − 1. There is a protocol

πn
FCOT that statistically securely UC-realizes Fn

FCOT in the {F2
SMT,Fβ

EVOT,Fn
COM,Fn

BC}-hybrid model:{
F2

SMT,Fβ
EVOT,Fn

COM,Fn
BC

}
stat
 Fn

FCOT (7)

Lastly we use the observation in [BMM+20] (Lemma 14) that replacing two-party OT with a
verifiable OT for n parties in the IPS-compiler [IPS08] lifts the resulting protocol from security
with abort to Identifiable Abort.

Corollary 2. Combining our Theorems 2 and 3 with Lemmas 14 and 16 of [BMM+20] we get{
F2

SMT,Fβ
EVCOM,Fβ

EVOT,Fn
BC

}
stat
 Fn

SFE , (8)

i.e., the minimal complete cardinality for n-party SFE with Identifiable Abort relative to F = {Fn
BC}

is β = min(n, bn/hc+ b(n− 1)/hc − 1).

The above result extends to reactive functionalities because the IPS-compiler also supports con-
structing protocols for reactive functionalities.

5 Discussion

Limitation of the overall number of parties. While our impossibility holds for arbitrary n,
our protocols need

(
n
β

)
∈ poly(λ) to have polynomial runtime. The reason for this is that there are(

n
β

)
instance classes (subsets of parties) of size β which might all be used in case the adversary aborts

all others. Unfortunately, this limitation is inherent to all protocols that don’t discriminate between
different subsets of parties in any meaningful way. In other words, to overcome this limitation a
protocol would have to never use some a priori fixed instance classes of size β although they are
not aborted. This gives the adversary more leverage to abort the other instance classes in a way
that breaks the protocol.

The constructions of [BMM+20; SSY21] only support n ∈ poly(λ) for constant expansions
n− s ∈ O(1) (where s is the setup size) because of the exponential composition blowup. We have
a different situation; see Table 1 for an overview of the supported number of parties vs. honest
parties. The first intuitive thing to note is that the smaller the fraction of honest parties the less
overall parties are supported. The case h = 1 is trivial. Somewhat counterintuitive is the case
for h = 2 which supports polynomially many parties, the reason for this is that for h = 2 the
necessary and sufficient setup encompasses all parties but two, i.e. s = n − 2. Here all but one
setup functionality contains at least one honest party.
Another case worth mentioning is the two-party case n = 2 and h = 1 where security with abort
is trivially equivalent to IA; interestingly β = 2 carries over to n = 2h ≥ 4.

12

Min. honest parties h Max. supported parties n Minimal setup size β

1 poly(λ) n

2 poly(λ) n − 2
c ≥ 3 Θ(ln λ) ≈ 2n/c

Θ(ln n) O(ln λ · ln ln λ/ ln ln ln λ) Θ(n/ ln n)
Θ

(√
n
)

O
(
ln2 λ/ ln2 ln λ

)
Θ

(√
n
)

Θ(n/ ln n) O
(
exp

√
ln λ

)
Θ(ln n)

Θ(n) poly(λ) Θ(1)
(n − 1)/2 poly(λ) 3
≥ n/2(∗) poly(λ) 2

Table 1: Overview of the minimal setup size and respective supported number of parties n vs. honest
parties h for our construction with broadcast. The setup size is minimal and complete. The limitation of
the overall number of parties is only to achieve polynomial-time protocols, for more parties the protocols
remain correct and secure but require the parties to have superpolynomial runtime. The case (∗) also covers
an honest majority of parties treated in early works [Bea90; RB89].

When an arbitrarily small but constant fraction of parties is honest our protocols are efficient for
any n ∈ poly(λ). However when less than a constant fraction of parties are honest, e.g. Θ(n/ ln n),
then the overall number parties drops drastically below n ∈ O(exp

√
ln λ) ⊂ λo(1). To relativize,

these bounds only apply when trying to design protocols with IA from minimal setups. It could
be the case that slightly larger setups yield protocols that support many more overall parties. As
such, the path to designing secure protocols that support many parties is to find a way not to use
all available setups, or resort to larger setups.

Outlook. While we give a complete characterization of the minimal sufficient setups for MPC with
Identifiable Abort some questions remain open. First, do our results carry over to the setting of
adaptive corruptions? We conjecture this to be true but leave the question open for future work.
In light of the rather unfavorable scaling behaviour of the max. supported parties vs. setup car-
dinality for h ∈ o(n), it may be interesting to investigate the utility of slightly larger setup to
potentially support many more parties overall.
An obvious and natural question is to ask: what is the minimal complete cardinality without broad-
cast, i.e. F = ∅? In particular, what is the minimal complete cardinality for broadcast itself? Based
on our Corollary 2 constructing broadcast with Identifiable Abort from setups of cardinality β′

implies an upper bound of max(β, β′) for general MPC with IA.
Another major research direction is the round-complexity of MPC protocols which is not consid-
ered in this work. We leave it to future work to strive towards optimally efficient protocols from
β-party setups.

References

[ACC+20] B. Alon, H. Chung, K.-M. Chung, M.-Y. Huang, Y. Lee, and Y.-C. Shen. Round efficient
secure multiparty quantum computation with identifiable abort. Cryptology ePrint Archive,
Report 2020/1464, 2020. https://eprint.iacr.org/2020/1464.

[AL07] Y. Aumann and Y. Lindell. Security against covert adversaries: efficient protocols for realistic
adversaries. In pages 137–156, 2007.

[AO12] G. Asharov and C. Orlandi. Calling out cheaters: covert security with public verifiability. In
pages 681–698, 2012.

[BCG93] M. Ben-Or, R. Canetti, and O. Goldreich. Asynchronous secure computation. In pages 52–61,
1993.

[Bea90] D. Beaver. Multiparty protocols tolerating half faulty processors. In pages 560–572, 1990.
[BGW88] M. Ben-Or, S. Goldwasser, and A. Wigderson. Completeness theorems for non-cryptographic

fault-tolerant distributed computation (extended abstract). In pages 1–10, 1988.

13

https://eprint.iacr.org/2020/1464

[BMM+20] N.-P. Brandt, S. Maier, T. Müller, and J. Müller-Quade. Constructing secure multi-party com-
putation with identifiable abort. Cryptology ePrint Archive, Report 2020/153, 2020. https:
//eprint.iacr.org/2020/153.

[BOS+20] C. Baum, E. Orsini, P. Scholl, and E. Soria-Vazquez. Efficient constant-round MPC with
identifiable abort and public verifiability. In pages 562–592, 2020.

[BOS16] C. Baum, E. Orsini, and P. Scholl. Efficient secure multiparty computation with identifiable
abort. In pages 461–490, 2016.

[Can00] R. Canetti. Universally composable security: a new paradigm for cryptographic protocols.
Cryptology ePrint Archive, Report 2000/067, 2000. http://eprint.iacr.org/2000/067.

[Can01] R. Canetti. Universally composable security: a new paradigm for cryptographic protocols. In
pages 136–145, 2001.

[CF01] R. Canetti and M. Fischlin. Universally composable commitments. In pages 19–40, 2001.
[CK88] C. Crépeau and J. Kilian. Achieving oblivious transfer using weakened security assumptions

(extended abstract). In pages 42–52, 1988.
[Cle86] R. Cleve. Limits on the security of coin flips when half the processors are faulty (extended

abstract). In pages 364–369, 1986.
[CLO+02] R. Canetti, Y. Lindell, R. Ostrovsky, and A. Sahai. Universally composable two-party and

multi-party secure computation. In pages 494–503, 2002.
[CM89] B. Chor and L. Moscovici. Solvability in asynchronous environments (extended abstract). In

pages 422–427, 1989.
[Cré90] C. Crépeau. Verifiable disclosure of secrets and applications (abstract). In pages 150–154,

1990.
[Cré97] C. Crépeau. Efficient cryptographic protocols based on noisy channels. In pages 306–317,

1997.
[CvT95] C. Crépeau, J. van de Graaf, and A. Tapp. Committed oblivious transfer and private multi-

party computation. In pages 110–123, 1995.
[DPS+12] I. Damgård, V. Pastro, N. P. Smart, and S. Zakarias. Multiparty computation from somewhat

homomorphic encryption. In pages 643–662, 2012.
[FGM+01] M. Fitzi, J. A. Garay, U. M. Maurer, and R. Ostrovsky. Minimal complete primitives for

secure multi-party computation. In pages 80–100, 2001.
[GIS+10] V. Goyal, Y. Ishai, A. Sahai, R. Venkatesan, and A. Wadia. Founding cryptography on

tamper-proof hardware tokens. In pages 308–326, 2010.
[HM04] D. Hofheinz and J. Müller-Quade. A synchronous model for multi-party computation and

the incompleteness of oblivious transfer. In Foundations of Computer Security, Proceedings
of FCS 2004, volume 31 of TUCS General Publications, pages 117–130. Turku Center of
Computer Science, 2004.

