
Meteor: Cryptographically Secure Steganography for Realistic
Distributions*

Gabriel Kaptchuk
1
, Tushar M. Jois

2
, Matthew Green

2
, and Aviel Rubin

2

1
Boston University, kaptchuk@bu.edu

2
Johns Hopkins University, {jois, mgreen, rubin}@cs.jhu.edu

Abstract

Despite a long history of research and wide-spread applications to censorship resistant systems, prac-
tical steganographic systems capable of embedding messages into realistic communication distributions,
like text, do not exist. We identify two primary impediments to deploying universal steganography: (1)
prior work leaves the di�cult problem of finding samplers for non-trivial distributions unaddressed, and
(2) prior constructions have impractical minimum entropy requirements. We investigate using genera-
tive models as steganographic samplers, as they represent the best known technique for approximating
human communication. Additionally, we study methods to overcome the entropy requirement, including
evaluating existing techniques and designing a new steganographic protocol, called Meteor. The result-
ing protocols are provably indistinguishable from honest model output and represent an important step
towards practical steganographic communication for mundane communication channels. We implement
Meteor and evaluate it on multiple computation environments with multiple generative models.

1 Introduction

The past several years have seen a proliferation of encrypted communication systems designed to withstand
even sophisticated, nation-state attackers [PM, Wha17]. While these systems are maintain the confidentiality
of plaintext messages, the data transmitted by these tools is easily identifiable as encrypted communication.
This makes these protocols easy targets for repressive regimes that are interested in limiting free communi-
cation [Con16, Fis19]: for example, using network censorship techniques such as those practiced by countries
like China [Sha18, Fre18, RSD+20]. Concrete attempts to suppress the encrypted communication technolo-
gies used to evade censors are now underway. For example, China’s Great Firewall (GFW) not only prevents
users from accessing content deemed subversive, but it also actively detects and blocks encryption-based
censorship circumvention technologies such as Tor [Tor, DMS04, RSG98].

In regimes where cleartext communication is expected, the mere use of encryption may be viewed as
an indication of malicious or subversive intent. To work around blocking and avoid suspicion, users must
make their communications look mundane. For instance, Tor users in China have begun to leverage stegano-
graphic techniques such as ScrambleSuit/obfs4 [WPF13], SkypeMorph [MLDG12], StegoTorus [WWY+12]
and TapDance [WWGH11, WSH14], or Format-Transforming Encryption [DCRS13a]. These techniques
embed messages into tra�c that censors consider acceptable.

While the current generation of steganographic tools is su�cient to evade current censorship techniques,
these tools are unlikely to remain a sustainable solution in the future. While some tools provide strong cryp-
tographic guarantees [MLDG12, WGN+12, HRBS13], this is achievable only because they encode messages

∗A version of this paper is to appear in the proceedings of the 28th ACM Conference on Computer and Communications
Security (CCS 2021).

1

into (pseudo-)random covertext channels, i.e., replacing a random or encrypted stream with a chosen pseu-
dorandom ciphertext. Unfortunately, there is no guarantee that such channels will continue to be available:
a censor can systematically undermine such tools by preventing the delivery of encrypted tra�c for which
it does not have a suitable trapdoor, (e.g., an access mechanism), or by selectively degrading the quality of
encrypted channels. An audacious, repressive regime could even consider all encryption to be subversive,
and drop all packets not explicitly recognizable as meaningful plaintext. Rigorous studies of the capabilities
of the current GFW focus on other techniques [TAAP16, EWMC15, MWD+15, EFW+15], but there is
anecdotal evidence that encryption suppression has begun to occur [Bev16], including the blocking of some
TLS 1.3 connections [BiA+20].

Steganography for Realistic Communication Channels. To combat extreme censorship, there is a
need for steganographic protocols that can produce stegotext (the steganographic equivalent of ciphertext)
that closely mimics real, innocuous communication. With such techniques, it would be impossible for a
censor to selectively repress communications, as subversive messages could hide in benign communication.
For instance, if dissidents could encode secret messages into mundane appearing emails, web-forum posts,
or other forms of “normal” human communication, censorship would be impractical. The ideal tool for this
task is universal steganography: schemes which are able to securely hide sensitive information in arbitrary
covertext channels (the steganographic term for communication channels). Even if the censor suspects
something, the secret message cannot be found — nor is there any statistical evidence of its existence.

A key challenge in this setting is to identify a generator of some useful distribution where sampling will
produce symbols that are identical (or at least close) to ordinary content present in a communications channel.
Given such a generator, numerous universal steganographic constructions have been proposed that can sam-
ple from this distribution to produce a stegotext [Sim83, AP98, Cac00, HLv02, vH04, BC05, DIRR05]. Un-
fortunately, identifying useful generators is challenging, particularly for complex distributions such as natural
language text. To our knowledge, the only practical attempts to achieve practical steganography such natu-
ral communication channels have come from the natural language processing (NLP) community [GGA+05,
SSSS07, YHC+09, CC10, CC14, FJA17, VNBB17, YJH+18, Xia18, YGC+19, HH19, DC19, ZDR19]. While
the resulting text is quite convincing, these works largely rely on insecure steganographic constructions that
fail to achieve formal definitions [YHZ19, YWL+19, YWS+18, WBK15, KFH12, MHC+08]. In this work, we
focus our attention on constructing provably secure steganography for the kinds of distributions that would
be di�cult for a censor block without su↵ering significant social repercussions. To do so, we identify and
overcome the barriers to using steganographic techniques as practical tools to combat network censorship.

Overcoming Shortcomings of Existing Steganographic Techniques. Steganographic schemes that
are able to encode into any communication channel have been the subject of significant theoretical work,
e.g., [Sim83, AP98, Cac00, HLv02, vH04, BC05, DIRR05]. Generally, constructions rely on the existence of
an e�cient sampler functionality that, on demand, outputs a token (sometimes referred to as a document)
that could appear in the covertext channel. These tokens are then run through a hash function that maps
the token to a small, fixed number of bits. Using rejection sampling, an encoder can find a token that maps
to some specific, desired bits, usually the first few bits of a pseudo-random ciphertext. By repeatedly using
this technique, a sender can encode an entire ciphertext into a series of tokens, and a receiver can recover the
message by hashing the tokens and decrypting the resulting bits. Security of these approaches relies on the
(pseudo-)randomness of the ciphertext and carefully controlling the bias introduced by rejection sampling.

There are two significant barriers to using universal steganographic systems for censorship-resistant com-
munication: (1) the lack of appropriate samplers for real, desirable covertext channels, like English text, and
(2) the minimum entropy bounds required to use existing techniques.

(1) Generative Models as Steganographic Samplers. Existing work leaves samplers as an implementation
detail. However, finding a suitable sampler is critical to practical constructions. Sampling is straightforward
for simple covertext channels for which the instantaneous probability distribution over the next token in the
channel can be measured and e�ciently computed: draw random coins and use them to randomly select
an output from the explicit probability distribution. Natural communication channels — the most useful
targets for practical steganography — are generally too complex for such näıve sampling techniques. For

2

example, it is infeasible to perfectly measure the distribution of the English language, and the usage of
English continues to evolve and change.

Without access to perfect samplers, we explore steganographic samplers that approximate the target
channel. While this relaxation introduces the risk that an adversary can detect a steganographic message
by distinguishing between the real channel and the approximation, this is the best we can do when per-
fect samplers cannot be constructed. In this work, we propose to use generative models as steganographic
samplers, as these models are the best technique for approximating complex distributions like text-based
communication. While these models are still far from perfect, the quality of generated content is impres-
sive [RWC+19, BMR+20] and continues to improve, raising concerns about the disastrous societal impact of
misuse [Blo19].

Generative models operate by taking some context and model parameters and outputting an explicit
probability distribution over the next token (for example, a character or a word) to follow that context.
During typical use, the next token to add to the output is randomly sampled from this explicit distribution.
This process is then repeated, updating the context with the previously selected tokens, until the output is
of the desired length. Model creation, or training, processes vast amounts of data to set model parameters
and structure such that the resulting output distributions approximate the true distributions in the training
data.

Using generative models as steganographic samplers facilitates the creation of stegotext that are provably
indistinguishable from honest model output, and thus good approximations of real communication (although
not indistinguishable from real communication). We show that the nature of generative models, i.e. a
shared (public) model and explicit probability distribution, can be leveraged to significantly increase concrete
e�ciency of steganographic schemes. Our key insight is that a sender and receiver can keep their models
synchronized, and thus recover the same explicit probability distribution from which each token is selected,
a departure from traditional steganographic models. This allows the receiver to make inferences about the
random coins used by the sender when sampling each token. If the message is embedded into this randomness
(in an appropriately protected manner), the receiver can use these inferences to extract the original message.

(2) Steganography for Channels with High Entropy Variability. The second barrier is the channel entropy
requirements of most existing schemes. Specifically, most universal steganographic schemes are only capable
of encoding messages into covertext channels if that channel maintains some minimum entropy, no matter
the context. Real communication channels often encounter moments of low (or even zero) entropy, where
the remaining contents of the message are fairly proscribed based on the prior context. For instance, if a
sentence generated by a model trained on encyclopedia entries begins with “The largest carnivore of the
Cretaceous period was the Tyranosaurus” with overwhelming probability the next token will be “Rex”, and
any other token would be very unlikely. In many existing steganographic proposals, if the hash of this next
token (i.e. Hash(“Rex”)) does not match the next bits of the ciphertext, no amount of rejection sampling
will help the encoder find an appropriate token, forcing them to restart or abort. Thus, to ensure that
the probability of this failure condition is small, most classical constructions impose impractical entropy
requirements. We investigate overcoming this problem in two ways. First, we evaluate the practicality of
known techniques for public-key steganography, in which an arbitrary communication channel is compiled
into one with su�cient entropy. Second, we leverage the structure of generative models to create a new,
symmetric key steganographic encoding scheme called Meteor. Our key observation is that the best way
to adapt to variable entropy is to fluidly change the encoding rate to be proportional to the instantaneous
entropy. Together, these could be used to build hybrid steganography, where the public-key scheme is used
to transmit a key for a symmetric key scheme.

1.1 Contributions

In this work we explore the use of modern generative models as samplers for provably secure steganographic
schemes. This provides the groundwork for steganography that convincingly imitates natural, human com-
munication once the di↵erences between generative models and true communication become imperceptible.
In doing so, we have the following contributions:

3

Evaluation of Classical Public-Key Steganography in Practice. We evaluate the use of a classical
public-key steganographic scheme from [Hop04]. We investigate adapting this scheme to work with
generative models, and show that known techniques introduce prohibitively high overhead.

Meteor. We present Meteor, a new symmetric-key, stateful, provably secure, steganographic system that
naturally adapts to highly variable entropy. We provide formalization for the underlying techniques so
that they can be easily applied to new generative models as they are developed.

Implementation and Benchmarking. Additionally, we implement Meteor and evaluate its performance
in multiple computing environments, including on GPU, CPU, and mobile. We focus primarily on
English text as our target distribution, but also investigate protocol generation. To the best of our
knowledge, our work is the first to evaluate the feasibility of a provably secure, universal steganographic
using text-like covertext channels by giving concrete timing measurements.

Comparison with Informal Steganographic Work. In addition to the constructive contributions
above, we survey the insecure steganographic techniques present in recent work from the NLP commu-
nity [GGA+05, SSSS07, YHC+09, CC10, CC14, FJA17, VNBB17, YJH+18, Xia18, YGC+19, HH19,
DC19, ZDR19]. We discuss modeling di↵erences and give intuition for why these protocols are insecure.

Deployment Scenario. Our work focuses on the following scenario: Imagine a sender (e.g. news website,
compatriot) attempting to communicate with a receiver (e.g. political dissident) in the presence of a
censor (e.g. state actor) with control over the communications network. We assume that the sender
and receiver agree on any necessary key information out of band and select an appropriate (public)
generative model. Although we focus on English text in this work, the generative model could be
for any natural communication channel. The sender and receiver then initiate communication over
an existing communication channel, using a steganographic encoder parameterized by the generative
model to select the tokens they send over the channel. The censor attempts to determine if the output
of the generative model being exchanged between the sender and receiver is subversive or mundane.
We note that practical deployments of these techniques would likely incorporate best practices to
achieve forward secrecy, post compromise security, and asynchronicity, possibly by elements of the
Signal protocol [PM].

1.2 Limitations

We want to be clear about the limitations of our work.

Di↵erences Between Machine Learning Models and Human Communications. Our work does
not address how well a machine learning model can approximate an existing, “real” communication channel.
Answering this question will be crucial for deployment and is the focus of significant, machine learning
research e↵ort [RWC+19, BMR+20]. Regardless of the current state of generative models and how well they
imitate real communication, our work is valuable for the following reasons:

1. The ever-changing and poorly defined nature of real communication channels makes sampling an in-
herently hard problem; channels of interest are impossible to perfectly measure and characterize. This
means the imperceptibility of steganography for these channels will always be bounded by the accu-
racy of the available approximation techniques. The best approximation tool available in the existing
literature is generative modeling [Kar15], and thus we focus on integrating them into steganographic
systems.

2. We prepare for a future in which encrypted and pseudorandom communications are suppressed, break-
ing existing tools. As such, the current inadequacies of generative models should not be seen as a
limitation of our work; the quality of generative models has steadily improved [BMR+20] and is likely
to continue improving. Once the techniques we develop are necessary in practice, there is hope that
generative models are su�ciently mature to produce convincingly real output.

4

3. Finally, there already exist applications in which sending model output is normal. For instance, artificial
intelligence powered by machine learning models regularly contribute to news articles [vD12, Gra16],
create art [Roc20, May], and create other digital content [Kin, aiw]. Theses channels can be used to
facilitate cryptographically secure steganographic communication using our techniques today.

