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Abstract. Information-theoretical privacy relies on randomness. Representatively, Differential Privacy (DP) has
emerged as the gold standard to quantify the individual privacy preservation provided by given randomness. However,
almost all randomness in existing differentially private optimization and learning algorithms is restricted to noise
perturbation. In this paper, we set out to provide a privacy analysis framework to understand the privacy guarantee
produced by other randomness commonly used in optimization and learning algorithms (e.g., parameter randomness).
We take mixup: a random linear aggregation of inputs, as a concrete example. Our contributions are twofold. First, we
develop a rigorous analysis on the privacy amplification provided by mixup either on samples or updates, where we
find the hybrid structure of mixup and the Laplace Mechanism produces a new type of DP guarantee lying between
Pure DP and Approximate DP. Such an average-case privacy amplification can produce tighter composition bounds.
Second, both empirically and theoretically, we show that proper mixup comes almost free of utility compromise.

1 Introduction

Differential privacy (DP) has emerged as a standard measure of the individual-level privacy risk during an aggregate
analysis on a dataset. Informally, a differentially private algorithm maps any two close datasets to similar probability
distributions over outputs and thus, from outputs observed, it is hard to distinguish the participation of an individual. In
Dwork et al.’s pioneering work [DMNS06], such indistinguishability is parameterized by a positive real number ε in a
multiplicative manner:

Definition 1 (Pure ε-DP). A randomized algorithm A : X → O, achieves ε-DP if for any adjacent datasets D and D′
in X , and any set S in the output domain O of A(·),

Pr[A(D) ∈ S] ≤ eεPr[A(D′) ∈ S]. (1)

Here, we call two datasets D and D′ adjacent if D and D′ only differ in one data point, denoted by D ∼ D′ in
the following. Stemming from (1), there is a long line of works to relax the original metric to measure the difference
between the distributions of A(D) and A(D′) in Definition 1, for example, approximate (ε, δ)-DP [DKM+06], where
under the same setup a failure probability of (1) at most δ is admitted:

Definition 2 (Approximate (ε, δ)-DP). A randomized algorithm A : X → O, achieves (ε, δ)-DP if for any adjacent
datasets D and D′ in X , and any set S in the output domain O of A(·),

Pr[A(D) ∈ S] ≤ eεPr[A(D′) ∈ S] + δ. (2)

Other variants include concentrated DP [DR16, BS16, BDRS18], Renyi DP [Mir17] and the recently proposed f-DP
[DRS19, BDLS19]. Those relaxations provide versatile frameworks to analyze a larger class of randomized algorithms
with tighter bounds when handling composition, i.e., the cumulative privacy risk under repetition of mechanisms on one
dataset. However, compared to sharpened composition control, another issue that usually gets overlooked is how to
introduce randomness for privacy preservation?
Randomness beyond Noise: The simplest way to randomize an algorithm is perturbation. For example, to make a
deterministic algorithm A satisfy ε-DP, one can add Laplace noise in a scale of the sensitivity, i.e., maxD,D′ ‖A(D)−
A(D′)‖, to the output [DMNS06]. In general, DP does not come for free: lower bounds on utility loss in many tasks
are known, for example, (strongly) convex optimization [BST14, TTZ15] and Principal Components Analysis (PCA)
[CSS12, DTTZ14], etc.



Though privacy is usually not free of utility loss, it does not mean randomness will always come with a performance
compromise. The purposes to introduce randomness in optimization and learning are far more than privacy preservation,
for example, stochastic gradient Langevin dynamics (SGLD) [MWZZ18, LCLC19] for nonconvex optimization and
uniform noise perturbed gradient descent to escape saddle points [JGN+17]. Randomness can even strengthen the
training performance, e.g., random dropout [SHK+14] and data augmentation [SK19]. Generally speaking, data aug-
mentation represents a large class of methods to improve robustness and reduce memorization (instead of generalization),
especially in computer version: Training is conducted on similar but different virtual examples compared to the raw data
through random cropping [KSH12], erasing [ZZK+20] and mixup [ZCDLP18], etc. However, compared to simple noise
perturbation, algorithm-oriented randomness has been rarely formally studied from a privacy-preservation viewpoint.
Restricted Randomness: Indeed, typically algorithm-oriented randomness does not produce reasonable DP guarantees,
or a controllable (high-probability) worst-case distinguishability, as described in Definition 1 and 2. The reason is
twofold: the random operators are usually localized and data dependent. For example, consider random dropout
(pruning) [SHK+14], where a node in a neural network is ignored independently with some fixed rate, or random
erasing [ZZK+20], where a rectangle region of an image is randomly erased and replaced with random values. In a
network or an image of privacy concern processed by the above mechanisms, the random transformation is multiplicative
over the private input while the output is restricted to a bounded domain determined by the specific input processed. As
a result, given proper sensitivity restriction, say two images differing in one pixel, when random cropping is applied,
one can still successfully distinguish the two images with a constant probability, if the distinct pixel is not erased. A
similar argument holds for the saddle point escaping algorithm [JGN+17], where the gradient is perturbed by a bounded
noise uniformly selected from a sphere.

Though practical randomness may not necessarily lead to DP, greater randomness potentially implies better privacy.
As a first step to formalize the privacy gain and utility of practical or heuristic randomness, we will use DP as the
primitive. To this end, we consider a natural hybrid structure of both kinds of randomness, for example, Laplace noise
and mixup.
Mixup: In this paper, we use mixup to denote a simple aggregation structure with random weights. Given N inputs
x1, x2, ..., xN , mixup outputs

∑N
i=1 ωixi, with random ωi ∈ (0, 1) and

∑N
i=1 ωi = 1. One successful example of mixup

is [ZCDLP18], where a surprisingly efficient data augmentation is described: Given the raw data (xi, yi), i = 1, 2, ..., N ,
where xi is the feature and yi is the associated label, a virtual training sample (x̃, ỹ) is constructed by:

x̃ = λxi1 + (1− λ)xi2 , ỹ = λyi1 + (1− λ)yi2 . (3)

Here, (xi1 , yi1) and (xi2 , yi2) are randomly drawn while λ ∈ (0, 1) is a random variable selected. Mixup based
data augmentation has been widely studied and shown to be very powerful empirically in thorough experiments and
subsequent works [BCG+19], [TCB+19], [PXZ19]. This raises two interesting questions: On privacy, what kind of
privacy amplification is provided by mixup? On utility, are there other applications of mixup but with theoretical
performance guarantees? In this work, we set out to answer the two questions.
Existing Privacy Preservation with Mixup: The shuffled and randomly composite samples in mixup seem to provide
some natural privacy protection. However, it is noted that the mixed samples generated using (3) are restricted within
the convex hull of original samples. Similarly, mixup itself is not sufficient to produce reasonable DP guarantees,
though its potential privacy preservation via some other measurements such as computational hardness is still an open
question. Based on mixup, there are several appealing proposals such as Instahide [HSLA20], for private training, and
Datamix [LWG+20], for private inference. The authors of Instahide conjecture that breaking sign-flipping equipped
mixup can be reduced to that of the subset sum problem. Unfortunately, as far as we know, existing heuristic mixup
related data privacy preservations have not been studied under any systematic privacy notions. Consequently, Carlini et
al. [CDG+20] and Chen et al. [CSZ20] point out several vulnerabilities and potential attacks on Instahide.

1.1 A High-level Picture of Methodology and Contribution

One of our main results is that the hybrid of mixup (or the other algorithmic randomizations listed above) and the regular
Laplace mechanism produces a similar worst-case guarantee compared to the pure Laplace mechanism, but generally
improves the average-case privacy loss, which leads to a tighter composition bound. We introduce the following
alternative definition of the ε privacy loss defined in (1) to give a more refined, formal illustration.
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Definition 3 ([LNR+17]). The ex-post privacy loss ε(o) for an algorithm A on an output o is defined as

ε(o) = sup
D,D′

εD,D′(o) = sup
D,D′

log(
P(A(D) = o)

P(A(D′) = o)
),

for arbitrary D ∼ D′.

Definition 3 provides a point-wise measurement on the privacy loss where εD,D′(o) captures, for any specific
output o, the likelihood ratio between two adjacent datasets D and D′. By taking a supremum over all pairs (D,D′),
ε(o) provides a worst-case ε loss at output o. It is not hard to observe that under the Laplace Mechanism, where a
pure ε-DP is produced, ε(o) = ε uniformly. In contrast, under a Gaussian Mechanism with an approximate (ε, δ)-DP,
supo ε(o) =∞ is unbounded, and we have to resort to the failure probability δ.1

In general, the output of the hybrid structure can be viewed as a mixture of some restricted randomness and noise.
We find that the corresponding privacy guarantee is between pure DP and approximate DP. To be specific, the hybrid
structure of mixup and the Laplace mechanism provides a bounded worst-case privacy guarantee supo ε(o) ≤ ε0, for
some constant ε0, whereas ε(o) does not uniformly equal to εo, where there exists o such that ε(o) < ε0.

Another way to characterize such average-case amplification is to view the privacy loss under a relaxed divergence
metric. For example, if we measure the privacy loss through KL-divergence,

D(A(D)||A(D′)) = Eo←A(D) log
[ P(A(D)(o)

P(A(D′)(o)
]
,

the hybrid structure is strictly better than that of a pure Laplace, which implies a sharper (advanced) composition
bound when applying concentration inequalities [DRV10]. In the rest of the paper, we set out to quantify the privacy
amplification factor and understand the impact of algorithmic randomness on utility.
Contributions and Organization: In this paper, we have two main contributions. First, we systematically study the
privacy amplification from the convolution of random mixing and regular noise (Laplace) mechanisms. The privacy
framework presented here can be used to study the privacy gain from restricted and localized randomness which
captures many empirical training improvements such as the data augmentation techniques listed earlier. Second, we
propose a new application of mixup to mix the immediate updates during (decentralized) optimization. To understand
the utility and privacy tradeoff, we provide results regarding the effect of mixup on the convergence rate.

The remainder of the paper can be summarized as follows. In Section 2, we provide an analysis of sample mixing as
described by (3) and show that sample mixing produces a privacy amplification factor in a simple compositional setting
of iterative optimization. In Section 3, we describe another model of the hybrid mixup and noise architecture, namely,
update mixing during optimization. In Section 4, we show how to incorporate the proposed update mixing architecture
into more complicated decentralized algorithms. Two concrete examples, Modified private ADMM (Algorithm 1)
and (Decentralized) SGD (Algorithm 2), are proposed, and we further study the local differential privacy (LDP)
amplification. On the utility side, in Section 5, we theoretically prove that proper mixup on immediate updates during
optimization comes almost free of utility compromise.

2 Hybrid Architecture of Mixup and Noise: Sample Mixing

Differentially private (Stochastic) Gradient Descent ((S)GD) and its variants have been extensively studied [BST14,
LNR+17, CMS11, JT13, WGX18, WYX17, WX19]. A common strategy is to perturb the gradient in each iteration
with well-scaled noise to keep track of the cumulative privacy loss. In this section, we provide an analysis of sample
mixing as described by (3) in the context of private optimization.

Imagine we run SGD to minimize the empirical loss over samples S = {si, i = 1, 2, ..., n} with mixup, where we
use si to denote (xi, yi) and the objective loss function of the parameter θ is defined as

∑n
i=1 f(θ, si). Across each

iteration, we assume two samples si1 and si2 are randomly selected from S and mixed as s̃ = λsi1 + (1− λ)si2 with

1 It is not hard to verify that ε(o) ≤ ε with probability at least 1− δ, also termed as probabilistic DP [GMW+11], is stronger than
the (ε, δ) approximate DP notion defined in (2).
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some random weight λ ∈ (0, 1). Thus, in general, an SGD protocol to privately update θ with mixed samples can be
described as follows:

θk = θk−1 − ηk∇f(θk−1, λksik,1 + (1− λk)sik,2) +∆k. (4)

Here, ik,1 and ik,2 are two different random indexes independently sampled from [1 : n] and λk is randomly drawn
from (0, 1) in iteration k. ∆k is the noise added, of which each dimension is assumed to be a Laplace, Lap(0, β),
with probability density P(z) = β/2 · e−β|z|. For quantification, we assume the l∞ sensitivity of the gradient, i.e.,
supθ,s,s′ ‖∇f(θ, s)−∇f(θ, s′)‖∞ ≤ B, for two arbitrary sample candidates s and s′.
Example 1: Assume that the gradient ∇f(θ, s) is linear to the sample s (for example f(·) is a ridge regression), and
samples vary between [0, 1]. Ignoring the constants θk−1 and ηk in (4), two resultant mixture distributions of θk can
be: Case 1, imagine two samples sik,1 = 0 and sik,2 = 1 are selected and mixed, where for simplicity we assume
∇f(θk−1, 0) = 0 and∇f(θk−1, 1) = 1. Then, the distribution is equivalent to a mixture of a Laplace and a uniform
distribution between 0 and 1, written as Lap(0, β) ∗ U [0, 1], where ∗ denotes convolution of distributions and U [p, q]
represents the uniform distribution between [p, q]; Case 2, if selected samples are identical, say sik,1 = sik,2 = 1, then
the mixed sample is still 1 and the corresponding distribution becomes a pure Laplace Lap(1, β).