[IOS12] Y. Ishai, R. Ostrovsky, and H. Seyalioglu. Identifying cheaters without an honest majority.
In pages 21–38, 2012.

[IOZ14] Y. Ishai, R. Ostrovsky, and V. Zikas. Secure multi-party computation with identifiable abort.
In pages 369–386, 2014.

[IPS08] Y. Ishai, M. Prabhakaran, and A. Sahai. Founding cryptography on oblivious transfer -
efficiently. In pages 572–591, 2008.

[RB89] T. Rabin and M. Ben-Or. Verifiable secret sharing and multiparty protocols with honest
majority (extended abstract). In pages 73–85, 1989.

[SF16] G. Spini and S. Fehr. Cheater detection in SPDZ multiparty computation. In pages 151–176,
2016.

[Sha79] A. Shamir. How to share a secret. 22(11):612–613, November 1979.
[SSY21] M. Simkin, L. Siniscalchi, and S. Yakoubov. On sufficient oracles for secure computation with

identifiable abort. Cryptology ePrint Archive, Report 2021/151, 2021. https://eprint.iacr.
org/2021/151.

14

https://eprint.iacr.org/2020/153
https://eprint.iacr.org/2020/153
http://eprint.iacr.org/2000/067
https://eprint.iacr.org/2021/151
https://eprint.iacr.org/2021/151

Supplementary Material

A Impossibility / Lower Bound

First we show that all instance classes of a certain type can be aborted by the adversary without
causing biseparation of the Conflict Graph. Then we use this abort strategy to force any protocol
into a specific form and show that protocols with such a structure cannot securely realize a one-
to-one commitment. First we prove a graph-theoretical lemma.

Lemma 2. Let n, h ∈ N with 1 ≤ h ≤ n. Let G = (V, E) be an undirected irreflexive graph
with n = |V | and let v, v′ ∈ V be some nodes s.t. |NG(v)|, |NG(v′)| ≥ h. Furthermore, let Au :=
{u} ∪

⋃
S⊂NG(u):|S|=h−1 S and let M := {V ′ ⊆ V | V ′ ∩Av 6= ∅ ∧ V ′ ∩Av′ 6= ∅ ∧ |V ′| < β}.

For all n, h ∈ N s.t. h ≤ n such a graph G and some v, v′ ∈ V exists s.t. for all V ′ ∈ M the
subgraph (V ′, E ∩

(
V ′

2
)
) is biseparated, and G is neither biseparated nor (n− h)-settled.

Proof. As discussed in Section 4 ruling out all abort-respecting protocols in the F ∪ {Fn
CG}-model

also rules out all protocols in the F -model where F is a set ideal functionalities. Henceforth we
only consider abort-respecting protocols that use the Fn

CG setup where the Conflict Graph is well
defined.

Let V = {v1, ..., vn} and w.l.o.g. v = v1 and v′ = vn. We define sections as follows Sj :=
{vjh+2, ..., v(j+1)h} and Tj := {vjh+1}. In case h = 1 note Sj = ∅. Based on these sections we define
the graph G := (V, E) by

E :=

{u, u′}

∣∣∣∣∣∣∣
∃j ∈ [b(n− 1)/hc − 1] : u ∈ Tj ∧ u′ ∈ Tj+1+χ

∨ ∃j ∈ [bn/hc − 2] : u ∈ Sj ∧ u′ ∈ Sj+1

∨ ∃j ∈ [b(n− 1)/hc − 1] : u ∈ Tj ∧ u′ ∈ Sj+1

 . (9)

where χ = 1 ⇐⇒ h = 1 and χ = 0 ⇐⇒ h ≥ 2. To make the proof more intuitive compare the
visual representation Fig. 1. We show three properties of this graph G.
1. G is not biseparated,
2. G is not (n− h)-settled,
3. the subgraphs on all V ′ ∈M are biseparated.

To show Property 1 we notice that nodes within a section are not connected, i.e.
(

Sj

2
)
∩ E = ∅.

Furthermore, consecutive sections are not connected, i.e. h ≥ 2 =⇒ ∀u ∈ Tj ∪ Tj+1 ∀u′ ∈ Sj :
{u, u′} 6∈ E and h = 1 =⇒ ∀u ∈ Tj ∀u′ ∈ Tj+1 : {u, u′} 6∈ E . So, G is connected and G is
biseparated.

Next we show Property 2. Define Dj := V \ (Tj ∪Sj) and D′
j := V \ (Sj ∪Tj+1). Note that ∀j :(

Tj∪Sj

2
)
∩E = ∅∧

(
Sj∪Tj+1

2
)
∩E = ∅, as such Dj and D′

j are Vertex Covers (VCs) of G of cardinality
n− h. So, ∀v ∈ V ∃VC D : v 6∈ D and thus

⋂
VC D:|D|=n−h D = ∅ ⇐⇒ G is (n− h)-settled.

Finally, we show Property 3. We show that for each V ′ ∈ M the subgraph (V ′, E ∩
(

V ′

2
)
)

is biseparated. To this end we show that there exists a splitting index jV ′ which defines two
partitions X := V ′ ∩ {v1, ..., vjmin,V ′ h+1} and Y := V ′ ∩ {vjmin,V ′ h+2, ...vn} s.t. X ·∪ Y = V ′ and
∀u ∈ X ∀u′ ∈ Y : {u, u′} ∈ E .
Define for each V ′ ∈M

JV ′ := {j ∈ [b(n− 1)/hc − 1] | vjh+1 6∈ V ′} (10)

and
J̃V ′ :=

{
̃ ∈ [bn/hc − 2]

∣∣∣ S
̃
∩ V ′ = ∅

}
. (11)

Note that

h = 1 =⇒ Av = {v}
h ≥ 2 =⇒ Av = NG(v)

}
=⇒ Av1 = {v1, ..., vh} ∧Avn

⊇ {vn−h, ..., vn} (12)

which in turn implies

∀j ∈ [b(n− 1)/hc − 1] : Sj ∩ (Av1 ∪Avn
) = ∅ (13)

and
∀̃ ∈ [bn/hc − 2] : S

̃
∩ (Av1 ∪Avn) = ∅ . (14)

Next, we show for each V ′ ∈ M that |JV ′ ∪ J̃V ′ | > 0. Consider the case h = 1 ⇐⇒ β = n, then
V ′ = V \ {vj} =⇒ JV ′ = {j − 1} and hence jV ′ = j − 1.
Now consider the case h ≥ 2 ⇐⇒ β = b(n− 1)/hc+ bn/hc− 1 and suppose for contraction that

(∀j ∈ [b(n− 1)/hc − 1] : vjh+1 ∈ V ′) ∧
(
∀̃ ∈ [bn/hc − 2] : S

̃
∩ V ′ 6= ∅

)
(15)

Then

V ′ ⊇ (Av1 ∪Avn
) ∩ V ′ ·∪

b(n−1)/hc−1

·
⋃
j=1

{vjh+1} ∪
bn/hc−2

·
⋃
̃=1

(
S

̃
∩ V ′

)
(16)

implies
|V ′| ≥ 2 + b(n− 1)/hc − 1 + bn/hc − 2 = β (17)

which contradicts the assumption |V ′| < β. Now, that we have shown that jV ′ exists, we go on
to show that each node in X is connected to each node in Y . Suppose for contradiction that
{va, vb} 6∈ E for some va ∈ X and vb ∈ Y , i.e. a ≤ jV ′h + 1 ∧ b > jV ′h + 1. Because va and
vb are not connected, they must be in consecutive sections, i.e. va = TjV ′ ∧ vb ∈ SjV ′ ∪ TjV ′ +1.
However, this contradicts {va, vb} 6∈ E by the definition of E . If va ∈ SjV ′ −c for some c ≤ 1, then
b ∈ TjV ′ −c+1 =⇒ b = (jV ′ − c + 1)h + 1 ≤ jV ′h + 1 with contradicts b > jV ′h + 1 ⇐⇒ vb ∈ Y .
This concludes the proof.

ut

Intuitively, this lemma states that an adversary cannot abort setups in such a way as to separate
any party P1 from the honest ones. In other words, the adversary cannot excuse the failure of a
malicious party P1 to send information by aborting setups.