Shared Model. In Meteor, we assume that the sender and receiver (along with the censor) access the same
generative model. While this requirement might seem like a limitation, we reiterate that the security of the
scheme does not require that the model remain private. As such, this model is similar to the common random
string model common in cryptography. Additionally, it is common practice to share high quality models
publicly [Koh, RWC+19, BMR+20], and these models would outperform anything an individual could train.
As such, we believe that this assumption is reasonable and show it yields significant performance gains.

1.3 Organization

In Section 2, we give background and assess related work on classical steganographic techniques from the
cryptographic community, how steganography is currently used in practice, and generative models. In
Section 3, we give formal definitions for steganography. In Section 4, we explore using existing techniques
and steganographic schemes to build public-key steganography for English text distributions. In Section 5,
we give a construction of a new, symmetric key steganographic system, Meteor, and analyze its e�ciency
and security. In Section 6, we give implementation details for Meteor and evaluate the e�ciency of using
Meteor on di↵erent systems. Finally, in Section 7 we discuss existing work from the NLP community and
show why it is insecure.

2 Background and Related Work

Classical Steganography. Since Simmons’ first formalization of steganographic communication [Sim83],
significant e↵ort has been devoted to theoretical steganography. Early work focused on information-theoretic
constructions [AP98, ZFK+98, Mit99, Cac00] before moving on to cryptographic [HLv02, vH04, BC05] and
statistical [SSM+06a, SSM07, SSM+06b] notions of steganography. The literature includes many symmetric-
key constructions [Cac00, HLv02, RR03], public-key constructions [vH04, BC05, Le03, LK03], and even
identity based constructions [RSK13]. Relatively little on formal steganography has been in the last 15
years, although there are recent works considering the boundaries of steganography [BL18], the related
problem of backdoor resistance [HPRV19] and keyless steganography [ACI+20].

In general, the steganographic schemes presented in the literature rely on rejection sampling to find
randomly selected elements of the covertext distribution that hash to desired bits. Given space constrains,
we cannot describe and compare to all prior work. For a representative example, consider the public-key
steganographic scheme from [vH04, Hop04] presented in Algorithm 1. First, the encoder uses a pseudoran-
dom, public-key encryption scheme to encrypt the message. Then, one bit xi at a time, the encoder uses
rejection sampling to find a token ci in the covertext distribution D such that f(ci) = xi, where f is a
perfectly unbiased function over D. We omit the formal description of the simple decoding algorithm, in
which the receiver simply computes f(ci) for all i, concatenates the bits, and decrypts the result.

Security for such schemes is simple to see: each bit of the encrypted message is random, by the pseudo-
randomness of the cipher, and each token in the stegotext is randomly sampled from the true distribution,
with no bias introduced by the hash function (by definition). As such, the distribution of the stegotext
matches the covertext exactly. However, if no unbiased hash function exists, as none do for infinitely many
distributions [Hop04], a universal hash function can be used instead, and the bias it introduces must be
carefully controlled.

These rejection sampling algorithms fail when the distribution has very low entropy. In such cases, it is
unlikely an unbiased hash function will exist, so a universal hash function must be used. One of two possible
problems is likely to occur. (1) During sampling, it is possible that the sampling bound k may be exceeded
without finding an acceptable token, after which the encoder simply appends a randomly sampled token.

5

Algorithm 1: Public-Key Encoding Scheme from [Hop04]

Input: Plaintext Message m, Distribution D, Sampling Bound k, public-key pk
Output: Stegotext Message c
x PseudorandomPKEncrypt(pk ,m)
Let x0||x1|| . . . ||x|x| x
c "
for i < |x| do

ci Sample(D)
j 0
while f(ci) 6= xi and j < k do

ci Sample(D)
j j + 1

c ckci
Output c

Figure 1: The public-key steganography scheme from [Hop04]. PseudorandomPKEncrypt is the encryption
routine for a pseudorandom, public-key encryption scheme. Sample randomly selects an token from the
covertext space according to the distribution D.

Importantly, the receiver can not detect that this error has occurred, or indeed how many such errors are
contained in the message, and will just get a decryption error during decoding. (2) If k is set very high, it
may be possible to find a token that hashes to the correct value, at the cost of introducing noticeable bias
in the output distribution. As such, it is critical that the distribution maintain some minimum amount of
entropy. To our knowledge, only two prior works [DIRR05, Hop04] build stateful steganographic techniques
that avoid the minimum entropy requirement. Focusing on asymptotic performance, both rely on error
correcting codes and have poor practical performance.

In the closest related work, the authors of [LM06] theoretically analyze the limitations of using Markov
Models as steganographic samplers. The prove that any sampler with limited history cannot perfectly imitate
the true covertext channel. Our work overcomes this limitations by considering the output of the model the
target covertext distribution.

In our work we consider more powerful machine learning models and allow the sender and receiver to
share access to the same public model. This is a departure from prior steganographic work, motivated by the
public availability of high quality models [Koh, RWC+19, BMR+20] and because this relaxation introduces
significant e�ciency gains. As there has been, to our knowledge, no work testing the practical e�ciency of
secure steganographic constructions for complex channels, no other work considers this model.

Current Steganography in Practice. The main contemporary use for steganography is to connect to
Tor ([RSG98, DMS04, Tor]) without being flagged by the plethora of surveillance mechanisms used by cen-
sors [TAAP16]. Steganographic techniques include protocol obfuscation, e.g., obfs4/ScrambleSuit [WPF13],
domain fronting [FLH+15], or mimicry, e.g., SkypeMorph [MLDG12], FTEProxy [DCRS13a], StegoTorus [WWY+12],
CensorProofer [WGN+12], and FreeWave [HRBS13]. Although these tools allow users to circumvent censors
today, they are quite brittle. For example, protocol obfuscation techniques are not cryptographically secure
and rely on censors defaulting open, i.e., a message should be considered innocuous when its protocol cannot
be identified. Protocol mimicry techniques, encoding one protocol into another, are not always cryptographic
and often fail when protocols are under-specified or change without warning [FW19].

Modern steganographic techniques that are cryptographically secure include tools like SkypeMorph [MLDG12],
CensorProofer [WGN+12], and FreeWave [HRBS13], that tunnel information through Voice-Over-IP (VoiP)
tra�c, which is usually encrypted with a pseudorandom cipher. Once encrypted communication has started,
a sender can replace the normal, VoiP encrypted stream with a di↵erent encrypted stream carrying the secret
message. By the security of the cipher, a censor cannot detect that the contents of the encrypted channel
have been replaced and the communication looks like normal, encrypted VoiP tra�c. If access to encrypted
or pseudorandom communication channels were suppressed, these tools would no longer work.

6

There have been small-scale tests [FDS+17] at deploying cryptography secure steganographic tagging
via ISP level infrastructure changes, as suggested in Telex [WWGH11] and TapDance [WSH14]. These tags
indicate that a message should be redirected to another server, but stop short of hiding full messages. These
tags also critically rely on the presence of (pseudo-)random fields in innocuous protocol tra�c.

Practical work has been done in the field of format-transforming encryption (FTE), such as [LDJ+14,
DCRS13b, DCS15, OYZ+20]. These approaches require senders to explicitly describe the desired covertext
channel distribution, an error-prone process requiring significant manual e↵ort and is infeasible for natural
communication. None of these applications, however, provide any kind of formal steganographic guarantee.
Recently, there has also been work attempting to leverage machine learning techniques to generate stegano-
graphic images, i.e. [Bal17, HWJ+18, Har18, SAZ+18, Cha19, WYL18], but none of these systems provide
provable security.

Generative Neural Networks. Generative modeling aims to create new data according to some distribu-
tion using a model trained on input data from that distribution. High quality language models [RWC+19,
BMR+20], are generative neural networks, which use neural network primitives. The model itself contains a
large number of “neurons” connected together in a weighted graph of “layers”, which “activate” as the input
is propagated through the network. Unlike traditional feed-forward neural networks used in classification
tasks, generative networks maintain internal state over several inputs to generate new text. Training these
models typically ingests data in an e↵ort to set weights to neurons, such that the model’s output matches
the input data distribution; in other words, the network “learns” the relationships between neurons based on
the input. The first practical development in this field was the creation of long short-term memory (LSTM)
networks [HS97]. LSTM networks are found in machine translation [CF16, KJSR16], speech recognition,
and language modeling [Kar15]. The transformer architecture [VSP+17], exemplified by the GPT series of
models [RWC+19, BMR+20], is also becoming popular, with results that are increasingly convincing [Blo19].

After training, the model can be put to work. Each iteration of the model proceeds as follows: the model
takes as input its previous state, or “context”. As the context propagates through the network, a subset
of neurons activate in each layer (based on previously trained weights), up until the “output layer”. The
output layer has one neuron for output token, and uses the activated neurons to assign each token a weight
between 0 and 1. The model uses its trained weights and the context input to generate a distribution of
possible tokens, each with a probability assigned. The model uses random weighted sampling to select a
token from this distribution, returning the chosen token as output. Finally, the returned token is appended
to the context and the next iteration begins.

We note there is work focusing on di↵erentiating machine-generated text from human-generated text [AKG14,
BGO+19, GSR19]. It has yet to be seen if these techniques will remain e↵ective as machine learning algo-
rithms continue to improve, setting the stage for an “arms race” between generative models and distinguish-
ers [ZLZ+18].

3 Definitions

3.1 Symmetric Steganography

The new construction in this work is symmetric-key stenography, so for completeness we include symmetric-
key definitions. The definitions for public-key steganography are a straightforward adaptation of the defini-
tions provided here and can be found in [Hop04].

A symmetric steganographic scheme ⌃D is a triple of possibly probabilistic algorithms, ⌃D = (KeyGen
D
,

EncodeD,DecodeD) parameterized by a covertext channel distribution D.

• KeyGen
D
(1�) takes arbitrary input with length � and generates k, the key material used for the other two

functionalities.

• EncodeD(k,m,H) is a (possibly probabilistic) algorithm that takes a key k and a plaintext message m.
Additionally, the algorithm can optionally take in a message history H, which is an ordered set of covertext

7

messages H = {h0, h1, . . . , h|H|�1}, presumably that have been sent over the channel. Encode returns a
stegotext message composed of ci 2 D.

• DecodeD(k, c,H) is a (possibly probabilistic) algorithm that takes as input a key k and a stegotext message
c and an optional ordered set of covertext messages H. Decode returns a plaintext message m on success
or the empty string " on failure.

We use the history notation that is used in a number of previous works [HLv02, vH04], but not universally
adopted. The history input to the encode and decode functions capture the notion that covertext channels
may be stateful. For instance, members of the ordered set H could be text messages previously exchanged
between two parties or the opening messages of a TCP handshake.

Correctness. A steganographic protocol must be correct, i.e. except with negligible probability an encoded
message can be recovered using the decode algorithm. Formally, for any k KeyGen

D
(1�),

Pr [DecodeD(k,EncodeD(k,m,H),H) = m] � 1� negl(�).

Security. We adopt a symmetric-key analog of the security definitions for a steganographic system secure
against a chosen hiddentext attacks in [vH04], similar to the real-or-random games used in other crypto-
graphic notions. Intuitively, a steganographic protocol ⌃D is secure if all ppt. adversaries are unable to
distinguish with non-negligible advantage if they have access to encoding oracle EncodeD(k, ·, ·) or a random
sampling oracle OD(·, ·) that returns a sample of the appropriate length. This ensures that an adversary
wishing to block encoded messages will be forced to block innocuous messages as well. We allow the adversary
to not only have a sampling oracle to the distribution (as in [HLv02]), but also have the same distribution
description given to the encoding algorithm. More formally, we write,

Definition 1. We say that a steganographic scheme ⌃D is secure against chosen hiddentext attacks if for
all ppt. adversaries A, k KeyGen

D
(1�),

���Pr
h
A

EncodeD(k,·,·))
D

= 1
i
� Pr

h
A

OD(·,·)
D

= 1
i��� < negl(�)

where OD(·, ·) is an oracle that randomly samples from the distribution.

3.2 Ranged Randomness Recoverable Sampling Scheme

To construct Meteor, we will need a very specific property that many machine learning algorithms, like
generative neural networks, possess: namely, that the random coins used to sample from the distribution
can be recovered with access to a description of the distribution. If it is possible to uniquely recover these
random coins, steganography is trivial: sample covertext elements using a pseudorandom ciphertext as
sampling randomness and recover this ciphertext during decoding. However, generative machine learning
models do not achieve unique randomness recovery.

Meteor requires a sampling algorithm with a randomness recovery algorithm that extracts the set of
all random values that would yield the sample. Because this set could possibly be exponentially large, we
requiring that the set be made up of polynomial number1 of continuous intervals, i.e. it has a polynomial
space representation that can be e�ciently tested for membership. We call schemes that have this property
Ranged Randomness Recoverable Sampling Schemes, or RRRSS. The formal interface for RRRSS schemes
is parameterized by an underlying distribution D, from which samples are to be drawn and has two ppt.
algorithms. Additionaly, we make the size of length of the randomness explicit by requiring all random
values to be selected from {0, 1}� . The two algorithms are defined below:

• Sample
�
D
(H, r) ! s. On history H and randomness r 2 {0, 1}� , sample an output s from its underlying

distribution D

1In practice, we will be working with schemes for there is a single set, continuous set of random values that result in the
same output.

8

• Recover
�
D
(H, s)! R. On history H and sample s, output a set R comprised of values r 2 {0, 1}�

Note that our sampling scheme takes in a history, making it somewhat stateful. This allows for conditioning
sampling on priors, a key property we require to ensure that Meteor is su�ciently flexible to adapt to new
covertext distributions. For example, consider character-by-character text generation: the probability of the
next character being “x” is significantly altered if the prior character was a “e” or a “t.”

