
General Bootstrapping Approach for RLWE-based Homomorphic

Encryption

Andrey Kim1, Maxim Deryabin1, Jieun Eom1, Rakyong Choi1, Yongwoo Lee1,
Whan Ghang1, and Donghoon Yoo1

1Samsung Advanced Institute of Technology, Suwon, Republic of Korea

May 25, 2021

Abstract

An approximate homomorphic encryption scheme called CKKS (Cheon-Kim-Kim-Song) is
considered one of the most promising fully homomorphic encryption (FHE) schemes since it
enables computations on real and complex numbers in encrypted form. Several bootstrapping
approaches were proposed for CKKS to refresh the modulus in a ciphertext. However all the
existing bootstrapping approaches for CKKS rely on polynomial approximation of modulus re-
duction function and consequently, the quality of the message deteriorates due to polynomial
approximation errors. We propose the first bootstrapping approach for the CKKS scheme with-
out polynomial approximation of the modulus reduction function. Instead, our procedure adopts
blind rotation technique from FHEW-type schemes and as a result, our approach introduces only
an error that is comparable to a rescaling error. We also present several optimizations including
compact representation of public keys required for bootstrapping and modified blind rotation
technique for the case of sparse secret key. We demonstrate that our bootstrapping procedure
can be generalized to the BGV and BFV schemes with minor modifications in the proposed
algorithms.

Keywords: Bootstrapping, Fully Homomorphic Encryption.

1

Contents

1 Introduction 1
1.1 Contribution . 1
1.2 Related Works . 2
1.3 Organization . 2

2 Preliminaries 2
2.1 Basic Lattice-based Encryption . 3
2.2 Key Switching in RLWE . 4
2.3 Automorphism in RLWE . 4
2.4 Rescaling in RLWE . 5
2.5 RLWE based schemes . 5

3 Scaled Modulus Raising 5
3.1 ScaledMod procedure . 6

4 Optimizations 9
4.1 Reconstruction of blind rotation keys . 9
4.2 Performing blind rotations on the fly . 10
4.3 Blind rotations for sparse ternary secret key . 11

5 Bootstrapping 11
5.1 Bootstrapping for CKKS . 12

5.1.1 Original CKKS . 12
5.1.2 RNS-CKKS . 13

5.2 Bootstrapping for BGV and BFV . 14
5.2.1 BGV . 14
5.2.2 BFV . 14

6 Conclusion 15

A Bootstrapping for BGV 18
A.1 Multiprecision BGV . 18
A.2 RNS-BGV . 18

B Bootstrapping for BFV 19
B.1 Multiprecision BFV . 19
B.2 RNS-BFV . 19

1 Introduction

Homomorphic Encryption (HE) is a form of encryption that enables computations on encrypted
data without access to the secret key. Most HE schemes rely on Learning with Errors [1] (LWE) or
Ring Learning with Errors [2] (RLWE) problems, and their ciphertexts contain small “noise” which
ensures security. However the noise grows during computations and eventually can destroy the
message, and thus we are limited in number of operations which can be computed in encrypted form.
Since the first construction of the Fully Homomorphic Encryption (FHE) scheme by Gentry [3], a
considerable progress has been made in the direction of research on HE. Gentry’s celebrated idea of
bootstrapping allows one to refresh the noise in ciphertexts and to be able to do more computations
on ciphertexts.

The most common FHE schemes can be categorized into FHEW-type, BGV/BFV-type and
CKKS-type. FHEW-type schemes (such as FHEW [4] and TFHE schemes [5]) are based on LWE
and primarily work with boolean circuits. The core idea of their bootstrapping procedure is the
so-called blind rotation technique [6, 7]. BGV/BFV-type schemes [8, 9, 10] are commonly designed
to perform computations over finite rings, and CKKS-type schemes [11, 12] are designed for com-
putations over real and complex numbers. While BGV, BFV, and CKKS are all based on RLWE
and their encryption only differs in encodings, the existing bootstrapping algorithms for all three
schemes are very different.

All the previous bootstrapping algorithms for the CKKS scheme such as [13, 14, 15, 16, 17,
18, 19] are based on polynomial approximation of the modulus reduction function. In CKKS, a
noise is considered a part of the message so that it is crucial to keep the noise small during the
computations. Therefore, the size of the noise added after bootstrapping has a significant impact on
the quality of the message. Besides, previous bootstrapping algorithms consume significant amount
of levels due to the approximate polynomial evaluation [19]. Hence, the modulus of the ciphertext
after bootstrapping is much smaller than that of a fresh ciphertext so that huge RLWE parameters
are needed to make bootstrapping feasible. In practice the ring size of RLWE is set to 216 or higher
for security purpose.

1.1 Contribution

In this paper, we propose a new bootstrapping technique for the CKKS scheme. Our technique
differs greatly from previous bootstrapping methods which use polynomial approximation for the
modulus reduction function. Our approach takes advantage of the blind rotation technique used in
the FHEW-type bootstrapping algorithm [4, 5] and repacking technique for RLWE ciphertexts [20].
The error size after our bootstrapping increases only by a rescaling error which could be considered
negligible compared to the size of the message. Also, unlike previous techniques, our approach
consumes only one level. As a result we can employ our bootstrapping technique using RLWE ring
size 214 or even less, while preserving the same security level.

We show that our new bootstrapping technique is also applicable to BGV and BFV schemes with
only minor modifications in the proposed algorithm. We also provide a technique of reconstructing
most of the public keys on the computational side instead of generating and transferring them from
the secret key holder side. The reconstruction of the public keys also could be done on the fly
without storing all of them on the computational side. Finally we provide a modified blind rotation
technique for a sparse secret key with reduced computational complexity.

1

1.2 Related Works

Both BGV and BFV are exact schemes and the error accumulated during the computations can
eventually destroy the message. All known bootstrapping techniques for BGV and BFV schemes
and their RNS variants [21, 22, 23] are performed by extracting bits from decrypted result. This
is available since decryption algorithm outputs the result where message part and error part are
separated.

Meanwhile, in CKKS an error is considered as a part of a message so that the bit extraction
technique cannot be applied. Cheon et al. [13] proposed the first bootstrapping procedure for
CKKS based on the polynomial approximation of the modular reduction function in decryption
algorithm. Subsequent studies have focused on approximating the modulus function more precisely
to improve accuracy [14, 15, 16, 17, 18, 19]. However, the accuracy remains a major concern of
bootstrapping in CKKS.

Ducas and Micciancio [4] introduced a blind rotation technique based on RGSW [24] and achieved
the bootstrapping time in less than a second for evaluation of boolean operation in encrypted
form. One of the main advantages of the blind rotation technique is that it introduces only small
controllable additive error. Chillotti et al. [5, 25] proposed a TFHE scheme over the torus and
several optimization methods for FHEW. Recently, Micciancio and Polyakov [26] generalized it to
unify the original and extended variants of both FHEW and TFHE.

Several recent studies [27, 28, 29, 30, 31] applied blind rotation in combination with other FHE
schemes. In [27, 28], it is shown that conversions between LWE and RLWE in combination with
blind rotation can be an efficient basis for evaluation of non-polynomial functions for FHE such as
sign function and other neural network activation functions. However, none of them considered it
for bootstrapping of BGV, BFV, and CKKS schemes.