Theorem 1 (No transmitted commitment). Let n ∈ N and β := min(n, bn/hc+ b(n− 1)/hc − 1).
No {F2, ...,Fβ−1,Fn

BC}-protocol π can securely UC-realize Fn
COM,1:1 against t = n− h ≥ n/2 mali-

cious parties: {
F2, ...,Fβ−1,Fn

BC
} comp
6 Fn

COM,1:1 (5)

where F2, ...,Fβ−1 stand for an arbitrary functionalities of the respective cardinality.

Proof. Overall the proof proceeds similarly to the impossibility of UC-commitments without setup
[CF01]. As such this proof can be seen as extending the class of setups that are insufficient for
UC-commitments.

Denote the set of parties with P = {P1, P2, ..., Pn}. Suppose for contradiction that there exists
an abort-respecting protocol π that securely UC-realizes Fn

COM,1:1. W.l.o.g. let S = P1 and R = Pn.
Denote the sender’s message by m. Furthermore, denote by extcommit

P = (η, id, i, sη,id,i)η,id,i the
list of all messages that P sends to any setup during the commit phase, i.e. before the sender
gets input (open). Here sη,id,i denotes the i-th message that P sends to the setup with session
id id in round η. For any set of parties P ′ ⊆ P let extcommit

P ′ := (extcommit
P)P∈P ′ . Lastly, denote

by viewcommit
P = ((η, id, i, mη,id,i, sη,id,i)η,P,i; rP) the view of party P, i.e. all messages that party

P sends and receives during the commit phase plus its randomness. Here sη,id,i denotes the i-th
message that P sends to the setup with session id id and mη,id,i denotes the i-th message that P
receives from the setup with session id id in round η.

Consider an enviroment Z that corrupts C := {P1 = S, ..., Pn−h}, i.e. H := P\C = {Pn−h+1, ..., Pn}
is honest. The environment Z lets all parties act honestly in the commitment phase, i.e. on in-
put (commit, m) to S. By the assumed secure protocol π there exists a simulator S that extracts
some message m from viewcommit

C which the honest receiver will defintively output in the opening
phase—if the protocol is not aborted.

16

A1 A6

1 2 3 4 5 6

T0 T1 T2 T3 T4 T5

(a) Example of the complement graph G from Lemma 2 with h = 1, n = 6 and β = 6.

A1 A8

1 2

3

4 5

6

7 8

T0 S0 T1 S1 T2 S2

(b) Example of the complement graph G from Lemma 2 with h = 3, n = 8 and β = 3.

A1 A9

1 2

3

4 5

6

7 8

9

T0 S0 T1 S1 T2 S2

(c) Example of the complement graph G from Lemma 2 with h = 3, n = 9 and β = 4.

A1 A10

1 2

3

4 5

6

7 8

9

10

T0 S0 T1 S1 T2 S2 T3

(d) Example of the complement graph G from Lemma 2 with h = 3, n = 10 and β = 5.

Fig. 1: Examples of the complement graphs from Lemma 2. Sections are represented as dashed boxes, and
“associates” of 1 and n in grey. Note that the shortest path from any A1 to any node in An always has at
least β nodes.

17

At the start of the opening phase, i.e. on input (open) to S, the environment Z immediately
aborts setups in the following way according to Lemma 2. For each setup on parties P ′ s.t. P ′ ∩
{P1, ..., Ph} ∧ P ′ ∩ H ∧ |P ′| < β the environment finds the splitting index jP ′ as described in
Lemma 2 for V = P , v = P1, v′ = Pn and V ′ = P ′. Then it aborts the setup with (abort, D′)
where D′ := P ′ ∩ {P1, ..., PJP ′}. Note that

jP ′h + 1 ≤ (b(n− 1)/hc − 1)h + 1 ≤ n− h =⇒ {P1, ..., PJP ′} ⊆ C =⇒ D′ ⊆ C (18)

therefore the parties with whom Z aborts are indeed malicious. Because π is abort-respecting the
subgraph (P ′, E∩

(
P ′

2
)
) becomes biseparated between D′ and P ′\D′. However, Lemma 2 guarantees

that the overall CG G remains neither biseparated nor t-settled, thus Theorem 6 from [BMM+20]
guarantees that the protocol cannot abort. Consequently, the honest receiver R must output the
message m that the simulator extracted in the commit phase.

Note that—in the opening phase after the aborts—no honest party is in any setup (except
broadcast) with any party in {P1, ..., Ph}. This means that the receiver’s output (output, m) in
the opening phase must depend only on extcommit

P ∗ and viewcommit
H where P ∗ := (C \{P1, ..., Ph})∪H =

{Ph+1, ..., Pn}. As such, the receiver acts as an extractor of m from (extcommit
P ∗ , viewcommit

H). In turn,
because

• extcommit
P ∗ can be easily extracted from viewcommit

P ∗ by omitting the received messages and the
randomness of all parties,

• the protocol code of R is efficient computable,
• H ⊆ P ∗,

there exists an efficient extractor E , i.e. for some µ ∈ negl(λ)

Pr
[
E

(
viewcommit

P ∗
)

= m
∣∣ input (commit m) for honest S

]
≥ 1− µ . (19)

Now, consider an alternative environment Z ′ that corrupts C ′ := P ∗, i.e. H ′ := P \C ′ is honest.
Again, Z ′ lets all parties act honestly during the commit phase and gives input (commit, m) to the
honest sender S. The new environment Z ′ then uses the extractor E to extract m from viewcommit

C ′ .
This is possible because P ∗ = C ′ and all messages to corrupted parties are reported to Z ′ the
dummy adversary.

To conclude the proof note that no simulator S ′ can extract m from the ideal commitment
functionality during the commit phase if the sender S is honest, i.e. Pr

[
REAL← Z ′ ∣∣ IDEAL

]
≤

1/2 + µ′ with µ′ ∈ negl(λ). As such Z ′ decides REAL iff E(viewcommit
C ′) = m and IDEAL otherwise.

Then Z ′ can decide the real and the ideal execution with advantage

Pr
[
REAL← Z ′ ∣∣ REAL

]
− Pr

[
REAL← Z ′ ∣∣ IDEAL

]
≥ 1/2− µ− µ′ 6∈ negl(λ) . (20)

ut

B Construction / Upper Bound

In this section we prove Lemma 3 and present the two construction in detail. Obviously, for h = 1
we get β = n which—in light of the universal Correlated Randomness setup [IOZ14]—renders any
other construction redundant, therefore we consider h ≥ 2 =⇒ β = bn/hc + b(n− 1)/hc − 1
henceforth.

Lemma 3. Let n, h ∈ N with 2 ≤ h ≤ n. Let G = (V, E) be an undirected irreflexive graph
with n = |V | and let v, v′ ∈ V be some nodes s.t. |NG(v)|, |NG(v′)| ≥ h. Furthermore, let Au :=
{u} ∪

⋃
S⊂NG(u):|S|=h−1 S and let M := {V ′ ⊆ V | V ′ ∩ Av 6= ∅ ∧ V ′ ∩ Av′ 6= ∅ ∧ |V ′| = β}.

Additionally, let E∗ := E ∪ {{u, u′} 6∈ E | |NG(u) ∩NG(u′)| < h}.
If the subgraph (V ′, E ∩

(
V ′

2
)
) is biseparated for all V ′ ∈ M , then G∗ = (V, E∗) is biseparated.

Furthermore, the map φ : G 7→ G∗ is efficiently computable.

Proof (of Lemma 3). First we note that the map φ is computable in time O(n3) by computing∣∣NG(u) ∩NG(u′)
∣∣ for each pair u, u′ ∈ V and adding the appropriate edges {u, u′} to E .