We require that these algorithms satisfy the following correctness and coverage guarantees:

Correctness. We require that all of the returned randomness values would actual sample the same value.
Formally, for all r 2 {0, 1}� , and all history sets H,

Pr
h
8r̂ 2 R, Sample

�
D
(H, r̂) = s | R Recover

�
D
(H, s); s Sample

�
D
(H, r)

i
= 1.

Coverage. We require that the recover algorithm must return all the possible random values that would
yield the target sample. Formally, for all r 2 {0, 1}� , and all history sets H,

Pr
h
8r̂ 2 {0, 1}� s.t. Sample

�
D
(H, r̂) = s, r̂ 2 R | R Recover

�
D
(H, s); s Sample

�
D
(H, r)

i
= 1.

We note that the structure of modern generative models trivially guarantees these sampling properties.
This because all of the random values that would yield a particular output of the sample function are
sequential in the lexicographical ordering of {0, 1}� .

The notion of randomness recovery has been widely studied in cryptography, primarily when building
IND� CCA2 secure public-key cryptography, e.g. [DFMO14, PW08]. These works define notions like unique
randomness recovery and randomness recovery, in which the recover algorithm run on some s returns a single
value r such that f(k, r) = s for an appropriate function f and key k. Unlike the definitions in prior work,
we require a sample scheme over a some distribution and the extraction of intervals.

4 Adapting Classical Steganographic Schemes

Characterizing Real Distributions. In this section, we focus on adapting classical steganographic tech-
niques to English language distributions using generative models, specifically the GPT-2 [RWC+19] language
model. As noted in Section 2, existing steganographic schemes require a certain, minimum amount of entropy
for each sampling event. Any positive value, no matter how small, is su�cient for a channel to be “always
informative,” i.e., theoretically permit the generation of stegotext. In practice, as we will see, an always
informative channel with trivial entropy will yield extraordinarily long stegotext, a problem in practice.

Practical covertext channels, on the other hand, may not be always-informative, let alone have non-trivial
entropy. Figure 2a depicts several representative runs of the entropy over time for a sample of tokens from
the GPT-2 model. Each data point reflects the amount of entropy in the model after sampling x characters
from the model. The entropy varies wildly between sampling events, and there is no clear consistency state
of entropy over several tokens. Moreover, the entropy occasionally drops close to zero. As such, existing
steganographic techniques will fail; in our testing, Algorithm 1 from [Hop04] has a 100% failure rate when
encoding a 16-byte message using GPT-2.

Adaptation 1: Entropy Bounding. A natural adaptation to periods of low entropy would be to not
attempt to encode information while the entropy in the channel is too low. Both the sender and receiver
have access to the distribution, meaning they can both detect periods of low entropy and skip them. This
means that only “high-entropy” events are utilized for sampling, fixing a minimum entropy that is used in
the steganographic protocol. In e↵ect, this entropy bounding creates a sort of channel-within-a-channel that
meets the always entropy requirement.

While this does increase the success rate (this method achieved 0–10% failure rate in our tests), it also
introduces a new problem: significant bias in the sampled tokens. Figure 2b is a histogram showing the

9

(a) Entropy of GPT-2 output distri-
butions. Each datapoint computed as
Shannon entropy of the output distri-
bution after sampling a certain num-
ber of tokens. Then, a random token
is sampled from that distribution and
appended to the context. Di↵erent
colors represent di↵erent runs start-
ing with the same context and di↵er-
ent randomness.

(b) Binned probability of selecting the
tokens included in the final stegotext
using entropy bounding with a value
of 4.5 and the GPT-2 model. The ste-
gotext tokens clearly come from a dif-
ferent distribution. Note that base-
line tokens were only sampled from
events above the entropy bound.

(c) Binned probability of selecting the
tokens included in the final stegotext
variable length sampling. Although
there is slight variation in the distri-
butions, there is no clear di↵erence
between the stegotext and the base-
line. Moreover, this method is proved
secure in [Hop04].

Figure 2: Investigations into adapting classical steganographic techniques.

probability that the selected token from the distribution would be sampled (i.e. the probability weight of
the selected tokens). In the figure, entropy bounding for di↵erent numbers of tries are shown (k), along with
a baseline sample. The baseline is also “bounded” here: it represents the probabilities of normally-sampled
tokens when the distribution entropy was above H = 4.5.

As the figure depicts, the entropy bounding method introduces significant bias by including a dispropor-
tionate number of tokens in certain bins. This is because the hash function used is not unbiased, so repeated
rejection sampling from the same distribution exacerbates the bias of the hash function. In short, there is
still not enough entropy to hide the bias introduced by the hash function. Thus, an adversary can distinguish
between an encoded message and an innocuous one by seeing if the selection probabilities of the messages
are di↵erent.

Adaptation 2: Variable Length Samples. An alternative method to handle low-entropy periods, as
proposed by [Hop04], is to compile the channel into one with su�cient entropy. If a channel is always
informative, meaning it always has some ✏ > 0 entropy, this can be done by sampling some fixed number `
elements together, such that the resulting channel has at least `⇥ ✏ entropy. By setting ` appropriately, the
entropy in the compiled channel is guaranteed to be high enough. However, in real communications channels,
the entropy in the channel may not always be non-zero. As such, a näıve application of this approach will
fall short.

We overcome this by sampling a variable number of tokens in each sampling event, such that the cumu-
lative entropy of the distributions from which the tokens come surpasses the minimum requirement. More
specifically, instead of sampling one token at a time in the while loop of Algorithm 1, this method samples
p tokens until the sum of the entropy of the distributions from which those tokens were sampled meets a
minimum threshold Hp. Intuitively, this approach “collects” entropy before attempting to encode into it,
boosting success rate while avoiding the issues of low entropy.

Figure 2c shows a selection probabilities graph, with di↵erent values of Hp compared against a baseline
measurement of normal sampling from the GPT-2 (note this baseline includes all sampled tokens, unlike in
Figure 2b). In the figure, each set of runs of the model sets � = k, i.e., the entropy required to encode is
equivalent to the number of tries to encode. There are di↵erences between the probabilities, but here is no
clear pattern – this variation can be attributed to sampling error. [Hop04] proved that for this approach to be
secure, Hp must be strictly larger than log(k); to achieve useful security parameters, we need Hp = k ⇡ 2⇥�,

10

Table 1: Performance results for model load encoding using the method of [Hop04] and resampling, averaged
over 30 runs. The message being encoded is the first 16 bytes of Lorem Ipsum.

Parameters
Samples
(Tokens)

Time
(Sec)

Stegotext Len.
(KiB)

Overhead
(Length)

Hp = k = 16 502.8 42.69 2.3 149.4x
Hp = k = 32 880.4 128.41 4.1 261.8x
Hp = k = 64 1645.0 361.28 7.5 482.1x
Hp = k = 128 2994.6 765.40 13.6 870.7x

where � is the security parameter.
While provably secure, variable length sampling results in unreasonably large stegotext and long encoding

times. Table 1 shows the length of stegotext and encoding times when encoding a 16 byte plaintext message
using adaptation 2 on our Desktop/GPU test environment using the GPT-2 model (refer to Section 6 for
hardware details). Each row corresponds to 30 runs of the model for that set of parameters. As Hp (and
thereby k) increase, the length of the stegotext also increases: the higher resampling entropy requirement
means that more tokens must be sampled, which takes more time. We note that these results include GPU
acceleration, so there is little room for performance boosts from hardware.

5 Meteor: AMore E�cient Symmetric-Key Steganographic Scheme

We now design a symmetric-key steganographic scheme that is more practical than the techniques above. A
more e�cient symmetric-key approach would allow for hybrid steganography, in which a sender encodes a
symmetric key using the public-key steganography and then switches to a faster and more e�cient encoding
scheme using this symmetric key. We note that while symmetric-key approaches have been considered in
the past, e.g. [HLv02, RR03], they also rely on the entropy gathering techniques highlighted above. Our
approach’s intuition to accommodate high entropy variability is to fluidly change the encoding rate with
the instantaneous entropy in the channel. As will become clear, Meteor does this implicitly, by having the
expected number of bits encoded be proportional to the entropy.

5.1 Intuition

Suppose we have, for example, a generative model M trained to output English text word-by-word. Each
iteration takes as input all previously generated words H and outputs a probability distribution P for the
next word, defined over all known words T . This is done by partitioning the probability space between 0 and
1 (represented at some fixed precision) into continuous intervals r0, r1, . . . , rm corresponding to each valid
word. For instance, if the precision is 5 bits, r0 might be interval [00000, 00101), r1 might be [00101, 10000),
and so on. The algorithm then generates a uniform random value r 2 [00000, 11111], finds the interval
ri into which r falls, and outputs the corresponding word. In the example, if r = 01110, then the word
corresponding to r1 would be chosen. In practice, these values all have much higher precision, for example
r 2 {0, 1}32, ri 2 {0, 1}32 ⇥ {0, 1}32.

Meteor embeds messages into the random number r used to sample from the model, as illustrated in
Figure 3. Consider the information that a potential receiver with access to the model might learn from a
single output of the generative model. Because the receiver has access to M, they can recover the interval
ri into which r must have fallen. Note that a ri might contain a huge — possibly exponential — number
of possible values that would all yield the same sample, meaning the receiver cannot uniquely recover the
true value of r. However, because the intervals are continuous, all such values may share a prefix, e↵ectively
fixing the first few bits of r in the view of the receiver. In this example above, all values in r1 are contained
in the first half of the distribution space, so the receiver can conclude the first bit of r must have been a 0.

11

Attack@Dawn

 0101 0111 1100 1001

PRG Mask: 0001 0110 1011 1101

Generative
Model

Evidence indicates that
the asteroid fell in the
Yucatan Peninsula, at
Chicxulub, Mexico.

An The A However Since

Message Bits: 0100 0001 0111 0100 The first importance of the Yucatan
Peninsula is demonstrated with the
following conclusion: the Pliocene
Earth has lost about seven times as
much vegetation as the Jurassic in
regular parts of the globe, from
northern India to Siberia…

Plaintext

Context

StegotextEncoder

Figure 3: An overview of the encoding strategy for Meteor. In each iteration of Meteor, a new token (shown in green)

is selected from the probability distribution created by the generative model. Depending on the token selected, a few

bits (shown in red) can be recovered by the receiver. The stegotext above is real output from the GPT-2 model.

Similarly, if the word corresponding to r0 had been chosen, the first bits of r must have been 00. Another
example can be seen in Figure 3, in which the interval corresponding to the word “The” shares the prefix
01, so a receiver can recover these bits. In this way, if r is a function of the hidden message, the receiver
can potentially recover bits of information about the message with each output of the model. Because the
sender and receiver share the description of the distribution, the sender can determine how many bits will
be recoverable, and then discard those bits before repeating the process.

The key challenge in this setting is keeping the message hidden from the adversarial censor with access
to the same distribution. Clearly, using the bits of the message as the randomness is insecure, as a censor
with the same model could extract the message. Encrypting the message with a pseudorandom cipher, as
in the public-key solution above, is also insu�cient because it is possible that the encoder will be forced
to reuse randomness. For example, consider a probability distribution in which the values of the interval
containing r have no shared prefix, but 90% of the values in that interval begin with a 0. Because no bits
are transmitted and the next iteration will use the same value of r. The censor now knows that with 90%
likelihood, r in the second sampling event begins with zero. Over enough trials, a censor could detect this
bias and distinguish between honestly sampled output and stegotext.

To avoid the reuse of randomness, Meteor generates a fresh mask for r each time the sender samples an
output. This is done using a PRG, keyed with state shared by the sender and receiver, and applied using
XOR. The receiver recovers as many bits of r as possible and then unmasks them with the corresponding
XOR mask to recover bits of the message. Conceptually, this can be seen as repeatedly encrypting the
message with a stream cipher, facilitating bit-by-bit decryption. This novel encoding technique means the
number of bits that can be transmitted in each sampling event is not fixed. In practice, this is a huge
advantage, as the expected number of bits transmitted is proportional to the entropy in the channel without
requiring any explicit signaling (see Section 5.2). Finally, it is intuitively clear why this approach yields a
secure scheme: (1) each sampling event is performed with a value of r that appears independent and random
and (2) all bits that can be recovered are obscured with a one-time pad.

5.2 Meteor

For notation, let � be a security parameter and k represent concatenation or appending to an ordered set.
We adopt Python-like array indexing, in which x[a : b] includes the elements of x starting with a and ending
with b, exclusive. Finally, we use two subroutines LenPrefix�(·) and Prefix

�(·), presented in Algorithm 2 and
Algorithm 3, respectively. The first gives the length of the longest shared bit prefix of elements in the set,
and the second returns this bit prefix explicitly.

Pseudorandom Generators. Our construction leverages a pseudorandom generator PRG [BM82]. For
a more formal treatment of the security notions of PRGs, see [Ruh17] and the citations contained therein.
We adopt the notation used in stateful PRGs. Specifically, let the PRG have the functionalities PRG.Setup

12

and PRG.Next. The setup algorithm generates the secret state material, which we will denote kprg for
simplicity, and the next algorithm generates � pseudorandom bits. We require that the PRG satisfy at least
the real-or-random security games.

Construction. Meteor consists of three algorithms, parameterized by a bit precision � and a model M
that supports a RRRSS. We use a generative model M as our instantiation of the distribution D for an
RRRSS as defined in Section 3. The key generation algorithm KeyGen

�
M

is presented in Algorithm 4, the

encoding algorithm Encode
�
M

is presented in Algorithm 5, and the decoding algorithm Decode
�
M

is presented
in Algorithm 6.