1.3 Organization

This paper is organized as follows. In Section 2, we start with some preliminaries on lattice-
based structures and operations with them. In Section 3, we present the core algorithm for our
bootstrappings and in Section 4, we introduce several optimizations. In Section 5, we describe our
bootstrapping algorithm for CKKS and briefly discuss how it could be generalized to BGV and
BFV. The full algorithms of bootstrapping for BGV and BFV are included in Appendices A and B.
We conclude in Section 6.

2 Preliminaries

All logarithms are base 2 unless otherwise indicated. For two vectors ~a and ~b, we denote their
inner product by 〈~a,~b〉. Let N be a power of two, we denote the 2N -th cyclotomic ring by R :=
Z[X]/(XN + 1) and its quotient ring by RQ := R/QR. Ring elements are indicated in bold, e.g.
a = a(X). We write the floor, ceiling and round functions as b·c, d·e and b·e, respectively.

We extend these notations to elements of R by applying them coefficient-wise. For a = a0 +a1 ·
X + · · ·+aN−1 ·XN−1 ∈ R, we denote the `∞ norm of a as ‖a‖∞ = max0≤i<N {|ai|}. There exists
a constant δR such that ‖a · b‖∞ ≤ δR ‖a‖∞ ‖b‖∞ for any a, b ∈ R. For R = Z[X]/(XN + 1), we
use the bound δR = 2

√
N . As shown in [32], the bound δR = 2

√
N is close to what we observe

experimentally.

2

We use a ← S to denote uniform sampling from the set S. For a distribution χ, we denote
sampling according to it by a ← χ. χkey denotes ternary distribution such that each coefficient
is chosen from {−1, 0, 1}. χerr denotes a discrete Gaussian distribution with a standard deviation
σerr.

2.1 Basic Lattice-based Encryption

For positive integers q and n, basic LWE encryption of m ∈ Z under the secret key ~s is defined as

LWEq,~s(m) = (~a, b) = (~a,−〈~a,~s〉+ e+m) ∈ Zn+1
q ,

where ~a← Znq , and error e← χerr. We occasionally drop subscripts q and ~s when they are obvious

from the context. We use the notation LWE0
q,~s(m) if the error e is zero.

For a positive integer Q and a power of two N , basic RLWE encryption of m ∈ R under the
secret key s is defined as

RLWEQ,s(m) := (a,−a · s + e + m) ∈ R2
Q,

where a ← RQ, and ei ← χerr for each coefficient ei of e, i ∈ [0, N − 1]. As with LWE, we will
occasionally drop subscripts Q and s. We also use the notation RLWE0

Q,s(m) if the error e is zero.
Decryption of ciphertext ct = RLWEQ,s(m) = (a, b) ∈ R2

Q is done by computing

RLWE−1Q,s(a, b) := a · s + b = m + e ∈ RQ.

We use shorthand notation ct(s) := RLWE−1Q,s(ct).

We assume that (t0, · · · , td−1) is a gadget decomposition of t ∈ RQ if t =
∑d−1

i=0 gi · ti where
~g = (g0, . . . , gd−1) is a gadget vector. For a power of two modulus Q, we will use base power
gadget vectors (1, B1, . . . , Bd−1) with a power of two B. We will use the RNS gadget vector
([q̂−1j]qj · q̂j)0≤j<d, where q̂j =

∏
i 6=j qi and the modulus Q is chosen as the product Q =

∏
0≤j<d qj

of different primes.
We adapt the definitions of RLWE′ and RGSW from [26]. For a gadget vector ~g, we define

RLWE′s(m) := (RLWEs(g0 ·m),RLWEs(g1 ·m), · · · ,RLWEs(gd−1 ·m)) ∈ R2d
Q

and
RGSWs(m) :=

(
RLWE′s(s ·m),RLWE′s(m)

)
∈ R2×2d

Q .

The scalar multiplication between an element in RQ and RLWE′ ciphertext is defined as

� : RQ × RLWE′ → RLWE

using the following rule

t� RLWE′s(m) = 〈(t0, · · · , td−1), (RLWEs(g0 ·m), · · · ,RLWEs(gd−1 ·m))〉

=

d−1∑
i=0

ti · RLWEs(gi ·m) = RLWEs

(
d−1∑
i=0

gi · ti ·m

)
= RLWEs(t ·m) ∈ R2

Q,

3

where (t0, · · · , td−1) is a gadget decomposition of t. The error after multiplication is equal to∑d−1
i=0 ti · ei which is small as ti and ei are small.
The multiplication between RLWE and RGSW ciphertexts is defined as

� : RLWE× RGSW→ RLWE

and

RLWEs(m1)� RGSWs(m2) = (a, b)�
(
RLWE′s(s ·m2),RLWE′s(m2)

)
= a� RLWE′s(s ·m2) + b� RLWE′s(m2)

= RLWEs(a · s ·m2) + RLWEs(b ·m2)

= RLWEs((a · s + b) ·m2)

= RLWEs(m1 ·m2 + e1 ·m2) ∈ R2
Q.

The result obtained in the previous equation represents an RLWE encryption of the product m1 ·m2

with an additional error term e1 ·m2. In order to have RLWEs(m1)�RGSWs(m2) ≈ RLWEs(m1 ·
m2), we need the error term e1 ·m2 to be small. This can be achieved by monomials ±Xυ for m2.
The multiplication between RLWE � RGSW is naturally extended to RLWE′ � RGSW by applying
RLWE � RGSW to each component of RLWE′. Note that RGSW0(1) := I2 ⊗ ~g is a trivial RGSW
encryption of 1 under any key s, where I2 is a 2× 2 identity matrix and ⊗ is a tensor product.

2.2 Key Switching in RLWE

The key switching operation converts ciphertext RLWEs1(m) encrypted using secret key s1 to
ciphertext RLWEs2(m) encrypted by a new secret key s2. There are different variants of key
switching techniques used in the literature and readers can consult the literature such as [33] for
more details. We focus on BV key switching type [34] and on its RNS variant [35], as they fit our
approach. We define the following key switch generation and key switch algorithms:

• KeySwitchGen(s1, s2): Output RLWE′s2(s1).

• KeySwitchs1→s2
(RLWEs1(m) = (a, b)): Evaluate

RLWEs2(m) = a� RLWE′s2(s1) + (0, b) (mod Q).

The value RLWE′s2(s1) generated by KeySwitchGen can be understood as a public key switching
key. The key switching error is equal to the error of R× RLWE′ multiplication.

Remark. Key switching usually requires another auxiliary modulus to manage the error. However,
we do not employ an auxiliary modulus as the key switching error in our approach will be managed
in a different way.

2.3 Automorphism in RLWE

In order to perform some operations in FHE, we will use automorphism procedure overR. There are
N automorphisms of R, namely ψt : R → R given by a(X) 7→ a(Xt) for t ∈ Z∗2N . Automorphism
procedure over RLWE instances can be defined as

4

• EvalAuto(RLWEs(m), t): For encryption RLWEs(m(X)) = (a(X), b(X)) of m, we apply ψt
to a(X) and b(X) and obtain (a(Xt), b(Xt)), an RLWE encryption of m(Xt) under the secret
key s(Xt). Then we perform key switching from s(Xt) to s(X) and output RLWEs(m(Xt)) =
RLWEs(ψt(m)).

The additional error after applying an automorphism is equal to key switching error as an auto-
morphism ψt is a norm-preserving map.