For contradiction suppose that

18

1. (V ′, E ∩
(

V ′

2
)
) is biseparated for all V ′ ∈M ,

2. G∗ is not biseparated, i.e. G∗ is connected, and
3. ∀u, u′ ∈ V : |NG∗(u) ∩NG∗(u′)| ≥ h.

Because of Assumption 2 there must be a path in G∗ from any node u ∈ Av to any node u′ ∈ Av′ .
Consider any shortest path p := {p1 = u, ..., pβ′ = u′} from u to u′ with length β′. Note that
p ∩Av = {u} ∧ p ∩Av′ = {u′} and

∀i ∈ [1, β′ − 3] : Api ∩Api+3 = ∅ (21)

because otherwise a shorter path from some z ∈ (Av ∩p)\{u} to some z′ ∈ (Av′ ∩p)\{u′} existed.
Any such path p must have length β′ > β. Otherwise, because of Assumption 2, there existed
some V ′ ⊇ p s.t. V ′ ∈ M yet V ′ is connected in G∗, i.e. not biseparated in G∗, which contradicts
Assumption 1.
We define common neighbors Ji := (Api

∩Api+1) \ p and see that

Ji ∩ Ji+2 =
(
Api
∩Api+1 ∩Api+2 ∩Api+3

)
\ p ⊆

(
Api
∩Api+3

)
\ p = ∅ . (22)

Furthermore we see

Api
∩Api+1 =

(
Api
∩Api+1 \ p

)︸ ︷︷ ︸
Ji

·∪
(
Api
∩Api+1 ∩ p

)︸ ︷︷ ︸
{pi,pi+1}

(23)

by Eq. (21). From Assumption 3 and h ≥ 2 =⇒ ∀u ∈ V : Au = NG(u) it follows that

∀u, u′ ∈ V :
∣∣NG(u) ∩NG(u′)

∣∣ ≥ h =⇒ |Ji| =
∣∣Api ∩Api+1

∣∣︸ ︷︷ ︸
≥h

− |{pi, pi+1}|︸ ︷︷ ︸
=2

≥ h− 2 .
(24)

Now, we count the number of overall nodes, we find

V ⊇ p ·∪ (Av \ p) ·∪ (Av′ \ p) ·∪

⌊
β′/2−1

⌋
·

⋃
i=1

J2i . (25)

Note that ∀i ∈ [2, β′ − 2] : Api ∩ (Av ∪Av′) = ∅ and hence ∀i ∈ [1, bβ′/2− 1c] : J2i∩ (Av ∪Av′) = ∅
because otherwise p′ := {p1, ..., pi, v′′} with v′′ ∈ Api

∩H would be a path in G∗ of length i+1 < β′

and thus contradict the minimal length of the path p. By ∀x ∈ N : x = dx/2e + bx/2c it follows
that

n = |V | ≥ |p|︸︷︷︸
β′

+ |Av \ p|︸ ︷︷ ︸
h−1

+ |Av′ \ p|︸ ︷︷ ︸
h−1

+

⌊
β′/2−1

⌋∑
i=1

|J2i+1|︸ ︷︷ ︸
≥h−2

≥ β′ + 2(h− 1) + bβ′/2− 1c(h− 2)
= β′ + 2 + bβ′/2 + 1c(h− 2)
≥ β + 3 + b(β + 3)/2c(h− 2) .

(26)

For n/h ∈ N ⇐⇒ β = 2n/h− 2 we get

n ≥ 2n/h + 1 + (n/h)(h− 2) = n + 1 . (27)

For n/h 6∈ N ⇐⇒ β = 2bn/hc − 1 we get

n ≥ 2bn/hc+ 2 + (bn/hc+ 1)(h− 2) = bn/hch + h = dn/heh > n . (28)

Both cases come to a contradiction which concludes the proof. ut

The above lemma can be understood visually when looking at Fig. 1. There is always a connected
subgraph of G of size β which connected an associate (in grey) of the first node and one associate
of the last node.

Next, we give a construction of a global (one-to-many) commitment functionality from setup
commitments of size β and a global broadcast. The basic idea is for the sender to simply input its

19

message into all setups, i.e. each subset of parties that contain the sender, and later open all of
them. If the sender is honest, all messages will be consistent and all honest parties will output the
correct message. A problem arises when a) the sender is malicious and inputs different messages
into different setups, or b) many setups are aborted s.t. some (honest) receivers don’t obtain any
opening information. For a) the remedy is to let the sender commit to a threshold sharing of its
message such that the receivers can request the opening of some shares—which the sender then also
has to broadcast—because the threshold sharing is robust against a half of manipulated shares any
inconsistency between the shares obtained from the setup commitment and the ones broadcasted
will be detected with overwhelming probability. For b) we use the structure of the CG to recognize
that whenever a receiver was completely cut off, its associates must be honest, thus such receivers
simply follow the behaviour of their associates.

Theorem 2 (COM expansion). Let n be the number of parties of which at most t = n − h ∈
[n/2, n− 2] are malicious s.t.

(
n
β

)
∈ poly(λ) with β = bn/hc+ b(n− 1)/hc − 1. There is a protocol

πn
COM that statistically securely UC-realizes Fn

COM in the {F2
SMT,Fβ

EVCOM,Fn
BC}-hybrid model:{

F2
SMT,Fβ

EVCOM,Fn
BC

}
stat
 Fn

COM (6)

Proof (of Theorem 2). First, note that Fn
CG is realizable using only Fn

BC by Lemma 16 from
[BMM+20], so we explicitly use Fn

CG in the protocol contruction. Denote the set of parties by
P = {S, R1, ..., Rn−1}. We require all honest parties to locally compute the effective Conflict Graph
G∗ ← φ(G) when obtaining G from Fn

CG. Moreover, whenever G∗ becomes biseparated, the honest
parties abort the protocol with the opposing partition as described in Section 4.
Before we give a formal proof we outline the protocol intuitively. The commit phase goes as follows:
1. The sender draws a random bits b← {0, 1}n and secret-shares its message m as µ← Sharel,4l(m)

and each bit of b as ξj ← Sharel,4l(bj). Then the sender sends the masked sharing σ :=
µ⊕

⊕
Ri∈A ξi to the associate receiver Rj and also inputs (σ, A) into all non-aborted EVCOM

setups where A := NG(S).
2. Each receiver Rj who obtained ξj then inputs it into all non-aborted EVOT setups and ac-

knowledges with a broadcasted receipt.
3. Each party draws random probing indices H ←

([4l]
ρ

)
and broadcasts them.

4. Each party opens all its EVCOMs on all probed indices.
5. Each party checks the consistency of the probed shares with the broadcasted one. If the shares

opened in a setup are not equal to the broadcasted ones, then that setup will become aborted
in the next round, because honest parties declare conflicts with the offender and its loyalists.
Next, the parties check consistency of the broadcasted shares, i.e. σκ

?= µκ ⊕
⊕

Ri∈A ξi
κ on all

probed indices κ ∈ H.
• If all shares are consistent, each receiver outputs a receipt.
• Otherwise the parties that notice the inconsistency proceed to declare conflicts with the

parties whose broadcasted shares are not equal to the ones opened in the EVCOM. If the
second consistency check fails, all parties expect the sender to declare a conflict with at
leat one of its current associates. If the sender does not by the next round, it must be
malicious.

The opening phase goes as follows:
1. Each party opens all EVCOM setups in which it committed to some shares.6

2. Each receiver that receives all necessary shares reconstructs the message m and broadcasts it.
3. Each receiver declares a conflict with each receiver that broadcasts another message.
4. Each receiver who did not receiving all sufficient shares either abort the protocol if the CG is

biseparated or the output the majority of what their associates broadcasted.
The crux of the protocol can be made intuitive by looking at Fig. 1c). Suppose the malicious sender
is represented as 1 and the honest parties are 7, 8, 9. Now, the adversary can abort setups in such
a way that the sender and honest parties are not jointly in any setup—thus cutting of the honest
parties from obtaining the opening information. However, the party 7 will always be in some setup
with each associates of the sender. Therefore the sender gives its associates an additively masked
6 Due to the verification step in the commit phase the shares in each setup must reconstruct to the same

message except with negligible probability.

20

version of the message sharing. Because the sender’s associates are committed towards party 7,
it can recover the message and parties 8 and 9 can output the same message because they know
that 7 is honest as well. In turn, if the sender was honest, then malicious receivers don’t obtain
any information about the message from σ and the ξj ’s because at least one additive share of the
mask is held by an honest associate of the sender.

Now, we provide a more formal version of the proof. Let P = {S, R1, ..., Rn−1} denote the set
of parties, for notational purposes we use the notation R0 = S. Let ` := nλ2 be the size of the
(`, 4`)-threshold sharing and let ρ := λ be the number of probing shares per party.7 Throughout
the protocol let I(S) :=

{
M ⊆ P

∣∣ |M | = β ∧ S ⊆M ∧ (M, E ∩ 2M) not biseparated
}

be the set
of not (yet) aborted instance classes that contain the subset of parties S. Note that this set might
dynamically change during the protocol as setups are aborted. We use the number ι :=

∣∣NG(S)
∣∣

as a counter, i.e. everytime ι decreases the protocol restarts—the sender behaves as if it received
(input, m). We denote an instance of Fβ

EVCOM on some set of parties M ∈ I(∅) with session id ι by
VM,ι.