The above example captures the underlying key problem we study here: what is the additional privacy gain from
the convolution of a (sample-dependent) randomness, whose support set is bounded, and the Laplace Mechanism
compared to the pure Laplace? Intuitively, the worst-case privacy loss is still preserved by the Laplace Mechanism but
the additional randomness from mixing smoothens the divergence on average, which would be helpful especially when
handling the composition. Indeed, our following analysis matches this intuition, where we prove that sample mixing as
used in (4) produces an amplification factor determined by τ = βB.

Without loss of generality, we assume the step size ηk = 1 and only consider the one-dimensional case; the
multi-dimensional analysis is a straightforward composition. To capture the privacy analysis of the updating procedure
(4), for simplicity, we assume the gradient of randomly-mixed samples∇f(θk−1, λksik,1 + (1− λk)sik,2) (underlined
in (4)) is uniformly distributed between sik,1 and sik,2

2. Thus, the l∞ sensitivity bound B on the gradient is equivalent
to that of the samples. With the above setup, the distribution of θk is equivalent to Lap(0, β) ∗ U [sik,1 , sik,2 ], where
we ignore the constant θk−1, the earlier update from iteration (k − 1), behaving as a uniform shift on the distribution.

The following theorem states that the privacy loss of (4) satisfies a bounded supθk ε(θ
k) = 2

n · log( e
Bβ−1
Bβ ). In

comparison, without mixup, a pure Laplace mechanism will produce ε(θk) = Bβ
n [DMNS06] uniformly for any θk.

Moreover, we apply (ε, δ) measurement, defined in Definition 2 as a high probability bound on ε, to quantify the privacy
amplification, shown below.

Theorem 1 Let τ = βB. With the above setup and assumption on the data mixing, sensitivity and noise, the hybrid
data mixing and Laplace Mechanism shown in (4) satisfies supθk ε(θ

k) = 2
n · log( e

τ−1
τ ). In an approximate DP view,

if δ > (1− e−τ )/(2τ), it produces an (ε, δ)-DP such that

ε =
2

n
log
(

max{2eτ−βψ(δ) − eτ−2βψ(δ) − 1

B
,
B − 1/(2δ)

1/(2δ)
· e

β/(2δ)(1− e−β(B−1/(2δ)))

1− e−β(B−1/(2δ))
}
)

(5)

where ψ(δ) = B
1−e−τ/2 · (δ −

1−e−τ
2τ ).

Proof. Without loss of generality (w.l.o.g.), we assume that samples are within [0,B]. For two adjacent datasets D and
D′, each of n elements, we assume the differing elements are s and s′ in D and D′, respectively. Recall the subsampling
of two samples defined in the SGD protocol (4). It is of probability 2

n that one may select the s from D or s′ from D,
which determines the subsampling factor in the ε(θk) bound [BBG18]. In the following, we only need to consider the
case where the differing sample is selected. Let s0 denote the other element selected from the intersection of D ∩D′.
Therefore, to derive an upper bound of ε(θk), we need to compare the two distributions U [s, s0] ∗ Lap(0, β) and
U [s′, s0] ∗ Lap(0, β). In the following, we use x to denote the output θk.

2 Here, we indeed capture the form∇f(θk−1, λksik,1 + (1− λk)sik,2 +∆k) with perturbation directly on samples. Thus, the
gradient function∇f(·) becomes a postprocessing and we only need to focus on the term λksik,1 + (1− λk)sik,2 +∆k.
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First, we consider an extreme case, if s0 = s′ or s0 = s, where w.l.o.g. we assume s0 = s′ = 0. Thus,
U [s′, s0] ∗ Lap(0, β) is reduced to Lap(0, β) and U [s, s0] ∗ Lap(0, β) becomes U [0, s0] ∗ Lap(0, β). The probability
density of U [0, s0] ∗ Lap(0, β) can be described as

P(x) =


eβx(1−e−βs0 )

2s0
x < 0

2−e−βx−e−β(s0−x)
2s0

0 ≤ x < s0

e−β(x−s0)(1−e−βs0 )
2s0

x ≥ s0.

(6)

When x < 0, it is straightforward to see that

eε ≤ Lap(0, β)(x)

U [0, s0] ∗ Lap(0, β)(x)
≤ βexβ

1
B · exβ(1− e−βB)

=
βB

1− e−βB
,

where the equality is achieved when s0 = B. On the other hand, if x ≥ 0, the maximal of ε is achieved when x ≥ B
and s = B, where eε ≤ eβB−1

βB . Moreover, it is easy to verify that:

eβB − 1

βB
≥ βB

1− e−βB
,

which is equivalent to 2 + (βB)2 ≤ e−βB + eβB, for arbitrary β and B. Thus, we have ε ≤ log( e
βB−1
βB ).

Second, if s 6= s0 and s′ 6= s0, we have to consider the following two scenarios: (a). s < s0 ≤ s′, where w.l.o.g. we
set s = 0. (b). s0 ≤ s < s′, where w.l.o.g. we set s0 = 0.

In (a), for the upper bound of eε, we have the following fact: for x < 0, the ratio eε, which equals
1
s0
· (1− e−βs0)

1
s′−s0 e

−βs0(1− e−β(s′−s0))
, (7)

is a non-decreasing function with respect to s0. Therefore, for s0 ∈ [0, s′], the upper bound is achieved when s0 = s′.

Here, we use the following fact that limx→0
1−e−αx

x = α. Furthermore, it is noted that the function eβs
′
−1

βs′ increases
with increasing s′. To conclude, the extreme case of ε when x < 0 happens when s0 = s′ = B. Similarly, for x ∈ [0, s0],
we have the following observation on the probability density ratio:

s′ − s0

s0

2− e−βx − e−β(s0−x)

e−β(s0−x)(1− e−β(s′−s0))
≤ s′ − s0

s0

1− e−βs0
e−βs0(1− e−β(s′−s0))

,

which is equivalent to (e−βx − 1)2 ≥ 0. Due to the symmetry, therefore, the upper bound of eε in (a) also happens
when s0 = s′ = B, which is reduced to the first case. With a similar reasoning, we can show that the extreme case of
(b) also happens when s0 = s = 0 while s′ = B. Thus, we have proved that ε ≤ log( e

βB−1
βB ).

In the following, we turn to characterize such privacy amplification with (ε, δ)-DP language, i.e., a high probability
bound of ε.

We need to consider two scenarios (a). 0 = s ≤ s0 ≤ s′ ≤ B; (b). 0 = s0 ≤ s ≤ s′ ≤ B. First, we still
consider the case when s = s0. For x ∼ Lap(0, β), Pr(x ≤ 0) = 1

2 and for x ≤ 0, the probability density
ratio between Lap(0, β) and U [0, s′] ∗ Lap(0, β) is a constant equaling βB

1−e−βB . Now, when s 6= s0, back to (a),
for x ∼ U [0, s0] ∗ Lap(0, β), it is easy to verify that Pr(x ≤ s0

2 ) = 1
2 and for x ≥ s0

2 , the density ratio of
U [0, s0] ∗Lap(0, β)(x) over U [s0, s

′] ∗Lap(0, β)(x) is decreasing as x gets larger. From the earlier analysis, we know
that when x < 0, where Pr(x < 0) = 1−e−βB

2βB , the density ratio is a constant upper bounded by eβB−1
βB . For t ∈ [0, s02 ],

Pr(x ≤ t) = 1−e−βB
(2−e−βx−e−β(s0−x))βB + t

s0
− 1

2βB (1− e−βt + e−β(s0−t) − e−βs0).

Therefore, provided a failure probability δ > 1−e−βs0
2βs0

, since 2 − e−βx − e−β(s0−x), for x ∈ (0, s0), is upper

bounded by 2(1− e−βs0/2) and thus P(x) = 2−e−βx−e−β(s0−x)
2s0

≤ 1−e−βs0/2
s0

for 0 ≤ x < s0, we have

Pr
(
x ≤ s0

1− e−βs0/2
(δ − 1− e−βs0

2βs0
)
)
≤ δ.
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Let ψ(δ) = s0
1−e−βs0/2 (δ− 1−e−βs0

2βs0
) and substitute the above into the expression of eε, then we have the relationship

of (ε, δ) that if ψ(δ) > 0,

eε =
1
s0

(2− e−βx − e−β(s0−x))
1

s′−s0 e
−β(s0−x)(1− e−β(s′−s0))

≤ (2− e−βψ(δ) − e−β(s0−ψ(δ)))(B − s0)

1− e−β(B−s0)
· e

β(s0−(δ− 1−e−βB
2βB )/s0)

s0

≤ (2− e−βψ(δ) − e−β(B−ψ(δ)))eβ(B−ψ(δ))

B
,

(8)

where the third inequality is because the product term on the right hand side of the second row of (8) is non-decreasing
in s0 and so we set s0 = B.

If ψ(δ) < 0, we have that the extreme case happens when s0 is such that 1−e−βB
2B < δ = 1−e−βs0

2s0
, where s0 <

1
2δ

and

eε ≤
1−e−βs0

2s0

e−βs0 (1−e−β(B−s0))
2(B−s0)

≤ B − 1/(2δ)

1/(2δ)
· e

β/(2δ)(1− e−β(B−1/(2δ)))

1− e−β(B−1/(2δ))
.

With similar reasoning, in (b), if 0 = s0 ≤ s ≤ s′ ≤ B, for x ∼ U [0, s] ∗ Lap(0, β), once δ > 1−e−βB
2βB , eε can be

upper bounded by βB
1−e−βB . On the other hand, if x ∼ U [0, s′] ∗Lap(0, β), it is not hard to observe that for either x < 0

or x ≥ 0, the bound of ε is strictly controlled by that derived in (a). Thus, the claim holds.

In Theorem 1, we characterize the privacy amplification in a (ε, δ) form. In the following, we propose another metric
to quantify the additional gain, i.e., in the worst case, how much privacy loss can be saved in expectation compared to
the pure Laplace Mechanism. Stemming from Definition 3, in (4), under a pure Laplace Mechanism without sample
mixing, for arbitrary D and output θk, supD′ εD,D′(θ

k) uniformly equals Bβ/n. Thus, under the hybrid sample mixing
and Laplace structure, we define the ratio

γ =
supD ED supD′ εD,D′(θ

k)

βB/n
, (9)

where ED denotes that θk is produced based on dataset D, to capture the expected ex-post loss savings in the worst
case. The following theorem upper bounds the ratio. We calculate the expected ε-loss in the worst case.

Theorem 2 With the same setup, the expected privacy loss Eθkε(θk) in (4) over the distribution of θk in the worst
case satisfies that for any D ∼ D′,

sup
D

ED sup
D′

εD,D′(θ
k) ≤ 2

n
·max

{
log(

βB
2(1− eβB/2)

), max
s≤s0∈[0,B]

[
log(

s0(1− e−β(s0−s))

(s0 − s)(1− e−βs0)
)
}

+ log
( (B − s0)(7eβ(s0−s) − (12β(s0 − s) + 3))

6β(1− e−β(B−s0))(s0 − s)2
+
eβ(s0−s)(B − s0)(1− eβ(s0−s))2

2β(s0 − s)2(1− e−(B−s0))

)]
,

(10)
where ED denotes that θk is produced based on dataset D.

Proof. With a similar reasoning as shown in the proof of Theorem 1, we only need to consider two adjacent datasets in
a form D = {s, s0} and D′ = {s′, s0}, where s, s′, s0 ∈ [0,B].

