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Abstract. Secure hash functions are widely used cryptographic algo-
rithms to secure diverse attacks. A one-way secure hash function is used
in the various cryptographic area, for instance, password protection.
However, most of the hash functions provide security based on static
parameters and publicly known operations. Therefore, it becomes eas-
ier to attack by the attackers because all parameters and operations are
predefined. The publicly known parameters and predefined operations
make the oracle regenerate the key even though it is a one-way secure
hash function. Moreover, the key (sensitive data) is mixed with the pre-
defined constant where an oracle may find a way to discover the key. To
address the above issues of the secure hash functions, we propose a novel
and one-way secure hash algorithm, OSHA for short, to protect sensitive
data against attackers. OSHA depends on a pseudo-random number gen-
erator to generate a private key. Moreover, OSHA mixes multiple private
keys to generate a hash value. Furthermore, OSHA uses dynamic parame-
ters, which is difficult for adversaries to guess. Unlike conventional secure
hash algorithms, OSHA does not depend on fixed constants. It replaces
the fixed constant with the private keys. Also, the key is not mixed with
the private keys; hence, there is no way to recover and reverse the process
for the adversaries.

Keywords: Hash function · SHA · Secure hash algorithm · Cryptogra-
phy · Attacks · Cryptanalysis

1 Introduction

Secure hash algorithms are used to solve a specific problem in certain domains,
particularly, Password, SSH, Blockchain, TLS, PGP, SSL, IPsec, S/MiME, and
other sensitive data. Secure hash algorithms are used to protect passwords in our
day-to-day life. The most famous cryptographically secure hash algorithms are
SHA2 and SHA3 families. However, there are preimage attacks [17,10], crypt-
analysis attacks [7] and collision attacks [13,19]. Cryptanalysis is more powerful
than other variants of attacks. Collision attacks are obvious, which can be ex-
pressed by the birthday paradox for any existing hash algorithms. The existing
secure hash algorithms define constants and the number of rounds that are public
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and fixed. Moreover, message padding is required for the last block of the mes-
sage. The existing secure hash design philosophy is based on static parameters,
and therefore, these parameters are known to adversaries. Moreover, the types
of operations are fixed and known to adversaries. Furthermore, the message is
used to derive a hash value. Hence, it makes it easier to attack the hash values.

Existing state-of-the-art secure hash algorithms are prone to preimage at-
tacks [17,10], second preimage attacks [17,10], collision attacks [7], and crypt-
analysis attacks [13,19] due to static and public parameters. Diverse reports on
attacks have already been published, such as attacks on SHA1 [24,18], attacks
on SHA2 [15], attacks on SHA3 [12], attacks on BLAKE [14], and attacks on
SHAKE [20]. Thus, a few research questions arise which are outlined below-

Q1 Can a single secure hash algorithm be used for various-sized hash value
requirements?

Q2 Can the predefined constants and operations be replaced, which are used by
the state-of-the-art secure hash algorithms?

Q3 Can the secure hash algorithm defeat diverse attacks?

SHAKE [23,3,4] addressed the question Q1. The Q2 and Q3 create a serious
security concerns. Moreover, the adversary knows all operations, constants, and
parameters, which makes a weaker hash value. Therefore, we propose a one-
way secure hash algorithm, OSHA for short, to address the existing issues of
secure hash algorithms. Our proposed algorithms take two inputs: secret key
and semi-secret seed value (however, the seed value can be completely kept
secret). Using these two secret inputs, OSHA generates a pseudo-random number
(term as a private key) to replace the fixed constants. The private keys are
generated using the murmur hash function [5]. The total number of private
keys is decided dynamically, and therefore, it is not known to the adversaries.
Moreover, OSHA calculates all possible parameters dynamically, including the
total number of rounds, type of rotation, and the total number of rotations.
In short, OSHA works on secret parameters and secret operations, which are
calculated dynamically. The types of rotation and number of rotations change in
each iteration. Furthermore, the new private keys are generated in each iteration.
The existing ciphertext is XORed with the newly generated private key in each
round. Thus, OSHA creates unpredictability of the generated hash value. OSHA
is the first variant of a secure hash algorithm to use multiple private keys instead
of predefined constants to the best of our knowledge.

This paper describes the OSHA algorithms and compares OSHA with state-
of-the-art secure hash algorithms; however, we have excluded performance com-
parison between OSHA and compares OSHA with the state-of-the-art secure
hash algorithm. OSHA heavily dependent on the pseudo-random number gener-
ator, and therefore, we enhance the pseudo-random number generator of existing
work [21]. The enhanced pseudo-random number generator algorithm is tested
in NIST SP 800-22 statistical test suite for randomness [22,6], and results show
excellent performance on the P-values and pass rates. Moreover, we theoretically
demonstrate the capability of our proposed work, and we show its strong resis-
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tance against preimage attacks, second preimage attacks, collision attacks, and
cryptanalysis attacks.