2.4 Rescaling in RLWE

Rescaling is used in RLWE to control the error or message growth. In this paper, we only consider
rescaling of RLWEQ,s instance by q that divides Q. For a RLWEQ,s instance (a, b) ∈ R2

Q, the
rescaling by q|Q is as follows:

• Rescale((a, b), q) =
(⌊

a
q

⌉
,
⌊
b
q

⌉)
∈ R2

Q/q.

For ct = RLWEQ,s(m) we have Rescale(ct, q) = ctrs = RLWEQ/q,s(1qm). The rescaling procedure
also divides the error of ct by q, but introduces additional rescaling error ers. The rescaling error
ers however is small [36] and is bounded by 1

2(1 + δR) for ternary secret key.

2.5 RLWE based schemes

We will briefly mention encryption procedures for three most common FHE schemes based on
RLWE. The main difference of encryption in all of these schemes is in the message representation
and encoding procedures.

In the BGV scheme with the plaintext modulus t, a plaintext m is encoded in the least significant
bits in RQ and its encryption is given as follows:

EncBGV(m) = (a,−a · s + t · e + m).

In the BFV scheme with the plaintext modulus t, a plaintext m is encoded in the most significant
bits in RQ and its encryption is given as follows:

EncBFV(m) =

(
a,−a · s + e +

⌊
Q

t
·m
⌉)

.

The CKKS scheme is an approximate homomorphic encryption scheme and RLWE errors are con-
sidered a part of messages. Its encryption of a plaintext m is given as follows:

EncCKKS(m) = (a,−a · s + e + m) .

3 Scaled Modulus Raising

In this section, we present ScaledMod - the core algorithm used in our bootstrapping in Section 5.
The algorithm transforms RLWE0

2N,s(u), where ‖u‖ ≤ c for some c ∈ Z, to RLWEQ,s(∆ · u) for a
scaling factor ∆ and a large modulus Q.

We first extract LWE0
2N,~s(ui) ciphertexts from an RLWE0

2N,s(u) ciphertext. Then for each ex-
tracted LWE ciphertext, we perform the blind rotation with the initial function f = −

∑c
j=−c ∆ ·

j ·Xj ∈ RQ, and obtain RLWE encryptions of u(i) which has a constant term of ∆ · ui. Finally, we
repack our RLWE encryptions of u(i) into a single RLWE encryption of ∆ · u.

5

3.1 ScaledMod procedure

The flow of the proposed ScaledMod procedure is as follows:

• ScaledMod(RLWE0
2N,s(u),∆, Q): Output RLWEQ,s (∆ · u)

RLWE0
2N,s(u)

Extract−−−−−→ {LWE0
2N,~s(ui)}

BlindRotate−−−−−−−−−→ {RLWEQ,s (f ·Xui)}
Repack
−−−−−→ RLWEQ,s (∆ · u)

We describe each part of the ScaledMod algorithm in detail.

• Extract

Let us start with a pair (a, b) = RLWE0
2N,s(u). Because the error is zero, we have s · a + b = u

(mod 2N). Multiplication of two polynomials a and s in R2N is described as follows.

s · a =

N−1∑
i=0

 i∑
j=0

sj · ai−j −
N−1∑
j=i+1

sj · ai−j+N

Xi (mod 2N)

Let ~s = (s0, ..., sN−1) be a vector of coefficients of s. We can extract LWE0
2N,~s(ui) = (~a(i), bi) for all

i ∈ [0, N − 1] from a ∈ RLWE0
2N,s(u), where

~a(i) = (ai, ai−1, . . . , a0,−aN−1,−aN−2, . . . ,−ai+1).

• BlindRotate

For an LWE0
2N,~s(u) = (~α, β) where |u|< c, we start a blind rotation with ACC = RLWE0

Q,s(f ·Xβ).

We generate blind rotation public keys brk =
{
RGSWQ,s(s+i),RGSWQ,s(s−i)

}
, where{

s+i = 1, si = 1
s+i = 0, otherwise

,

{
s−i = 1, si = −1
s−i = 0, otherwise

for i ∈ [0, N − 1].

Then we iteratively compute

RGSW(Xαi·si) = RGSW0(1) + (Xαi − 1) · RGSW(s+i) + (X−αi − 1) · RGSW(s−i) (1)

and update ACC as
ACC← ACC� RGSWQ,s(Xαi·si).

The equation (1) is correct as for each si ∈ {−1, 0, 1}, at least one of s+i and s−i is zero. The result
of the blind rotation is

RLWEQ,s(f ·Xβ+α0s0+···+αN−1sN−1) = RLWEQ,s(f ·Xu) = RLWEQ,s(uf).

As we have chosen f = −
∑c

j=−c ∆ · j ·Xj , the polynomial uf has ∆ · u as its constant term. The
full algorithm is described in Algorithm 1.

We apply blind rotation algorithm to all LWE0
2N,~s(ui) and obtain

RLWEQ,s(f ·Xui) := RLWEQ,s(u(i)) := (ai, bi) ∈ R2
Q

6

Algorithm 1 Blind rotation

procedure BlindRotate(f, (~α, β), brk)
ACC←

(
0, f ·Xβ

)
for i = 0, ..., N − 1 do

ACC← ACC�
(
RGSW0(1) + (Xαi − 1) · RGSW(s+i) + (X−αi − 1) · RGSW(s−i)

)
return ACC

such that

ai · s + bi = u(i) + ebr = ∆ · ui + ∗ ·X + ∗ ·X2 + · · ·+ ∗ ·XN−1 + ebr (mod Q),

where ∗ denotes some value in ZQ. As |u|< c, most coefficients of u(i) are zeros. More precisely,
we have

u(i) = ∆ · ui + ∗ ·X + · · ·+ ∗ ·X2c + 0 ·X2c+1 + · · ·+ 0 ·XN−2c−2 + ∗ ·XN−2c−1 + · · ·+ ∗ ·XN−1.

Error Analysis Let Eerr denote the high-probability upper bound of error in an RLWE encryp-
tion, for instance, 6σerr. The error bound of each RLWE element of RGSW encryption in equation (1)
can be bounded by 4Eerr, so each blind rotation step introduces an additive error that is bounded
by 4dBEerr, where B is a digit bound, and d is a number of digits of gadget decomposition. So
the total error after blind rotation is bounded by ‖ebr‖ < Ebr = 4dNBEerr.

Remark. It is worth noting that all the errors in our approach are additive which means that the
error grows linearly, so we do not have to rescale every time as in usual key-switching in [35, 37].
Instead, we can postpone rescaling to the end to reduce the complexity.

• Repack

Let n be the smallest power of two satisfying n > 2c. Given RLWEQ,s(u(i)) for i ∈ [0, N − 1],
Repack algorithm is performed in two steps.

First, consider a subset of our encryptions
{
RLWEQ,s(u(nk))

}
, k ∈ [0, N/n− 1]. We pack these

ciphertexts into the following ciphertext as

N
n
−1∑

k=0

RLWEQ,s(u(nk)) ·Xnk = RLWEQ,s

N
n
−1∑

k=0

u(nk) ·Xnk

 .

Let u(0,n) :=
∑N

n
−1

k=0 u(nk) ·Xnk. Since n > 2c, u(0,n) has coefficients ∆ · unk at Xnk as

u(0,n) = ∆ · u0 + ∗ ·X + · · ·+ ∗ ·Xn−1 + ∆ · un ·Xn + · · ·+ ∆ · u2n ·X2n + · · ·+ ∗ ·XN−1.