7 The choice of parameters is not optimal, we chose these because they simplify the analysis and yield a
secure protocol even for superpolynomial

(
n
β

)
where parties need superpolynomial runtime.

21

Protocol πn
COM

The protocol πn
COM proceeds as follows, running with parties P = {S, R1, . . . , Rn−1}, malicious

parties C ⊆ P , adversary A and environment Z. Messages not covered here are ignored.
• In the first round each party G∗

ref ← (P , ∅) and stores ιref ←
∣∣NG(S)

∣∣.
• Each round each party inputs (query) into Fn

CG to obtain the CG in the next round.
• On output G = (G, E) from Fn

CG, the party P computes the new ι←
∣∣NG(S)

∣∣. If ι < ιref , it
deletes all previously received messages and updates the stored G∗

ref ← φ(G) and ιref ← ι.
If the sender received (commit, m) from Z before, it behaves as if it received it again.

• On input (commit, m ∈ {0, 1}) from Z, the sender S creates a sharing µ ← Share`,4`(m),
and inputs (commit, µ) into VM,ι for each M ∈ I({S}). The sender draws bits b← {0, 1}n−1

and shares each bit ξj ← Sharel,4l(bj). Then the sender sends (shares, ξj) to Rj where
A← NG(S) and σ := µ⊕

⊕
Ri∈A ξi. Then S broadcasts (commit, σ, A). The sender ignores

further input of this type except when the counter ι is decreased.
• On output (shares, ξj) from F2

SMT, the party Rj with j ∈ [0, n− 1] inputs (commit, (ξj))
into all VM,ι for each M ∈ I({Rj}) and stores ξj . The Rj broadcasts (receipt).

• On output (output, S, (commit, σ, A)) from Fn
BC, the receiver Ri ∈ A checks whether A ⊆

NG(S). If not, then Ri aborts with (abort, {S}). Receiver Ri also checks whether it received
(shares, ξj) before. If not, then it inputs (conflict, S) into Fn

CG. (Note that ι decreases
by one.) Next, Ri checks if it received (receipt, Rj) from VM,ι for all Rj ∈ A and M
s.t. M ∈ I({Ri, Rj}). If so, then it inputs (conflict, S) into Fn

CG and adds all (Rj , M) to
its list Li for which Ri did not receive a receipt. Then Ri samples some probing indices
Hi ←

([4`]
ρ

)
and broadcasts (probe, Hi). Then Ri stores Afix ← A.

• On output (output, Rj , (probe, Hi)) from Fn
BC for all j ∈ [n− 1], each party Ri with

i ∈ [0, n − 1] opens its shares at the probed indices by inputting (open, κ) into VM,ι for
each M ∈ I({Ri}) and each κ ∈ H ′ :=

⋃n−1
i=1 Hi. Furthermore, each receiver Rj broadcasts

(shares, ξj
H′) while S broadcasts (shares, µj

H′).
• On output (output, S, κ, µκ) from VM , the receiver Ri stores µM

κ ← γκ.
• On output (output, Rj , κ, ξj

κ) from VM , the party Ri stores ξj,M
κ ← ξj

κ.
• On output (output, S, (shares, µ′

H′)) from Fn
BC, the receiver Ri checks consistency with

the opened shares. If ∃M ∈ I({S, Ri}) : µM
H′ 6= µ′

H′ , then receiver Ri declares a conflict
with S, i.e. it inputs (conflict, S) into Fn

CG and stores Lk ← {(S, M) | µM
H′ 6= µ′

H′}.
• On output (output, Rj , (shares, ξ′j

H′)) from Fn
BC, the receiver Ri checks consistency with

the opened shares. If ∃M ∈ I({Rj , Ri}) : ξM,j
H′ 6= ξ′j

H′ , then receiver Ri declares a conflict
with Rj , i.e. it inputs (conflict, Rj) into Fn

CG and stores Lk ← Lk∪{(Rj , M) | µM
H′ 6= µ′

H′}.
The sender checks whether ξ′j

H′ = ξj
H′ , if not then S inputs (conflict, Rj) into Fn

CG.
Furthermore, if σH′ 6= µ′

H′ ⊕
⊕

Ri∈Afix
ξ′i

H′ , then receiver Ri stores δ ← 1, otherwise δ ← 0.
Each party broadcasts OK1.

• On output (output, Ri, OK1) from Fn
BC for all i ∈ [0, n−1], the receiver Rk with k ∈ [0, n−1]

declares conflicts with all parties that stayed loyal to the offending party. I.e. for each
(Rj , M) ∈ Lk the receiver Rk inputs (conflict, NG(Rj)∩M) into Fn

CG. If δ = 1∧NG(S) =
Afix, then Rk aborts with (abort, S). Otherwise Rk broadcasts OK2.

• On output (output, Ri, OK2) from Fn
BC for all i ∈ [0, n − 1], each party outputs

(receipt commit) and stores ιfix ← ι.

22

Protocol πn
COM (cont’d)

• On input (open) from Z, sender S opens all shares by inputting (open, κ) into VM for each
κ ∈ [`] and each M ∈ I({S}), and broadcasts open.

• On output (output, S, κ, µκ) from VM,ιfix , the receiver Rk stores µκ.
• On output (output, S, open) from Fn

BC, the receiver Rk opens its EVCOMs by inputting
(open, κ) into VM,ιfix for each κ ∈ [`]. If party Rk obtained µκ for all κ ∈ [`], i.e. if
I(S, Rk) 6= ∅, then Rk broadcasts and stores m← Recover4`(µ).

• On output (open, Rj , ξj
κ) from VM for all Afix and κ ∈ [`], the receiver Ri recovers m ←

Recoverl(σ ⊕
⊕

Ri∈Afix
ξi). Then Ri broadcasts and stores m.

• On output (output, S, open) and (output, Ri ∈ NG(Rk), m′i) from Fn
BC, the receiver Rk

inputs (conflict, Ri) into Fn
CG for all m′i 6= m. In the next round, if the CG is biseparated

Rk aborts, otherwise outputs (open, m) and terminates, if it recovered m itself, or it outputs
the majority bit of whatever its associates broadcasted.

Before analyzing the protocol in detail we give a simulator for the canonical dummy adversary.
The simulator runs a simulated protocol where it executes the protocol code for all non-corrupted
parties. Whenever the environment activates an honest dummy party, the simulator is notified and
simulates the party’s protocol code. Any message from and to malicious parties are forwarded to
the simulated setup functionalities.

Simulator for πn
COM

• On output (receipt commit) from Fn
COM, the simulator S gives input (commit, 0) to the

simulated sender S′.
• On output (receipt commit) from all simulated (honest) R′

j , the simulator S sends
(commit, m̃) to the ideal Fn

COM in the name of S where m̃ ← Recover4`(µ̃M ′,ιfix
) and

M ′ is the canonically smallest set in I({S}).
• On output (open, m′) from Fn

COM, the simulator S gives local input (open) to the simulated
sender S′ which will open the remaining setups VM,ιfix for all M ∈ I({S}). Here, the simu-
lator equivocates each remaining simulated VM,ιfix to a random sharing µ̃← Share`,4`(m′)
s.t. µ̃H′ = µH′ . The simulated VM,ιfix on input (open, κ ∈ [`]) from S′ sends (open, S, κ, µ̃κ)
to the simulated dummy adversary. This is possible because at most nρ shares have
been probed (at least 4` − nρ remain veiled) but the simulator only needs to equivo-
cate 3` + 1 = 3nλ2 + 1 ≤ n(4λ2− λ) = 4`−nρ. The same strategy applies for the opening
of the ξj ’s of the honest receivers.

• On output (open, m′) from all simulated R′
j , the simulator S sends (open) to Fn

COM in the
name of S.

• On input
(
abort, C ′) for any simulated setup session with parties M ⊆ P and ∅ 6= C ′ ⊂

M ∩ C , the simulator aborts that session by forwarding (abort, C ′) to it.
• On output (abort, C ′) from all simulated parties, the simulator S inputs (abort, C ′) into
Fn

FCOT.

From the description of the simulator it is apparent that the honest dummy parties output the
receipt resp. the opened value exactly when the simulated (honest) parties would output the receipt
resp. opened value. It is also clear from the simulator’s description that for an honest party the
simulator can equivocate its input into simulated setup functionalities to let the simulated parties
output m̃ which the simulator receives from Fn

COM at the start of the opening phase.
Henceforth, we focus on proving that honest (simulated) receivers actually output m̃. To see

why the protocol works, we make three observations conditioned on the fact that the protocol does
not abort.