This paper is organized as follows- Section 2 establishes the proposed system
and provides an in-depth description. Section 3 analyzes the proposed system and
compares it with existing state-of-the-art secure hash algorithms. Moreover, it
demonstrates the randomness analysis practically. Section 4 discusses on OSHA
algorithms. Finally, Section 5 concludes the paper.

2 OSHA: The proposed algorithm

We propose a novel one-way secure hash algorithm called OSHA. OSHA depends
on the non-cryptographic string hash function. The non-cryptographic string
hash function is used to generate a pseudo-random number to generate a hash
value. OSHA is the first secure hash algorithm to use a pseudo-random number
to produce hash value to the best of our knowledge. Pseudo-random numbers are
highly unpredictable and secure. Therefore, OSHA can provide better security
than the existing state-of-the-art algorithm. Also, our proposed system is flexible,
and it can be used for any bit size, for instance, 128-4096 or more. There is no
restriction of bit sizes, unlike state-of-the-art secure hash functions.

Our assumption of the proposed algorithm is as follows- we assume two secret
keys, particularly the passphrase and the number. The number is used as the
initial seed value. The number may be semi-secret greater than four digits, for
instance, date of birth in the form of ddmmyyyy, mmddyyyy, yyyyddmm, or
yyyy, i.e., it is easy to remember for the user but difficult for adversaries.

2.1 Description of proposed system

Figure 1 demonstrates the working mechanism of our proposed system. Firstly,
a private key P is generated using a secret key K and a semi-secret seed value S.
The P is circular shift rotated r times either left or right side, which is decided
dynamically. The value of r changes in each iteration. It results ζ, and the ζ is
XORed with a newly generated private key P. The private key P is generated
using a pseudo-random number generator. This process is repeated t times to
generate a hash value, and the t is calculated dynamically.

Table 1 shows the required parameters and their states. All parameters are
kept secret and generated dynamically. However, the seed value is semi-secret
because it can be the date of birth, zip code, year, phone number, etc., which
easier to remember. However, there no restriction on the seed value. A user
can input any number ≥ 4 digits. The value of the parameters is not known
and computed at the run-time. Therefore, it is hard to retrieve the dynamically
generated information by the adversaries. Moreover, the secret key and semi-
secret seed value are used to generate a single bit. However, the secret key and
seed value define future bit patterns. The secret key and seed value are altered
dynamically. The adversaries do not know dynamic parameters. It changes the
value at run-time and each iteration. OSHA has only one public and a static
parameter which the bit size β of the hash value, and known to all.
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Fig. 1. Architecture of the proposed algorithm

Table 1. Parameters, descriptions and their state in OSHA algorithm.

Parameter Description State

K Secret Key- Password Secret, and Dynamic

S Semi-secret- Date of Birth, Zip code, Year,
etc. which is greater than 4 digits and less
than integer range

Semi-secret, and Dynamic

l Length of the input secret key Secret and Dynamic

β Unrestricted bit size of hash value, for in-
stance, β = 4096

Public and Static

t Number of rounds Semi-secret, and Dynamic

r Number of rotations Secret, and Dynamic

Rotation
type

Circular rotation, either left or right de-
pending the last bit of the generated pri-
vate key

Secret, and Dynamic

P Newly generated private key Secret, and Dynamic

ζ Hash value in cipher form Secret, and Dynamic

2.2 Proposed algorithm

Algorithm 1 demonstrates generating a hash value of given key K and semi-
secret seed value S in the OSHA algorithm. It uses a non-cryptographic string
hash function to generate the pseudo-random number [5]. The K and S are used
to generate a single bit of the first private key. The K and S are changed after
generating the initial bit, and the initial key and seed value are discarded later.
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Algorithm 1 Hash value generation using OSHA algorithm

1: procedure genHash(K, l, S, β)
2: seed = seed⊕ β
3: P = genPRNG(K, l, S, β)
4: µ = 5, δ = 57
5: t = (S mod δ) + µ
6: while t ≥ 1 do
7: K = Murmur(K, l, S)
8: S = S ⊕ K
9: l = Length(K)

10: r = K mod β
11: if P ∧ 1 = 1 then
12: ζ = rotateLeft(ζ, r)
13: else
14: ζ = rotateRight(ζ, r)
15: end if
16: P = genPRNG(K, l, S, β)
17: ζ = ζ ⊕ P
18: t = t− 1
19: end while
20: α = convertIntoHexadecimal(ζ, β)
21: return α
22: end procedure

The first generated private key is rotated either left or right depending on the
LSB bit of the private key. The rotation’s value r is calculated dynamically. The
rotation process results ζ. The ζ is XORed with a newly generated private key
P. The private key P is generated using a pseudo-random number generator.
The pseudo-random number generator uses the murmur hash function. Murmur
hash functions produce a 10-digits integer; however, only a single LSB bit is
recorded, and the rest are discarded. This process repeats t times to generate a
secure hash value. The total number of iteration ranges between 10 to γ, and it is
calculated dynamically. Moreover, the total number of rotations varies between
0 to β − 1.