In a similar way, we pack subsets
{
RLWEQ,s(u(i+nk))

}
for i ∈ [1, n− 1] into RLWEQ,s(u(i,n)) where

u(i,n) has coefficients ∆ · ui+nk at Xnk.
For the second step we adapt the repacking technique from [20]. Consider a pair RLWEQ,s(u(0,n))

and RLWEQ,s(u(n/2,n)). Notice that the automorphism ψ1+2N/n applied to u(0,n) preserves all

7

coefficients at Xnk, for k ∈ [0, N/n−1], changes the sign of coefficients at Xnk+n/2, and shuffles the
other coefficients with possible changes in sign. We focus on the coefficients of Xnk and Xnk+n/2

and we do not track how this automorphism operates on the other coefficients. We can merge
RLWEQ,s(u(0,n)) and RLWEQ,s(u(n/2,n)) as follows

RLWE(2u(0,n/2)) = RLWE(u(0,n)) +Xn/2 · RLWE(u(n/2,n))

+EvalAuto

(
RLWE(u(0,n))−Xn/2 · RLWE(u(n/2,n)), 1 +

2N

n

)
,

where u(0,n/2) is a polynomial which has ∆ · unk/2 coefficients at Xnk/2. We apply the same

procedure for pairs RLWEQ,s(u(i,n)) and RLWEQ,s(u(i+n/2,n)) for i ∈ [1, n/2− 1]. We continue this
merging process until we get

RLWEQ,s(nu(0,1)) = RLWEQ,s(n ·∆ · u).

The full Repack algorithm is described in Algorithm 2.

Algorithm 2 Repacking

procedure Repack({RLWEQ,s(u(i))}N−1i=0 , power of two n such that N > n > 2c)
for i = 0, . . . , n− 1 do

C(i,n) ← RLWEQ,s(u(i))
for j = 1, . . . , Nn − 1 do

C(i,n) ← C(i,n) +Xnj · C(i+nj)

while n ≥ 1 do
for i = 0, . . . , n2 − 1 do

C(i,n/2) ← C(i,n) +Xn/2 · C(i+n/2,n)

Crot ← EvalAuto
(
C(i,n) −Xn/2 · C(i+n/2,n), 1 + 2N

n

)
C(i,n/2) ← C(i,n/2) + Crot

n← n/2

return C(0,1) = RLWEQ,s(n ·∆ · u)

Error Analysis The first step of repacking adds the errors from the blind rotations, so we can
bound the error of each RLWEQ,s

(
u(i,n)

)
by N

nEbr. For the second step every EvalAuto introduces

new error from R by RLWE′ multiplication, which is bounded by dB
2 Eerr. The total error after

repacking is bounded by Esm = NEbr + (n− 1)dB2 Eerr.

Remark. Note that we obtain RLWEQ,s(n ·∆ ·u) instead of RLWEQ,s(∆ ·u) during the ScaledMod

procedure and we accumulate the error during the blind rotations and repacking procedures. By
modifying the initial state, we can address the first issue. We start with [n]−1Q ∆ when Q is coprime
with n. When Q is a power of two, we start with RLWE modulus Q · n and then rescale by n. For
the second problem we use the auxiliary modulus p > Esm and do all the computations modulo Q · p
instead of Q and rescale the result by p in the end. For this we also start with ∆ · p instead of ∆.
Finally we obtain RLWEQ,s(∆ · u) with only rescaling error esm = ers.

8

4 Optimizations

The huge size of the blind rotation keys causes the following two problems. First, it is difficult for
the secret key holder to transfer the heavy blind rotation keys to the computational party which
performs all the computations. Second, the computational party also can have a limitation in
storing all the blind rotation keys.

In this section, we provide several optimization methods for blind rotation. First, we present
a method that the secret key holder generates only a small amount of public keys and the blind
rotation keys are reconstructed on the computational side instead of being generated on the secret
key holder side. We also present a method that the computational party can generate and perform
blind rotations on the fly, without storing the whole keys. Finally, we provide an alternative blind
rotation to reduce the number of multiplications for sparse secret key.

4.1 Reconstruction of blind rotation keys

For simplicity, we denote s+i and s−i as s±i . First, we notice that RGSWs(s±i) can be reconstructed
from only RLWE′s(s±) and RLWE′s(s2), where

s± =
N−1∑
i=0

s±i X
i.

The reconstruction of RLWE′s(s±i) can be done in parallel by using divide and conquer algorithm
described in Algorithm 3. The reconstruction of RLWE′s(s±i · s) can be done by observing that for
each RLWEs(gj · s±i) = (ai,j , bi,j), the reconstruction of RLWEs(gj · s±i · s) is as follows:

ai,j � RLWE′s(s2) + bi,j · (1, 0) = RLWEs

(
ai,j · s2 + bi,j · s

)
= RLWEs(gj · s±i · s).

As a result, we can reconstruct RGSWs(s±i) =
(
RLWE′s(s±i),RLWE′s(s±i · s)

)
from RLWE′s(s±) and

RLWE′s(s2).

Algorithm 3 Reconstruct and store

procedure Reconstruction(RLWE′s(s±))
S±0 ← RLWE′s(s±)
for (n = N ;n >= 1;n = n/2) do

for (i = 0; i < N ; i = i+ n) do
T±i ← EvalAuto(S±i , n+ 1)
S±i = S±i + T±i
S±i+n/2 = X−n/2 · (S±i − T

±
i)

return
{
S±i
}

=
{
RLWE′(N · s±i)

}
In Algorithm 3, the coefficients that are not removed are doubled after each evaluation of

automorphism and addition. Therefore, the target coefficient will eventually be multiplied by N
and the algorithm outputs RLWE′(N · s±i). There are two possible ways to remove the additional
multiplicand N from the polynomial. If Q is coprime with N , the input ciphertext can be multiplied
initially by N−1 (mod Q), i.e. we start with RLWE′Q,s([N]−1Q · s±). Otherwise, if Q is a power of

two we start with QN and rescale RLWE′QN,s(N · s±i) by N .

9

Error Analysis The error bound of each RLWE element of RLWE′ encryption after reconstruction
can be bounded by Erc = NEerr + (N − 1)dB2 Eerr. As the errors of reconstructed RGSWQ,s(s±i)
are bigger than fresh errors of RGSWQ,s(s±i), we will require larger auxiliary modulus p′ to make
the error negligible.

4.2 Performing blind rotations on the fly

When the computational party is limited in storage for every blind rotation step i, we can recon-
struct only RLWE′s(s±i), perform the blind rotation step on the fly, and discard RLWE′s(s±i). To
reconstruct RLWE′s(s±i) for specific i, we multiply RLWE′s(s±) by X−i to have s±i as the constant
term, and then make all other coefficients zeros by applying the sequence of automorphisms and
additions. Algorithm 4 sums up the reconstruction of RLWE′s(s±) for a single i. We remove N
from the result in a similar way as we did in Section 4.1.