First, we consider an extreme case if s0 = s, which produces a pure Laplace distribution. To determine the
supD′ εD,D′(x), when x < s, to maximize the ratio, s′ should equal B and

esupD′ εD,D′ (x) =
βe−β(s−x)

1
B−se

−β(s−x)(1− e−β(B−s))
=

β(B − s)
1− e−β(B−s) .
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Symmetrically, when x ≥ s, s′ should be set as 0 and esupD′ εD,D′ (x) = βe−βx

1
s e
−βx(1−e−βs) = βs

1−e−βs . Thus, since when

x ∼ Lap(s, β), Pr(x < s) = Pr(x ≥ s) = 1
2 ,

Ex∼Lap(s,β) sup
s′
εs,s′(x) =

1

2

(
log(

β(B − s)
1− e−β(B−s) ) + log(

βs

1− e−βs
)
)
. (11)

With some calculation, since s(B − s) achieves the maximal when s = B
2 , we have sups Ex∼Lap(s,β) sups′ εs,s′(x) =

log( βB
2(1−eβB/2)

).

Now, we turn to the more generic case, where we assume s 6= s0. There are four cases regarding s′, s, s0, which can
be (a). s′ ≤ s0 < s; (a)’. s′ ≤ s < s0; (b). s < s0 ≤ s′; (b)’. s0 < s ≤ s′. First, to simplify the study on the upper
bound of the ratio, we show there is no need to consider cases (a)’ and (b)’. To show this, we need the following trivial
fact: for two positive numbers z1 and z2 and an arbitrary weight w ∈ [0, 1], if wz1 + (1 − w)z2 ≤ z2, then clearly
z2 ≥ z1. Back to our cases, recall the convolutional density function U [0, s] ∗Lap(0, β)(x) =

∫ s
0
β
2se
−β|x−t|dt, which

can be viewed as an average of the Laplace density β
2 e
−β|x−t| over the interval [0, s]. Thus, we take (a)’ as an example.

Let I1 and I2 be the integral of e−β|x−t| over the range [s′, s] and [s, s0], respectively. Clearly, the distribution density
of x produced by D = {s, s0} is I2

s0−s , while that of D′ = {s′, s0} is I2+I1
s0−s′ = I2

s0−s ·
s0−s
s0−s′ + I1

s−s′ ·
s−s′
s0−s′ . Thus, if

I2
s0−s ≥

I2+I1
s0−s′ , then I2

s0−s ≥
I1
s−s′ . Therefore, in such a case, the ratio achieved by case (a) where s′ ≤ s < s0 should

be larger than that of case (a)’. We can make a similar argument for (b) and (b)’. Therefore, we have that the supremum
of εD,D′ is achieved either in s′ = 0 or s′ = B.

With the above preparation, w.l.o.g., we assume s < s0. We first have the following simple observation: when
x < s

2 , s′ should be set to be B and

sup
s′
eεs,s′ (x) =

eβ(x−s)

2(s0−s) (1− e−β(s0−s))

eβ(x−s0)

2(B−s0) (1− e−β(B−s0))
=
B − s0

s0 − s
· e

s0−s(1− e−β(s0−s))

1− e−β(B−s0)
. (12)

Similarly, when x ≥ B+s0
2 , s′ should be 0 and

sup
s′
εs,s′(x) =

s0

s0 − s
· 1− e−β(s0−s)

1− e−βs0
.

Now, we consider the other case when x ∈ [ s2 ,
B+s0

2 ]. To derive an upper bound, we simply bound supD′ εD,D′ ≤
εD,s′=0 + εD,s′=1. We first calculate the expectation of εD,s′=1 when x is restricted to [s, s0]. Due to the concavity of
log(·), with Jensen’s inequality, this quantity can be upper bounded by

Ex∈[s,s0]εD,s′=1 ≤ Pr(x ∈ [s, s0]) log
[ 1

Pr(x ∈ [s, s0])

∫ s0

s

( 2−e−β(x−s)−e−β(s0−x)
2(s0−s) )2

e−β(s0−x)(1−e−β(B−s0))
2(B−s0)

dx
]
. (13)

The integral quantity in (13) can be expressed as∫ s0

s

( 2−e−β(x−s)−e−β(s0−x)
2(s0−s) )2

e−β(s0−s)(1−e−β(B−s0))
2(B−s0)

dx ≤ B − s0

2(1− e−β(B−s0))(s0 − s)2

7eβ(s0−s)) − (12β(s0 − s) + 3)

3β
. (14)

Similarly, for εD,s′=0(x), it is not hard to find that

εD,s′=0 ≤ log(

1−e−β(s0−s)
2(s0−s)
1−e−βs0

2s0

) = log(
s0(1− e−β(s0−s))

(s0 − s)(1− e−βs0)
),

where equality is achieved when x ≥ s0. Thus, putting things together, we have

supED sup
D′

εD,D′(θ
k) ≤ max

s≤s0∈[0,B]

[
log(

s0(1− e−β(s0−s))

(s0 − s)(1− e−βs0)
)

+ log
( (B − s0)(7eβ(s0−s) − (12β(s0 − s) + 3))

6β(1− e−β(B−s0))(s0 − s)2
+
eβ(s0−s)(B − s0)(1− eβ(s0−s))2

2β(s0 − s)2(1− e−(B−s0))

)]
.

(15)
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Finally, multiplying by the subsampling factor 2
n , we have the claim.

In Fig. 1, we present the simulation of the ratio γ defined in (9). From Fig. 1, the privacy amplification ratio, within
[0.5, 1], is determined by τ = βB, where a smaller τ produces a better privacy amplification. Now, we make two
remarks on further generalization.

Fig. 1: Privacy Amplification in the Hybrid of Sample Mixing and Laplace Mechanism

0 2 4 6 8 10 12 14 16 18 20

 =   B

0.5

0.55

0.6

0.65

0.7

0.75

0.8

Public Dataset and Subsampling: There is an interesting variant of the sample mixing model with the existence of a
public dataset. Recall the subsampling across n private samples in the SGD protocol (4), which contributes a factor 1/n
and 2/n to the ε-loss in the case without and with sample mixing, respectively. Imagine if the entire dataset is formed
by a public set of m samples and a private set of n samples. Without mixup, the vanilla subsampling contributes a factor
1/(m+ n) to the ε privacy leakage. In comparison, if samples are randomly mixed between the private and public sets,
the factor becomes 1/n in contrast to 2/n when we only mix private samples. Thus, γ can be further improved by m+n

2n ,
as large as an additional 50% reduction for m� n.
(Advanced) Composition: It is well known that relaxed to approximate DP, a K-fold composition of (ε, δ)-DP

mechanisms can produce a (ε̃, Kδ + δ̃)-DP, with ε̃ = Kε2 +

√
−2Kε2 log δ̃ [KOV17], where δ̃ is a free parameter.

We consider the composition of ε(θk) across multiple iterations. Following the idea in [KOV17], since ε(θk) is also
bounded from Theorem 1, by 2

n · log( e
Bβ−1
Bβ ), we may also apply Azuma’s Inequality to derive a high-probability bound.

However, compared to the pure Laplace Mechanism, as shown in Theorem 2 and Fig. 1, sample mixing enjoys better
average loss, which can produce a sharpened composition bound. It is noted that the metric supD ED supD′ εD,D′(θ

k)
proposed, which is defined on the point-wise worst-case ex-post ε-loss, is stronger than the KL-divergence between the
two output distributions from D and D′. Thus, γ presented above also provides a generic lower bound on the privacy
amplification, i.e., how much privacy loss is saved, over the composition of multiple dimensions and iterations. In this
paper we only consider the hybrid between mixup and the Laplace Mechanism, but it can be easily generalized to a
Gaussian Mechanism with a similar reasoning.

3 Hybrid Architecture of Mixup and Noise: Update Mixing

Besides sample aggregation, local update aggregation is also a building block of distributed optimization. In the
following, we shift our focus to a novel hybrid structure of update mixing and a Laplace Mechanism. Consider a more
complicated case, which is a distributed optimization amongst N agents and the goal is to collaboratively minimize the
sum of their loss functions

∑N
i=1 fi(θi) under a consensus restriction θ1 = θ2 = ... = θN , where fi(·) denotes the

8



local loss function held by agent i. For the i-th agent at the k-th iteration, a generic updating protocol of a distributed
GD can be described as follows,

θki =

N∑
j=1

wkijθ
k−1
j − ηk∇fi(θk−1

i ) +∆k
i . (16)

Here, wkij ∈ [0, 1] is the weight assigned to θkj at iteration k such that
∑N
j=1 w

k
ij = 1. We still assume the noise follows

a Laplace distribution. Regular distributed GD fixes the weight wkij in (16) to be the constant 1/N . In this case, θki is
in a pure Laplace distribution provided the earlier updates. Now, we imagine that wkij is randomly generated across
iterations but still with

∑N
j=1 w

k
ij = 1. Then, the underlined quantity in (16) is randomly distributed in a convex hull

of earlier immediate updates θk−1
i . Thus, the distribution of θki is indeed a mixture of a Laplace noise and a bounded

random variable.
Still, w.l.o.g., we only consider the one-dimensional case in the following. The multi-dimensional case is a

straightforward composition. To capture the distribution of θki in (16), for simplicity we assume N = 2, i.e., the
underlying quantity in (16) is a 2-mix, and the difference between θk−1

1 and θk−1
2 is ω. Thus, equivalently, we only

need to consider the following mixture distribution: the sum of Lap(0, β) and an independent uniform distribution
within interval [0, ω] denoted by U [0, ω], whose probability density is a convolution Lap(0, β) ∗ U [0, ω]. We assume
the l∞ sensitivity of∇fi to be B and ηk = 1.
Example 2: Imagine that in (16), the two earlier updates are θk−1

1 = 0 and θk−1
2 = 1, i.e., ω = 1. Two extreme cases

can be: Case 1, ηk∇f1(θk−1
1 ) = 0 and θk1 produced follows Lap(0, β)∗U [0, 1]; Case 2, with the sensitivity assumption,

ηk∇f1(θk−1
1 ) can also be as large as B, and correspondingly the distribution of θk1 is Lap(0, β) ∗ U [B,B + 1].

Theorem 3 With the above setup and assumptions on the update mixing, sensitivity and noise, the hybrid structure
shown in (16) satisfies

ε(θki ) ≤ max
t=±B

∣∣∣∣ log

[ ∫ ω

0

e−β|θ
k
i −c|dc

/∫ t+ω

t

e−β|θ
k
i −c|dc

]∣∣∣∣ ≤ βB.
In particular, let τ ′ = ωβ, in an approximate (ε, δ)-DP view, if δ > (1− e−τ ′)/(2τ ′), then

ε ≤ log
(

max{2eβ(B−ψ(δ))

1− e−τ ′
,

2

1− e−τ ′
}
)
,

where ψ(δ) = ω/(1− e−τ ′) · (δ − (1− e−τ ′)/(2τ ′)).

The proof of Theorem 3 can be found in Appendix B.
Theorem 3 states that, without mixing in (16), i.e., weights ωkij are fixed, if the pure Laplace mechanism produces

ε0-DP, then with the same setup, the hybrid of update mixing and the Laplace mechanism satisfies the same worst case,
i.e., supθki ε(θ

k
i ) = ε0. On the other hand, similar to the argument of sample mixup, update mixing also strengthens the

average-case privacy loss, captured by the high-probability ε bound given in Theorem 3. Analogous to Theorem 2, we
also quantify the expected privacy loss savings in the worst case for the update mixing model.

Theorem 4 Let Φ(t, z) = β
2ω e
−β|t−z|, in the hybrid of update mixing and the Laplace model, when ω > B,

sup
D

ED sup
D′

εD,D′(θ
k
i ) ≤ log

{
2

∫ ω−B
2

0

∫ ω−B

−B
Φ(t, z)dtdz + eβB

[
1− 2

∫ ω−B
2

0

∫ ω

0

Φ(t, z)dtdz

]}
,

which is O(1/ω + 1/(ωβ)) if we take B as a constant.

The proof of Theorem 4 is given in Appendix C.
In Fig. 2, we present the simulation results on the ratio

γ =
supD ED supD′ εD,D′(θ

k
i )

βB
,

9



which quantifies the privacy gain compared to pure Laplace in the update mixing model. We show the effect of β and B
on γ in Fig. 2(a) and (b), respectively. Clearly, larger ω (larger update difference) and β (smaller noise) with a smaller
sensitivity B produce stronger privacy amplification (smaller γ), which coincides with our analysis.

Fig. 2: Privacy Amplification in the Hybrid of Update Mixing and Laplace Mechanism
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4 Decentralized Locally Private Optimization with Update Mixing

We now proceed to consider a stronger privacy guarantee, Local Differential Privacy (LDP), and construct concrete
decentralized (distributed) algorithms that incorporate such update mixing structure.