2.3 Pseudo-Random Number Generator

OSHA depends on a pseudo-random number generator. The necessary conditions
for the pseudo-random number generator are- consistent, secure, and statistically
proven for randomness. Algorithm 2 demonstrates the generation of pseudo-
random numbers. It uses the murmur hash function to generate a single bit.
However, the murmur hash function produces a 10-digits hash value, but a single
LSB is considered in the bin[] array, and the rest bits are discarded. It generates
a β bit array, which is unpredictable and secure. Moreover, Algorithm 2 changes
its parameters dynamically, which makes it hard to predict by the adversaries.
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Algorithm 2 Pseudo-random number generator for private key

1: procedure genKey(K, l, S, β)
2: i = 0
3: while β ≥ 1 do
4: d = Murmur(K, l, S)
5: K = d
6: l = Length(K)
7: e = Murmur(K, l, S)
8: K = Concatenate(d, e)
9: l = Length(K)

10: S =| d− e |
11: bin[i] = d ∧ 1
12: β = β − 1
13: i = i+ 1
14: end while
15: return bin
16: end procedure

3 Analysis

The adversaries know the process of rotation and the total number of iteration in
the secure hash algorithms. Therefore, it makes it easy to attack by adversaries.
On the contrary, OSHA algorithm calculates all parameter dynamically which
makes hard to attack by the adversaries. The adversaries do not know whether
to circular rotate left or right and how much rotation is required. Moreover, the
adversary does not know how many iterations are to perform.

3.1 Time Complexity

The time complexity of OSHA depends on the bit size of the hash value; for
instance, 1024. The bit size of the hash value is β. OSHA uses a bit array, and
therefore, it requires r time complexity to rotate the bit array. Moreover, it
requires β time complexity to generate a pseudo-random number. Therefore, the
time complexity of OSHA is O(r + β) in each round. There are total t rounds
in OSHA, thus, the total time complexity is O(β + t(r + β) + r). The r ≤ β,
therefore, the total time complexity can be rewritten as O(β+tβ). Moreover, the
t ranges from 5 to 61, which is a constant and small. Therefore, the total time
complexity of OSHA is O(β) ≈ O(1). Therefore, the time complexity depends
on the bit size of the hash function’s output.

3.2 Comparison with existing secure hash algorithm

Table 2 compares the state-of-the-art secure hash functions with OSHA. SHA
family produces fixed-size output, whereas SHAKE, cSHAKE, and OSHA pro-
duce variable size output. SHA family, SHAKE, and cSHAKE perform fixed and
predefined rounds, whereas OSHA can perform any number of rounds which is
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Table 2. Comparison with existing secure hash algorithm.

Name Output
Size

Internal
State

Block
size

Rounds Collision Operations

MD5 128 128 512 64 ≤ 18 And, Xor, Rot, Add
(mod 232), Or

SHA-0 160 160 512 80 < 34 And, Xor, Rot, Add
(mod 232), Or

SHA-1 160 160 512 80 < 34 And, Xor, Rot, Add
(mod 232), Or

SHA2-224
[1]

224 256 512 64 112 And, Xor, Rot, Add
(mod 232), Or, Shr

SHA2-256
[1]

256 256 512 64 128 And, Xor, Rot, Add
(mod 232), Or, Shr

SHA2-384
[1]

384 512 1024 80 192 And, Xor, Rot, Add
(mod 264), Or, Shr

SHA2-512
[1]

256 512 1024 80 256 And, Xor, Rot, Add
(mod 264), Or, Shr

SHA3-224
[23]

224 1600 1152 24 112 And, Xor, Rot, Not

SHA3-256
[23]

256 1600 1088 24 128 And, Xor, Rot, Not

SHA3-384
[23]

384 1600 832 24 192 And, Xor, Rot, Not

SHA3-512
[23]

512 1600 576 24 256 And, Xor, Rot, Not

SHAKE128
[23]

Unlimited 1600 1344 24 min(β/2, 128) And, Xor, Rot, Not

SHAKE256
[23]