The precision � 2 Z,� > 0 controls the maximum number of bits that can be encoded in each iteration.
� should be the accuracy of the underlying sampling scheme. Most models in our implementation give
probability distributions accurate to 32 bits, so we set � = 32. In our tests, it is incredibly unlikely that 32
bits will successfully be encoded at once, meaning using a lower � is likely acceptable.

Because the model used in sampling is a generative one, the model maintains state on its previous inputs.
Each distribution generated by the model is dependent on the values sampled from previous distributions.
Additionally, the model requires an initial state to begin the generative process. This state is abstracted by
the history parameter H passed to instances of Encode and Decode. This allows the distributions generated
by each successful sampling of a covertext token ci to remain synchronized between the two parties. We
assume that the entire history H is maintained between the parties, including the initial state that primes
the model.

The encoding algorithm loops through three stages until the entire message has been successfully encoded:
(1) generating and applying the mask, (2) sampling a next output to append to the covertext, and (3)
updating the state of the algorithm based on the output of the sampling event. In the first stage, the mask is
computed as the output of a pseudorandom generator and is applied with the XOR operation. The resulting
value, r is distributed uniformly in [0, 2�+1), as each bit of r is distributed uniformly in {0, 1}. This random
value is then used in step (2) to sample the next output of the sampling scheme. To determine the number
of bits this sampling event has successfully encoded, the encoding algorithm uses the Recover

� functionality
of the RRRSS and calls LenPrefix on the resulting (multi-)set. Finally, the algorithm then updates the �
bits that will be used in the next iteration, and updates its other state as appropriate.

The decoding algorithm performs these same three stages, but with the order of the first two reversed.
With knowledge of the output of each sampling stage ci, the first algorithm calls Recover

� and Prefix to
recompute some (possibly zero) leading bits of the r. Then, it calculates the mask that was used by the
encoder for those bits and removes the mask. The bits recovered in this way make up the message.

Note that we do not discuss reseeding the PRG. Most PRGs have a maximum number of bits that can
be extracted before they are no longer considered secure. Because the PRG secret information is shared by
the sender and receiver, they can perform a rekeying or key ratcheting function as necessary.

Correctness. Correctness follows directly from the properties of the RRRSS and the correctness of the
PRG. We know that the RRRSS always will return the full set of random values that could have generated
the sample, and thus recovery of the masked plaintext it deterministic. The receiver is able to recompute
the same mask (and remove it) because of the correctness of the PRG, i.e it is also deterministic.

Proof of Security. We sketch the proof of security, as the formalities of this simple reduction are clear from
the sketch. Consider an adversary A which has non-negligible advantage in the security game considered
in Definition 1. We construct an adversary Â with non-negligible advantage in the PRG real-or-random
game, with oracle denoted R(·). To properly answer queries from A, Â runs the encoding algorithm in
Algorithm 2 with an arbitrary input message, but queries the R(·) to obtain the mask required for sampling.
Additionally, Â keeps a table of all queries sent by A and the responses. When A queries the decoding
algorithm, Â checks its table to see if the query matches a previous encoding query, and responds only if
it is an entry in the table. Note that if R(·) implements a true random function, the encoding algorithm
simply samples a random message from the distribution. When A terminates, outputting a bit b, Â outputs
b as well.

13

Algorithm 2: LenPrefix�

Input: Set of Bit Strings R = {r1, r2, . . . rn}
Output: Length `
` 1
while ` < � do

if 9 i, j 2 {1, . . . , n} such that ri[0 : `] 6= rj [0 : `] then
Output `� 1

` `+ 1
Output `

Algorithm 3: Prefix�

Input: Set of Bit Strings R = {r1, r2, . . . rn}
Output: Bit String s
Output r1[0 : LenPrefix�(R)]

Algorithm 4: KeyGen�
M

Input: 1�

Output: Key kprg
Output kprg PRG.Setup(1�)

Algorithm 5: Encode�
M

Input: Key kprg, Plaintext Message m, History H

Output: Stegotext Message c
c ", n 0
while n < |m| do

mask PRG.Next(kprg)
r m[n : n+ �]�mask
ci Sample

�
M
(H, r)

R Recover
�
M
(H, ci)

ni LenPrefix
�(R)

c ckci, n n+ ni, H Hkci
Output c

Algorithm 6: Decode�
M

Input: Key kprg, Stegotext Message c, History H

Output: Plaintext Message m
x "
Parse c as {c0, c1, . . . , c|c|�1}

for i 2 {0, 1, . . . , |c|� 1} do
R Recover

�
M
(H, ci)

xi Prefix
�(R)

mask PRG.Next(kprg)
x xk(xi �mask[0 : |xi|])
H Hkci

Output x

Figure 4: Algorithms for Meteor

14

Algorithm 7: Sample
�
M

for the GPT-2 model.

Input: Randomness r 2 {0, 1}� , History H

Output: Token next
T ,P NextM(H)
cuml 0
for i 2 {0, 1, . . . , |T |� 1} do

cuml cuml + P[i]
if cuml > r then

Output next T [i]

Output next T [|T |� 1]

Algorithm 8: Recover�
M

for the GPT-2 model.

Input: History H, Sample s
Output: Randomness set R
T ,P NextM(H)
cuml 0
for i 2 {0, 1, . . . , |T |� 1} do

if T [i] = s then
Output R {r 2 {0, 1}� | cuml  r < cuml + P[i]}

cuml cuml + P[i]

Output R ;

Figure 5: RRRSS algorithms for GPT-2 model. T is an array of possible next tokens and P is the probability
associated with each of these tokens.

As the message is masked by the queries Â sends to R(·), A must be able to distinguish between a true-
random output and the xor of a message with a one-time pad. Because XOR preserves the uniformly-random
distribution of the pad, this is not possible with non-negligible probability.

E�ciency. The asymptotic, expected throughout of Meteor is proportional to the entropy in the communi-
cation channel. To see this, note that the expected throughput for each sampling event can be computed asP

i2|P|
piExp(pi), where P is the distribution in the channel for the sampling event, pi is the probability of

each individual outcome, and Exp(·) is the expected number of shared prefix bits for some continuous interval
of size pi. Thus, if Exp(pi) is proportional to � log2(pi), Meteor is asymptotically optimal (recall that entropy,
the information-theoretic boundary for information transmission, is computed as �

P
i2|P|

pi log(pi)). We

show in Appendix A that Exp(pi) �
1
2 (� log2(pi)� 1) for pi 

1
2 by carefully observing the behavior of the

LenPrefix function when evaluated on a fixed sized interval with a random starting point between [0, 2�+1).

6 Evaluation of Meteor

In this section we discuss our implementation of Meteor and evaluate its e�ciency using multiple models.
We focus on evaluating Meteor, not a hybrid steganography system using the public key stegosystem in
Section 4, because it is significantly more e�cient. Moreover, the e�ciency of a hybrid stegoanography
system is determined by the e�ciency of its constituent parts; the cost of such a scheme is simply the cost
of transmitting a key with the public key scheme (see Section 4) plus the cost of transmitting the message
with Meteor.

Implementation details. We implemented Meteor using the PyTorch deep learning framework [PGC+17].
We realize the PRG functionality with HMAC DRBG, a deterministic random bit generator defined in NIST SP

15

Table 2: Performance measurements for Meteor on the GPT-2 by device for a shorter context. Times are
provided in seconds.

Device Load Encode Decode Overhead (time)

GPU 5.867 6.899 6.095 1⇥
CPU 5.234 41.221 40.334 4.6⇥
Mobile 1.830 473.58 457.57 49.5⇥

800-90 A Rev. 1 [BK15]. The implementation supports any type of binary data, such as UTF-8-encoded
strings or image files, as input.

To illustrate Meteor’s support for di↵erent model types, we implemented the algorithm with the weakened
version of the GPT-2 language model released by OpenAI and two character-level recurrent neural networks
(RNN) that we train. The GPT-2 model [RWC+19] is a generative model of the English language. It
parses language into a vocabulary of words and generates words when given previous context. Meteor
encodes stegotext into these generated words. The character-level models generate ASCII characters in
each iteration. These models output lower-quality English text, but are more generalizable. Character-level
models work with any data that can be represented as text, including other languages and non-text protocols,
whereas word-level models are specific to the English language models.

Our GPT-2 codebase builds upon that of [ZDR19]. Our character-level RNNs use the code of [Rob17]
with locally trained models. We note that the next-generation GPT language model, GPT-3, has been
published by OpenAI [BMR+20]; however, at the time of this writing, the codebase for the GPT-3 has
not been released. The GPT-3 interface is the same as the GPT-2, meaning integration will be automatic,
increasing stegotext quality while maintaining security guarantees. Example stegotext generated with the
GPT-2 model can be found in Appendix C.

Figure 5 shows how to instantiate the Sample
�
M

and Recover
�
M

algorithms from Section 3 with the
distribution represented as a generative model M (in discussion of classical steganography, we used D). Both
algorithms use NextM(H), which generates an array of possible next tokens T and an array of probabilities
associated with each token P using the model’s internal structure. The Sample

�
M

for generative networks
accumulates the probabilities and selects the first token for which the cumulative probability exceeds the
randomness supplied. This is equivalent to multinomial sampling, and is the unmodified method of sampling
normally from the GPT-2 model. In the unmodified (i.e., non-Meteor) case, the GPT-2 chooses a true
random value r instead of a PRG as in Meteor. Recover

�
M

inverts the process, returning the entire set of
random values that would yield the target sample s.

In addition to the GPT-2 variant, we trained two character-level RNN models to test with Meteor. Each
model uses long short term memory (LSTM) cells to store state [HS97]. The first model, named “Wikipedia”,
was trained on the Hutter Prize dataset [Hut06], which consists of a subset of English Wikipedia articles.
The data from this model contains English text structured with Wiki markup. The output of this model is
good, but its character-level nature makes its outputs less convincing human text than GPT-2 output. The
second model, named “HTTP Headers”, consist of the headers for 530,128 HTTP GET requests from a 2014
ZMap scan of the internet IPv4 space [DWH13, Cut]. This highly structured dataset would facilitate hiding
messages amongst other HTTP requests. We note that the flexibility of character-level models allows us
to generalize both text-like channels and protocol-esque channels [Kar15]. Both models have three hidden
layers. The Wikipedia model has a hidden layer size 795 and was trained for 25,000 epochs. The HTTP
headers model has size 512 and was for 5,000 epochs, due to its more structured nature. The two models
were trained at a batch size of 100 characters and learning rate 0.001. Example output from the Wikipedia
character-level model can be found in Appendix C.

Evaluation hardware. To measure performance across di↵erent hardware types, we evaluate Meteor on
3 systems: (1) Desktop/GPU, a Linux workstation with an Intel Core i7-6700 CPU, NVIDIA TITAN X
GPU, and 8 GiB of RAM, (2) Laptop/CPU, a Linux laptop with an Intel Core i7-4700MQ CPU, no discrete
GPU, and 8 GiB of RAM, and (3) Mobile, an iPhone X running iOS 13. The Desktop ran benchmarks

16

Table 3: Model statistics for encoding a 160-byte plaintext. Timing results reflect model load, encoding, and
decoding combined.

Mode
Desktop/GPU

(sec)
Laptop/CPU

(sec)
Stegotext Length

(bytes)
Overhead
(length)

Capacity
(bits/token)

GPT-2 18.089 82.214 1976 12.36⇥ 3.09
GPT-2 (Reorder) 30.570 82.638 1391 8.69⇥ 4.11
GPT-2 (Compress) 11.070 42.942 938 3.39⇥ 3.39
Wikipedia 19.791 46.583 2002 12.51⇥ 0.64
Wikipedia (Reorder) 15.515 39.450 1547 9.67⇥ 0.83
HTTP Headers 49.380 103.280 6144 38.4⇥ 0.21
HTTP Headers (Reorder) 57.864 127.759 7237 45.23⇥ 0.18

on the GPU, while the Laptop machine ran on the CPU; as such, the Laptop is more representative of
consumer hardware. We evaluate Meteor on both the Desktop and Laptop using each of the three models
discussed above. Additionally, we evaluate reordering and native compression optimizations. The results are
summarized in Table 3. We discuss mobile benchmarks separately at the end of this section.

Model performance. The capacity, or number of bits encoded per token, is much higher for the GPT-2
model examples than for the Wikipedia and HTTP Headers models. Intuitively, the word-level nature of
GPT-2 means there is usually more entropy in each distribution, whereas the character-level models have,
at most, 100 printable ASCII characters from which to sample; this pushes the capacity of a single token
to be much higher as a result. The stark di↵erence in capacity between the capacities of Wikipedia and
HTTP Headers can be attributed to the di↵erence in structure of the training data. The Wikipedia dataset,
although structured, is mostly English text. On the other hand, the HTTP Headers dataset is based on the
HTTP protocol, which is rigid in structure — variation only exists in fields that can change, such as dates
and URLs.

Encoding statistics. Our next suite of benchmarks measures the relationship between the length of
message and the time it takes to produce a stegotext. We generated plaintexts randomly and encoded them,
incrementing the length of the message by one in each run. The results are plotted in Figure 6, which shows
a clear linear relationship between the two variables. It is also apparent from the plot that the variance in
encoding time increases as the length increases. This is because as tokens are selected, the model state can
diverge; in some of these branches, the entropy may be very low, causing longer encoding times. This is
amplified in the HTTP Headers model, as the baseline entropy is already very low.

Heuristic optimizations. In addition to implementing Meteor, we also evaluated two heuristic optimiza-
tions that could yield shorter stegotext. The first optimization is deterministically reordering the model’s
output distribution intervals to maximize expected throughput. Because this deterministic process does
not change the relative sizes of the interval, it does not impact the distribution of the stegotext. However,
because the placement of the intervals is usually arbitrary, it is possible to move large intervals that would
normally have no shared prefix to a starting location where there is a shared prefix, potentially increasing
throughput. A more thorough discussion of this technique can be found in Appendix B.

