DeCSIDH: Delegating isogeny computations in
the CSIDH setting

Robi Pedersen

imec-COSIC, ESAT, KU Leuven, Belgium

robi.pedersen@esat.kuleuven.be

Abstract. Delegating heavy computations to auxiliary servers, while
keeping the inputs secret, presents a practical solution for computa-
tionally limited devices to use resource-intense cryptographic protocols,
such as those based on isogenies, and thus allows the deployment of
post-quantum security on mobile devices and in the internet of things.
We propose two algorithms for the secure and verifiable delegation of
isogeny computations in the CSIDH setting. We then apply these algo-
rithms to different instances of CSIDH and to the signing algorithms
SeaSign and CSI-FiSh. Our algorithms present a communication-cost
trade-off. Asymptotically (for high communication), the cost for the del-
egator is reduced by a factor 9 for the original CSIDH-512 parameter
set and a factor 20 for SQALE’d CSIDH-4096, while the relative cost
of SeaSign vanishes. Even for much lower communication cost, we come
close to these asymptotic results. Using the knowledge of the class group,
the delegation of CSI-FiSh is basically free (up to element generation in
Zyci(o)) already at a very low communication cost.

Keywords: Post-quantum cryptography - Isogeny-based cryptography - CSIDH
- Secure computation outsourcing - Lightweight cryptography

1 Introduction

Delegation of computations. The last decade has witnessed an immense surge
in mobile devices, including RFID-cards, tiny sensor nodes, smart phones and a
myriad of devices in the internet of things. Since such mobile devices are usually
computationally limited or have other constraints such as low battery life, the
delegation of their computations to external, more powerful devices, has become
an active area of research. While delegation allows to relieve these devices of
their most heavy computations, it comes at a certain risk, such as potentially
malicious servers trying to extract sensitive data or returning wrong results for
these computations. Mitigating these threats is especially important when dele-
gating cryptographic protocols, where such servers might try to extract private

* This work was supported in part by the Research Council KU Leuven grant
C14/18/067, and by CyberSecurity Research Flanders with reference number
VR20192203. Date of this document: May 27, 2021.

keys. The necessary properties for secure and verifiable delegation were first for-
malized in a security model introduced by Hohenberger and Lysyanskaya [15]
in the context of group exponentiations. Their model lets the delegator shroud
sensitive data before sending it to the server and then verify and de-shroud
the server’s output. The operations performed by the delegator should still be
efficient enough for the delegation to be worthwhile.

Isogeny-based cryptography. Isogeny-based cryptography goes back to the works
of Couveignes [12] and Rostovtsev and Stolbunov [25] and is based on the diffi-
culty of finding an explicit isogeny linking two given isogenous elliptic curves de-
fined over a finite field. While the original proposal uses ordinary elliptic curves,
recent quantum attacks [11, 18, 24], which use the commutativity of the endo-
morphism ring, push the secure parameter size to the realm of prohibitively
inefficient protocols. In response, two new approaches using supersingular ellip-
tic curves have been introduced. The first one, commonly referred to as SIDH
(supersingular isogeny Diffie-Hellman) was proposed by Jao and De Feo [16] and
uses the fact that supersingular elliptic curves over IF,,> have a non-commutative
endomorphism ring, so that the previously discussed attacks are not applicable.
The second one, called CSIDH [7] (commutative SIDH), uses the structure of
supersingular elliptic curves to immensely reduce the computational cost of the
originally proposed protocols back to the realm of usability. We note that while
CSIDH closely follows the line of the original Couveignes-Rostovtsev-Stolbunov
scheme, SIDH uses a different approach that is more closely related to the cryp-
tographic hash function proposed by Charles, Goren and Lauter [8].

Motivation and concurrent work. While isogeny-based protocols profit from the
lowest key sizes of any of the current post-quantum standardization proposals [1,
7,16, 27, 20], they are still among the slowest. This might be tolerable for specific
applications, but given the immense surge in low-power mobile devices in recent
years, there is a strong need for easily deployable and computationally cheap,
yet secure cryptographic protocols. It is of particular interest for these limited
devices to profit from post-quantum security in order to allow them to remain
secure in the long term.

While there have been many proposals for the delegation of group expo-
nentiations and pairings [15, 30], the delegation of post-quantum cryptographic
protocols is a very new topic. In 2019, Pedersen and Uzunkol [21] proposed the
first delegation algorithms for isogeny computations and improved upon their
work with a follow-up paper in 2021 [22]. Their approach is applied to SIDH-
type protocols, i.e. supersingular isogeny protocols over F,2, and based on the
outsource security model from [15].

The question of delegating isogenies in the CSIDH setting has been proposed
as a direction of future research by [22] and will be the main focus of this work.
While we will also use the outsource security model from [15], we stress that
we cannot simply use or translate the previously proposed isogeny delegation
schemes in the SIDH setting to the CSIDH setting. The main reason is that

cryptographic protocols in these two schemes use very different descriptions and
are not related to one another in an obvious way.

Our contribution. The purpose of this work is to propose the first isogeny del-
egation algorithms in the CSIDH setting, which are secure and provide high
verifiability guarantees. More precisely,

1. We introduce and analyze ShrVec, an algorithm that allows transforming a
uniform vector into three vectors, two of which are uniform, and the third
one being small. This allows to shroud secret keys in the CSIDH protocol [7].