Unlimited 1600 1088 24 min(β/2, 256) And, Xor, Rot, Not

cSHAKE128
[16]

Unlimited 1600 1344 24 min(β/2, 128) And, Xor, Rot, Not

cSHAKE256
[16]

Unlimited 1600 1088 24 min(β/2, 256) And, Xor, Rot, Not

BLAKE2s
[11]

256 16 words
of size 32
bits

512 10 128

BLAKE2b
[11]

256 16 words
of size 64
bits

512 12 128

BLAKE3
[8]

256 16 words
of size 32
bits

512 7 128

OSHA Unilimited – FlexibleFlexible,
secret,
and Dy-
namic

β
2

XOR, Rot, and Key-
Gen
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kept secret and calculated dynamically. However, the minimum and the maxi-
mum number of rounds are public. SHA2 family uses modulus operation; how-
ever, SHA3 family removes the modulus operation due to large integer calcu-
lation. Moreover, SHA2, SHA3, SHAKE, and cSHAKE depends on the system
architecture (little-endian and big-endian) due to bitwise operation; however,
OSHA does not depend on the system architecture because OSHA uses extra
spaces O(β) to store the bits, and thus, it is system independent. OSHA is the
only variant to use a pseudo-random number to produce a hash value.

Table 3. Difference between OSHA and state-of-the-art secure hash algorithms.

Parameters OSHA State-of-the-art Secure Hash
Algorithms

Output size Flexible Fixed

Output Output completely changes if de-
sired output length changes for the
same input

Some parts of the output are same
even if desired output length of
SHAKE128 and SHAKE256 change
for the same input.

Rounds Secret and Dynamic Public and Fixed

Rotation type Secret and Dynamic Public and Fixed

Number of ro-
tation

Secret and Dynamic Public and Fixed

Mixture Mixes with pseudo-random num-
bers

Mixes with predefined constants

Secret Key It contributes a single bit and define
the bit patterns

Use to mix with predefined con-
stants

Seed value Semi-secret integer value None

Constants None Public and Fixed

Private keys Secret and Dynamic None

Word size Any sizes Fixed sizes

Padding with
message

Not required Required

Table 3 shows the difference between state-of-the-art secure hash algorithms
and OSHA. State-of-the-art secure hash algorithms use predefined constant and
operation, which is public. Therefore, all operations and constants are known
to adversaries too. OSHA uses secret and dynamic operations; for instance,
rotation type is calculated dynamically. Moreover, the number of rotations is
calculated dynamically. Therefore, there is no clue to adversaries to find the ro-
tation type and number rotation. In short, OSHA performs secret operations,
which are calculated dynamically. On the contrary, the state-of-the-art secure
hash algorithms use predefined operations and constant. OSHA generates the
pseudo-random number dynamically instead of predefined constants.
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3.3 Flexibility

To the best of our knowledge, SHAKE and OSHA provide flexibility in hash bit
size; otherwise, the state-of-the-art secure hash algorithms can produce fixed bit
size of the hash value. For example, SHA3-256 can produce 256 bits hash value
while SHAKE and OSHA can produce any size of the output. A single algorithm
works for 256 bits or 4096 bits, even higher bit size.

3.4 Outputs

Table 4 demonstrates the variable-sized output of OSHA, SHAKE128 [3], and
SHAKE256 [4] for input word “ieee”. Moreover, OSHA requires seed value, and
“1982” is used as a seed value. SHAKE produces the same prefix; for instance,
the prefix of 256 bits is 128 bits hash value. However, OSHA does not produce a
similar prefix or suffix. It changes in changing of the bit sizes. Notably, BLAKE
is the fastest variant of secure hash algorithms [2]; however, SHAKE is faster
than SHA3. OSHA is slower than SHAKE because it does not depend on the
predefined constants and operations. Also, OSHA uses a bit array for circular
shift rotation; therefore, it is slower than other secure hash algorithms. Bit array
makes OSHA a platform-independent secure hash algorithm. But OSHA can
provide strong resistance against any possible attacks.

3.5 Irreversibility

Definition 1. The function f : A 7→ B maps A to B, then the function f is
said to be irreversible if the function exhibits f : B 67→ A.

OSHA is a one-way hash function, and therefore, there is no way to regenerate
the key. Therefore, OSHA follows Definition 1, and there is no way to regenerate
the input from the output. The function f : A 7→ B, i.e., OSHA transform any
input A to output B. The input A contributes a single bit of B initially, and
the pseudo-random numbers replace it. Therefore, there is no way to regenerate
A from the output B. Let us assume that there exists a reversible function.
The reversible function can regenerate the first bit of the hash value, and it is
impossible to find the input key from a single bit. Thus, OSHA guarantees that
f : B 67→ A, because it is impossible to regenerate A from B.