We evaluate this optimization for all three of our models (see Table 3). For the GPT-2 model, we see
a marked (24.8%) increase in capacity as well as a proportional reduction in stegotext length as a result of
reordering the model outputs. The reordering does induce computational overhead, as the distribution over
which the heuristic is performed is large (max 50,256 tokens). Reordering induces a 0.5% overhead in the
Laptop/CPU, where updating the model is slow, and 69.0% overhead in the Desktop/GPU, where updating
the model is fast. For the lower entropy models, the reordering algorithm we use is significantly faster,
but yields mixed results. We believe these mixed results are an artifact of our choice of greedy reordering
algorithms, which may perform poorly with heavily biased distributions.

The second optimization is to use the model itself as a compression function when encoding with an

17

0 50 100 150 200 250 300
Plaintext Length

0

20

40

60

80

100

Ti
m

e
to

En
co

de
an

d
D

ec
od

e

GPT-2
Wikipedia
HTML Headers

Figure 6: Comparison of plaintext length versus time to run encoding and decoding for di↵erent Meteor
models. R = 0.9745 (GPT-2), 0.9709 (Wikipedia), 0.9502 (HTTP Headers)

English language model, as in [ZDR19]. This technique leverages the fact that all known words in the
model’s vocabulary are internally represented by a unique number, taking fewer bits than its normal ASCII
representation. Before encoding, the secret message can be tokenized and each token can be replaced by its
unique identifier. These identifiers are then parsed as bits and encoded as normal. When implemented with
GPT-2, we see a 47.77% decrease in time spent on CPU, and an associated 52.5% decrease in stegotext size.
While powerful, this technique can only be used to encode English language messages into English language
models. Compressing the plaintext message using traditional compression (e.g., GZip) would yield similar
results.

Mobile benchmarks. Because Meteor is intended for censorship resistance, it is natural to benchmark it
on mobile devices, where most sensitive communication happens. We implement Meteor on iOS using the
CoreML framework, utilizing an existing GPT-2 iOS implementation as a base [Hug19]. To our knowledge,
our work represents the first evaluation of a neural network-based steganographic system on a mobile device.
Our implementation, in Swift, employs an even smaller version of the GPT-2 model which fits on mobile
devices as it uses smaller size context. An example of the output from this experiment can be found in
Appendix C.

Our results are summarized in Table 2. The Mobile benchmark in the table was performed on the iPhone
X Simulator, as we wished to instrument and profile our tests. We separately confirmed that simulator
runtimes were similar to those of actual iPhone X hardware. While Laptop/CPU is 4.6⇥ slower than Desk-
top/GPU, the Mobile runtime is a massive 49.5⇥ slower than the baseline case. While deep learning is
supported on mobile platforms like iOS, the intensive, iterative computations required by Meteor and other
neural stegosystems are not performant on mobile systems. Nonetheless, our proof-of-concept demonstrates
that Meteor could be used in a mobile context, and hardware improvements [Sim] would allow for secure com-
munication between users even when available communication platforms do not o↵er end-to-end encryption,
like WeChat.

7 Comparison to NLP-based Steganography

Noting the appeal of hiding sensitive messages in natural text, researchers in the field of natural language
processing (NLP) have recently initiated an independent study of steganography. Unfortunately, this work
does not carefully address the security implications of developing steganographic systems from NLP models.

18

Instead, the results employ a variety of ad-hoc techniques for embedding secret messages into the output of
sophisticated models. The resulting papers, often published in top NLP conferences, lack rigorous security
analyses; indeed, existing work cannot be proven secure under the definitions common in the cryptographic
literature. Highlighting this weakness, there is a concurrent line of work in the same conferences showing
concrete attacks on these schemes, e.g., [YHZ19, YWL+19, YWS+18, WBK15, KFH12, MHC+08].

The first wave of steganographic techniques in the NLP community leverages synonyms and grammatical
reorganization for encoding, e.g., [GGA+05, SSSS07, YHC+09, CC10, CC14, HH19]. The key observation
in this work is that natural variation in linguistic patterns can be used to hide information. For instance,
if one of two synonyms can be used in a sentence, each with probability .5, then the selection conveys a bit
of information. Similarly, comma usage or word order can be used to encode small amounts of information.
Because not all possible linguistic variations occur with equal likelihood, some of these works adapt a Hu↵man
encoding scheme to facilitate variable length encoding, e.g., [GGA+05, CC14]. These approaches rely on
linguistic idiosyncrasies and are therefore not generalizable.

More recently, researchers found ways to use the structure of these models to steganographically en-
code information, including LSTMs [FJA17], Generative Adversarial Networks [VNBB17], Markov Mod-
els [YJH+18], and other forms of Deep Neural Networks [Xia18, YGC+19, DC19, ZDR19]. Rather than give
an exhaustive description of the encoding techniques used in these works, we give a brief description of the
most important techniques.

Early constructions directly modified the distributions. One such construction [FJA17] organized the
distribution into “bins,” each representing a short bitstring, and randomly selected an output from the bins
corresponding to the message.2 Building on this intuition, other research [YGC+19, DC19] uses Hu↵man
coding to encode variable numbers of bit in each iteration. More recent work has attempted to use the
message itself as the sampling method, a method known as “arithmetic coding” [ZDR19]. This method
attempts to convert a plaintext message into a deterministic stegotext based on its contents, iteratively
using bits from the message to sample into the distribution. The first two constructions heavily modify the
output distribution, rendering stegotext easily detectable. The arithmetic construction is also insecure, since
it reuses randomness in multiple sampling events, a problem similar to the one that Meteor is designed to
overcome.

The relaxed adversarial models considered in the NLP community lead to significantly less robust con-
structions. For instance, the adversaries in the NLP literature do not have access to the model [YGC+19,
DC19, FJA17, ZDR19], significantly limiting the attacks they can mount. Without this assumption, an
adversary can clearly di↵erentiate between a stegotext and covertext by identifying biases in the output
distribution. The adversary compares the candidate output to random samples from the model, easily
distinguishing when a stegosystem is being run and defeating the purpose entirely.

The NLP threat model folds in the face of an advanced, persistent adversary who can always exfiltrate the
model through other means. Moreover, recent advanced in adversarial machine learning have demonstrated
how even the “secret” parameters of a black-box model can be extracted by seeing enough output [OSF19,
SZH+18, JSMA19], unlike that of encryption keys or pseudorandom functions. This pervasive requirement
that the model remains private information is therefore unreasonable. Unable to achieve cryptographic
security, these constructions evaluate their work by measuring the statistical di↵erence between the output
produced by the encoding scheme and real text. Highlighting the weaknesses of these schemes, numerous
attack papers have been published, e.g., [YHZ19, YWL+19, YWS+18, WBK15, KFH12, MHC+08]. These
attacks use machine learning techniques to detect the presence of encoded messages generated with some of
the works listed previously. Ad-hoc and non-cryptographic security is insu�cient to provide security against
powerful and determined adversaries, especially nation-state adversaries.

Comparative Analysis. We assess Meteor against the following previous solutions: (1) bins [FJA17],
(2) Hu↵man coding [YGC+19], and (3) arithmetic coding [ZDR19]. We compare standard NLP language
statistics for these with a regular, random sample from the model, and provide our results in Table 4. Note
that we mark entropy as “N/A” for Hu↵man and bins because these methods use a binning algorithm which
prevents us from calculating entropy meaningfully. The random sample is a control distribution, and is not

2A similar, but secure, partition based approach is investigated in [Cac00]

19

Table 4: Comparative distribution statistics for samples from neural steganography algorithms in prior NLP
work, with random sampling as a baseline. “N/A” indicates that a metric is not relevant for an algorithm.

Algorithm Perplexity KL-Divergence Capacity Entropy Secure?

Meteor (this) 21.60 0.045 3.09 6.30 3
Arithmetic [ZDR19] 29.22 0.082 4.82 6.66 7
Hu↵man [YGC+19, DC19] 8.85 0.851 2.31 N/A 7
Bins [FJA17] 50.82 2.594 3.00 N/A 7
Random Sample 13.82 0.040 N/A 5.36 N/A

encoding anything thereby having “N/A” capacity.
Of particular note in our results is the Kullback-Leibler (KL) divergence across algorithms, which in

this case compares the distribution of the model to the output distribution of the algorithm. The KL-
divergence for Meteor is very close to that of the random sample, as Meteor merely changes the randomness
to steganographically-encoded randomness. As discussed previously, algorithms that modify distributions
from the model have high biases, and this is reflected in the KL-divergence of Hu↵man and bins being
much higher than the rest. The arithmetic algorithm has a lower KL-divergence than the rest of the NLP
algorithms, as it does not modify the distribution; however, it has a higher value than Meteor because it
reuses randomness, while Meteor uses fresh randomness like the baseline random sample does.

We also note that the security properties of Meteor do not hamper the capacity metric significantly.
Arithmetic output has a higher capacity, but we note that the insecurity of this system makes this additional
capacity moot; modifying the parameters to Hu↵man or bins could have yielded the same capacity with the
same security vulnerabilities. Table 4 also includes perplexity and entropy statistics, that show Meteor is
competitive in performance with the insecure primitives proposed previously.

8 Conclusion

In this work we present an analysis of the practical limitations of using cryptographically secure steganog-
raphy on real, useful distributions, identifying the need for samplers and impractical entropy requirements
as key impediments. We show that adapting existing public key techniques is possible, but produces stego-
text that are extremely ine�cient. We then present Meteor, a novel symmetric key steganographic system
that dramatically outperforms the public key techniques by fluidly adapting to changes in entropy. We
evaluate Meteor, implementing it on GPU, CPU, and mobile, showing that it is an important first step
for universal, censorship-resistant steganography. Finally, we compare Meteor to existing insecure stegano-
graphic techniques from the NLP literature, showing it has comparable performance while actually achieving
cryptographic security.

Acknowledgements

The first author is supported by the National Science Foundation under Grant #2030859 to the Computing
Research Association for the CIFellows Project and DARPA under Agreement No. HR00112020021. The
second and fourth authors are funded by the NSF under award CNS-1329737. The third author is supported
by NSF under awards CNS-1653110 and CNS-1801479, the O�ce of Naval Research under contract N00014-
19-1-2292, DARPA under Contract No. HR001120C0084, and a Security and Privacy research award from
Google. Significant elements of this work were conducted while the first, second, and fourth authors were
supported by NSF award CNS-1330491. The first author would like to thank Adam Poliak for his early
help shaping this project. Additionally, the first author would like to thank Eric Wustrow for his insight
into censorship resistance techniques. Any opinions, findings and conclusions or recommendations expressed

20

in this material are those of the author(s) and do not necessarily reflect the views of the United States
Government or DARPA.

References

[ACI+20] Thomas Agrikola, Geo↵roy Couteau, Yuval Ishai, Stanislaw Jarecki, and Amit Sahai. On
pseudorandom encodings. In Rafael Pass and Krzysztof Pietrzak, editors, TCC 2020, Part III,
volume 12552 of LNCS, pages 639–669. Springer, Heidelberg, November 2020. 5

[aiw] Ai writer. http://ai-writer.com/. 5

[AKG14] Roee Aharoni, Moshe Koppel, and Yoav Goldberg. Automatic detection of machine translated
text and translation quality estimation. In Proceedings of the 52nd Annual Meeting of the
Association for Computational Linguistics (Volume 2: Short Papers), volume 2, pages 289–295,
2014. 7

[AP98] Ross J Anderson and Fabien AP Petitcolas. On the limits of steganography. IEEE Journal on
selected areas in communications, 16(4):474–481, 1998. 2, 5

[Bal17] Shumeet Baluja. Hiding images in plain sight: Deep steganography. In Neural Information
Processing Systems, 2017. 7

[BC05] Michael Backes and Christian Cachin. Public-key steganography with active attacks. In Joe
Kilian, editor, TCC 2005, volume 3378 of LNCS, pages 210–226. Springer, Heidelberg, February
2005. 2, 5

[Bev16] Marc Bevand. My experience with the great firewall of china. http://blog.zorinaq.com/my-
experience-with-the-great-firewall-of-china/, Jan 2016. 2

[BGO+19] Anton Bakhtin, Sam Gross, Myle Ott, Yuntian Deng, Marc’Aurelio Ranzato, and Arthur Szlam.
Real or fake? learning to discriminate machine from human generated text, 2019. 7

[BiA+20] Kevin Bock, iyouport, Anonymous, Louis-Henri Merino, David Fifield, Amir Houmansadr, and
Dave Levin. Exposing and circumventing china’s censorship of esni, 8 2020. 2

[BK15] Elaine Barker and John Kelsey. Nist special publication 800-90a revision 1 recommendation for
random number generation using deterministic random bit generators, 2015. 16

[BL18] Sebastian Berndt and Maciej Liskiewicz. On the gold standard for security of universal steganog-
raphy. In Jesper Buus Nielsen and Vincent Rijmen, editors, EUROCRYPT 2018, Part I, volume
10820 of LNCS, pages 29–60. Springer, Heidelberg, April / May 2018. 5

[Blo19] OpenAI Blog. Better language models and their implications. Available at https://openai.
com/blog/better-language-models/, February 2019. 3, 7

[BM82] Manuel Blum and Silvio Micali. How to generate cryptographically strong sequences of pseudo
random bits. In 23rd FOCS, pages 112–117. IEEE Computer Society Press, November 1982. 12