Algorithm 4 Reconstruct on-the-fly

procedure ReconstructSingle(RLWE′s(s±), i)
Si ← RLWE′s(s±) ·X−i
for (n = N ;n >= 1;n = n/2) do

Si ← EvalAuto(Si, n+ 1) + Si

return Si = RLWE′s(N · s±i)

Furthermore, we can either reconstruct RLWE′s(s±i · s) as explained in Section 4.1, or evaluate

the blind rotation step i on the fly using only RLWE′s(s2) and RLWE′s(s±i). For the latter case, we
first evaluate

RLWE′s(Xαi·si) = RLWE
′0(1) + (Xαi − 1) · RLWE′s(s+i) + (X−αi − 1) · RLWE′s(s−i). (2)

For given ACC = RLWEs(f ·Xβ+α0s0+···+αi−1si−1) = (a, b), we multiply a and b by RLWE′s(Xαi·si).

a� RLWE′s(Xαi·si) = RLWEs(a ·Xαi·si) = (a′, b′)

b� RLWE′s(Xαi·si) = RLWEs(b ·Xαi·si)

Then, we evaluate RLWEs(a · s ·Xαi·si) as

a′ � RLWE′s(s2) + (b′, 0) = RLWEs(a′ · s2 + b′ · s) = RLWEs(a · s ·Xαi·si).

Finally, we add RLWEs(a · s ·Xαi·si) and RLWEs(b ·Xαi·si) to obtain the updated ACC

ACC← RLWEs(a · s ·Xαi·si) + RLWEs(b ·Xαi·si)

= RLWEs((a · s + b) ·Xαi·si) = RLWEs(f ·Xβ+α0s0+···+αisi).

Error Analysis The error of each RLWE element of RLWE′ encryption in equation (2) can be
bounded by 4Erc. Hence, each R by RLWE′ for a and b adds an error which is bounded by 2dBErc,
each blind rotation step introduces additive error bounded by at most 2(N + 1)dBErc + dB

2 Eerr.

10

4.3 Blind rotations for sparse ternary secret key

For sparse ternary secret key with hamming weight h, we can take advantage of the knowledge that
only h coefficients of s are non-zero and decrease the computational complexity of blind rotation.
Suppose (si1 , . . . , sih) are non-zero coefficients of s. We generate blind rotation public keys

brk′ =
{
RGSWQ,s

(
δ+(il, j)

)
,RGSWQ,s

(
δ−(il, j)

)}
,

where {
δ+(il, j) = 1, il = j & sil = 1
δ+(il, j) = 0, otherwise

,

{
δ−(il, j) = 1, il = j & sil = −1
δ−(il, j) = 0, otherwise

for

{
j ∈ [0, N − 1]
l ∈ [1, h].

Then we iteratively compute

RGSW(Xαil
·sil) =

N−1∑
j=0

Xαj · RGSW
(
δ+(il, j)

)
+

N−1∑
j=0

X−αj · RGSW
(
δ−(il, j)

)
(3)

and update ACC as
ACC← ACC� RGSWQ,s(Xαil

·sil).

The equation (3) is correct as only one of summands is non-zero. This alternative blind rotation
decreases number of RLWE� RGSW multiplications from N to h, but increases the blind rotation
key size from 2N to 2hN of RGSW encryptions. We can also apply compact representation of blind
rotation keys, however we require 2h of RLWE′ ciphertexts instead of 2.

Algorithm 5 Blind rotation for sparse secret key

procedure BlindRotate’(f, (~α, β), brk′)
ACC←

(
0, f ·Xβ

)
for l = 1, ..., h do

ACC← ACC�
(∑N−1

j=0 Xαj · RGSW (δ+(il, j)) +
∑N−1

j=0 X−αj · RGSW (δ−(il, j))
)

return ACC

Error Analysis The error bound of each RLWE element of RGSW encryption in in equation (3)
can be bounded by 2NEerr or by 2NErc when we use reconstructed keys, so each blind rotation
step introduces an additive error that is bounded by 2dBNEerr. The total error after blind rotation
is bounded by 2dBhNEerr.

5 Bootstrapping

In this section, we describe the whole procedure of the new bootstrapping technique which uses
ScaledMod algorithm as a core functionality. We mainly deal with the CKKS scheme and then
briefly explain the bootstrapping technique to BGV and BFV schemes as subsequent results.

11

5.1 Bootstrapping for CKKS

The main ingredients of the existing CKKS bootstrapping are homomorphic linear transforma-
tions and the evaluation of approximating polynomials for modulus reduction functions. Given a
ciphertext ct = RLWE(m) = (a, b) ∈ Rq, one can represent it in a higher modulus Q. Then the
decryption query becomes

ct(s) = a · s + b = m + e + q · v ∈ RQ

for some small polynomial v. After a homomorphic linear transformation, one can obtain ciphertext
with slots mi+ei+q ·vi. After using polynomial approximation of the modulus reduction function,
one removes the q · vi part. Using another homomorphic linear transformation, one finally obtains
the ciphertext ct′ encrypting m in a higher modulus Q′. A major drawback of this method is that it
is hard to approximate a modulus reduction function with a polynomial so that the ciphertext after
the bootstrapping usually adds a large noise and it reduces the quality of the encrypted message.

We propose a completely new technique of bootstrapping which only adds a noise, comparable
with rescaling noise, and thus almost preserves the quality of the encrypted message. As a first
step, the ciphertext is preprocessed to obtain a ciphertext suitable for ScaledMod. After obtaining
the result of ScaledMod, we add it with the other preprocessed ciphertext and the final result will
be a bootstrapped ciphertext. The preprocessing procedure is different depending on the structure
of the scheme and the detailed descriptions are given in the following subsections.

5.1.1 Original CKKS

We start with original CKKS scheme [11], where ciphertext modulus q is a power of two. Let us
have a ciphertext ct = (a, b) ∈ R2

q where

ct(s) = a · s + b = m + e (mod q) = m + e + q · v.

Let q′ = q/2N and ‖m + e‖∞ < q′. Consider ct′ = ct (mod q′) =
(
[a]q′ , [b]q′

)
∈ R2

q′ where

ct′(s) = [a]q′ · s + [b]q′ = m + e (mod q′) = m + e + q′ · u.

Now both a− [a]q′ and b− [b]q′ are divisible by q′, thus we can obtain a ciphertext

ctprep = (aprep, bprep) =

(
a− [a]q′

q′
,
b− [b]q′

q′

)
∈ R2

2N .

It is easy to see that preprocessed ctprep = RLWE0
2N,s(−u), so we can evaluate ScaledMod(ctprep, q

′, Q)
and obtain ctsm = RLWEQ,s(−q′ · u) with an error esm. Finally we add it with ct′ and obtain the
ciphertext ctboot = RLWEQ,s(m) with noise e+esm. The full bootstrapping algorithm is described
in Algorithm 6.

Sparsely Packed Ciphertext Let ct be an encryption of a sparsely packed plaintext m of n
values. Then the bootstrapping complexity can be reduced. We firstly prepare ct′ and ctprep as
previously. Then we do additional preprocessing for ct′ and apply a variant of ScaledMod to ctprep.

The additional preprocessing is zeroizing certain coefficients of u. We take a similar approach
used in the original CKKS bootstrapping [12] which described in Algorithm 7. We increase the
modulus of ct′ to Q and then apply automorphisms and additions.