3.6 Irrecoverability

The function f : A 7→ B, and the A is lost. OSHA guarantees f : B 67→ A.
Therefore, we cannot recover the lost input string. OSHA generates the output
using a pseudo-random number generator; therefore, it is highly unpredictable.
Moreover, the A is responsible for the initial bit and defines future bit patterns.
Thus, the A must be correct to regenerate the output B. An oracle can find
reversibility; however, the oracle eventually finds the first bit but not the original
string. On the contrary, conventional secure hash algorithms mix the input string
with the predefined constant, where an oracle can find the reversibility of a hash
value.
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3.7 Consistency

Consistency states that the output should be the same for the same input even
if the platform changes. OSHA produces the same output for the same input pa-
rameters. OSHA does not depend on volatile variables. Therefore, it can produce
a consistent result. Moreover, OSHA works on a bit array and random bits, and
therefore, it can provide consistency irrespective of the system’s architecture.

3.8 Rounds

Most of the conventional secure hash algorithm performs 64 rounds, which is
fixed. OSHA performs µ to δ rounds of XOR, Rotation, and key generations. The
rounds are dynamically generated between µ to δ to depend on the adversaries;
however, it is flexible. The total number of rounds can be set by the user as
per their requirements, for instance, 5-62, 10-100, etc., to better protect against
attack. However, the δ should be a prime number. The difference should be
significant enough to provide unpredictability; for instance, 5-57 is better than
23-61 because the difference between 5-57 is larger than 23-61. However, the
minimum should be µ ≥ 5. On the contrary, if the minimum round is zero, it
can also defend against many attacks because it depends on the pseudo-random
numbers that are truly random and secure.

3.9 Collision resistance

Definition 2. If there exists some functions such that f : A 7→ B and
f : C 7→ B where A 6= C, then it is said to be collision.

Definition 2 defines the collision where two hash values become the same using
different input. Generally, the collision probability of all hash functions is the

same. The birthday paradox state that there is a collision probability in 2
β
2 hash

functions for β bits hash functions. If η items are hashed to find a collision, the
collision probability is given using birthday paradox in Equation (1).

ρ = 1− 2β !

2ηβ(2β − η)!
(1)

Solving Equation (1), we get Equation (2).

ρ = 1− e−
η2

2β+1

1− ρ = e−
η2

2β+1

ln(1− ρ) = − η2

2β+1

η2 = −2β+1 ln(1− ρ)

η = 2
β+1
2

√
−ln(1− ρ)

(2)
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In Equation (2), we approximate ln(1− ρ) = −ρ, then we get Equation (3).

η = 2
β+1
2
√
ρ (3)

Equation (3) gives us the probability of collision of any secure hash function. The
η becomes enormous for 256-bits and onward. However, OSHA uses two secret

keys, and therefore, the combination of the two secret keys is
(
η
2

)
= η(η−1)

2 . The
probability of picking a correct pair is 2

η(η−1) . The probability of not picking a

correct pair is (1 − 2
η(η−1) ). The η is large, and therefore, we approximate the

probability 2
η(η−1) ≈ 0; thus, the probability of not picking a correct pair is 1.

With this approximation, we can rewrite Equation (1), and thus the probability
of collision becomes 0, which is given in Equation (4).

ρ ≈ 1− 2β !

2β(2β − 1)!

ρ ≈ 1− 2β

2β

ρ ≈ 0

(4)

However, Equation (4) is an approximation of the probability, and it shows the
difficulties in getting collision attacks.

Therefore, OSHA does not restrict output size similar to SHAKE128, and
SHAKE256 [23]. SHA3-512 is restricted to 512 bits output size, and it cannot
produce 256 or 1024 bits output. The 1024 or 2048 bits size output is not so costly
for high-security requirements. Notably, the prefix of the SHAKE256 output for
256 bits is the same with 128 bits output size; for example, if SHAKE outputs
E7 for 8 bits, then it outputs E75A for 16 bits.

3.10 Preimage resistance

Definition 3. Given a hash value B, a preimage attack finds a function such
that f : A 7→ B.

Definition 3 defines preimage attack on the hash value. The hash value B is given,
and the preimage attacker finds the input. The preimage attacks are successful
in password guessing because of a weak password. However, modern practice
recommends a password of at least an alphabet, a digit, and a special symbol
of string length eight. Still, there is a creation of a weak password, for instance,
abcd@1234. OSHA provides strong security even if there is a weak password
because OSHA uses a semi-secret seed value. However, the seed value can be
completely a secret by providing an unpredictable number greater than four-
digit. Therefore, OSHA provides strong resistance against preimage attacks.