In practice, data is usually stored across multiple agents and they have to collaborate on a distributed optimization.
Without loss of generality, consider a decentralized optimization problem across N agents in a connected network. The
network is modeled by an undirected graph G(N,E). Nodes are indexed as N = {1, ..., N} and when two nodes i and
j are neighbors that can communicate, (i, j) ∈ E. Each node i has a function f(si,θi) that we regard as a loss function
determined by the sample si held locally with the parameter θi to be optimized. In this paper, we always assume that
f(si, ·) is a differentiable convex function C → R and θi ∈ C ⊂ Rd. C can be viewed as the constraint, assumed to be a
closed convex set. We express the objective function to be minimized as

min
θ[1:N]

N∑
i=1

f(si,θi), s.t.

N∑
i=1

Aiθi = c. (17)

In many learning problems, θ[1:N ] stands for one parameter to be collaboratively optimized. Here, [1 : N ] is the compact
form of {1, 2, ..., N}. We term the problem as consensus optimization if the constraint requires that all θi be equal,
which can still be enforced by a linear constraint

∑N
i=1Aiθi = 0 [MO17]. In such a scenario, agents may not trust

each other. To this end, a stronger notion is Local Differential Privacy (LDP) [BLR13, DJW13, KOV14], where each
agent runs a local randomization procedure to privatize its local dataset before release. If each local randomization
procedure satisfies ε-DP with respect to (w.r.t.) its own local dataset, we then say the whole protocol achieves ε-LDP.
Formally, in the context of decentralized optimization,

Definition 4 (ex-post local privacy loss). The local privacy loss εi(o) for agent i in a decentralized optimization
algorithm A on an output o is defined as

Pr(A(Di) = o) ≤ eεi(o) Pr(A(D′i) = o). (18)

Here, Di = (ŝ1, ..., ŝi, ..., ŝN ) and D′i = (ŝ1, ..., ŝ
′
i, ..., ŝN ) are two arbitrary candidate sets of samples, where ŝi

denotes the sample agent i holds, i.e., Di and D′i differ at the samples agent i holds.

10



Algorithm 1 Modified Private ADMM with First-order Approximation
Input: Local functions f[1:N ], step penalty ζ.
Initialize θ0[1:N ] randomly, λ0

[1:N ] = 0. Each agent selects a private constant Hi.
for k = 0, 1, 2, ...K − 1 do

Agents i = 1 to N do in parallel:
Randomly pick two positive diagonal matrices ρ̄k+1

i and Γ k+1
i such that (N − 1)ρ̄k+1

i +Γ k+1
i = Hi · Id and update θk+1

i in
parallel, where∆k+1

i ∼ Lap(0, βk+1):

θk+1
i :=

Γ k+1
i

Hi
θki +

(N − 1)ρ̄k+1
i

Hi

∑
j 6=i θ

k
j

N − 1
A

−H−1
i ∇fi(θ

k
i )

B

+H−1
i λk

i +∆k+1
i .

(21)

Exchange θk+1
i and then update λk+1

i := λk
i − ζ

∑
j 6=i(θ

k+1
j − θk+1

i ).
end for

LDP described in Definition 4 states that even all other nodes are colluding against node i, from the output, it is
still hard to distinguish agent i’s private data. Similarly, the above point-wise privacy loss easily produces the classic
ε-LDP by setting ε = maxi supo εi(o) [LNR+17, WCHRP17]. For an iterative optimization, o in Definition 4 includes
all (immediate) outputs across iterations. For simplicity, we use fi(θi) to denote f(si,θi) in the following.
Algorithm Construction: Generally speaking, there are two types of decentralized optimization. One is (sub)gradient
based, such as decentralized (stochastic) gradient descent (D(S)GD) methods [NO09], [LZZ+17], and EXTRA
[SLWY15]. The latter relies on solving a constrained problem with dual variables to minimize some Lagrangian
function, such as Alternating Direction Method of Multipliers (ADMM) [WO12]. However, the key idea is the same
where agents average out updates from neighbors and perform broadcasts, and collaboratively and iteratively approach
the global optimum. In the previous section, we briefly described how to incorporate mixup into GD. In the following,
we consider the more complicated case of ADMM.

The updating rule of ADMM with the dual method for (17) relies on solving an optimization problem:

θk+1
i := arg min

θi
L(θk1 , ...,θi, ...,θ

k
N ,λ

k) +
Γ

2

∥∥θi − θki ∥∥2
+
ρ

2

∥∥∥∥Aiθi +

N∑
j 6=i

Ajθ
k
j − c

∥∥∥∥2

+∆k+1
i , (19)

where the Lagrangian function is defined as L(θ1, ...,θN ,λ) =
∑N
i=1 fi(θi)−λT (

∑N
i=1Aiθi−c). Here, ‖·‖q denotes

the lq norm. For brevity, ‖·‖ denotes the standard l2 norm in the following. The Lagrangian multiplier λk+1 is updated
through λk+1 := λk − ζ(

∑N
i=1Aiθ

k+1
i − c). If we allow each agent to independently select random penalties ρ and

Γ across iterations, the θk+1
i produced similarly follows a mixture Laplace distribution with a random mean.

However, we have to stress that closed-form optima of (19) may not exist. To reduce the computational complexity,
in contrast to previous ADMM protocols [WO12, ZZ17, ZKL18], we consider a first-order approximation for each fi:

fi(θi) ≈ fi(θki ) +∇fi(θki )(θi − θki ). (20)

Through randomizing ρ and Γ in (19) accompanied with the approximation (20), a modified private ADMM with mixup
is accordingly derived as Algorithm 1. Meanwhile, stemming from (16), we formally describe a Distributed SGD with
mixup as Algorithm 2 3.

It is clear that Algorithms 1 and 2 share a very similar structure except for the dual variable λki in ADMM. Intuitively,
TermA in either (21) or (22) behaves as mixup to merge the updates from the previous iteration and TermB corresponds
to the effect from the function fi on updating θk+1

i followed by a Laplace noise. Thus, with fixed updates from the
last iteration, in each dimension, the produced distribution of (21) and (22) is equivalent to the update mixing model

3 Here, we omit the projection step if C $ Rd since we are interested in arbitrary constraints. For simplicity, in this section, we
assume G is fully connected and only consider the consensus problem temporarily, while we provide a convergence proof for the
general case in Theorem 5.
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Algorithm 2 Modified Private Decentralized Stochastic Gradient Descent
Input: Local functions fi and a diminishing sequence {ηk}.
Randomly divide N agents into 2K groups, S[1:2K].
Initialize y0

1 and y0
2 .

for k = 0, 1, 2, ...,K − 1 do
Agents i in S2k+1 and S2k+2 do in parallel :
Randomly pick a positive diagonal matrix wi of which the non-zero elements are within (0, 1). Then, with ∆k+1

i ∼
Lap(0, βk+1), update θi as:

θi := wiy
k
1 + (Id −wi)y

k
2
A
− ηk+1N∇fi

(yk
1 + yk

2

2

)
B

+∆i, (22)

Broadcast θi to agents in S2k+3 and S2k+4 where yk+1
1 = 1

|S2k+1|
∑

i∈S2k+1
θi and yk+1

2 = 1
|S2k+2|

∑
i∈S2k+2

θi.
end for

described in Section 3. We can still use B to denote the l∞ sensitivity where maxi supθ ‖∇f(ŝi,θ)−∇f(ŝ′i,θ)‖∞ ≤ B
for two arbitrary candidates ŝi and ŝ′i of the sample from agent i. What remains to complete the privacy analysis on
Algorithms 1 and 2 is simply a composition of the privacy loss on each dimension of immediate update θi across each
iteration and is omitted.

5 Analysis of LDP-Utility Tradeoff

Based on fundamental analysis of non-private ADMM and decentralized (stochastic) GD [MO17, OHTG13, SLY+14,
CHW15], a systematic study of decentralized optimization with composite incorporation of random aggregation and
noise perturbation is developed throughout this section. It is worth mentioning that, with properly selected parameters,
the theorems and framework of proofs provided are invariant to whether update mixing is incorporated or not. In other
words, upper bounds shown in Theorems 5-6 also match the best-known existing privacy-utility tradeoff without mixup.
We focus on the ε(, δ) privacy guarantee of LDP in the following.

For notational simplicity, let θk = (θk1 ,θ
k
2 , ...,θ

k
N ) and F (θk) =

∑N
i=1 fi(θ

k
i ), and accordingly ∇F (θk) =

(∇f1(θk1 ), ...,∇fN (θkN )). We first recall some commonly used notions in convex optimization analysis:
A function f(θ) : C → R is L-Lipschitz continuous if for any θ,y ∈ C, |f(θ)− f(y)| ≤ L‖θ − y‖;
A function f(θ) : C → R is M -smooth if ∇f(·) is M -Lipschitz continuous: for any θ,y ∈ C, ‖∇fi(θ) −

∇fi(y)‖ ≤M‖θ − y‖.
I is the d× d identity matrix. We use ‖z‖2G to denote zTGz in the following.

Analysis of Algorithm 1: Let Gx = diag{H1, ...,HN , 1/ζ} denote a diagonal matrix, where Hi = Hi · I =
Γ k+1
i +ATi ρ

k+1
i Ai is positive definite.

Theorem 5 If fi(·), i = 1, 2, .., N , are convex and M -smooth, and for any i, j ∈ [1 : N ]{
Hj−M
N2 (ρ

i
− ζ

2 ) ≥ σ2
max,j ρ̄

2
i

1
(N−1)2 (ρ

i
− ζ

2 )(ρ
j
− ζ

2 ) ≥ (ρ̄i − ρi)
2,

(23)

where ρi · I � ρk+1
i � ρ̄i · I for some constants 0 < ρi < ρ̄i and σmax,i is the largest singular value of Ai, then for

Algorithm 1,

|E[F (θ̄K)]− F (θ∗)| ≤
‖θ0 − θ∗‖2Gx + 4

ζ ‖λ
∗‖2

2K
+

∑K
k=1

∑N
i=1(M +Hi + 1

ζ )E[‖∆k
i ‖2]

K
, (24)

where θ̄K = 1
K

∑K
k=1 θk and λ∗ is the state of λk when θk reaches the optimum θ∗ = (θ∗1 ,θ

∗
2 , ...,θ

∗
N ) of (17). Under

(ε, δ)-LDP, the utility loss is O(
√
NdB‖θ0−θ∗‖Gx

ε ).
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Here, B still stands for the l∞ sensitivity. Theorem 5 characterizes the convergence rate of the decentralized optimization
in an arbitrary communication graph. The takeaway from the above theorem is that, with or without update mixing,
regular ADMM and the proposed Algorithm 1 enjoy the same convergence rate and privacy-utility tradeoff in an
asymptotic view.

The high-level idea of the proof (see Appendix D) can be summarized as two steps: First, we derive the convergence
rate of regular ADMM with the mixup structure (Lemma 1 and 2); Second, we study the first-order approximation error
(Lemma 3), and then combine both to complete the proof.
Analysis of Algorithm 2: In comparison to ADMM, D(S)GD only captures consensus optimization. When ‖∇fi‖ is
bounded, the following theorem shows the privacy-utility tradeoff of Algorithm 2. Here, we assume θ∗ = (θ∗,θ∗, ...,θ∗)
is the optimum solution to (17).

Theorem 6 Assume that fi(θ) is convex and ‖∇fi(θ)‖2 is bounded by G2 for each i. Moreover, assume that

max
k,j∈{1,2}

E[(∆k
j /ηk)2] ≤ V 2.

When we select the step size ηk = 1
c
√
k

for some constant c, then 1
NE[

∑N
i=1 fi

(∑K−1
k=0 (yk1 +yk2 )

2K

)
− F (θ∗)] is upper

bounded by
c(‖y0

1 − θ∗‖2 + ‖y0
2 − θ∗‖2)

4
√
K

+
(logK + 2)

√
K + 1(G2 + V 2)

2Kc
. (25)

In ε-LDP, Algorithm 2 has utility loss Õ(
√
Nd3/2B/ε). With (ε, δ) relaxation, this bound can be sharpened to

Õ(
√
NdB/ε). Õ is big O notation that ignores logarithmic factors.

The proof of Theorem 6 can be found in Appendix E. (25) matches the lower bound of [KOV14] and is essentially a
more generalized form of the utility guarantees derived in [STU17]. In addition, we provide a non-asymptotic view of
the convergence rate through a study on the random stochastic matrix, included in Appendix F.

In Appendix A, we provide two sets of experiments to support all the theoretical results obtained so far. In Appendix
A.2, we compare Algorithm 1 and 2 with existing private decentralized optimization algorithms [ZKL18, ZZ17,
DGPH19]. In Appendix A.3, we move our focus to study the impact of update mixing in the hybrid structure on utility,
compared to the pure Laplace mechanism without mixing (by fixing all weights). We test both practical and synthetic
datasets.