[BMR+20] Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared Kaplan, Prafulla Dhari-
wal, Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, Sandhini Agarwal,
Ariel Herbert-Voss, Gretchen Krueger, Tom Henighan, Rewon Child, Aditya Ramesh, Daniel M.
Ziegler, Je↵rey Wu, Clemens Winter, Christopher Hesse, Mark Chen, Eric Sigler, Mateusz
Litwin, Scott Gray, Benjamin Chess, Jack Clark, Christopher Berner, Sam McCandlish, Alec
Radford, Ilya Sutskever, and Dario Amodei. Language models are few-shot learners, 2020. 3,
4, 5, 6, 7, 16

21

http://ai-writer.com/
https://openai.com/blog/better-language-models/
https://openai.com/blog/better-language-models/

[Cac00] Christian Cachin. An information-theoretic model for steganography. Cryptology ePrint
Archive, Report 2000/028, 2000. http://eprint.iacr.org/2000/028. 2, 5, 19

[CC10] Ching-Yun Chang and Stephen Clark. Linguistic steganography using automatically generated
paraphrases. In Human Language Technologies: The 2010 Annual Conference of the North
American Chapter of the Association for Computational Linguistics, HLT ’10, pages 591–599,
Stroudsburg, PA, USA, 2010. Association for Computational Linguistics. 2, 4, 19

[CC14] Ching-Yun Chang and Stephen Clark. Practical linguistic steganography using contextual syn-
onym substitution and a novel vertex coding method. Computational Linguistics, 40(2):403–448,
Jun 2014. 2, 4, 19

[CF16] Marta Costa-Jussa and José Fonollosa. Character-based neural machine translation. In Pro-
ceedings of the 54th Annual Meeting of the Association for Computational Linguistics, pages
357–361, 03 2016. 7

[Cha19] Marc Chaumont. Deep learning in steganography and steganalysis from 2015 to 2018, 2019. 7

[Con16] Kate Conger. Whatsapp blocked in brazil again. https://techcrunch.com/2016/07/19/whatsapp-
blocked-in-brazil-again/, Jul 2016. 1

[Cut] Silas Cutler. Project 25499 ipv4 http scans. https://scans.io/study/mi. 16

[DC19] Falcon Dai and Zheng Cai. Towards near-imperceptible steganographic text. Proceedings of the
57th Annual Meeting of the Association for Computational Linguistics, 2019. 2, 4, 19, 20

[DCRS13a] Kevin P Dyer, Scott E Coull, Thomas Ristenpart, and Thomas Shrimpton. Protocol misiden-
tification made easy with format-transforming encryption. In Proceedings of the 2013 ACM
SIGSAC conference on Computer & communications security, pages 61–72. ACM, 2013. 1, 6

[DCRS13b] Kevin P. Dyer, Scott E. Coull, Thomas Ristenpart, and Thomas Shrimpton. Protocol misiden-
tification made easy with format-transforming encryption. In Ahmad-Reza Sadeghi, Virgil D.
Gligor, and Moti Yung, editors, ACM CCS 2013, pages 61–72. ACM Press, November 2013. 7

[DCS15] Kevin P. Dyer, Scott E. Coull, and Thomas Shrimpton. Marionette: A programmable network
tra�c obfuscation system. In 24th USENIX Security Symposium (USENIX Security 15), pages
367–382, Washington, D.C., 2015. USENIX Association. 7

[DFMO14] Dana Dachman-Soled, Georg Fuchsbauer, Payman Mohassel, and Adam O’Neill. Enhanced
chosen-ciphertext security and applications. In Hugo Krawczyk, editor, PKC 2014, volume
8383 of LNCS, pages 329–344. Springer, Heidelberg, March 2014. 9

[DIRR05] Nenad Dedic, Gene Itkis, Leonid Reyzin, and Scott Russell. Upper and lower bounds on black-
box steganography. In Joe Kilian, editor, TCC 2005, volume 3378 of LNCS, pages 227–244.
Springer, Heidelberg, February 2005. 2, 6

[DMS04] Roger Dingledine, Nick Mathewson, and Paul Syverson. Tor: The second-generation onion
router. In Proceedings of the 13th Conference on USENIX Security Symposium - Volume 13,
SSYM’04, pages 21–21, Berkeley, CA, USA, 2004. USENIX Association. 1, 6

[DWH13] Zakir Durumeric, Eric Wustrow, and J Alex Halderman. Zmap: Fast internet-wide scanning
and its security applications. In Presented as part of the 22nd USENIX Security Symposium
USENIX Security 13), pages 605–620, 2013. 16

[EFW+15] Roya Ensafi, David Fifield, Philipp Winter, Nick Feamster, Nicholas Weaver, and Vern Paxson.
Examining how the great firewall discovers hidden circumvention servers. In Proceedings of the
2015 Internet Measurement Conference, pages 445–458, 2015. 2

22

http://eprint.iacr.org/2000/028

[EWMC15] Roya Ensafi, Philipp Winter, Abdullah Mueen, and Jedidiah R. Crandall. Analyzing the great
firewall of china over space and time. PoPETs, 2015(1):61–76, January 2015. 2

[FDS+17] Sergey Frolov, Fred Douglas, Will Scott, Allison McDonald, Benjamin VanderSloot, Rod Hynes,
Adam Kruger, Michalis Kallitsis, David G Robinson, Steve Schultze, et al. An isp-scale deploy-
ment of tapdance. In 7th {USENIX} Workshop on Free and Open Communications on the
Internet ({FOCI} 17), 2017. 7

[Fis19] Tom Fish. Whatsapp banned: Countries where whatsapp is blocked mapped.
https://www.express.co.uk/life-style/science-technology/1166191/whatsapp-ban-map-which-
countries-where-whatsapp-blocked-censorship-china-banned, Aug 2019. 1

[FJA17] Tina Fang, Martin Jaggi, and Katerina Argyraki. Generating steganographic text with lstms.
Proceedings of ACL 2017, Student Research Workshop, 2017. 2, 4, 19, 20

[FLH+15] David Fifield, Chang Lan, Rod Hynes, Percy Wegmann, and Vern Paxson. Blocking-resistant
communication through domain fronting. Proceedings on Privacy Enhancing Technologies,
2015(2):46–64, 2015. 6

[Fre18] Freedom House. Freedom on the net 2018 map. https://freedomhouse.org/report/freedom-
net/freedom-net-2018/map, 2018. 1

[FW19] Sergey Frolov and Eric Wustrow. The use of tls in censorship circumvention. In NDSS, 2019. 6

[GGA+05] Christian Grotho↵, Krista Grotho↵, Ludmila Alkhutova, Ryan Stutsman, and Mikhail Atallah.
Translation-based steganography. In International Workshop on Information Hiding, pages
219–233. Springer, 2005. 2, 4, 19

[Gra16] Andreas Graefe. Guide to automated journalism. 2016. 5

[GSR19] Sebastian Gehrmann, Hendrik Strobelt, and Alexander M. Rush. Gltr: Statistical detection
and visualization of generated text, 2019. 7

[Har18] Harveyslash. harveyslash/deep-steganography. https://github.com/harveyslash/Deep-
Steganography, Apr 2018. 7

[HH19] SHIH-YU HUANG and Ping-Sheng Huang. A homophone-based chinese text steganography
scheme for chatting applications. Journal of Information Science & Engineering, 35(4), 2019.
2, 4, 19

[HLv02] Nicholas J. Hopper, John Langford, and Luis von Ahn. Provably secure steganography. In Moti
Yung, editor, CRYPTO 2002, volume 2442 of LNCS, pages 77–92. Springer, Heidelberg, August
2002. 2, 5, 8, 11

[Hop04] Nicholas J Hopper. Toward a theory of steganography. Technical report, CARNEGIE-MELLON
UNIV PITTSBURGH PA SCHOOL OF COMPUTER SCIENCE, 2004. 4, 5, 6, 7, 9, 10, 11

[HPRV19] Thibaut Horel, Sunoo Park, Silas Richelson, and Vinod Vaikuntanathan. How to subvert back-
doored encryption: Security against adversaries that decrypt all ciphertexts. In Avrim Blum,
editor, ITCS 2019, volume 124, pages 42:1–42:20. LIPIcs, January 2019. 5

[HRBS13] Amir Houmansadr, Thomas J. Riedl, Nikita Borisov, and Andrew C. Singer. I want my voice
to be heard: IP over voice-over-IP for unobservable censorship circumvention. In NDSS 2013.
The Internet Society, February 2013. 1, 6

[HS97] Sepp Hochreiter and Jürgen Schmidhuber. Long short-term memory. Neural computation,
9:1735–80, 12 1997. 7, 16

23

[Hug19] HuggingFace. huggingface/swift-coreml-transformers. https://github.com/huggingface/swift-
coreml-transformers, Oct 2019. 18

[Hut06] Marcus Hutter. The human knowledge compression contest. http://prize.hutter1.net/, 2006.
16

[HWJ+18] D. Hu, L. Wang, W. Jiang, S. Zheng, and B. Li. A novel image steganography method via deep
convolutional generative adversarial networks. IEEE Access, 6:38303–38314, 2018. 7

[JSMA19] Mika Juuti, Sebastian Szyller, Samuel Marchal, and N Asokan. Prada: protecting against
dnn model stealing attacks. In 2019 IEEE European Symposium on Security and Privacy
(EuroS&P), pages 512–527. IEEE, 2019. 19

[Kar15] Andrej Karpathy. The unreasonable e↵ectiveness of recurrent neural networks.
https://karpathy.github.io/2015/05/21/rnn-e↵ectiveness/, May 2015. 4, 7, 16

[KFH12] J. Kodovsky, J. Fridrich, and V. Holub. Ensemble classifiers for steganalysis of digital media.
IEEE Transactions on Information Forensics and Security, 7(2):432–444, April 2012. 2, 19

[Kin] Adam Kind. Talk to transformer. https://app.inferkit.com/demo. 5

[KJSR16] Yoon Kim, Yacine Jernite, David Sontag, and Alexander M. Rush. Character-aware neural
language models. In Proceedings of the Thirtieth AAAI Conference on Artificial Intelligence,
AAAI’16, pages 2741–2749. AAAI Press, 2016. 7

[Koh] Jing Yu Koh. https://modelzoo.co/. 5, 6

[LDJ+14] Daniel Luchaup, Kevin P. Dyer, Somesh Jha, Thomas Ristenpart, and Thomas Shrimpton.
Libfte: A toolkit for constructing practical, format-abiding encryption schemes. In 23rd
USENIX Security Symposium (USENIX Security 14), pages 877–891, San Diego, CA, 2014.
USENIX Association. 7

[Le03] Tri Van Le. E�cient provably secure public key steganography. Cryptology ePrint Archive,
Report 2003/156, 2003. http://eprint.iacr.org/2003/156. 5

[LK03] Tri Van Le and Kaoru Kurosawa. E�cient public key steganography secure against adaptively
chosen stegotext attacks. Cryptology ePrint Archive, Report 2003/244, 2003. http://eprint.
iacr.org/2003/244. 5

[LM06] Anna Lysyanskaya and Mira Meyerovich. Provably secure steganography with imperfect sam-
pling. In Moti Yung, Yevgeniy Dodis, Aggelos Kiayias, and Tal Malkin, editors, PKC 2006,
volume 3958 of LNCS, pages 123–139. Springer, Heidelberg, April 2006. 6

[May] Andrew Mayne. Ai—writer. https://www.aiwriter.app/. 5

[MHC+08] P. Meng, L. Huang, Z. Chen, W. Yang, and D. Li. Linguistic steganography detection based
on perplexity. In 2008 International Conference on MultiMedia and Information Technology,
pages 217–220, Dec 2008. 2, 19

[Mit99] Thomas Mittelholzer. An information-theoretic approach to steganography and watermarking.
In International Workshop on Information Hiding, pages 1–16. Springer, 1999. 5

[MLDG12] Hooman Mohajeri Moghaddam, Baiyu Li, Mohammad Derakhshani, and Ian Goldberg. Skype-
Morph: protocol obfuscation for Tor bridges. In Ting Yu, George Danezis, and Virgil D. Gligor,
editors, ACM CCS 2012, pages 97–108. ACM Press, October 2012. 1, 6

24

https://app.inferkit.com/demo
http://eprint.iacr.org/2003/156
http://eprint.iacr.org/2003/244
http://eprint.iacr.org/2003/244
https://www.aiwriter.app/

[MWD+15] Bill Marczak, Nicholas Weaver, Jakub Dalek, Roya Ensafi, David Fifield, Sarah McKune, Arn
Rey, John Scott-Railton, Ron Deibert, and Vern Paxson. An analysis of china’s “great cannon”.
In 5th {USENIX} Workshop on Free and Open Communications on the Internet ({FOCI} 15),
2015. 2

[OSF19] Seong Joon Oh, Bernt Schiele, and Mario Fritz. Towards reverse-engineering black-box neural
networks. In Explainable AI: Interpreting, Explaining and Visualizing Deep Learning, pages
121–144. Springer, 2019. 19

[OYZ+20] Jonathan Oakley, Lu Yu, Xingsi Zhong, Ganesh Kumar Venayagamoorthy, and Richard Brooks.
Protocol proxy: An fte-based covert channel. Computers & Security, 92:101777, May 2020. 7

[PGC+17] Adam Paszke, Sam Gross, Soumith Chintala, Gregory Chanan, Edward Yang, Zachary DeVito,
Zeming Lin, Alban Desmaison, Luca Antiga, and Adam Lerer. Automatic di↵erentiation in
pytorch. In NIPS-W, 2017. 15

[PM] Trevor Perrin and Moxie Marlinspike. he double ratchet algorithm. Available at https://
whispersystems.org/docs/specifications/doubleratchet/. 1, 4

[PW08] Chris Peikert and Brent Waters. Lossy trapdoor functions and their applications. In Richard E.
Ladner and Cynthia Dwork, editors, 40th ACM STOC, pages 187–196. ACM Press, May 2008.
9