Meet-in-the-middle [9] performs an exhaustive search on key spaces to achieve
preimage attacks. The meet-in-the-middle has broken various secure hash algo-
rithms citeAoki,Guo,Li which tries to perform preimage attack. However, this
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is an exhaustive search, and it takes huge computing resources. OSHA uses two
keys; one is the secret key, and the other is the seed value. A meet-in-the-middle
attack must perform a search on both keys. Therefore, OSHA can provide strong
resistance against meet-in-the-middle attacks.

3.11 Second preimage resistance

Definition 4. Given a hash value B, a second preimage attack finds the func-
tions f : A 7→ B and f : C 7→ B where A 6= C.

Definition 3 defines second preimage attack. Given the hash value B to find two
hash function that finds B for different inputs. Let us assume that f : A 7→ B
and f : C 7→ B where A 6= C. OSHA depends on not only the input string
but also the seed value. Therefore, it requires four inputs to find the given hash
value. Therefore, it is hard to find such a collision.

3.12 Cryptanalysis

There are diverse cryptanalysis attacks, particularly ciphertext-only, plaintext-
only attacks, known-plaintext attacks, chosen-ciphertext attacks, chosen-
plaintext attacks, adaptive chosen-ciphertext attacks, fault-injection attacks, dif-
ferential cryptanalysis attacks, and linear cryptanalysis attacks. Cryptanalysis
does not perform a brute-force search on the target. It performs in-depth analy-
sis on the target and tries to find the fault/loophole to attacks. Cryptanalysis is
easier to perform if the parameters and constants are predefined. Predefined pa-
rameters and constants have hidden relations with the ciphertext. Therefore, the
cryptanalysis tries to finds the relationship of all collected ciphertexts. On the
contrary, OSHA does not have any relationship with ciphertexts. Consequently,
it is hard to perform cryptanalysis attacks.

3.13 Randomness testing

Table 5 demonstrates the randomness of Algorithm 2. The randomness of Algo-
rithm 1 is tested in NITS SP 800-22. Table 5 demonstrates the P-values and pass
rate of the generated bits using Algorithm 2. Initially, we have generated 10M
random bits of the word “ieee” and the number 1982. The generated random
bits are tested in NIST SP 800-22 statistical test suite [22,6] for 32 bits, 64 bits,
and 128 bits stream. NIST SP 800-22 test suit provides approximate entropy,
frequency, block frequency, cumulative sums, runs, longest runs, rank, FFT, non-
overlapping template, overlapping template, random excursions, random excur-
sions variant, serial, linear complexity, and universal tests. The minimum pass
rate of 32bits, 64 bits, and 128 bits stream is 0.96875, 0.984375, and 0.9921875,
respectively. The minimum P-value of 32 bits, 64 bits, and 128 bits stream is
0.043745, 0.275709, and 0.078086, respectively. The P-value must be ≥ 0.001 to
be considered as a random number. The maximum P-values of 32 bits, 64 bits,
and 128 bits stream are 0.999896, 0.964295, and 0.964295, respectively.
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Table 5. P-values and success rates of Algorithms 2 for 32, 64 and 128 bits in NIST
SP 800-22.

Test name
32 bits 64 bits 128 bits

P-value Pass rate P-value Pass rate P-value Pass rate

Approximate En-
tropy

0.949602 32/32 0.437274 63/64 0.078086 127/128

Frequency 0.739918 32/32 0.468595 64/64 0.964295 127/128

Block Frequency 0.468595 32/32 0.568055 64/64 0.031497 127/128

Cumulative sums 0.043745 32/32 0.637119 64/64 0.437274 127/128

Runs 0.671779 32/32 0.378138 64/64 0.242986 128/128

Longest runs 0.804337 32/32 0.275709 64/64 0.086458 128/128

Rank 0.949602 32/32 0.407091 64/64 0.204076 128/128

FFT 0.178278 31/32 0.324180 63/64 0.070445 128/128

Non-overlapping
Template

0.999896 32/32 0.964295 64/64 0.957319 128/128

Overlapping
Template

0.299251 32/32 0.437274 63/64 0.407091 128/128

Random Excur-
sions

0.834308 11/11 0.739918 12/12 0.834308 13/13

Random Excur-
sions Variant

0.834308 11/11 0.739918 12/12 0.637119 13/13

Serial 0.862344 32/32 0.324180 63/64 0.568055 128/128

Linear complex-
ity

0.739918 32/32 0.739918 63/64 0.568055 128/128

Universal 0.602458 31/32 0.299251 64/64 0.204076 128/128

4 Discussion

OSHA is slower than state-of-the-art secure hash algorithms due to bit array
and private keys, but it can be faster than any other variants of the secure
hash algorithms by using zero rounds. Can a zero round prevent all kinds of
possible attacks to the hash value? Let us assume that zero round cannot pro-
tect the possible attacks on the hash value. A zero round in OSHA performs
a pseudo-random key generation and performs circular shift rotation. We know
that random numbers are cryptographically secure, and therefore, a zero round
can provide good security on the hash value. If a zero round can provide high se-
curity, then why should OSHA performs more rounds? More rounds can provide
higher unpredictability. Therefore, OSHA keeps all operations are calculated
dynamically, and OSHA removes predefined constants.