As a conclusion, either from a theoretically asymptotic convergence rate view, shown in Theorem 5 and 6, which
matches the information-theoretically optimal lower bound, or from an empirical view, through experiments shown in
Appendix A, random mixing does not hurt performance but produces a straightforward privacy amplification, captured
by the ratio γ described in Theorem 2 and 4.

6 Other Related Works and Conclusion

As a powerful paradigm, randomness can be used to strengthen various aspects of performance, such as learning
capacity and computational complexity, and meet different requirements. In this paper, we set out to bridge empirical
randomization commonly used in machine learning and the classic noise (Laplace/Gaussian) mechanism commonly
used in Differential Privacy with a hybrid structure. This provides a systematic framework to understand and make use
of optimization or learning-utility-oriented randomness to further strengthen privacy preservation.

In this work, we take mixup as an example and study privacy amplification in the convolution of input mixing and
the Laplace mechanism. Another well-known amplification technique in DP is the mixture of subsampling and regular
noise mechanisms. Balle et al. in [BBG18] propose applying coupling and α-divergence to derive a tighter privacy loss
bound, which we believe can also be generalized to our case. Moreover, we observe that public dataset can further
strengthen the privacy amplification during sample mixing, which is discussed in Section 2. This is different from the
approach mentioned in [FMTT18].

Inspired by sample mixing, we propose a novel update mixing structure and show its applications in decentralized
optimization. As far as we know, the utility-LDP tradeoff presented here is the most generic result so far, where existing
private ADMM or DGD works [ZZ17, ZKL18, HMV15, HHG+19, HTP17] either assume strong convexity or central
aggregators.
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A Simulation Results

A.1 Theoretical privacy amplification

First, in Fig. 3 (a), we show the relationship between γ, ω and β in Theorem 4, where B is fixed to 0.001. With ω
ranging from 0.1 to 1 and β from 2 to 10, clearly larger ω and β, corresponding to a longer interval length and noise of
smaller variance, lead to better privacy amplification.

A.2 Comparison with existing works

We test the proposed schemes and state-of-art approaches on regularized empirical risk minimization (ERM) tasks.
We use the standard Adult dataset from the UCI Machine Learning Repository. For simplicity, we call the task as
UCI in the following. In UCI, the dataset consists of demographic records, including age, sex and income etc. in 15
total features. We try to predict whether the annual income of an individual is above 50k. After processing of the data,
we remove all individuals with missing values and normalize the features while converting labels {≥ 50k,< 50k} to
{−1, 1}. The training samples are denoted by {xij ∈ R14, Lij ∈ {−1, 1}|i = 1, · · · , N, j = 1, · · · , ni}. Consistent
with [ZKL18], [ZZ17], we select the loss function L(x) = log(1 + exp(−x)). Thus, N agents are collaboratively
solving the following logistic regression:

min
θ

N∑
i=1

fi(θ) =

N∑
i=1

(
1

ni

ni∑
j=1

log(1 + exp(−LijθTxij)) +
1

2
‖θ‖2

)
.

Tests are run with different parameter settings. 100 independent runs of each algorithm for comparison are performed
and each agent is randomly assigned 100 samples from the dataset. In each run, the communication graph is randomly
generated using the given N and the number of edges E.

In Fig. 3 (b) and (c), we uniformly assume that Hi = D = 10 and ζ = 0.5 for Algorithm 1. In the case of private
ADMM, previous works all assume fixed parameters in the optimization protocol. In [ZZ17], the Lagrangian multiplier
at the beginning of each iteration is perturbed, while [DGPH19] considers the output perturbation at the end of each
iteration. Further, in [ZKL18], the authors introduce a sequence of increasing step penalty, which can bring better
utility-privacy tradeoff empirically. For [ZZ17], [DGPH19] with constant fixed penalty, we assume Γi = 0.5D and
ρi = 0.5D

|Ni| , corresponding to the expectation of the penalty terms in Algorithm 1. Here Ni denotes the neighbors of
agent i. As for [ZKL18], we follow their setting that Γ ki = 0.5× 1.02k|Ni| and ρki = 0.5× 1.02k. 4

In the privacy part, with the same assumption in [ZKL18], we assume fi and f̂i may only differ in one sample
and thus, due to the normalization, B = 1

ni
= 0.01, and J = 2.8

Dni
, the Jacobian constant required by [ZKL18] in

their privacy analysis. It is noted that∇L is within (−1, 0], while the privacy analysis of [DGPH19] takes the globally
upper bound on∇L as the sensitivity. This makes their bound too loose and we omit their privacy loss bound in our
simulation. The results are illustrated in Fig. 3 (b) and (c), where N = 10, E = 20. The accuracy logarithm is defined
by log‖(θki − θ∗i )/d‖, across 100 iterations averaged across 100 runs. The difference between the best and the worst
accuracy over 100 runs is also marked.

A.3 Impact from Mixup on Performance

In this subsection, we provide more details on the impact of random aggregation on the utility.
In Fig.4, we test Algorithm 1 and 2 with their corresponding variants without update mixing but a pure Laplace

Mechanism: the parameters in Algorithm 1 and 2 are all fixed to be constants. The task here is still the logistic regression
of the Adult dataset defined above. For simplicity, in the following, (F ) denotes the latter case of fixed parameters
(without mixup). In the experiment, communication graphs are randomly generated across 100 trials, where N and E
are the number of vertices and edges, respectively. In addition, we assume each agent holds a dataset of size 1000 and
200 in Algorithm 1 and 2, respectively. One of the key observations is, with the same setup, the hybrid randomization

4 We do not optimize the increasing penalty here but we find that in some cases by proper selection, a privacy loss reduction can be
achieved empirically at a cost of relatively small utility compromise. Such techniques can also be applied in our algorithms.
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Fig. 3: Simulation on γ and comparison with [ZKL18] [ZZ17], [DGPH19] on UCI Adult dataset over graphs N = 10,
E = 20

Fig. 4: Comparison between Algorithm 1 & 2 (with update mixing), Algorithm 1 & 2 (F) (without update mixing) and
their non-private versions on logistic regression over Adult.

achieves almost the same utility loss in optimization accuracy as that of the regular Laplace Mechanism. For the privacy
side, the same noise is applied in both cases where we fix the ε privacy budget to be 1. Update mixing renders a
sharpened privacy amplification, where the privacy loss is reduced empirically ranging from 30% to 50%, and performs
even better with a sparser graph or a larger privacy budget. Also, earlier iterations enjoy better privacy amplification
since the divergence amongst θk[1:N ] (or yk[1:2] in Algorithm 2) is larger. This is consistent with Theorem 4 where a
larger interval length ω renders smaller γ.

We further consider synthetic datasets where each data point (zi, yi) is i.i.d. generated by the model yi =
sign[ 1

1+e〈θ
∗,zi〉+ei

− 1
2 ], where zi ∈ R20 and yi ∈ {−1, 1}. Here, in the first example shown in Fig. 5, we select

ei to be i.i.d. Gaussian noise N (0, 0.52); in the second example shown in Fig. 6, we consider heavy-tailed noise and
select ei to be i.i.d. Lognormal noise of parameter µ = 1, σ = 1. The probability density of a Lognormal noise of

parameter (µ, σ) is P(ei = x) = 1
xσ
√

2π
e−

(ln x−µ)2

2σ2 . In this case, we further normalize ei such that the average of them
equals 0. Accordingly, we implement Algorithm 1 and Algorithm 2 with corresponding fixed parameter and non-private
versions on the logistic regression over the two synthetic datasets generated. Here, we assume in Algorithm 1, each
agent holds 500 samples while in in Algorithm 2, each agent holds 200 samples.

18



1 2 3 4 5 6 7 8 9 10

Iteration

0

0.2

0.4

0.6

0.8

1

1.2

Algorithm 1 (F)

Algorithm 1

0 5 10 15 20

Group

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

Algorithm 2 (F)

Algorithm 2

1 2 3 4 5 6 7 8 9 10

Iteration

0.9

1

1.1

1.2

1.3

1.4

1.5

1.6

1.7
Algorithm 1 (F)

Algorithm 1

Non-private Algorithm 1 (F)

Non-private Algorithm 1

2 4 6 8 10 12 14 16 18 20

Iteration

0.5

1

1.5

2
Algorithm 2 (F)

Algorithm 2

Non-private Algorithm 2 (F)

Non-private Algorithm 2

Fig. 5: Algorithm 1 & 2 and their fixed-parameter and non-private versions on logistic regression over the synthetic
dataset in Gaussian distribution
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Fig. 6: Algorithm 1 & 2 and their fixed-parameter and non-private versions on logistic regression over the synthetic
dataset in Lognormal distribution

B Proof of Theorem 3

Proof. W.l.o.g., we assume θk−1
1 = 0 and θk−1

2 = ω. We use x to denote θki in the following and the upper bound of ε
can be reformulated as follows. For x ∈ R, we consider

max
|t|≤B

∣∣∣∣ log

∫ ω
0
βe−β|x−c|dc∫ t+ω

t
βe−β|x−c|dc

∣∣∣∣, (26)

for some positive numbers ω, β and B, which correspond to the length of the interval, Laplace noise factor and sensitivity,
respectively.

For a fixed t, |t| ≤ B, if x 6∈ [0, ω] ∪ [t, ω + t], then∣∣∣∣ log

∫ ω
0
βe−β|x−c|dc∫ t+ω

t
βe−β|x−c|dc

∣∣∣∣ =

∣∣∣∣ log

∫ ω
0
e−β|x−c|dc

eβt
∫ ω

0
e−β|x−c|dc

∣∣∣∣ =
∣∣βt∣∣ ≤ βB. (27)

Thus, in the following, we only need to consider the rest cases. When x ∈ [0, ω], then
∫ ω

0
βe−β|x−c|dc = 2− e−βx −

e−β(ω−x). In addition, if x ∈ [t, ω + t], then
∫ ω+t

t
βe−β|x−c|dc = 2− e−β(x−t) − e−β(ω+t−x). To show

e−β|t| ≤ 2− e−βx − e−β(ω−x)

2− e−β(x−t) − e−β(ω+t−x)
≤ eβ|t|,

it is equivalent to showing{
2eβ|t| − e−βx+β|t| − e−β(ω−x)+β|t| ≥ 2− e−β(x−t) − e−β(ω+t−x),

2− e−βx − e−β(ω−x) ≤ 2eβ|t| − e−β(x−t)+β|t| − e−β(ω+t−x)+β|t|.
(28)

19



Due to the symmetry, we merely prove the case when t ≥ 0, where (28) can be rewritten as,{
2eβt − e−β(x−t) − e−β(ω−x−t) ≥ 2− e−β(x−t) − e−β(ω+t−x),

2− e−βx − e−β(ω−x) ≤ 2eβt − e−β(x−2t) − e−β(ω−x).
(29)

Clearly, for the first inequality, it suffices to show

2(eβt − 1) ≥ (e2βt − 1)e−β(ω+t−x), (30)

and it can be further simplified to 2eβ(ω+t−x) ≥ eβt + 1. Such a claim follows clearly as ω − x ≥ 0. For the second
inequality, with similar reasoning, it is equivalent to

2eβx ≥ eβt + 1, (31)

which holds since x > t.
At last, we consider x 6∈ [t, t + ω]. Again, due to the symmetry, we can assume t ≥ 0 and x ≤ t. Then, it is

equivalent to showing: {
2eβt − e−β(x−t) − e−β(ω−x)+βt ≥ e−β(t−x) − e−β(ω+t−x),

2−e−βx − e−β(ω−x) ≤ eβx − e−β(ω−x).
(32)

As for the first inequality, assume that g(t) = 2eβt − e−β(x−t) − e−β(t−x) − e−β(ω−x)+βt + e−β(ω+t−x). It is noted
that when t = 0, x should be also be 0 since x ≤ t and x ∈ [0, ω] as assumed, and g(0) = 0. On the other hand,

dg

dt
= β

(
2eβt − e−β(x−t) + e−β(t−x) − e−β(ω−x)+βt − e−β(ω+t−x)

)
. (33)

Since x ≤ ω, to show g(t) is non-decreasing with respect to t, it suffices to show that,

2eβt − e−β(x−t) + e−β(t−x) − e−β(t−x)+βt − e−β(t+t−x) ≥ 0. (34)

It is clear that eβt ≥ e−β(x−t) and e−β(t−x) ≥ e−β(2t−x) as both x and t are non-negative. Furthermore, eβt ≥
e−β(t−x)+βt = eβx since t ≥ x. Therefore, (33) is non-negative. The second inequality of (32) is exactly the AM-GM
inequality that

2 ≤ e−βx + eβx.