12

Algorithm 6 Bootstrapping for CKKS

procedure Bootstrap-CKKS(ct = (a, b) ∈ R2
q)

Preprocess: ct′ ← ct (mod q′), ctprep ←
(
ct−ct′

q′

)
• ct(s) = as + b = m + e + qv ∈ R
• ct′(s) = [a]q′ s + [b]q′ = m + e + q′u ∈ R
• ctprep(s) = apreps + bprep = −u (mod 2N)

ScaledMod: ctsm ← ScaledMod(ctprep, q
′, Q)

• ctsm(s) = asms + bsm = −q′u + esm (mod Q)
Combine: ctboot ← ctsm + ct′

• ctboot(s) = aboots + bboot = m + e + esm (mod Q)
return ctboot = (aboot, bboot) ∈ R2

Q

Algorithm 7 Zeroizing Coefficients

procedure ZeroizeCoeffs(ct′, n)
for k = N ; k > n; k = k/2 do

ct′ ← EvalAuto(ct′, k + 1) + ct′

ct′ ← Rescale(ct′, N2n)
return ct′

After zeroizing coefficients of ct′, we have the decryption query as

ct′(s) = a′s + b′ = m + e′ + q′u′ (mod Q′),

where Q′ = Q · 2nN and u′ has same coefficients as u at degrees that are multiples of N/2n, and other
coefficients of u are zero. Notice that as m was sparse-packed plaintext, it does not change under the
automorphisms used in ZeroizeCoeffs. Due to the structure of u′, given ctprep = RLWE0

2N,s(u)
as input of ScaledMod, we can evaluate the blind rotations only for u(N/2n)·i instead of evaluating

for every coefficient of u. It reduces the number of LWE0
2N,~s(ui) and RLWEQ,s (f ·Xui) to 2n and

also reduces the number of iterations of Repack algorithm. The output of the variant ScaledMod

is ctsm = RLWEQ′,s(−q′u′) and the final step is ctboot = ct′ + ctsm.

5.1.2 RNS-CKKS

In RNS-CKKS scheme [12], the modulus q is not a power of two but a product of primes. So our
preprocessing steps are different. We again start with ct = (a, b) such that

ct(s) = a · s + b = m + e + q · v ∈ R.

We assume that ‖m + e‖∞ < q/2N and consider ct′ = 2N · ct (mod q) = ([2Na]q, [2Nb]q) ∈ R2
q .

We have
ct′(s) = [2Na]q · s + [2Nb]q = 2Nm + 2Ne + q · u ∈ R.

Now both 2Na− [2Na]q and 2Nb− [2Nb]q are divisible by q, thus we can obtain a ciphertext

ctprep = (aprep, bprep) =

(
2Na− [2Na]q

q
,
2Nb− [2Nb]q

q

)
∈ R2

2N .

13

Again it is easy to see that for preprocessed ctprep = RLWE0
2N,s(−u) we can evaluate ScaledMod(ctprep, q,Qp)

and obtain ctsm = RLWEQp,s(−q · u), where p is an auxiliary prime that we will rescale by later.
Now we add ctsm and ct′, multiply by p

2N , and rescale the result by p: ctboot = Rescale(p
2N ·

(ctsm + ct′) , p).

ctboot(s) = aboots + bboot = m + e +
1

2N
esm + ers (mod Q)

The full bootstrapping algorithm is described in Algorithm 8.

Algorithm 8 Bootstrapping for RNS-CKKS

procedure Bootstrap-RNS-CKKS(ct = (a, b) ∈ R2
q)

Preprocess: ct′ ← 2Nct (mod q), ctprep ← 1
q (2Nct− ct′)

• ct′(s) = [2Na]q s + [2Nb]q = 2Nm + 2Ne + qu ∈ R
• ctprep(s) = apreps + bprep = −u + 2Nv ∈ R

ScaledMod: ctsm ← ScaledMod(ctprep, q, Qp)
• ctsm(s) = asms + bsm = −qu + esm (mod Qp)

Combine: ctboot ← Rescale
(p
2N (ctsm + ct′) , p

)
• ctboot(s) = aboots + bboot = m + e + 1

2N esm + ers (mod Q)
return ctboot = (aboot, bboot) ∈ R2

Q

5.2 Bootstrapping for BGV and BFV

Now we briefly explain how our technique can be applied for BGV and BFV schemes. Since BGV,
BFV, and CKKS schemes have a similar cryptographic structure and their encryption only differs
in encodings, the Preprocess and Combine procedures are performed in a similar way with slight
modifications. Here we only describe the different parts briefly and the full algorithms are presented
in Appendices A and B. Both BGV and BFV have plaintext space Rt for some t that is normally
taken as a prime power, in our cases we take t to be coprime with 2, for simplicity.

5.2.1 BGV

The decryption query of BGV scheme is

ct(s) = a · s + b = m + t · e + q · v ∈ R.

The bootstrapping algorithm for BGV is similar to that for original CKKS with the only difference
that keys are generated with errors of the form t ·e instead of e and the automorphisms and rescales
in Repack procedure are evaluated in accordance with BGV style. The bootstrapping algorithm for
RNS-BGV is also similar to that for RNS-CKKS, with the only difference at Combine step, where
division by 2N is done modulo t, to obtain encryption of m.

5.2.2 BFV

The decryption query of BFV scheme is

ct(s) = a · s + b =
Q

t
m + e +Q · v ∈ R.

14

The goal of bootstrapping for BFV is to reduce the accumulated error instead of increasing the
modulus size. During the procedure, the original big error is removed and replaced with a small
refreshed error generated from ScaledMod and rescaling.

6 Conclusion

We proposed the first bootstrapping procedure for the CKKS scheme without approximating the
modulus reduction function, and extended it to BGV and BFV schemes. Our bootstrapping pro-
cedure uses a blind rotation technique and it introduces small rescaling errors instead of big ap-
proximation errors as in previous CKKS bootstrapping methods.

We also introduced a method of extracting all blind rotation keys on a computational side
rather than generating and transferring all of them from a secret key holder side. In addition,
we proposed a method of evaluating the blind rotation on the fly without storing all the keys on
the computational side. Finally, we modified the blind rotation for a sparse secret key to reduce
computational complexity.

In contrast to previous bootstrapping methods, our bootstrapping requires only one rescaling
and thus it can be implemented with smaller parameters for the same security level. We plan
to implement our technique on different computational platforms including systems with limited
memory storage. We also consider continuing our research on possible optimizations of our new
bootstrapping algorithms.

References

[1] Regev, O. (2009) On lattices, learning with errors, random linear codes, and cryptography.
Journal of the ACM (JACM), 56(6), 1–40.

[2] Lyubashevsky, V., Peikert, C., and Regev, O. (2013) On ideal lattices and learning with errors
over rings. Journal of the ACM (JACM), 60(6), 1–35.

[3] Gentry, C. (2009) Fully homomorphic encryption using ideal lattices. In Proceedings of the
forty-first annual ACM Symposium on Theory of Computing ACM pp. 169–178.

[4] Ducas, L. and Micciancio, D. (2015) FHEW: Bootstrapping homomorphic encryption in less
than a second. In Advances in Cryptology – EUROCRYPT 2015 Springer pp. 617–640.

[5] Chillotti, I., Gama, N., Georgieva, M., and Izabachène, M. (2020) TFHE: Fast fully homomor-
phic encryption over the torus. Journal of Cryptology, 33(1), 34–91.

[6] Alperin-Sheriff, J. and Peikert, C. (2014) Faster bootstrapping with polynomial error. In
Advances in Cryptology – CRYPTO 2014 Springer pp. 297–314.