5 Conclusion

In this paper, we have presented a one-way secure hash algorithm, OSHA for
short, to protect against diverse attacks on the hash value. OSHA uses murmur
hash functions to generate a single bit of a private key. It uses multiple private
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keys to replace the predefined constants. Moreover, OSHA uses two secrets,
mainly secret message (key) and secret seed value to generate a hash value.
The secret key and seed value contribute a single bit, and the two secret values
define the rest bits. OSHA can generate variable-sized hash values similar to
SHAKE hash algorithms. OSHA calculates the parameters’ value dynamically,
and therefore, parameters’ values are secret. Moreover, the operation type is
decided dynamically. Furthermore, OSHA performs XOR operation with newly
generated private keys, but the original message is not used in the XORing
process. Therefore, it provides truly one-way secure hash functions. Due to the
dynamic property of OSHA, it provides strong resistance against diverse attacks,
particularly preimage attacks, second preimage attacks, collision attacks, and
cryptanalysis attacks.
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11. Guo, J., Karpman, P., Nikolić, I., Wang, L., Wu, S.: Analysis of BLAKE2. In:
Topics in Cryptology – CT-RSA 2014, pp. 402–423. Springer, Cham, Switzerland
(Feb 2014). https://doi.org/10.1007/978-3-319-04852-9 21

https://www.federalregister.gov/documents/2002/08/26/02-21599/announcing-approval-of-federal-information-processing-standard-fips-180-2-secure-hash-standard-a
https://www.federalregister.gov/documents/2002/08/26/02-21599/announcing-approval-of-federal-information-processing-standard-fips-180-2-secure-hash-standard-a
https://www.federalregister.gov/documents/2002/08/26/02-21599/announcing-approval-of-federal-information-processing-standard-fips-180-2-secure-hash-standard-a
https://www.federalregister.gov/documents/2002/08/26/02-21599/announcing-approval-of-federal-information-processing-standard-fips-180-2-secure-hash-standard-a
https://www.blake2.net
https://emn178.github.io/online-tools/shake_128.html
https://emn178.github.io/online-tools/shake_128.html
https://emn178.github.io/online-tools/shake_256.html
https://emn178.github.io/online-tools/shake_256.html
https://csrc.nist.gov/publications/detail/sp/800-22/rev-1a/final
https://doi.org/10.1007/978-3-642-25385-0_15
https://doi.org/10.1007/978-3-642-25385-0_15
https://github.com/BLAKE3-team/BLAKE3-specs/blob/master/blake3.pdf
https://github.com/BLAKE3-team/BLAKE3-specs/blob/master/blake3.pdf
https://doi.org/10.1109/C-M.1977.217750
https://doi.org/10.1007/978-3-662-47989-6_33
https://doi.org/10.1007/978-3-319-04852-9_21


16 R. Patgiri

12. Guo, J., Liao, G., Liu, G., Liu, M., Qiao, K., Song, L.: Practical Collision At-
tacks against Round-Reduced SHA-3. J. Cryptology 33(1), 228–270 (Jan 2020).
https://doi.org/10.1007/s00145-019-09313-3

13. Guo, J., Ling, S., Rechberger, C., Wang, H.: Advanced Meet-in-the-Middle Preim-
age Attacks: First Results on Full Tiger, and Improved Results on MD4 and SHA-
2. In: Advances in Cryptology - ASIACRYPT 2010, pp. 56–75. Springer, Berlin,
Germany (Dec 2010). https://doi.org/10.1007/978-3-642-17373-8 4

14. Hao, Y.: The Boomerang Attacks on BLAKE and BLAKE2. In: Information Se-
curity and Cryptology, pp. 286–310. Springer, Cham, Switzerland (Mar 2015).
https://doi.org/10.1007/978-3-319-16745-9 16

15. Hosoyamada, A., Sasaki, Y.: Quantum collision attacks on reduced SHA-256 and
SHA-512. IACR Cryptol. ePrint Arch. 2021, 292 (2021), https://eprint.iacr.
org/2021/292