In a nutshell, we have proven that (26) is upper bounded by max|t|≤B |tβ| = βB. Moreover, when x belongs to the
intersection of the two intervals, (0, ω) and (t, ω + t), the above inequalities are strict, i.e., (26) is strictly smaller than
βB, which corresponds to the pure Laplace mechanism case where we fix all parameters to be constants.

Finally, we prove the approximate (ε, δ)-DP argument. It is noted that the density function of U [0, ω]∗Lap(0, β)(x)

is increasing when x < ω
2 , and decreasing when x > ω

2 . Therefore, when x ∈ [0, ω], since 2−e−βx−e−β(ω−x)
2ω <

1−e−βω/2
ω , it is easy to verify that Pr(x < ψ(δ)) ≤ δ, where

ψ(δ) =
δ − 1−e−βω

2ω
1−e−βω/2

ω

.

Due to the symmetry, w.l.o.g., we consider the other extreme case where x is generated by U [B, ω + B] ∗ Lap(0, β)
and compare the density ratio. When x ∈ [0, ω] ∩ [B, ω + B], the ratio becomes

2− e−βx − e−β(ω−x)

2− e−β(x−B) − e−β(ω+B−x)
,

which is upper bounded by 2
1−e−βω . On the other hand, if x 6∈ [B, ω + B] but within [0, ω], the ratio becomes

2− e−βx − e−β(ω−x)

eβ(x−B)(1− e−βω)
,

which is upper bounded by 2eβ(B−x)

1−e−βω . Taking the maximum of both, the claim holds.
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C Proof of Theorem 4

Proof. Following the normalization in the proof of Theorem 3, we still assume x = θki is a Laplace distribution whose
mean is uniformly distributed in [0, ω], conditional on all prior intermediate outputs. As a corollary of Theorem 3,

Θ(x) = max
|t|≤B

∣∣∣∣ log

∫ ω
0
e−β|x−y|dy∫ ω+t

t
e−β|x−y|dy

∣∣∣∣,
where the maximization is achieved when t either equals to B or −B. To quantify supD ED supD′ εD,D′(θ

k
i ), it suffices

to calculate ∫ ∞
−∞

∫ ω

0

Θ(x)
β

2ω
e−β|x−y|dydx, (35)

since the probability density function of x is
∫ ω

0
β
2ω e
−β|x−y|dy. With the concavity of log(·), (35) is upper bounded by

log

∫ ∞
−∞

∫ ω

0

β

2ω
e−β|x−y|· max

t=±B

{ ∫ ω
0
e−β|x−z|dz∫ ω+t

t
e−β|x−z|dz

,

∫ ω+t

t
e−β|x−z|dz∫ ω

0
e−β|x−z|dz

}
dxdy. (36)

Now, we take a closer look into maxt=±B
{ ∫ ω

0
e−β|x−z|dz∫ ω+t

t
e−β|x−z|dz

,
∫ ω+t
t

e−β|x−z|dz∫ ω
0
e−β|x−z|dz

}
. In the proof of Theorem 3, once

x 6∈ [0, ω], maxt=±B
{ ∫ ω

0
e−β|x−z|dz∫ ω+t

t
e−β|x−z|dz

,
∫ ω+t
t

e−β|x−z|dz∫ ω
0
e−β|x−z|dz

}
= eβB.

Since we assume ω > B, it is not hard to observe that

x ∈ [0, ω−B2 ], maxt=±B

{ ∫ ω
0
e−β|x−z|dz∫ ω+t

t
e−β|x−z|dz

,
∫ ω+t
t

e−β|x−z|dz∫ ω
0
e−β|x−z|dz

}
=

∫ ω+t
t

e−β|x−z|dz∫ ω
0
e−β|x−z|dz

∣∣∣∣
t=−B

;

x ∈ [ω−B2 , ω2 ], maxt=±B

{ ∫ ω
0
e−β|x−z|dz∫ ω+t

t
e−β|x−z|dz

,
∫ ω+t
t

e−β|x−z|dz∫ ω
0
e−β|x−z|dz

}
=

∫ ω
0
e−β|x−z|dz∫ ω+t

t
e−β|x−z|dz

∣∣∣∣
t=−B

;

x ∈ [ω2 ,
ω+B

2 ], maxt=±B

{ ∫ ω
0
e−β|x−z|dz∫ ω+t

t
e−β|x−z|dz

,
∫ ω+t
t

e−β|x−z|dz∫ ω
0
e−β|x−z|dz

}
=

∫ ω
0
e−β|x−z|dz∫ ω+t

t
e−β|x−z|dz

∣∣∣∣
t=B

;

x ∈ [ω+B
2 , ω], maxt=±B

{ ∫ ω
0
e−β|x−z|dz∫ ω+t

t
e−β|x−z|dz

,
∫ ω+t
t

e−β|x−z|dz∫ ω
0
e−β|x−z|dz

}
=

∫ ω+t
t

e−β|x−z|dz∫ ω
0
e−β|x−z|dz

∣∣∣∣
t=B

.

Thus, fortunately, we can avoid the complicated integral at least in x ∈ [0, ω2 − B], or x ∈ [ω2 + B, ω] where it is
simplified to O(

∫ ω+t

t
e−β|x−y|dy). Now, we can split R into three parts, (−∞, 0) ∪ (ω,∞), [0, ω−B2 ] ∪ [ω+B

2 , ω] and
(ω−B2 , ω+B

2 ). To avoid the tedious term when x ∈ (ω−B2 , ω+B
2 ), here, we simply substitute the global upper bound to

derive a closed-form expression but one may obtain the expression of γ exactly with the same reasoning. Note the
symmetry on t = ±B, (36) is upper bounded by

log

{
eωB

[
1− 2

∫ (ω−B)/2

0

∫ ω

0

β

2ω
e−β|x−y|dydx

]
+2

∫ (ω−B)/2

0

∫ ω−B

−B

β

2ω
e−β|x−y|dydx

}
. (37)

D Proof of Theorem 5

We describe the construction of Algorithm 1 in two steps to solve (17). First, we recall the conventional ADMM (19)
without first-order approximation but incorporating random penalties across iterations. The updating procedure of node
i at the (k + 1)th iteration becomes,

θ̃k+1
i := arg minθi fi(θi)− λkT

(
Aiθi +

∑
j 6=iAjθ

k
j − c

)
+ 1

2

∥∥∥∥Aiθi +
∑
j 6=iAjθ

k
j − c

∥∥∥∥2

ρk+1
i

+ 1
2

∥∥θi − θki ∥∥2

Γ k+1
i

;

θk+1
i = θ̃k+1

i +∆k+1
i ,

(38)
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and the Lagrangian multiplier is updated accordingly as λ̃k+1 := λk − γk+1
i ρk+1

i (
∑N
i=1Aiθ̃

k+1
i − c); and λk+1 :=

λk − γk+1
i ρk+1

i (
∑N
i=1Aiθ

k+1
i − c). γk+1

i ρk+1
i = ζ · I is a global constant set up at the beginning. Let uk+1 =

[θk+1
[1:N ],λ

k+1] and u∗ = [θ∗[1:N ],λ], where θ∗[1:N ] stand for the optimum to (17) and λ is an arbitrary point in Rd. In
Algorithm 1, we further apply first-order approximation in (38) as

θk+1
i :=H−1

i

[
ATi
(
λk − ρk+1

i

(∑
j 6=i

Ajθ
k
j − c

))
+Γ k+1

i θki −∇fi(θki )
]

+∆k+1
i . (39)

The utility analysis of Algorithm 1 is thus developed in two steps: first we derive the utility loss of (38) under mixup
structure; then we bound the loss from the approximation in Algorithm 1. Combine both, we then complete the proof.

Lemma 1. If f[1:N ] are all M -smooth convex functions, following (38),

2E[F (θk+1)− F (θ∗)− λTA(θk+1 − θ∗)]

≤ −E[hk+1] +

N∑
i=1

(M +Hi +
1

ζ
)E[‖∆k+1

i ‖2] + E[‖uk − u∗‖2G − ‖uk+1 − u∗‖2G],
(40)

where G = diag{H1, ...,HN , 1/ζ}. diag{...} denotes a diagonal matrix. Here,Hi = Hi · I = Γ k+1
i +ATi ρ

k+1
i Ai

is positive definite. hk+1 is some remainder term which is non-negative if for any i, j ∈ [1 : N ]{
Hj
N2 (ρ

i
− ζ

2 ) ≥ σ2
max,j ρ̄

2
i

1
(N−1)2 (ρ

i
− ζ

2 )(ρ
j
− ζ

2 ) ≥ (ρ̄i − ρi)
2 (41)

where ρi · I � ρk+1
i � ρ̄i · I for some constants 0 < ρi < ρ̄i and σmax,i is the largest singular value of Ai.

Proof. Since fi is convex,
〈∇fi(θ̃k+1

i ), θ̃k+1
i − θ∗i 〉 ≥ fi(θ̃k+1

i )− fi(θ∗i ). (42)

Due to the optimality condition satisfied, we have

∇fi(θ̃k+1
i ) = ATi (λk − ρk+1

i (Aiθ̃
k+1
i +

∑
j 6=i

Ajθ
k
j − c)) + Γ k+1

i (θki − θ̃k+1
i ). (43)

Also from the KKT condition, for the optimal states θ∗[1:N ],
∑N
i=1Aiθ

∗
i = c. Substitute the above equations into (42),

we have

〈ATi (λk − ρk+1
i (Aθ̃k − c) + ρk+1

i Ai(θ
k
i − θ̃k+1

i )), θ̃k+1
i − θ∗i 〉+ (θ̃k+1

i − θ∗i )TΓ k+1
i (θki − θ̃k+1

i )

≥ fi(θ̃k+1
i )− fi(θ∗i ).

(44)

Here, Aθk =
∑N
i=1Aiθ

k
i . Let λk = λk − λ+ λ, we can rewrite (44) as

〈λk − λ, Ai(θ̃k+1
i − θ∗i )〉+ (θ̃k+1

i − θ∗i )T (Γ k+1
i +ATi ρ

k+1
i Ai)(θ

k
i − θ̃k+1

i )− 〈Aθ̃k − c,ρk+1
i Ai(θ̃

k+1
i − θ∗i )〉)

≥ fi(θ̃k+1
i )− fi(θ∗i )− λTAi(θ̃k+1

i − θ∗i ).
(45)

Summing up the above formulas for i = 1, 2, ..., N , we have

1

ζ
(〈λk − λ̃k+1,λk − λ̃k+1〉+ 〈λ̃k+1 − λ,λk − λ̃k+1〉) +

N∑
i=1

(θ̃k+1
i − θ∗i )T (Γ k+1

i +ATi ρ
k+1
i Ai)(θ

k
i − θ̃k+1

i )

− 〈Aθ̃k − c,
N∑
i=1

ρk+1
i Ai(θ̃

k+1
i − θ∗i )〉 ≥ F (θ̃k+1)− F (θ∗i )− λTA(θ̃k+1 − θ∗).

(46)
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Let the matrix G = diag{H1, ...,HN ,
1
ζ }, whereHi = Hi · I . With the identity: ‖uk − u∗‖2G − ‖ũk+1 − u∗‖2G =

2(ũk+1 − u∗)TG(uk − ũk+1) + ‖uk − ũk+1‖2G, we have

‖uk − u∗‖2G − ‖ũk+1 − u∗‖2G − ‖uk − ũk+1‖2G +
2

ζ
‖λk − λ̃k+1‖2

− 2〈Aθk − c,
N∑
i=1

ρk+1
i Ai(θ̃

k+1
i − θ∗i )〉 ≥ 2[F (θ̃k+1)− F (θ∗i )− λTA(θ̃k+1 − θ∗)].

(47)

Here, uk = (θk[1:N ],λ
k), ũk+1 = (θ̃k+1

[1:N ], λ̃
k+1) and u∗ = (θ∗[1:N ],λ). Let hk+1 = ‖uk − ũk+1‖2G − 2

ζ ‖λ
k −

λ̃k+1‖2 + 2〈Aθk − c,
∑N
i=1 ρ

k+1
i Ai(θ̃

k+1
i − θ∗i )〉), which can be further rewritten as

hk+1 =

N∑
i=1

Hi‖θki − θ̃k+1
i ‖2 − 1

ζ
‖λk − λ̃k+1‖2 + 2〈

N∑
i=1

Ai(θ
k
i − θ̃k+1

i + θ̃k+1
i − θ∗i ),

N∑
i=1

ρk+1
i Ai(θ̃

k+1
i − θ∗i )〉

=

N∑
i=1

Hi‖θki − θ̃k+1
i ‖2 − ζ‖A(θ̃k+1 − θ∗)‖2 + 2〈

N∑
i=1

Ai(θ
k
i − θ̃k+1

i ),

N∑
i=1

ρk+1
i Ai(θ̃

k+1
i − θ∗i )〉

+ 2ρ0‖A(θ̃k+1 − θ∗)‖2 + 2〈
N∑
i=1

Ai(θ̃
k+1
i − θ∗i ),

N∑
i=1

(ρk+1
i − ρ0I)Ai(θ̃

k+1
i − θ∗i )〉.