[7] Gama, N., Izabachene, M., Nguyen, P. Q., and Xie, X. (2016) Structural lattice reduction: gen-
eralized worst-case to average-case reductions and homomorphic cryptosystems. In Advances
in Cryptology – EUROCRYPT 2016 Springer pp. 528–558.

[8] Brakerski, Z., Gentry, C., and Vaikuntanathan, V. (2014) (Leveled) Fully homomorphic en-
cryption without bootstrapping. ACM Transactions on Computation Theory (TOCT), 6(3),
1–36.

15

[9] Brakerski, Z. (2012) Fully homomorphic encryption without modulus switching from classical
GapSVP. In Advances in Cryptology – CRYPTO 2012 Springer pp. 868–886.

[10] Fan, J. and Vercauteren, F. (2012) Somewhat practical fully homomorphic encryption. IACR
Cryptol. ePrint Arch., 2012/144.

[11] Cheon, J. H., Kim, A., Kim, M., and Song, Y. (2017) Homomorphic encryption for arithmetic
of approximate numbers. In Advances in Cryptology – ASIACRYPT 2017 Springer pp. 409–
437.

[12] Cheon, J. H., Han, K., Kim, A., Kim, M., and Song, Y. (2018) A full RNS variant of approx-
imate homomorphic encryption. In Selected Areas in Cryptography – SAC 2018 Springer pp.
347–368.

[13] Cheon, J. H., Han, K., Kim, A., Kim, M., and Song, Y. (2018) Bootstrapping for approximate
homomorphic encryption. In Advances in Cryptology – EUROCRYPT 2018 Springer pp. 360–
384.

[14] Chen, H., Chillotti, I., and Song, Y. (2019) Improved bootstrapping for approximate homo-
morphic encryption. In Advances in Cryptology – EUROCRYPT 2019 Springer pp. 34–54.

[15] Han, K. and Ki, D. (2020) Better bootstrapping for approximate homomorphic encryption. In
Topics in Cryptology – CT-RSA 2020 Springer pp. 364–390.

[16] Lee, Y., Lee, J.-W., Kim, Y.-S., and No, J.-S. (2020) Near-optimal polynomial for modulus
reduction using l2-norm for approximate homomorphic encryption. IEEE Access, 8, 144321–
144330.

[17] Bossuat, J.-P., Mouchet, C., Troncoso-Pastoriza, J., and Hubaux, J.-P. (2021) Efficient boot-
strapping for approximate homomorphic encryption with non-sparse keys. In Advances in
Cryptology – EUROCRYPT 2021 (to appear) Springer.

[18] Lee, J.-W., Lee, E., Lee, Y., Kim, Y.-S., and No, J.-S. (2021) High-Precision Bootstrapping
of RNS-CKKS Homomorphic Encryption Using Optimal Minimax Polynomial Approximation
and Inverse Sine Function. In Advances in Cryptology – EUROCRYPT 2021 (to appear)
Springer.

[19] Lee, Y., Lee, J., Kim, Y.-S., Kang, H., and No, J.-S. (2020) High-Precision and Low-
Complexity Approximate Homomorphic Encryption by Error Variance Minimization. IACR
Cryptol. ePrint Arch., 2020/1549.

[20] Chen, H., Dai, W., Kim, M., and Song, Y. (2021) Efficient Homomorphic Conversion Between
(Ring) LWE Ciphertexts. In Applied Cryptography and Network Security (to appear) Springer.

[21] Gentry, C., Halevi, S., and Smart, N. P. (2012) Better bootstrapping in fully homomorphic
encryption. In Public Key Cryptography – PKC 2012 Springer pp. 1–16.

[22] Halevi, S. and Shoup, V. (2021) Bootstrapping for HElib. Journal of Cryptology, 34(1), 1–44.

[23] Chen, H. and Han, K. (2018) Homomorphic lower digits removal and improved FHE boot-
strapping. In Advances in Cryptology – EUROCRYPT 2018 Springer pp. 315–337.

16

[24] Gentry, C., Sahai, A., and Waters, B. (2013) Homomorphic encryption from learning with er-
rors: Conceptually-simpler, asymptotically-faster, attribute-based. In Advances in Cryptology
– CRYPTO 2013 Springer pp. 75–92.

[25] Chillotti, I., Gama, N., Georgieva, M., and Izabachene, M. (2017) Faster packed homomor-
phic operations and efficient circuit bootstrapping for TFHE. In Advances in Cryptology –
ASIACRYPT 2017 Springer pp. 377–408.

[26] Micciancio, D. and Polyakov, Y. (2020) Bootstrapping in FHEW-like Cryptosystems.. IACR
Cryptol. ePrint Arch., 2020/86.

[27] Boura, C., Gama, N., Georgieva, M., and Jetchev, D. (2020) Chimera: Combining Ring-LWE-
based fully homomorphic encryption schemes. Journal of Mathematical Cryptology, 14(1),
316–338.

[28] Lu, W.-j., Huang, Z., Hong, C., Ma, Y., and Qu, H. (2021) PEGASUS: Bridging Polynomial
and Non-polynomial Evaluations in Homomorphic Encryption. In 2021 IEEE symposium on
Security and Privacy (S&P) (to appear) IEEE.

[29] Chillotti, I., Joye, M., and Paillier, P. (2021) Programmable bootstrapping enables efficient
homomorphic inference of deep neural networks. IACR Cryptol. ePrint Arch., 2021/091.

[30] Guimarães, A., Borin, E., and Aranha, D. F. (2021) Revisiting the functional bootstrap in
TFHE. IACR Transactions on Cryptographic Hardware and Embedded Systems, pp. 229–253.

[31] Miccianco, D. and Sorrell, J. (2018) Ring packing and amortized FHEW bootstrapping. In
45th International Colloquium on Automata, Languages, and Programming (ICALP 2018)
Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik.

[32] Halevi, S., Polyakov, Y., and Shoup, V. (2019) An improved RNS variant of the BFV homo-
morphic encryption scheme. In Topics in Cryptology – CT-RSA 2019 Springer pp. 83–105.

[33] Kim, A., Polyakov, Y., and Zucca, V. (2021) Revisiting Homomorphic Encryption Schemes
for Finite Fields. IACR Cryptol. ePrint Arch., 2021/204.

[34] Brakerski, Z. and Vaikuntanathan, V. (2011) Fully homomorphic encryption from Ring-LWE
and security for key dependent messages. In Advances in Cryptology – CRYPTO 2011 Springer
pp. 505–524.

[35] Bajard, J.-C., Eynard, J., Hasan, M. A., and Zucca, V. (2016) A full RNS variant of FV like
somewhat homomorphic encryption schemes. In Selected Areas in Cryptography – SAC 2016
Springer pp. 423–442.

[36] Kim, A., Papadimitriou, A., and Polyakov, Y. (2020) Approximate homomorphic encryption
with reduced approximation error. IACR Cryptol. ePrint Arch., 2020/1118.

[37] Brakerski, Z. and Vaikuntanathan, V. (2014) Efficient fully homomorphic encryption from
(standard) LWE. SIAM Journal on Computing, 43(2), 831–871.

[38] Gentry, C., Halevi, S., and Smart, N. P. (2012) Homomorphic evaluation of the AES circuit.
In Advances in Cryptology – CRYPTO 2012 Springer pp. 850–867.