Observation 1 When all (honest) parties output (receipt commit) in the real/simulated protocol,
for all M ∈ I({S}) s.t. M ∩ H 6= ∅ the sharings µ̃M in VM,ιfix encode the same message m̃ with

23

overwhelming probability. The same holds for the sharings ξ̃M,j for all Rj ∈ Afix and M ∈ I({Rj})
s.t. M ∩H 6= ∅.

We prove Observation 1 by contradiction. Note that all sets M contain at least one honest party.
Therefore, when all (honest) parties output (receipt commit), then there exists a set of (at least
ρ uniformly chosen) indices H ′ on which the shares µ̃M of all setups must equal the broadcasted
shares µ̃BC. Formally,

∃H ′ ∈
(

[4`]
ρ

)
∀M ∈ I({S}) : M ∩H 6= ∅ =⇒ µ̃M

H′ = µ̃BC
H′ .

Now, suppose for contradiction that there exist two setups M and M ′ whose sharings encode
different messages. Then ∃H̃ ∈

([4`]
`+1

)
∀κ ∈ H̃ : µ̃M

κ 6= µ̃M ′

κ . In turn this means that H ′ ∩ H̃ = ∅. By
Lemma 1 the probability of that event is bounded by

PrH′

[
H̃ ∩H ′ = ∅

∣∣∣∣ H ′ ∈
(

[4`]
ρ

)]
≤ 2−ρ(`+1)/4` ≤ 2−ρ/4 = 2−λ/4 . (29)

Conversely, with probability at least 1− 2−λ/4 all relevant sharings encode the same message. The
same argument holds for the masks ξM,j .

Recall that the simulator extracts the message m̃ from the malicious sender’s inputs into the
setups during the commitment phase. Observation 1 combined with the fact that (receipt commit)
is only output if σ = µ⊕

⊕
Ri∈Afix

ξi guarantees that m̃ is equal to whatever message (if any) all
honest receivers output during the opening phase. For an honest sender it obviously holds that
m̃ = m.

Next, we show that honest receivers can indeed output the message m̃. To this end we first
show that some honest receiver can output m̃ by recovering it from at least one setup.

Observation 2 At least one honest receiver is able to reconstruct the message by receiving all
shares: ∃R ∈ H \ {S} ∃A ∈ NG(S) : I({A, R}) 6= ∅.

Again, we prove the observation by contradiction. First, note that φ preserves the “no honest-
honest” property of the CG. That is, if E ∩ 2H = ∅ =⇒ E∗ ∩ 2H = ∅. This follows readily from
the fact—mentioned in Section 4—that all honest parties form an h-clique in G whereas φ adds
edges between exactly those parties that are not in an h-clique in G. Therefore at least one party
of any new edge must be malicious.

If an honest receiver R is in some setup with S or in some setup with each associate of the
sender, the R can recover the correct message. In the first case R can simply recover directly
m ← Recoverl(µ), in the second case R can recover m ← Recoverl(σ ⊕

⊕
Ri∈Afix

ξi) because R
obtains all ξj ’s of all associates of the sender.

Now, suppose for contradiction ∀R ∈ H \ {S} ∀A ∈ NG(S) : I({A, R}) = ∅. The statement
I({A, R}) = ∅ means that all setups on parties M s.t. A, R ∈ M ∧ |M | = β must be aborted
(biseparated). However, in this case Lemma 3 for V := P , v = S and honest parties H ⊆ P states
that the overall CG G∗ must be biseparated. Since the honest parties can compute G∗ efficiently
from G queried from Fn

CG, they can abort the protocol. Hence if no abort occurs, at least one
honest receiver must obtain m̃.

Lastly, we show that any receiver that does not obtain m̃ from some setup can rely on its
associates to output m̃.

Observation 3 If an honest “unlucky” receiver does not receive any shares and the CG is not
biseparated, it can output whichever message the majority of its associates output. Formally, ∀R ∈
H :

(
∀A ∈ NG(S) : I({A, R}) = ∅

)
=⇒ NG(R) ⊆ H .

Note that for h = 2 a receiver that does not recover the message directly has only one associate
who must be honest. For h ≥ 3 at most h − 1 associates of an unlucky receiver can recover the
message directly. Furthermore, it is obvious from the CG which ones those are. We want to recall
Fig. 1b), here suppose 1 is the sender and 8 is the unlucky receiver, then only 5 and 6 are the
receivers that recover the message from the masks and the masked sharings obtained from 2 and
3. If 5 and 6 are honest, they both broadcast m. If one deviates and broadcasts something else,

24

then 5 and 6 get into a conflict. By the definition of the map φ we now also find conflicts between
4 and 5, and 4 and 6, thus the overall CG is biseparated and all (honest) parties can abort.

For a malicious sender we have shown that the simulator extracts the message m̃ that the
honest receivers actually output in the opening phase.

We make a last observation for the case of an honest sender.

Observation 4 If the sender is honest and the protocol is not aborted, then all honest receiver
will output the correct message.

If the sender is honest it will truthfully input its sharing µ into VM,ιfix for all M ∈ I({S}). As
such, if a receiver R recovers the message from some direct setup M ∈ I({S, R}), then it obviously
recovers the correct message. Here the adversary has no way of interferring with the sharing of the
message. Lastly, note that if S is honest and R is honest as well, then I({S, R}) 6= ∅ because {S, R}
plus their extended associates always form a connected subgraph of size β of the complement CG,
otherwise the complement CG would be disconnected and the protocol aborted.

The protocol requires invocation of at most O(
(

n
β

)
) ⊆ poly(λ) setups per restart (decrease of ι)

and can be restarted at most O(n) ⊆ poly(λ) times because for each restart at least one associate
of the sender is lost. ut

Next, we present a protocol for Fully Committed Oblivious Transfer (FCOT). As in the classical
OT the sender holds two messages m0, m1 and the receiver holds a choice bit c. To make the
contruction easier to analyze we assume parties to have access to the global commitment setup
which is provided by Theorem 2. The role of the global commitment is to commit both the sender
and the receiver to their input s.t. they cannot change it after the OT phase.

Intuitively, the protocol tries to peform a direct OT via a setup that contains both the sender
and the receiver. If this does not work, then both the sender and the receiver share their input with
their associates who perform multiple OTs on their behalf. While sharing the sender’s messages
seems straightforward, is may not be obvious how to share the receiver’s choice bit. We show a
little trick how this can be accomplished. The structure of the CG guarantees that the associates
can indeed perform OTs with each other, i.e. those OTs cannot be aborted without causing the
overall protocol to abort.

In the proof we use the following multi-sender variant of global commitment

Functionality Fn
MCOM

Fn
MCOM proceeds as follows, running with security parameter λ, parties P = {P1, . . . , Pn},

malicious parties C ⊆ P and adversary S. Messages not covered here are ignored.
• When receiving (commit, m ∈ {0, 1}λ) from party Pi, store (Pi, m) and send

(receipt commit, Pi) to all parties. Ignore further messages (commit, ·) from Pi.
• When receiving (open) from party Pi and (Pi, m) is stored, send (open, Pi, m) to all parties

and terminate.
• When receiving (abort, C ′) from S with C ′ ⊆ C , then output (abort, C ′) to all parties and

terminate.

which can be trivially constructed from Fn
COM by the Universal Composability Theorem of [Can01].

Theorem 3 (FCOT expansion). Let n be the number of parties of which at most t = n− h ∈
[n/2, n− 2] are malicious s.t.

(
n
β

)
∈ poly(λ) with β = bn/hc+ b(n− 1)/hc − 1. There is a protocol

πn
FCOT that statistically securely UC-realizes Fn

FCOT in the {F2
SMT,Fβ

EVOT,Fn
COM,Fn

BC}-hybrid model:{
F2

SMT,Fβ
EVOT,Fn

COM,Fn
BC

}
stat
 Fn

FCOT (7)

Proof (of Theorem 3). First, note that Fn
CG is realizable using only Fn

BC by Lemma 16 from
[BMM+20], so we explicitly use Fn

CG in the protocol contruction. Moreover, note that {Fn
COM}

UC

Fn
MCOM by the UC theorem. So we use Fn

MCOM as well, and to reduce the notational complexity of
the protocol we omit the session ids as they are clear from the context, i.e. the committed string.