(48)
We assume ρi · I � ρk+1

i � ρ̄i · I and σmax,i is the largest singular value of Ai. To guarantee that hk+1 ≥ 0, it suffices
to let 

Hj

N2
(ρ
i
− ζ

2
) ≥ σ2

max,j ρ̄
2
i ,

1

(N − 1)2
(ρ
i
− ζ

2
)(ρ

j
− ζ

2
) ≥ (ρ̄i − ρi)

2.
(49)

In the following, we generalize the above with respect to θk+1
i = θ̃k+1

i +∆k+1
i . It is noted that

fi(θ +∆k+1
i ) ≤ fi(θ) + 〈∆k+1

i ,∇fi(θ)〉+
M

2
‖∆k+1

i ‖2.

In addition, E[‖ũk+1 − uk+1‖2G] w.r.t. the randomness of ∆k+1 is ‖ũk+1 − u∗‖2G + E[‖uk+1 − u∗‖2G], since the
mean of noise added is zero. Putting things together, the claim follows.

With Lemma 1, we can show the convergence and utility loss w.r.t. the norm ‖·‖G.

Lemma 2. Under the same condition as in Lemma 1 such that hk ≥ 0, let θ̄K = 1
K

∑K
k=1 θk, then

|E[F (θ̄K)]− F (θ∗)| ≤
‖θ0 − θ∗‖2Gx + 4

ζ ‖λ
∗‖2

2K
+

∑K
k=1

∑N
i=1(M +Hi + 1

ζ )E[‖∆k
i ‖2]

K
, (50)

where λ∗ is the state of λk when θk reaches the optimum. Under (ε, δ)-LDP, 5 the utility loss is O(
√
NdB‖θ0−θ∗‖Gx

ε ).
Here, Gx = diag{H1, ...,HN}.

Proof. Summing up (40) for k = 0, 1, ...,K − 1 and applying the Jensen inequality, we have

E[K
(
F (θ̄K)− F (θ∗)

)
−λTA

K∑
k=0

(θk+1 − θ∗)] ≤
K−1∑
k=0

E[F (θk+1)− F (θ∗) + λTAθk+1]

≤ 1

2

K−1∑
k=0

N∑
i=1

(M +Hi +
1

ζ
)E[‖∆k+1

i ‖2] + E[‖u0 − u∗‖2G].

(51)

5 K-fold composition of (ε, δ)-(L)DP mechanisms can produce a (ε̃, Kδ + δ̃)-DP, where ε̃ = Kε2 + ε

√
−2K log δ̃.
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Since λ0 = 0 and λ in u∗ is an arbitrary point in Rd, by letting λ = 0, we have

E[F (θ̄K)− F (θ∗)] ≤
‖θ0 − θ∗‖2Gx

2K
+

∑K
k=1

∑N
i=1(
√
M +Hi + 1

ζ )E[‖∆k
i ‖2]

K
. (52)

On the other hand, with KKT condition, −λ∗TA(θ̄K − θ∗) = −∇F (θ∗)(θ̄
K − θ∗). Applying convexity of F (·), we

have
F (θ∗) ≤ F (θ̄K)−∇F (θ∗)

T (θ̄K − θ∗). (53)

Thus, by letting λ = 2λ∗ in (51) and adding −λ∗TA(θ̄K − θ∗) on both sides of (53), we have

− λ∗TA
K∑
k=0

(θk+1 − θ∗) ≤ F (θ̄K)− F (θ∗)− 2λ∗TA

K∑
k=0

(θk+1 − θ∗)

≤
‖θ0 − θ∗‖2Gx + 4

ζ ‖λ
∗‖2

2K
+

∑K
k=1

∑N
i=1(M +Hi + 1

ζ )E[‖∆k
i ‖2]

K
.

(54)

Following [BST14], E[‖∆k
i ‖2 = O(

d2KB2
∞

ε2 ) under (ε, δ)-LDP guarantee. Putting the upper and lower bounds of
F (θ̄K)− F (θ∗) together, let K = O(

√
NdB
ε ), the claim follows.

Finally, we can bridge the above utility analysis and the case where we further apply first-order approximation in
(38) as

θk+1
i := H−1

i

[
ATi
(
λk − ρk+1

i

(∑
j 6=i

Ajθ
k
j − c

))
+ Γ k+1

i θki −∇fi(θki )
]

+∆k+1
i . (55)

To quantify the loss from the approximation, we provide the following lemma.

Lemma 3. Under the modified updating procedure above, Lemma 1 holds with the same setup and hk+1 is non-negative
if for any i, j ∈ [1 : N ]: {

Hj−M
N2 (ρ

i
− ζ

2 ) ≥ σ2
max,j ρ̄

2
i

1
(N−1)2 (ρ

i
− ζ

2 )(ρ
j
− ζ

2 ) ≥ (ρ̄i − ρi)
2.

(56)

Proof. With the smooth assumptions on∇fi, i.e., for any θ and y,

‖∇fi(θ)−∇fi(y)‖ ≤M‖θ − y‖,

we have the following fact: for any z

fi(θ)− fi(y) ≤ ∇fTi (z)(θ − y) +
M

2
‖θ − z‖2.

Therefore, by replacing θk+1
i with θki in (42), all the deductions in Theorem 1 stay the same except that the term∑N

i=1Hi‖θk+1
i − θki ‖2 in the expression of hk+1 in (48) becomes

∑N
i=1(Hi −M)‖θk+1

i − θki ‖2. Therefore, by
replacing Hi in (41) with Hi −M , the claim follows.

Once hk is non-negative as guaranteed by the above lemma, Lemma 2 still holds under the first-order approximation
based updating rule, which completes the proof.

E Proof of Theorem 6

Without loss of generality, we scale the original objective function by a factor of 1
N : let F (θ) = 1

N

∑N
i=1 fi(θi) and

accordingly the updating rule of Algorithm 2 becomes,

θi := wiy
k
1 + (Id −wi)yk2 − ηk+1∇fi

(yk1 + yk2
2

)
+∆i. (57)
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For each k ∈ [0 : K − 1],

‖yk+1
1 − θ∗‖2 = ‖ 1

|S2k+1|
∑

i∈S2k+1

(
wiy

k
1 + (Id −wi)yk2 − θ∗ − ζk+1∇fi(

yk1 + yk2
2

)
)
‖2

= ‖ 1

|S2k+1|
∑

i∈S2k+1

(
wi(y

k
1 − θ∗) + (Id −wi)(yk2 − θ∗)

)
‖2

− 2ζk+1〈
1

|S2k+1|
∑

i∈S2k+1

(wiy
k
1 + (Id −wi)yk2 )− θ∗,

∑
i∈S2k+1

∇fi(y
k
1 +yk2

2 ) + ζ−1
k+1∆i

|S2k+1|
〉

+ ‖
∑

i∈S2k+1

1

|S2k+1|
(
ζk+1∇fi(

yk1 + yk2
2

) +∆i

)
‖2.

(58)

In the following, we will use the following inequality that, if for i ∈ [1 : N ], ωi > 0 and
∑N
i=1 ωi = 1, then for

arbitrary N real numbers r[1:N ], the following holds,

(

N∑
i=1

ωiri)
2 ≤

N∑
i=1

ωir
2
i . (59)

It is noted that in (58), the sum of weights of (yk1 − θ∗) and (yk2 − θ∗) is always the identity. With (59), by taking
expectation on both sides of (58), we have

E[‖yk+1
1 − θ∗‖2] ≤ E[

‖yk1 − θ∗‖2 + ‖yk2 − θ∗‖2

2
] + (η2

k+1G
2 + E[‖∆̄k

1‖2])

− 2ηk+1〈
yk1 + yk2

2
,∇F (

yk1 + yk2
2

)〉,
(60)

where ∆̄k
1 = 1

|S2k+1|
∑
i∈S2k+1

∆i. Here, we use the fact that since we randomly divide the agents into 2K subsets and
thus for each i,

E[
1

|Si|
∑
i∈Si

∇fi(θ)] = ∇F (θ)

for arbitrary θ. On the other hand, E[ 1
|Si|
∑
i∈Si wi] = 1

2Id, where the selection of wi is independent to the agent
grouping scheme.

Similarly, we can derive the similar upper bound of E[‖yk+1
2 − θ∗‖2] that

E[‖yk+1
2 − θ∗‖2] ≤ E[

‖yk1 − θ∗‖2 + ‖yk2 − θ∗‖2

2
] + (η2

k+1G
2 + E[‖∆̄k

2‖2])− 2ηk+1〈
yk1 + yk2

2
,∇F (

yk1 + yk2
2

)〉,
(61)

where ∆̄k
2 = 1

|S2k+2|
∑
i∈S2k+1

‖∆‖i. Applying the fact that 〈y
k
1 +yk2

2 − θ∗,∇F (
yk1 +yk2

2 )〉 ≥ F (
yk1 +yk2

2 )− F (θ∗) and

taking the average on both sides of (60) and (61), we can bound F (
yk1 +yk2

2 )− F (x∗) as,

F (
yk1 + yk2

2
)− F (θ∗) ≤

η−1
k+1

4
(‖yk1 − θ∗‖2 + ‖yk2 − θ∗‖2 − ‖yk+1

1 − θ∗‖2 − ‖yk+1
2 − θ∗‖2)

+ (
ηk+1

2
G2 +

E[‖∆̄k
1‖2] + E[‖∆̄k

2)‖2]

4ηk+1
).

(62)

Before we can derive a global convergence analysis, we need to give an upper bound on ‖yk1 − θ∗‖ and ‖yk2 − θ∗‖ with
the initial divergence ‖y0

1−θ∗‖, ‖y0
2−θ∗‖ and the noise E[‖∆̄k

1‖2] and E[‖∆̄k
2‖2]. It is noted that, with rearrangement

on (62) and the fact F (θ)− F (θ∗) ≥ 0,

E[‖yk+1
1 − θ∗‖2] ≤ E[

‖yk1 − θ∗‖2 + ‖yk2 − θ∗‖2

2
] + η2

k+1(G2 + E[‖η−1
k+1∆

k+1
1 ‖2)]. (63)
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When we select ηk = 1
c
√
k

,
∑K
k=1 η

2
k =

∑N
k=1

1
c2k ≤

logK+1
c2 since k ≤ K. The above renders an upper bound on

E[
‖yk+1

1 −θ∗‖2+‖yk+1
2 −θ∗‖2

2 ] that

E[
‖yk+1

1 − θ∗‖2 + ‖yk+1
2 − θ∗‖2

2
] ≤ E[

‖y0
1 − θ∗‖2 + ‖y0

2 − θ∗‖2

2
] +

logK + 1

c2
(G2 + V 2)],

with the assumption maxk,j∈{1,2} E[(∆̄k
j /ηk)2] ≤ V 2. Thus, (62) can be further formulated as

K−1∑
k=0

E[F (
yk1 +yk2

2 )− F (θ∗)]

K

≤
∑K
k=1(η−1

k+1 − η
−1
k )(‖yk1 − θ∗‖2 + ‖yk2 − θ∗‖2) + η−1

1 (‖y0
1 − θ∗‖2 + ‖y0

2 − θ∗‖2) + 2
∑K−1
k=0 ηk+1(G2 + V 2)

4K

= O(
c
√
K(‖y0

1 − θ∗‖2 + ‖y0
2 − θ∗‖2) + c−1(logK + 2)

√
K + 1(G2 + V 2)

K
),

(64)
and E[

∑N
i=1 fi(

∑K−1
k=0

∑N
i=1 θ

k
i /NK) − fi(θ∗)] ≤

∑K−1
k=0

∑N
i=1

E[fi(θ̄
k)]−fi(x∗)
K . Here, we use the trick of SGD

proof of selecting such a sequence of decreasing step size. To finally disclose the utility-privacy tradeoff, we specify the
parameter of noise. In pure ε-LDP setting, since the sensitivity is bounded by B in l∞, on each dimension we may add a
noise following Lap(0, ε

dηkB ) to produce a total ε loss from d dimensions. Under the relaxed (ε, δ)-DP setting, with the

strong composition theorem [KOV17], the variance E[(∆k
i /ηk)2] can be reduced to Õ(KN d(

√
dB
ε )2). Substituting those

into (64), we complete the proof of the Theorem that
pure ε− LDP : Õ

(√‖y0
1 − θ∗‖2 + ‖y0

2 − θ∗‖2(G+
√
K√
N
d3/2B
ε )

√
K

)
= Õ(

d3/2B√
Nε

)

relaxed (ε, δ)− LDP : Õ(
dB√
Nε

).