[Rob17] Sean Robertson. spro/char-rnn.pytorch. https://github.com/spro/char-rnn.pytorch, Dec 2017.
16

[Roc20] Dan Rockmore. What happens when machines learn to write poetry. Jan 2020. 5

[RR03] Leonid Reyzin and Scott Russell. Simple stateless steganography. Cryptology ePrint Archive,
Report 2003/093, 2003. http://eprint.iacr.org/2003/093. 5, 11

[RSD+20] Ram Sundara Raman, Adrian Stoll, Jakub Dalek, Reethika Ramesh, Will Scott, and Roya
Ensafi. Measuring the deployment of network censorship filters at global scale. In Network and
Distributed Systems Security (NDSS) Symposium 2020, 2020. 1

[RSG98] M. G. Reed, P. F. Syverson, and D. M. Goldschlag. Anonymous connections and onion routing.
IEEE Journal on Selected Areas in Communications, 16(4):482–494, May 1998. 1, 6

[RSK13] Tim Ru�ng, Jonas Schneider, and Aniket Kate. Identity-based steganography and its appli-
cations to censorship resistance. In Ahmad-Reza Sadeghi, Virgil D. Gligor, and Moti Yung,
editors, ACM CCS 2013, pages 1461–1464. ACM Press, November 2013. 5

[Ruh17] Sylvain Ruhault. SoK: Security models for pseudo-random number generators. IACR Trans.
Symm. Cryptol., 2017(1):506–544, 2017. 12

[RWC+19] Alec Radford, Je↵ Wu, Rewon Child, David Luan, Dario Amodei, and Ilya Sutskever. Language
models are unsupervised multitask learners. OpenAI Blog, 1(8), 2019. 3, 4, 5, 6, 7, 9, 16

[SAZ+18] Ayon Sen, Scott Alfeld, Xuezhou Zhang, Ara Vartanian, Yuzhe Ma, and Xiaojin Zhu. Training
set camouflage. Decision and Game Theory for Security, page 59–79, 2018. 7

[Sha18] Adrian Shahbaz. Freedom on the net 2018. Available at https://freedomhouse.org/report/
freedom-net/freedom-net-2018/rise-digital-authoritarianism, 2018. 1

[Sim] Tom Simonite. Apple’s latest iphones are packed with ai smarts. https://www.wired.com/
story/apples-latest-iphones-packed-with-ai-smarts/. 18

25

https://whispersystems.org/docs/specifications/doubleratchet/
https://whispersystems.org/docs/specifications/doubleratchet/
http://eprint.iacr.org/2003/093
https://freedomhouse.org/report/freedom-net/freedom-net-2018/rise-digital-authoritarianism
https://freedomhouse.org/report/freedom-net/freedom-net-2018/rise-digital-authoritarianism
https://www.wired.com/story/apples-latest-iphones-packed-with-ai-smarts/
https://www.wired.com/story/apples-latest-iphones-packed-with-ai-smarts/

[Sim83] Gustavus J. Simmons. The prisoners’ problem and the subliminal channel. In David Chaum,
editor, CRYPTO’83, pages 51–67. Plenum Press, New York, USA, 1983. 2, 5

[SSM+06a] K. Solanki, K. Sullivan, U. Madhow, B. S. Manjunath, and S. Chandrasekaran. Provably secure
steganography: Achieving zero k-l divergence using statistical restoration. In 2006 International
Conference on Image Processing, pages 125–128, Oct 2006. 5

[SSM+06b] Kenneth Sullivan, Kaushal Solanki, B. S. Manjunath, Upamanyu Madhow, and Shivkumar
Chandrasekaran. Determining achievable rates for secure, zero divergence, steganography. In
ICIP, pages 121–124. IEEE, 2006. 5

[SSM07] A. Sarkar, K. Solanki, and B. S. Manjunath. Secure steganography: Statistical restoration in
the transform domain with best integer perturbations to pixel values. In IEEE International
Conference on Image Processing (ICIP), Sep 2007. 5

[SSSS07] Mohammad Shirali-Shahreza and M. H. Shirali-Shahreza. Text steganography in sms. 2007
International Conference on Convergence Information Technology (ICCIT 2007), pages 2260–
2265, 2007. 2, 4, 19

[SZH+18] Ahmed Salem, Yang Zhang, Mathias Humbert, Pascal Berrang, Mario Fritz, and Michael
Backes. Ml-leaks: Model and data independent membership inference attacks and defenses
on machine learning models. arXiv preprint arXiv:1806.01246, 2018. 19

[TAAP16] M. C. Tschantz, S. Afroz, Anonymous, and V. Paxson. Sok: Towards grounding censorship
circumvention in empiricism. In 2016 IEEE Symposium on Security and Privacy (SP), pages
914–933, May 2016. 2, 6

[Tor] Tor Project. The tor project: Privacy and freedom online. https://www.torproject.org/. 1, 6

[vD12] Arjen van Dalen. The algorithms behind the headlines. Journalism Practice, 6(5-6):648–658,
2012. 5

[vH04] Luis von Ahn and Nicholas J. Hopper. Public-key steganography. In Christian Cachin and
Jan Camenisch, editors, EUROCRYPT 2004, volume 3027 of LNCS, pages 323–341. Springer,
Heidelberg, May 2004. 2, 5, 8

[VNBB17] Denis Volkhonskiy, Ivan Nazarov, Boris Borisenko, and Evgeny Burnaev. Steganographic gen-
erative adversarial networks, 2017. 2, 4, 19

[VSP+17] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez,
undefinedukasz Kaiser, and Illia Polosukhin. Attention is all you need. In Proceedings of the 31st
International Conference on Neural Information Processing Systems, NIPS’17, page 6000–6010,
Red Hook, NY, USA, 2017. Curran Associates Inc. 7

[WBK15] Alex Wilson, Phil Blunsom, and Andrew Ker. Detection of steganographic techniques on twitter.
Proceedings of the 2015 Conference on Empirical Methods in Natural Language Processing, 2015.
2, 19

[WGN+12] Qiyan Wang, Xun Gong, Giang T. K. Nguyen, Amir Houmansadr, and Nikita Borisov. Censor-
Spoofer: asymmetric communication using IP spoofing for censorship-resistant web browsing.
In Ting Yu, George Danezis, and Virgil D. Gligor, editors, ACM CCS 2012, pages 121–132.
ACM Press, October 2012. 1, 6

[Wha17] WhatsApp. WhatsApp Encryption Overview. Available at https://scontent.
whatsapp.net/v/t61/68135620_760356657751682_6212997528851833559_n.pdf/
WhatsApp-Security-Whitepaper.pdf, December 2017. 1

26

https://scontent.whatsapp.net/v/t61/68135620_760356657751682_6212997528851833559_n.pdf/WhatsApp-Security-Whitepaper.pdf
https://scontent.whatsapp.net/v/t61/68135620_760356657751682_6212997528851833559_n.pdf/WhatsApp-Security-Whitepaper.pdf
https://scontent.whatsapp.net/v/t61/68135620_760356657751682_6212997528851833559_n.pdf/WhatsApp-Security-Whitepaper.pdf

[WPF13] Philipp Winter, Tobias Pulls, and Jürgen Fuß. Scramblesuit: A polymorph network protocol
to circumvent censorship. CoRR, abs/1305.3199, 2013. 1, 6

[WSH14] Eric Wustrow, Colleen M Swanson, and J Alex Halderman. Tapdance: End-to-middle anticen-
sorship without flow blocking. In 23rd {USENIX} Security Symposium ({USENIX} Security
14), pages 159–174, 2014. 1, 7

[WWGH11] Eric Wustrow, Scott Wolchok, Ian Goldberg, and J. Alex Halderman. Telex: Anticensorship in
the network infrastructure. In Proceedings of the 20th USENIX Security Symposium, August
2011. 1, 7

[WWY+12] Zachary Weinberg, Je↵rey Wang, Vinod Yegneswaran, Linda Briesemeister, Steven Cheung,
Frank Wang, and Dan Boneh. StegoTorus: a camouflage proxy for the Tor anonymity system.
In Ting Yu, George Danezis, and Virgil D. Gligor, editors, ACM CCS 2012, pages 109–120.
ACM Press, October 2012. 1, 6

[WYL18] Pin Wu, Yang Yang, and Xiaoqiang Li. Stegnet: Mega image steganography capacity with deep
convolutional network. Future Internet, 10(6):54, Jun 2018. 7

[Xia18] Lingyun Xiang. Reversible natural language watermarking using synonym substitution and
arithmetic coding, 2018. 2, 4, 19

[YGC+19] Z. Yang, X. Guo, Z. Chen, Y. Huang, and Y. Zhang. Rnn-stega: Linguistic steganography
based on recurrent neural networks. IEEE Transactions on Information Forensics and Security,
14(5):1280–1295, May 2019. 2, 4, 19, 20

[YHC+09] Zhenshan Yu, Liusheng Huang, Zhili Chen, Lingjun Li, Xinxin Zhao, and Youwen Zhu. Ste-
ganalysis of synonym-substitution based natural language watermarking, 2009. 2, 4, 19

[YHZ19] Zhongliang Yang, Yongfeng Huang, and Yu-Jin Zhang. A fast and e�cient text steganalysis
method. IEEE Signal Processing Letters, 26:627–631, 2019. 2, 19

[YJH+18] Zhongliang Yang, Shuyu Jin, Yongfeng Huang, Yujin Zhang, and Hui Li. Automatically generate
steganographic text based on markov model and hu↵man coding, 2018. 2, 4, 19

[YWL+19] Zhongliang Yang, Ke Wang, Jian Li, Yongfeng Huang, and Yujin Zhang. Ts-rnn: Text ste-
ganalysis based on recurrent neural networks. IEEE Signal Processing Letters, page 1–1, 2019.
2, 19

[YWS+18] Zhongliang Yang, Nan Wei, Junyi Sheng, Yongfeng Huang, and Yu-Jin Zhang. Ts-cnn: Text
steganalysis from semantic space based on convolutional neural network, 2018. 2, 19

[ZDR19] Zachary M. Ziegler, Yuntian Deng, and Alexander M. Rush. Neural linguistic steganography,
2019. 2, 4, 16, 18, 19, 20

[ZFK+98] Jan Zöllner, Hannes Federrath, Herbert Klimant, Andreas Pfitzmann, Rudi Piotraschke, An-
dreas Westfeld, Guntram Wicke, and Gritta Wolf. Modeling the security of steganographic
systems. In International Workshop on Information Hiding, pages 344–354. Springer, 1998. 5

[ZLZ+18] Yaoming Zhu, Sidi Lu, Lei Zheng, Jiaxian Guo, Weinan Zhang, Jun Wang, and Yong Yu.
Texygen: A benchmarking platform for text generation models. In The 41st International
ACM SIGIR Conference on Research & Development in Information Retrieval, pages 1097–
1100. ACM, 2018. 7

27

A E�ciency of Meteor

We now show that the asymptotic expected throughput of Meteor is proportional to the entropy in the
communication channel. Recall that the entropy in a distribution P is computed as �

P
i2|P|

pi log2(pi),

where pi is the probability of the ith possible outcome of P. Similarly, the expected throughput of Meteor
can be computed as

P
i2|P|

piExp(pi), where Exp(·) is the expected number of shared prefix bits for some
continuous interval of size pi. Thus, the remaining task is to compute a concrete bound on Exp(·).

We will make the simplifying assumption that the start of an interval pi is placed randomly between
[0, 2�+1). Note that interval i will never start after 2�+1

� pi in practice, so we the number of prefix bits in
this case to be 0, so this simplification will lead to an expected throughput strictly less than the true value.
Additionally, the starting locations for each interval are not independent in practice, as they each depend
on pj 6=i. However, this independence assumption also leads to equal or lower expected throughput, as the
starting point for larger intervals will actually be more biased towards the middle of the distribution, where
Exp(·) will be lower, and smaller distributions will be biased to start near the edges of the distribution, where
Exp(·) will be higher.

By way of example, consider an interval i such that pi =
1
4 � ✏, for some small ✏ (see Figure 7). If i starts

between [0, ✏), then it is contained completely before the prefix 01 begins, and thus would transmit 2 bits.
The following pi starting points all transmit only 1 bit, as the only shared prefix for the interval would be 0.
If i starts between [142

�+1, (14 + ✏)2�+1), the entire interval shares the prefix 01, so 2 bits can be transmitted.
In [(14 + ✏)2�+1, 1

22
�+1), there is no shared prefix, as some of the samples that would land in that interval

start with a 0 and others start with 1. The analysis continues in this way for the remainder of the starting
points.

More generally, the expected throughput of an interval with size p is the average of these di↵erent sets of
starting points with di↵erent length shared prefixed, weighted by size. More explicitly, let g(p) = b� log2(p)c,
then

Exp(p) �

(
0 , p > 1/2

g(p)(2�g(p)
� p)2g(p) + p

Pg(p)�1
j=1 (j2j) , p  1/2

The first part of the expression corresponds to the starting points where the interval has the most shared
bits, e.g. the points in Figure 7 where the throughput is 2. There are 2g(p) of these sets, each of which has
size (2�g(p)

� p), the di↵erence between p and the nearest power of two less than 2. The sum corresponds to
the when the interval transmits fewer bits, e.g. the points in Figure 7 where the throughput is 1 or 0. Each
of these terms counts the p2j starting points where the number of bits transmitted is j.

Note that Exp(p) � 1
2 (� log2(p) � 1) for small enough p. To see this, note that g(p) � � log2(p) � 1,

because of the rounding. Then, just consider the first term

g(p)(2�g(p)
� p)2g(p) � (� log2(p)� 1)(1� p2� log2(p)�1)

=
1

2
(� log2(p)� 1).