25

Denote the set of parties by P = {S, R1, ..., Rn−1}. We require all honest parties to locally
compute the effective Conflict Graph G∗ ← φ(G) when obtaining G from Fn

CG. Moreover, whenever
G∗ becomes biseparated, the honest parties abort the protocol with the opposing partition as
described in Section 4.
Before we give a formal proof we outline the protocol intuitively. The OT phase goes as follows:
1. The sender draws two mask bits at random and commits to them globally.
2. The sender creates two threshold sharings of its two masked messages.
3. The sender commits globally to each share individually.
4. The sender inputs its shares into the canonically smallest EVOT-setup that contains both the

sender and the receiver.
5. The receiver creates a threshold sharings of its choice bit.
6. The receiver commits globally to each share individually.
7. The receiver inputs its sharing into the canonically smallest EVOT-setup that contains both

the sender and the receiver.
8. The receiver obtains the chosen (masked) message.
9. All parties in the setup obtain some probing shares of the masked messages and the choice bit.

10. The sender and the receiver opens the global commitment corresponding to the probed indices.
11. The parties in the setup verify that the opened shares are consistent with the ones obtained

from the EVOT-setup.
11.1. If all shares are consistent, the sender opens the mask. The receiver obtains the chosen

unmasked bit. All other parties in the setup output a receipt, followed by all other parties.
11.2. If any shares are inconsistent, then all parties in the setup declare a conflict with the resp.

offender and its loyalists. The current setup is aborted (biseparated), and the next setup
is used with fresh sharings and reference strings, i.e. the protocol goes back to step 4.

11.3. If no setups containing sender and receiver are left, the protocol goes into fallback mode.
The OT-fallback is essentially the same except that we replace the following steps:
4. If the sender has exactly h associates (including itself), then it gives the (globally committed)

sharing of the message to its canonically smallest associate who then performs OTs with the
receiver or its associates. If that associate performs OTs with the receiver’s associate it sets
up a pair of random bits for each associate s.t. their xor is equal to the xor of the messages.
Otherwise, the sender creates additive sharings of its messages and distributes them among its
associates.8

7. If the receiver has exactly h associates (including itself), then the receiver simply gives its
choice bit to its canonically smallest associate who then performs OTs with the sender or its
associates. Otherwise, the receiver create a random additive sharing of its choice bit and gives
each associate one random bit of it. This way no (possibly malicious) associate learns the choice
bit but the receiver can still recover the correct message.

Furthermore, if the verification step in the fallback mode fails, then the overall Conflict Graph
becomes biseparated. The opening phase goes as follows:
1. The sender opens the global commitments to all shares of the resp. message.
2. The receiver open the global commitments to its shares.

Already the informal description of the protocol is non-trivial. To maintain a balance between
readability/complexity of the protocol and rigor we decribe the formal protocol only for the case
where the sender and the receiver perform a direct OT and argue the other cases informally. We
suggest to keep Fig. 1 in mind when reading the protocol as it makes it easier to follow some
arguments with a visual aid.

Now, we provide a more formal version of the proof. Let ` := n2λ2 be the size of the ap-
plied secret sharing and let ρ := λ be the number of probing shares.9 Throughout the protocol
let I(S) :=

{
M ⊆ P

∣∣ |M | = β ∧ S ⊆M ∧ (M, E ∩ 2M) not biseparated
}

be the set of not (yet)
aborted instance classes that contain the subset of parties S. Note that this set might dynam-
ically change during the protocol as setups are aborted. We use the number ι := |I({S, R})| as
a counter, i.e. everytime ι decreases the protocol restarts. For each two parties P, P′ ∈ P let
MP,P′ := min I({P, P′}) be the canonically smallest, not (yet) aborted setup class that contains the
parties. Also, we denote the setup Fβ

EVOT on parties MP,P′ with session id ι by TP,P′,ι.

8 Actually, only those associates that are in a common setup with the receiver.
9 We use (non-optimal) parameters for simplicity.

26

Protocol πn
FCOT (simplified)

The protocol πn
FCOT proceeds as follows, running with parties P = {S, R, W1, ..., Wn−2}, mali-

cious parties C ⊆ P , adversary A and environment Z. Messages not covered here are ignored.
• In the first round each party stores G∗

ref ← (P , ∅), ιref ← |I({S, R})| and DS, DR ← ∅.
• Each round each party inputs (query) into Fn

CG to obtain the CG.
• On output G = (G, E) from Fn

CG, the party P computes the new ι ← |I({S, R})|. If
ι < ιref , it deletes all previously received messages and updates the stored G∗

ref ← φ(G)
and ιref ← ι.

• On input (choice, c) from Z, the receiver R creates a sharing γ ← Share`,4`(c) and commits
to each share µκ by inputting (commit, (choice share, κ, µκ)) into Fn

MCOM. Then R inputs
its shares (choice, S→ R, c) into TS,R. The receiver ignores further inputs of this type.

• On output (receipt commit, R) from Fn
MCOM for all shares µκ : κ ∈ [`], the party P outputs

(receipt choice) if it did not output (receipt messages) before.
• On input

(
messages, m0, m1)

from Z, the sender S samples a mask w0, w1 ← {0, 1} and
commits globally to (mask, w0, w1). Then S creates a sharing µb ← Share`,4`(mb ⊕wb) for
both b ∈ {0, 1} and commits to each share µb

κ by inputting (commit, (message share, b, µb
κ))

into Fn
MCOM. Then S inputs its shares (messages, S → R, µ0, µ1) into TS,R. The sender

ignored further inputs of this type form Z.
• On output (receipt commit, S) from Fn

MCOM for all sessions containing the shares µb
κ :

κ ∈ [`], b ∈ {0, 1} and the masks w0, w1, the party P outputs (receipt messages) if it did
not output (receipt choice) before.

• On output (output, S→ R, µc) from TS,R, the receiver R stores µc.
• On output (output, S → R, H ′, µ̃0

H′ , µ̃1
H′ , γ̃H′) from TS,R, the party P stores

(H ′, µ̃0
H′ , µ̃1

H′ , γ̃H′). The sender S opens all global commitments corresponding to the
probed shares by inputting (open) into TS,R for each session containing κ ∈ H ′ and
b ∈ {0, 1}. The receiver opens all global commitments for the probed shares by inputting
(open) into TS,R for each session containing κ ∈ H ′.

• On output (open, µb
κ) from Fn

MCOM for all κ ∈ H ′ and b ∈ {0, 1}, the party P′ ∈ MS,R
checks whether µ̃b

H′ = µb
H′ for both b ∈ {0, 1}. If so, P′ sets DS ← ∅. Otherwise, P′

declares a conflict with S, i.e. it inputs (conflict, S) into Fn
CG, broadcasts (conflict, S)

and stores DS ← MS. Then the party P′ checks whether γ̃H′ = γH′ . If so, P′ broadcasts
(receipt transfer) and sets DR ← ∅. Otherwise, P′ declares a conflict with R, i.e. it
inputs (conflict, R) into Fn

CG, broadcasts (conflict, R) and stores DR ←MS.
• On output (output, P′, (conflict, D)) from Fn

BC, any party P′′ declares a conflict with
each party in DD∩NG(D), i.e. it inputs (conflict, DD∩NG(D)) into Fn

CG. The previously
used TS,R is now aborted and the next one is used. The sender and the receiver act as if
they received

(
messages, m0, m1)

resp. (choice, c) from Z.
• On output (output, P, (receipt transfer)) from Fn

BC for all P ∈ MS, the sender opens
the global commitment to the initial mask w.

• On output (open, S, (mask, w0, w1)) from Fn
MCOM, the party P′ 6= R outputs

(receipt transfer) and stores (w0, w1). The receiver reconstructs mc = wc ⊕
Recover4`(µc) and outputs (output, mc). Any party fixes ιfix ← ι.

• On input (open message, b) from Z, the sender S opens the global commitments to the
shares (b, κ, µb

κ) for each κ ∈ [`].
• On output (open, S, (message share, b, κ, µb

κ)) from Fn
MCOM for all κ ∈ [`], the party P

outputs (open message, b, m̃b) where m̃b ← Recover4`(µb)⊕ wb.
• On input (open choice) from Z, the receiver R opens the global commitments to the

shares (κ, µκ) for each κ ∈ [`].
• On output (open, R, (choice share, κ, µκ)) from Fn

MCOM, the party P outputs
(open choice, c̃) with c̃← Recover4`(γ).

Before analyzing the protocol in detail we give a simulator for the canonical dummy adversary.
The simulator runs a simulated protocol where it executes the protocol code for all non-corrupted

27

parties. Whenever the environment activates an honest dummy party, the simulator is notified and
simulates the party’s protocol code. Any message from and to malicious parties are forwarded to
the simulated setup functionalities.
Note that when ι is decreased at least one new conflict must be declares, hence ι decreases at most
n2 times. Consequently, at most n2ρ many shares of the sender’s and receiver’s committed sharings
are probed.