16. Kelsey, J., Change, S.j., Perlner, R.: SHA-3 derived functions: cSHAKE,
KMAC, TupleHash and ParallelHash. Tech. Rep. NIST SP 800-185, Na-
tional Institute of Standards and Technology, Gaithersburg, MD (Dec
2016). https://doi.org/10.6028/NIST.SP.800-185, https://nvlpubs.nist.gov/

nistpubs/SpecialPublications/NIST.SP.800-185.pdf

17. Khovratovich, D., Rechberger, C., Savelieva, A.: Bicliques for preimages: Attacks
on skein-512 and the sha-2 family. In: Canteaut, A. (ed.) Fast Software Encryption.
pp. 244–263. Springer Berlin Heidelberg, Berlin, Heidelberg (2012)

18. Leurent, G., Peyrin, T.: From Collisions to Chosen-Prefix Collisions Applica-
tion to Full SHA-1. In: Advances in Cryptology – EUROCRYPT 2019, pp. 527–
555. Springer, Cham, Switzerland (Apr 2019). https://doi.org/10.1007/978-3-030-
17659-4 18

19. Li, J., Isobe, T., Shibutani, K.: Converting Meet-In-The-Middle Preimage Attack
into Pseudo Collision Attack: Application to SHA-2. In: Fast Software Encryption,
pp. 264–286. Springer, Berlin, Germany (Mar 2012). https://doi.org/10.1007/978-
3-642-34047-5 16

20. Li, T., Sun, Y.: Preimage Attacks on Round-Reduced Keccak-224/256 via an Al-
locating Approach. In: Advances in Cryptology – EUROCRYPT 2019, pp. 556–
584. Springer, Cham, Switzerland (Apr 2019). https://doi.org/10.1007/978-3-030-
17659-4 19

21. Patgiri, R.: Stealth: A highly secured end-to-end symmetric communication proto-
col. Cryptology ePrint Archive, Report 2021/622 (2021), https://eprint.iacr.
org/2021/622

22. Rukhin, A., Soto, J., Nechvatal, J., Smid, M., Barker, E.: A statistical test suite
for random and pseudorandom number generators for cryptographic applications.
Tech. rep., Booz-allen and hamilton inc mclean va (2001), https://nvlpubs.nist.
gov/nistpubs/Legacy/SP/nistspecialpublication800-22r1a.pdf

23. Standards, O., Technology, N.I.: SHA-3 Standard: Permutation-Based
Hash and Extendable-Output Functions. CSRC | NIST (Aug 2015).
https://doi.org/10.6028/NIST.FIPS.202, https://www.nist.gov/publications/

sha-3-standard-permutation-based-hash-and-extendable-output-

functions

24. Stevens, M.: New Collision Attacks on SHA-1 Based on Optimal Joint Local-
Collision Analysis. In: Advances in Cryptology – EUROCRYPT 2013, pp. 245–261.
Springer, Berlin, Germany (May 2013). https://doi.org/10.1007/978-3-642-38348-
9 15

https://doi.org/10.1007/s00145-019-09313-3
https://doi.org/10.1007/978-3-642-17373-8_4
https://doi.org/10.1007/978-3-319-16745-9_16
https://eprint.iacr.org/2021/292
https://eprint.iacr.org/2021/292
https://doi.org/10.6028/NIST.SP.800-185
https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-185.pdf
https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-185.pdf
https://doi.org/10.1007/978-3-030-17659-4_18
https://doi.org/10.1007/978-3-030-17659-4_18
https://doi.org/10.1007/978-3-642-34047-5_16
https://doi.org/10.1007/978-3-642-34047-5_16
https://doi.org/10.1007/978-3-030-17659-4_19
https://doi.org/10.1007/978-3-030-17659-4_19
https://eprint.iacr.org/2021/622
https://eprint.iacr.org/2021/622
https://nvlpubs.nist.gov/nistpubs/Legacy/SP/nistspecialpublication800-22r1a.pdf
https://nvlpubs.nist.gov/nistpubs/Legacy/SP/nistspecialpublication800-22r1a.pdf
https://doi.org/10.6028/NIST.FIPS.202
https://www.nist.gov/publications/sha-3-standard-permutation-based-hash-and-extendable-output-functions
https://www.nist.gov/publications/sha-3-standard-permutation-based-hash-and-extendable-output-functions
https://www.nist.gov/publications/sha-3-standard-permutation-based-hash-and-extendable-output-functions
https://doi.org/10.1007/978-3-642-38348-9_15
https://doi.org/10.1007/978-3-642-38348-9_15

	OSHA: A General-purpose One-way Secure Hash Algorithm