17

A Bootstrapping for BGV

A.1 Multiprecision BGV

Our bootstrapping for multiprecision BGV is quite similar to multiprecision CKKS bootstrapping
in Section 5, with the difference that the blind rotation keys RGSWQ,s(s±i) are generated with
errors of type te instead of e.
Let us have a ciphertext ct = (a, b) ∈ R2

q where

ct(s) = as + b = m + te (mod q) = m + te + q · v.

Let q′ = q/2N and consider ct′ = ct (mod q′) =
(
[a]q′ , [b]q′

)
∈ R2

q′ . Similar to CKKS, we may
assume that ‖m + te‖∞ < q′ with high probability. Hence,

ct′(s) = [a]q′ · s + [b]q′ = m + te (mod q′) = m + te + q′ · u.

Now both a− [a]q′ and b− [b]q′ are divisible by q′, thus we can obtain a ciphertext

ctprep = (aprep, bprep) =

(
a− [a]q′

q′
,
b− [b]q′

q′

)
∈ R2

2N .

After applying ScaledMod(ctprep, q
′, Q), we obtain ctsm = RLWEQ,s(−q′ · u) with an error tesm.

Finally we add it with ct′ and obtain the ciphertext ctboot = RLWEQ,s(m) with noise t (e + esm).
The full algorithm for bootstrapping in BGV is described in Algorithm 9.

Algorithm 9 Bootstrapping for BGV

procedure Bootstrap-BGV(ct = (a, b) ∈ R2
q)

Preprocess: ct′ = ct (mod q′), ctprep ←
(
ct−ct′

q′

)
• ct(s) = as + b = m + te + qv ∈ R
• ct′(s) = [a]q′s + [b]q′ = m + te + q′u ∈ R
• ctprep(s) = apreps + bprep = −u + 2Nv ∈ R

ScaledMod: ctsm ← ScaledMod(ctprep, q
′, Q)

• ctsm(s) = asms + bsm = −q′u + tesm (mod Q)
Combine: ctboot = ctsm + ct′

• ctboot(s) = aboots + bboot = m + t (e + esm) (mod Q)
return ctboot

A.2 RNS-BGV

Our bootstrapping in RNS-BGV is also similar to RNS-CKKS bootstrapping in Section 5, with the
only difference at Combine step, where division is done by 2N modulo t. We obtain encryption of
m with error [2N−1]t(2Nte + tesm + tr), where

r =
1

t
(2Nm− [2Nm]t) .

The algorithm is described in Algorithm 10. The latest division by 2N modulo t is optional,
otherwise we can update the scaling factor of the message in the ciphertext by 2N instead [33, 38].

18

Algorithm 10 Bootstrapping for RNS-BGV

procedure Bootstrap-RNS-BGV(ct = (a, b) ∈ R2
q)

Preprocess: ct′ ← 2N · ct (mod q), ctprep ← 1
q (2Nct− ct′)

• ct′(s) = [2Na]qs + [2Nb]q = 2Nm + 2Nte + qu ∈ R
• ctprep(s) = apreps + bprep = −u + 2Nv ∈ R

ScaledMod: ctsm ← ScaledMod(ctprep, q,Q)
• ctsm(s) = asms + bsm = −qu + tesm (mod Q)

Combine: ctboot ← (ctsm + ct′) · ([2N−1]t)
• ctboot(s) = aboots + bboot = m + [2N−1]t(2Nte + tesm + tr) = m + te′ (mod Q)

return ctboot

B Bootstrapping for BFV

B.1 Multiprecision BFV

For multiprecision BFV scheme with a power of two Q, we start with ct = (a, b) such that

ct(s) = a · s + b = e +
Q

t
m ∈ RQ.

Let ct′ = t · ct (mod Q), so we have

ct′(s) = [ta]Q · s + [tb]Q = te +Qv.

Let Q′ = Q/2N , and ct′′ = ct′ (mod Q′), then we have

ct′′(s) = [ta]Q′ · s + [ta]Q′ = te +Q′u.

Now we obtain ctprep = ct′−ct′′
Q′ with

ctprep(s) = apreps + bprep = −u + 2Nv ∈ R.

After applying ScaledMod(ctprep,−Q′, Qt), we have ctsm with an error esm. Finally we add ctsm
with t · ct− ct′′ and rescale the result by t, then we obtain ctboot. The algorithm is described in
Algorithm 11.

B.2 RNS-BFV

In RNS-BFV, we again start with ct = (a, b) such that

ct(s) = as + b = e +
Q

t
m ∈ RQ.

Consider ct′ = t · ct (mod Q) and ct′′ = 2N · ct′ (mod Q) as

ct′(s) = [ta]Q · s + [tb]Q = te +Qv ∈ R

and
ct′′(s) = [2Nta]Q · s + [2Ntb]Q = 2Nte +Qu ∈ R.

19

Algorithm 11 Bootstrapping for BFV

procedure Bootstrap-BFV(ct = (a, b) ∈ R2
Q)

Preprocess: ct′ ← t · ct (mod Q), ct′′ ← ct′ (mod Q′), ctprep ← ct′−ct′′
Q′

• ct(s) = as + b = e + Q
t m (mod Q)

• ct′(s) = [ta]Qs + [tb]Q = te +Qv ∈ R
• ct′′(s) = [ta]Q′s + [tb]Q′ = te +Q′u ∈ R
• ctprep(s) = apreps + bprep = −u + 2Nv ∈ R

ScaledMod: ctsm ← ScaledMod(ctprep,−Q′, Qt)
• ctsm(s) = asms + bsm = Q′u + esm (mod Qt)

Combine: ctboot = Rescale ((ctsm + t · ct− ct′′) , t)
• ctboot(s) = aboots + bboot = 1

tesm + ers + Q
t m (mod Q)

return ctboot

Now we obtain a ciphertext ctprep = 2N ·ct′−ct′′
Q with

ctprep(s) = apreps + bprep = −u + 2Nv ∈ R.

After applying ScaledMod(ctprep,−Q,Qpt) with auxiliary prime p, we have ctsm with an error esm.
Finally we add ctsm and 2Nt · ct − ct′′, multiply it by p

2N and rescale the result by pt, then we
obtain ctboot. The algorithm is described in Algorithm 12.

Algorithm 12 Bootstrapping for RNS-BFV

procedure Bootstrap-RNS-BFV(ct = (a, b) ∈ R2
Q)

Preprocess: ct′ ← t · ct (mod Q), ct′′ ← 2N · ct′ (mod Q), ctprep ← 2N ·ct′−ct′′
Q

• ct(s) = as + b = e + Q
t m (mod Q)

• ct′(s) = [ta]Qs + [tb]Q = te +Qv ∈ R
• ct′′(s) = [2Nta]Qs + [2Ntb]Q = 2Nte +Qu ∈ R
• ctprep(s) = apreps + bprep = −u + 2Nv ∈ R

ScaledMod: ctsm = ScaledMod(ctprep,−Q,Qpt)
• ctsm(s) = asms + bsm = Qu + esm (mod Qpt)

Combine: ctboot = Rescale
(p
2N (ctsm + 2Nt · ct− ct′′) , pt

)
• ctboot(s) = aboots + bboot = 1

2Ntesm + ers + Q
t m (mod Q)

return ctboot

20