Simulator for πn
FCOT (simplified)

• On output (receipt messages) from Fn
FCOT or on output (receipt transfer) from

Fn
FCOT after (receipt choice), the simulator S gives input (messages, 0, 0) to the simu-

lated sender S′.
• On output (receipt messages) from all simulated (honest) parties, the simulator S

(messages, m̃0 ⊕ w0, m̃1 ⊕ w1) to the ideal Fn
FCOT in the name of S where m̃b ←

Recover4`(µ̃b). Also, (w0, w1) are the masks and µ̃b is the sharing that the malicious sender
previously input into the simulated Fn

MCOM.
• On output (receipt choice) from Fn

FCOT or on output (receipt transfer) from Fn
FCOT

after (receipt messages), the simulator S gives input (choice, 0) to the simulated receiver
R′.

• On output (receipt choice) from all simulated (honest) parties, the simulator S
(choice, c̃) to the ideal Fn

FCOT in the name of R where c̃ ← Recover4`(γ̃) and γ̃ is the
sharing that the malicious receiver previously input into the simulated Fn

MCOM.
• On output (open choice, c̃) from Fn

FCOT, the simulator S gives local input (open) to the
simulated receiver R′ which will open the remaining setups Fn

MCOM. However, the simulator
equivocates the remaining simulated Fn

MCOM containing share γ̃κ for each κ ∈ [`] \H ′ s.t.
all opened shares form a random sharing γ′ ← Share`(c̃) where the shares on H ′ match the
already opened shares, i.e. ∀κ ∈ H ′ : γ′

κ = γ̃κ. I.e. the simulated Fn
MCOM on input (open)

from R sends (open, (κ, γ̃κ)) to all parties and the simulated dummy adversary. This is
possible because at most n2ρ shares have been probed but the simulator only needs to
equivocate 3` + 1 = 3n2λ2 + 1 ≤ n2(2λ2 − λ = 4`− n2ρ) shares.

• On output (open choice, c̃) from all simulated parties, the simulator sends (open choice)
to the ideal Fn

FCOT in the name of R.
• On output (open message, b, m̃b) from Fn

FCOT, the simulator S gives local input (open) to
the simulated sender S′ which will open the remaining setups Fn

MCOM. Again, the simulator
equivocates the remaining simulated Fn

MCOM containing share µ̃b
κ for each κ ∈ [`] \H ′ s.t.

all opened shares form a random sharing µ′b ← Share`,4`(m̃ ⊕ wb) where the shares on
H ′ match the already opened shares, i.e. ∀κ ∈ H ′ : µ′b

κ = µ̃κ. I.e. the simulated Fn
MCOM

on input (open) from S sends (open, (b, κ, µ̃κ)) to all parties and the simulated adversary.
This is possible because at most n2ρ shares have been probed but the simulator only needs
to equivocate 3` + 1 = 3n2λ2 + 1 ≤ n2(2λ2 − λ = 4`− n2ρ) shares.

• On output (open message, b, m̃b) from all simulated parties, the simulator inputs
(open message, b) to the ideal Fn

FCOT in the name of S.
• On input

(
abort, C ′) for any simulated setup with parties M ⊆ P and ∅ 6= C ′ ⊂M ∩ C ,

the simulator aborts that instance by forwarding
(
abort, C ′) to it.

• On output (abort, C ′) from all simulated parties, the simulator S inputs (abort, C ′) into
Fn

FCOT.

From the description of the simulator it is apparent that the honest dummy parties output the
receipt resp. the opened value exactly when the simulated (honest) parties would output the receipt
resp. opened value. It is also clear from the simulator’s description that for an honest sender resp.
receiver the simulator can equivocate its simulated setup functionalities to let the simulated parties
output m̃0, m̃1 resp. γ̃ which the simulator receives from Fn

FCOT at the start of the opening phase.
In particular, because the simulator extracts its inputs m̃0, m̃1 and γ̃ from whatever inputs are
encoded in the sharings in the global commitments and all parties output exactly the opened value
from the global commitments, the opened messages resp. choice bit are equal in the real and ideal

28

run.
Henceforth, we focus on proving that

• When all parties output (receipt transfer), then the inputs of the last used setup TS,R are
indeed equal to the inputs encoded in the sharings contained in the global commitments.

• All (honest) parties eventually output (receipt transfer) or the protocol aborts.
To this we make some observations.

Observation 5 When all (honest) parties output (receipt transfer) in the real/simulated pro-
tocol and the last used setup TS,R contains some honest party, the inputs encoded in the sharings of
TS,R, i.e. µ̃b and γ̃, and the globally committed sharings µ̂b and γ̂ are equal except with negligible
probability.

We prove Observation 5 similarly to Observation 1.
Suppose the choice bit encoded in the sharing of TS,R, i.e. γ̃, and the globally committed sharing

γ̂ differ. Then there exists a set W ∈
([4`]

`+1
)

of differing indices s.t. ∀κ ∈W : γ̃κ 6= γ̂κ. Furthermore
W must be disjoint from the uniformly random probing indices H ′ ←

([4`]
ρ

)
, otherwise the parties

MS∗ ∩H 6= ∅ would have declared a conflict with the sender and/or the receiver. Lemma 1 bounds
the probability that no differing share is probed by

PrH′
[
W ∩H ′ = ∅

∣∣ H ′ ⊆ [`] ∧
∣∣H ′∣∣ ≥ ρ

] Eq. (29)
≤ 2−ρ(`+1)/4` ≤ 2−λ/4 ∈ negl(λ) . (30)

The same argument applies to the two sharings for the sender’s messages. Consequently, by the
union bound all three inputs are equal in the setup and in the global commitments with probability
at least 1− 3 · 2−λ/2.

It remains to show that all parties eventually output (receipt transfer) if the protocol does
not abort. In the above description of the protocol we have assumed that at least one setup
containing both the sender and the receiver will not be aborted. If this was the case we would
already have concluded the proof. In the remaining part we argue that even if the sender and the
receiver cannot perform a direct OT the protocol still works. All setups take sharings as inputs so
that the inputs can be verified against the global commitments of the sender and the receiver.

To this end we make some observations.

Observation 6 If the sender and the receiver are connected via a path of length β + 1 in the
complement CG, then the sender can simply create an additive sharing for each message and let
its associates perform an OT with the receiver.

Suppose the sender is honest, then the adversary still cannot learn both messages because at least
one associate of the sender who holds an additive share of both messages is honest as well. Suppose
the receiver is honest, then the adversary cannot learn the choice bit because the choice bit is only
input into the EVOT setups which by definition does not leak it to the adversary.

A more complicated case arises when the sender and the receiver are not connected by a path
of length β +1. However, the structure of the CG (compare 1) dictates that either the sender or the
receiver must have h associates respectively (including themselves). This means that if the sender
or receiver are honest then so are their associates. If the receiver has h associates the receiver can
simply send the sharing of its choice bit to any associate how then performs OTs with the sender’s
associates exactly as in Observation 6. The honest sender’s messages stay private for the same
reason as before and the honest receiver’s choice stays private because of its honest associate.

If the sender has h associates then it sets up pairs z0
i ← {0, 1} and z1

i ← m0 ⊕ m1 ⊕ z0
i for

each associate of the receiver Pi ∈ NG(R). The last bit is set up as z0
i ← ⊕

⊕
j 6=i z0

j ⊕m0. Then
the sender creates sharings qb

i ← Sharel,4l(zb
i) and give it to its canonically smallest associate. The

receiver creates an additive sharing of its choice bit γ := (γi)Pi∈NG(R) s.t.
⊕

Pi∈NG(R) γi = c and
distributes the share to its associates. Then the sender’s associate and the receiver’s associates
perform OTs and the receiver’s associates report back the results. Crucially, the receiver can still
recover the chosen message as⊕

Pi∈NG(R)

Recoverl(qγi
i) =

⊕
i

z
γi
i =

⊕
i

z0
i ⊕

(
m0 ⊕m1)

γi = m0 ⊕
(
m0 ⊕m1)

c = mc . (31)

29

Moreover, the receiver’s choice bit remains private because at least one additive share is held by
an honest associate.

Overall, the we proved that the simplified version of the protocol is secure. Based on the
simplified version we have argued that if the direct OT does not work, then the sender and the
receiver can use their resp. associates to carry out the OT for them. ut

30

	Tight Setup Bounds for Identifiable Abort