While this bound is not tight, it illustrates that Exp(p) asymptotically acts like log2(p), meaning
P

i2|P|
piExp(pi),

grows proportionally to the entropy in P, �
P

i2|P|
pi log2(pi). Thus, the expected throughput of Meteor is

asymptotically optimal.

B Heuristic Optimizations

In evaluating Meteor, we also implement two heuristic optimizations that could lead to better performance
without compromising security. Note that while they increases the expected throughput of scheme, it is not
guaranteed to do so. Making any change to the output selected in a given sampling event might unintention-
ally push the model down a lower entropy branch of the covertext space, yielding more sampling iterations
overall. The first optimization is performing a deterministic reordering operation of the model distribution,
reduces the number of calls to the generative model by 20%-25%, and in some cases results in more e�cient

28

0

1

2

✏ 1
4
1
4 + ✏

1
2
1
2 + ✏

3
4
3
4 + ✏

1

Starting Location of Interval

B
it
s

Figure 7: Bits of throughput by starting location for an interval i with size pi =
1
4 � ✏, for some small ✏. The

expected throughput can be computed as the average of this function, i.e. Exp(pi) � (2)(14 � ✏)(0)+ (2)(14 �
✏)(1) + (22)(✏)(2) = 1

2 � 6✏

r0 r1 r2

r0r1 r2

r0r1 r2

 1) E(d) = .03*5 + .49*0 + .48*1 = .63

 2) E(d)=.49*1 + .03*0 + .48*1 = .97

 3) E(d) = .49*1 + .48*0 + .03*5 = .64

(a) The impact of reorganizing a distri-
bution.

r2

r1

r1 r1 r0

Bucket 0 Bucket 1 Bucket 2 Bucket 3

(1)

(2) (3)

Bucket 0 Bucket 1 Bucket 2 Bucket 3

(0)

Bucket 0 Bucket 1 Bucket 2 Bucket 3

Bucket 0 Bucket 1 Bucket 2 Bucket 3

r2

(b) An overview of our reorganization algorithm.

Figure 8: (a) r0 has 3% of the total probability density, while r1 and r2 have 48% and 49% respectively. Because

2�6 < .03 < 2�5, r0 can encode 5 bits of information when located at the beginning or end of the distribution.

In orderings (1) and (2), one of the larger intervals crosses the 50% line, meaning LenPrefix(·) = 0. When the

smallest interval is placed in the middle, the total expected throughput of the distribution rises. (b) To reorder this

distribution we create 22 = 4 buckets, because the entropy is 1.16. In (1), we place the largest interval r1 into bucket

0, overflowing its value through most of bucket 1. Note that r1 could have been placed in bucket 2; in general, we

break ties by taking the earlier bucket. In (2), r2 can be placed either in bucket 1, overflowing into the following

buckets, or placed in bucket 2, overflowing into bucket 3. To maximize LenPrefix(r2), we place it in bucket 2. Finally,

in (3), we note that r0 will not fit in bucket 3, so it must be placed in bucket 1, pushing r2 to make space.

encoding and decoding times. The second optimization is an adaptation from the NLP literature that uses
the generative model’s internal word representation to compress English language messages.

Before proceeding to the optimizations themselves, recall the intuition provided for Meteor in Section 5. In
each iteration of the encoding algorithm, the sender extracts a probability distribution P from the generative
model. P is subdivided into a series of continuous intervals r0, r1, . . . rm, the size of which determines the
probability that the model would select the corresponding token is the next output. Meteor then generates
a random sampling value r = mask �m and determines the interval ri into which r falls. The number of
bits encoded is computed as LenPrefix(ri).

Optimization 1: Reordering the Distribution. We note that while we cannot manipulate |ri| with-
out compromising the security of scheme, we are able to impact LenPrefix(ri) by permuting the order of
r0, r1, . . . , rm. It is clear there exists some such permutation that maximizes the expected throughput of
Meteor, although finding this permutation proves to be di�cult.

The distribution P is generally output by the model in some sorted or lexicographic order. This might
yield to some orderings of ri that are incredibly unfavorable to LenPrefix(·). Consider an illustrative ex-
ample in Figure 8a. If an interval ri contains values on either side of the middle of the distribution, then
LenPrefix(ri) = 0. When a large interval does so, as in cases (1) and (3), this severely decreases the expected
number of bits that the distribution can encode. While this example is clearly contrived, it illustrates the
impact correctly ordering P can have on the expected throughput – in this example an increase of over 50%.

29

Importantly, we can use any reorganization procedure on the distribution provided (1) the same resulting
permutation can be computed by both the sender and the receiver and (2) the size of ri remains the same
for all ri.

Finding the optimal permutation of P proves to be a di�cult task. Intuitively, each interval ri, must
be placed as a continuous block somewhere between 0 and 1 such that it does not overlap with other
intervals. We take inspiration from approximation algorithms and design a greedy algorithm with pretty
good performance, and we leave formal analysis and bounds proving of this algorithm for future work. A
simple algorithm would be to find a “starting point” to place each interval, starting with the largest, that
maximizes LenPrefix(ri). However, there are 2� possible starting points, meaning a linear search will be

prohibitively expensive. Instead we generate 2dH(P)e buckets with capacity
P

i
(ri)

2dH(P)e , where H(P) is the
entropy in the distribution. These buckets represent potential “starting points” that each ri can be placed.
Note that the entropy represents an upper bound on the possible value of the expected throuhput E(P) and
if each interval ri could perfectly fit into one of these bins, E(P) = H(P).

Starting with the largest ri, we find the bin that will maximize LenPrefix(ri) when ri is appended to
that bucket. As buckets become full, they are no longer options for placement. Note that ri may exceed
the remaining capacity of a bucket, or even the total capacity of a bucket. When this is the case, we
“overflow” the remainder into the following buckets. Occasionally, this overflowing remainder may cause
a chain reaction, requiring other, already placed intervals be “pushed” to make space. We give a simple
example of our reorganization algorithm in Figure 8b, using the same distribution given in Figure 8a. Step
(3) gives an example of overflow that causes one of these chain reactions. Once each interval has been placed
into a bin, the final ordering can be recovered by appending the contents of the bins.

The runtime of this algorithm is O(2dH(P)em), where m is the number of intervals; in our experiments,
dH(P)e is typically less than 7, so this is close to O(m), which is unsurprising given its similarities to bin-
sorting. When n is very large, however, this algorithm is prohibitively expensive. In those cases, we use this
algorithm to place the “big” intervals, and then simply place the smaller intervals into the first bucket with
space. As we discuss in §6, reordering the distributions increases capacity by 20%-25%.

C Model Outputs

This appendix contains stegotext outputs as generated by Meteor using several di↵erent model types. The
plaintext associated with all of these outputs is the first 160 bytes of Lorem Ipsum. Figure 10 shows a
truncated output for a stegotext generated using the Wikipedia model, which seems to have generated some
kind of Wiki-markup contents page. Figures 11 and 12 are GPT-2 outputs for di↵erent contexts provided as
input. Each output reads like a news article or book chapter. Representative output for the HTML headers
model has been omitted due to space constraints. Finally, Figure 9 is a screenshot of Meteor running on
the iPhone Simulator, generating stream-of-consciousness news text. Note that the context is shorter on the
iPhone, as it can hold less state.

30

Figure 9: iPhone X screenshot of Meteor encoding of the first 160 bytes of Lorem Ipsum as generated by the
GPT-2 model. Generated text is highlighted, and context is unhighlighted.

31

Haired the latter expand of the legal instance of the Imperial State of the American foal
bridge, it is suspective that he was also notable to ensure that they produced a
consolidate [[electricity]], the actual psychological cabinet [[Greece]] was the same
time. It was born in many in the second [[tuak]] and [[timber]] at the idea of
[[computer account|computer science]], which provides sales might therefore be in
popular writings such as the European Investigation.

,!

,!

,!

,!

,!

==Video games==
* [[Brown Town]]
* [[Sagan in the United States|Commonwealth of Western Technology]]
* [[Template International Society of Europe]]
* [[Commonwealth of Russia]]
* [[Commerce coverage in Sweden]]
* [[List of Constitution by Westman of the United Kingdom|British Politics]]
* [[List of California Court in 1981]]
* [[International Party of Diabetos Integrated Policy]]
* [[United Kingdom]]

===Overseas Roman Empire===
* [[Communist Council of Ireland]]
* [[Confucian States of the South Edition]]
* [[Conservative Party of the United Kingdom]]

[[Category:American states]]
[[Category:Conferences of India]]

Figure 10: Snippet of Meteor encoding of the first 160 bytes of Lorem Ipsum as generated by the Wikipedia
model. The output was truncated to fit.

32

Context :
The Alvarez hypothesis posits that the mass extinction of the dinosaurs and many other living things during the
Cretaceous-Paleogene extinction event was caused by the impact of a large asteroid on the Earth. Prior to 2013,
it was commonly cited as having happened about 65 million years ago, but Renne and colleagues (2013) gave an
updated value of 66 million years. Evidence indicates that the asteroid fell in the Yucatan Peninsula, at Chicxulub,
Mexico. The hypothesis is named after the father-and-son team of scientists Luis and Walter Alvarez, who first
suggested it in 1980. Shortly afterwards, and independently, the same was suggested by Dutch paleontologist Jan
Smit.

Stegotext :
The picture in The Pale I HCR scientists’ discussion now spans three dimensions. The first importance of the
Yucatan Peninsula is demonstrated with the following conclusion: the Pliocene Earth has lost about seven times
as much vegetation as the Jurassic in regular parts of the globe, from northern India to Siberia. Even since 1976,
the continent has received or is already experiencing the worst mass extinction in recorded history since there were
a million years last left from the extinction of Antarctic ice and the rapid spread of hydrocarbon-rich water as the
Earth entered the Cretaceous Period. In turn, the world’s oceans have been breathtakingly transformed and as
a result the surrounding environments are especially vulnerable. The reason is obvious: there was no geological
record of the presence of the Yucatan Peninsula in the Late Miocene epoch, which is the line that runs from the
southern edge of South America to Siberia. The commander-in-chief of the Yucatan Peninsula, Frederick Nystrom,
has determined that the area is to stay as barren as possible. As a result, individuals living on lake beds and on
coastal areas have witnessed the loss of about 90 percent of their habitat. The Yucatan Peninsula consists of four
zones, with two di↵erent habitats separated, each of which has experienced inseam damage. In one zone, along
the northern shore of Lake Shemal, the retreating Tarahumara Ocean has been melted into a deep, seafloor called
Nova Ravine, which south-east of the Yucatan Peninsula flows into Lake Isthmus, where there is an abundance
of turtle life. A second beach, which lies at the far end of the peninsula, has been spewed down by a sea wall
supporting Madagascar’s Great Ocean Earthquake, 9,000 feet in magnitude and caused large numbers of deaths.
The third zone, along the coast of Cancun and in Asuncion, is less severely a↵ected. An estimated 16 percent
of the continent is protected from the destruction of oceanic winds and floods. All three zones are in a state of
catastrophic destruction. According to the definition provided by the National Commission on the extinction of
the dinosaurs (Infection and Immunization in the Ind

Figure 11: The “Dinosaur” context and associated Meteor encoding of the first 160 bytes of Lorem Ipsum
as generated by GPT-2. This is the context used in Figure 3.

33

Context :
Washington received his initial military training and command with the Virginia Regiment during the French and
Indian War. He was later elected to the Virginia House of Burgesses and was named a delegate to the Continental
Congress, where he was appointed Commanding General of the nation’s Continental Army. Washington led
American forces, allied with France, in the defeat of the British at Yorktown. Once victory for the United States
was in hand in 1783, Washington resigned his commission.

Stegotext :
Washington was martyred in the battle of Cullman in 1788. Although down 19 men, yet his mission accomplished.
He ended his life in 1896. When he died of disease, three of the men responsible said that Washington had been
moved and was seen at the funeral placing him in his father’s arms. Another said that Washington treated his
wounds with ”a study of a personal sense of injustice.” (A 16th century German historian calls Washington a liar
because of this website.) He was also a friend of Dr. Henry H. Jackson, who was notable as George Washington’s
physician and a collaborator, and recognizes him by name in the any books about him. The last surviving
manuscript is from 1888 and contains a frank and truthful account of the Quakers’ plight. One story states that
while fighting in Whitesburg, Washington succumbed to pneumonia. He was 38 years old and according to a
manuscript he got out the following year reports he grew old and fell in love. He also mentions a meeting with a
woman who broke into his home and first went with him into a bath and gave him food and sleep. Three days
later the woman left the room expecting him to eat her lunch and on that day he left home at 9:30 am in despair.
He had not been to his bedside. On seeing this, he said a voice in him called out, ”Your name is Jack. What is
the girl?” Hamilton said the superior told him, ”She was a layover in a bed and seven[Pg 209] feet below the bed
where the general slept in very feminine attire. Nobody had time to look into her face. What was she to tell you
about the general?”
A
Washington’s O�cial Address to Congress with Americans May 17th, 1781
”I am the one to announce completely that I am a true Christian and an eloquent philosopher. I am not constrained

Figure 12: The “Washington” context and associated Meteor encoding of the first 160 bytes of Lorem Ipsum
as generated by GPT-2. This is the encoding used throughout the benchmarks in Section 6.

34

	Introduction
	Contributions
	Limitations
	Organization

	Background and Related Work
	Definitions
	Symmetric Steganography
	Ranged Randomness Recoverable Sampling Scheme

	Adapting Classical Steganographic Schemes
	Meteor: A More Efficient Symmetric-Key Steganographic Scheme
	Intuition
	Meteor

	Evaluation of Meteor
	Comparison to NLP-based Steganography
	Conclusion
	Efficiency of Meteor
	Heuristic Optimizations
	Model Outputs