(65)

F Non-asymptotic Convergence Rate Analysis

Theorems 5 and 6 have provided a unified upper bound of privacy-utility tradeoff, which is also asymptotically tight
[KOV14]. In the following, we aim to capture the gap between the performance of fixed parameters and update mixing
in a non-asymptotic view. For simplicity, we still consider the consensus case. In general, the framework of the proposed
private DGD can be expressed as

θk+1 = Wk+1θk − ξk+1∇F (E[Wk+1]θk) +∆k+1 (66)

where, recalling wij in (16), Wk+1(i, j) = wij · I is a random stochastic matrix determined by the weights selected by
each agent. Here, I is the d× d identity matrix and W (i, j) denotes the element of W at the crossing of the ith row and
jth column (in a block sense). We call a non-negative matrix W stochastic if the sum of entries in each row is 1. W is
doubly stochastic if WT is stochastic as well. Let W (i, :) and W (:, j) denote the ith row and jth column, respectively.
When E[Wk] is doubly stochastic, a similar upper bound of utility-privacy tradeoff for (66) can be derived as follows,

Theorem 7 Selecting ξk = O( 1√
k

), when f[1:N ](·) are L-Lipschitz, and E[Wk] is doubly stochastic,

|F (

∑K−1
k=0 θk
K

)− F (θ∗)| ≤
R̄√
K

+ L

N∑
i=1

E[T Ki ], (67)

where W0 = I , R̄ is a term invariant to the randomness of Wk, specified in the proof, and

T Ki = ‖
∑K−1
k=0

∑N
l=1 E[Wk+1(l, :)]Tθk

KN
−
∑K−1
k=0 E[Wk+1(i, :)]Tθk

K
‖+ ‖

∑K−1
k=0 (θki − E[Wk+1(i, :)]Tθk)

K
‖.
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Proof. Applying the convexity of F (·) that 〈∇F (E[Wk+1]θk),E[Wk+1]θk − θ∗〉 ≥ F (E[Wk+1]θk)−F (θ∗), we can
derive the following:

E[F (E[Wk+1]θk)− F (θ∗)]

≤ 1

2
(ζk+1)−1

(
E
[
‖Wk+1θk − θ∗‖2 + ‖ξk+1∇F (E[Wk+1]θk)−∆k+1‖2 − ‖θk+1 − θ∗‖

])
≤ 1

2
(ζk+1)−1

(
E
[
‖θk − θ∗‖2 − ‖θk+1 − θ∗‖2 + ‖ξk+1∇F (E[Wk+1]θk)‖2

]
+ E[‖∆k+1‖2]

)
.

(68)

Following the proof of Theorem 6, we may sum up and average out both sides of (68) for k = 0, 1, ...,K − 1, which
turns to be,

1

K

k−1∑
k=0

F (E[Wk+1]θk)− F (θ∗) ≥ F (

∑K−1
k=0 E[Wk+1]θk

K
)− F (θ∗).

However, such a bound cannot be straightforwardly used for measuring utility since θk is not necessarily in consensus,
i.e., θki = θkj for any i, j ∈ [1 : N ], and thus F (E[Wk+1]θk)− F (θ∗) ≥ 0 may not hold. However, when we assume
fi(·) is L-Lipschitz, such a gap can be fixed via (69):

N∑
i=1

fi(

∑K−1
k=0

∑N
l=1 E[Wk+1(l, :)T ]θk

KN
)− F (θ∗)

≤ F (

∑K−1
k=0 E[Wk+1]θk

K
)− F (θ∗) + L

N∑
i=1

‖
∑K−1
k=0

∑N
l=1 E[Wk+1(l, :)T ]θk

KN
−
∑K−1
k=0 E[Wk+1]θk

K
‖,

(69)

where Wk+1(i, :) denotes the ith row of Wk+1. It is noted that
∑N
i=1 fi(

∑K−1
k=0

∑N
i=1 E[Wk+1(i,:)T ]θki

KN )− F (θ∗) ≥ 0
since θ∗ is the optimum under consensus restrain. Therefore,

|F (

∑K−1
k=0 E[Wk+1]θk

K
)− F (θ∗)| ≤

R̄√
K

+ L

N∑
i=1

‖
∑K−1
k=0

∑N
l=1 E[Wk+1(l, :)]Tθk

KN
−
∑K−1
k=0 E[Wk+1(i, :)]Tθk

K
‖

(70)
where R̄√

K
corresponds to the average of the sum of the right hand of (68) following the proof of Theorem 6, which is

invariant to the randomness of Wk. Moreover, applying L-Lipschitz continuity again,

|F (

∑K−1
k=0 θk
K

)− F (

∑K−1
k=0 E[Wk+1]θk

K
)| ≤ L

N∑
i=1

‖
∑K−1
k=0 (θki − E[Wk+1(i, :)]Tθk)

K
‖. (71)

Putting things together, the claim follows.

Theorem 7 indicates that, to study the utility loss, it suffices to consider the rate of θk towards the consensus, i.e.,
θki = θkj for i, j ∈ [1 : N ], where the deviation amongst θk controls T Ki on the right hand of (67). This is consistent
with intuition. In the non-private case, where the convergence proofs in [MO17, SLY+14] guarantee θk approaches
the unique consensus optima θ∗, the excess loss is then proportional to the divergence among θk in expectation. For
quantification, we introduce the following metric φ(θ), which denotes the largest deviation between any two elements
of θ in l2 norm. For example, φ(θk) = maxi,j ‖θki − θkj ‖. With the above understanding, we move our focus to
φ(
∑K−1
k=0 θk/K). To proceed, we rewrite

∑K−1
k=0 θk/K in the following form,

K−1∑
k=0

θk/K =
(K−1∑
k=0

( k∏
j=1

Wjθ0 +

k∑
j=1

k∏
l=j+1

WlRj
))
/K (72)

where for simplicity we rewrite θk+1 = Wk+1θk +Rk+1 for some remainder term Rk+1 and
∏k
l=jWk = I if j > k.

Now, we measure the impact of random aggregation, i.e., random stochastic Wk applied in (66), on the consensus
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rate of
∑K−1
k=0 θk/K, compared to the fixed Wk = W case. From (72), we consider the extreme scenario where

the communication graph is fully connected and W (i, j) = 1
N · I . The justification of this choice is as follows.

Such fixed weight matrix W with identical rows has the property that for any θ, elements in Wθ are identical,
i.e., φ(Wθ) = 0. Let Wk = W in (72), then all the terms that are a multiple of W reach consensus and thus
φ(
∑K−1
k=0 θk/K) = φ((θ0 +

∑K−1
k=1 Rk)/K). In contrast, for randomized Wk, those terms of multiples of Wk, such

as
∏
kWkθ0 in (72), do not necessarily reach consensus, which produces the gap between the random and fixed cases.

For simplicity, we assume N is even and consider the following way to randomize Wk: Wk(i, j) = rk+1
i × 2

N · I if
j ≤ N

2 , otherwise W (i, j) = (1− rk+1
i )× 2

N · I . rki are i.i.d. random variables in (0, 1). Clearly, E[Wk+1] = W .

Lemma 4. For two matrices W1 and W2 independently following the distribution described above,

E[φ
(
(W1W2)(:, j)

)
] ≤ 1

2
E[φ(W2(:, j))]. (73)

Proof. For simplicity, we omit the I in the elements of Wk. It is noted that W̃ (i1, j) =
∑N
l=1W1(i1, l)W2(l, j) and

W̃ (i2, j) =
∑N
l=1W1(i2, l)W2(l, j). Without loss of generality, we assume W2(1, j) = minl{W2(l, j)}. Thus,

∣∣W̃ (i1, j)− W̃ (i2, j)
∣∣ =

∣∣ N∑
l=1

(W1(i1, l)−W1(i2, l))W2(l, j)
∣∣

=
∣∣(1− N∑

l=2

W1(i1, l)− 1 +

N∑
l=2

W1(i2, l)
)
W2(1, j) +

N∑
l=2

(W1(i1, l)−W1(i2, l))W2(l, j)
∣∣

=
∣∣ N∑
l=2

(W1(i1, l)−W1(i2, l))(W2(l, j)−W2(1, j))
∣∣.

(74)

It is noted that W2(l, j)−W2(1, j) ≥ 0 for l ≥ 2 which is no bigger than φ(W2(:, j)). Due to the distribution of W1,
eitherW1(i1, l)−W1(i2, l) ≥ 0, l ∈ [1 : N2 ] andW1(i1, l)−W1(i2, l) ≤ 0, l ∈ [N2 +1 : N ], orW1(i1, l)−W1(i2, l) ≤
0, l ∈ [1 : N2 ] and W1(i1, l)−W1(i2, l) ≥ 0, l ∈ [N2 + 1 : N ]. Therefore, by taking expectation on both sides of (74),

E[|W̃ (i1, j)− W̃ (i2, j)|] ≤
N

2
E[max

l
W1(i1, l)−min

l
W2(i2, l)]E[φ(W2(:, j)]

= (
3

4
− 1

4
)E[φ(W2(:, j)] =

1

2
E[φ(W2(:, j)].

(75)

Lemma 4 indicates that even with randomness in Wk where φ(Wkθ) = 0 does not necessarily hold, the product of
Wk converges to a matrix of identical rows with an expected exponential rate. It is noted that for fixed θ, φ(

∏
kWkθ) =

O(maxj φ((
∏
kWk)(:, j)). Then, the gap can be bounded theoretically as follows.

Theorem 8 Under (ε, δ)-LDP and the setup claimed above, for Wk fixed to W , φ(
∑K−1
k=0 θk/K) = O( 1√

K
+ 1

K +
dB∞
ε ); as for randomized Wk generated as Lemma 4, φ(

∑K−1
k=0 θk/K) = O( 1√

K
+ 1

K + (1 + 1√
N

)dB∞ε ).

Proof. First, we rewrite the expression of Rk. Recalling (66), Rk =
(
− ξk∇f1(Wθk−1) +∆k

1 ,−ξk∇f2(Wθk−1) +

∆k
2 , ...,−ξk∇fN (Wθk−1) + ∆k

N

)
. It is noted that, though ∇F (θ∗) =

∑N
i=1∇fi(θ∗) = 0, ∇fi(θ∗) does not

necessarily equal to 0. On the other hand, when we select ξk = O(1/
√
k), the sensitivity of ξk∇fi(θ∗) is O(1/

√
k),

where accordingly the noise ‖∆k
i ‖ is also scaled in O( 1√

k
· d
√
KB∞
ε ) for (ε, δ) privacy guarantee when we ignore other

terms. Thus, for fixed Wk = W ,

φ(

∑K−1
k=0 θk
K

) = φ(
θ0 +

∑K−1
k=1 Rk
K

) = O(
1√
K

+
1

K
+
dB∞
ε

).

Here, we use the fact
∑K
k=1

1√
k

= O(
√
K).
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In comparison, for randomized Wk, applying Lemma 4 on E[φ(Wk+1∇F (E[Wk]θ))], we have

E[φ(Wk+1∇F (E[Wk]θ))] = E[φ(Wk∇F (Wθ))] ≤ 1

2
φ(∇F (Wθ))).

Moreover, since∆k
i are i.i.d. noise, due to the construction ofWk in the setup, E[φ(Wk+1∆

k)] = O( 1√
N
E[‖∆k

i ‖]),

where ∆k = (∆k
1 ,∆

k
2 , ...,∆

k
N ). Similarly, applying Lemma 4, the sum E[

∑∞
K=1 φ(

∏K
k=1Wk(:, j))], which is a

geometric decaying sequence, is bounded by 2. Therefore, φ(
∑K−1
k=0 θk
K ) = O( 1√

K
+ 2

K + (1 + 1√
N

) · dB∞ε ), which

asymptotically enjoys O(dB∞ε ) as N and K increase.

Theorem 8 shows that, with either fixed and randomized Wk, the consensus distance in the average
∑K−1
k=0 θk/K

measured with φ gradually approaches dB∞/ε as N and k increase. This explains why update mixing comes almost
free of utility loss.
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