2. We define two new algorithms based on the outsource-security description
of Hohenberger and Lysyanskaya [15]:

— The isogeny computation algorithm Clso, which allows to delegate the
computation of an isogeny, while keeping the kernel hidden from the
auxiliary servers, and

— The hidden isogeny computation algorithm Hlso, which allows to delegate
the computation of an isogeny, while keeping both the kernel and the

isogeny codomain hidden from the auxiliary servers.
We present both algorithms in the one-malicious two untrusted program

(OMTUP) assumption defined in [15] and in the newly introduced two
honest-but-curious (2HBC) assumption. All of our algorithms work in two
rounds of communication.

3. We apply our delegation algorithms to different instantiations of CSIDH [4,
7,9] and to the signature algorithms SeaSign [13] and CSI-FiSh [3] and com-
pute the reduced cost of the delegator as compared to the local computation.
Most of these algorithms allow a trade-off between computational and com-
munication cost. Asymptotically (for large communication cost), we reduce
the computational cost of CSIDH-512 [7] to below 12% of the local cost
of the full protocol, while the SQALE’d CSIDH-4096 [9] protocol can be
reduced all the way down to 5% of the local cost. Our protocols present
a communication-computation cost trade-off. Even for low communication
costs, the gain of the delegator quickly approaches the asymptotic values.
The gains for signatures are even better: The relative cost of delegating
SeaSign asymptotically vanishes and can be easily reduced to a few percent
at low communication cost, while CSI-FiSh, by using knowledge of the class
group structure, can be made virtually free at low communication cost. We
support our results with benchmarks.

Naming. Following the fishy name trend of commutative supersingular isogeny
protocols, we refer to their delegation as DeCSIDH (from Delegated CSIDH)
and pronounce it deckside. The reader is free to imagine a fisher with limited
resources being helped by a more powerful (yet potentially malicious) fishing
boat.

Acknowledgements. The author would like to thank Frederik Vercauteren and
Osmanbey Uzunkol for helpful discussions and valuable feedback concerning this
work.

2 Background

Isogeny-based cryptographic protocols are based on the good mixing properties
of isogeny graphs, i.e. graphs of isomorphism classes of elliptic curves over finite
fields connected by isogenies. Isogenies are surjective homomorphisms between
elliptic curves that are also algebraic maps. Separable isogenies are uniquely
defined by their kernel. While it is easy to compute an isogeny from a given
kernel, it is in general difficult to find the kernel, given two isogenous elliptic
curves.

The original protocols by Couveignes [12] and Rostovtsev and Stolbunov [25,
28] used ordinary elliptic curves, defined over a prime field F,, while the later
CSIDH protocol by Castryck, Lange, Martindale, Panny and Renes [6] uses
supersingular elliptic curves over I, for efficiency reasons. These curves have
Frobenius trace t = 0 and their [F,-rational endomorphism rings are orders O in
a quadratic imaginary field Q(y/—p). A key observation of these protocols is that
the ideals in the class group Cl(O) uniquely define subgroups via their kernel
and therefore uniquely define isogenies, i.e. for a given elliptic curve E/F, and
ideal a € CI(O), we have a separable isogeny E — E/a with kernel [, ker a.
As a result, the ideal-class group Cl(O) acts freely and transitively on the set of
F,-isomorphism classes of these elliptic curves via isogenies [12] and this group
action is generally written as £ — a x E.

In the CSIDH protocol [7], the underlying prime field F, is defined via
p = 4]]; ¢; — 1, where the ¢; are small primes. Since #E(F,) = p + 1, the
chosen structure of p implies that £;O decomposes as the product of two prime
ideals I; = (£;,7—1) and [; ' = (¢;, 7+ 1), where 7 corresponds to the Frobenius
endomorphism. The action of these ideals on the set of (isomorphism classes
of) elliptic curves over F,, can then be computed with the standard Vélu formu-
lae [31] and are efficient for small ¢;. Given the structure of p, ideals can generally
be expressed as a = H:-L:l [7, where positive exponents a; correspond to the ac-
tion of [;, while negative exponents correspond to the action of [;- ! Ideals can
then be simply expressed by representative vectors, e.g. a = (aq,...,a,) would
correspond to the action of a as defined above. The order of the application of
the prime ideals [; of a does not matter and its dual is simply a~! represented
by —a. Note that a;as corresponds to a; + as.

The class group. While the class group has asymptotic size #C1(O) =~ 2,/p [26],
computing its exact structure is a difficult task for large p [3,17]. The original
proposal of CSIDH-512 [7] circumvented this problem by choosing n = 74 small
primes (the 73 smallest odd primes and ¢74 = 587) and sampling the elements a;
of a from a range {—5,...,5} of size 11. As such, 11" ~ 2256 which should cover
most of the class group without knowing its exact structure. In 2019, Beullens,
Kleinjung and Vercauteren [3] computed the class group structure and the rela-
tion lattice for the CSIDH-512 parameter set and found a cyclic class group of
order #C1(0) =~ 2257, This knowledge allows to sample random elements from
Zycy(0) and transform them into vectors a by solving easy instances of the clos-
est vector problem using the relation lattice. This guarantees uniform coverage

of the entire class group, while also allowing efficient computation via low-degree
isogenies. Unfortunately, class group computations for larger parameter sets than
CSIDH-512 seem currently out of reach.

Notation. We use “4—” as the assignment operator: If the right hand side is
an algorithm, the left hand side represents the variables to which its output
is assigned. If the right hand side is a set, we assume the left hand side to
represent a randomly sampled value from this set. We will write [start, end] as
a shorthand for the set of integers ranging from start € Z to end € Z. We define
as B(IV) C Z™ any set of the form B = By X - -- x B,,, where B; C Z are intervals
of length d; = #B;, and such that #B(N) = [[\"; d; & N. As an example, for
CSIDH-512, we use B(22°¢) = [—5, 5], Ideals in C1(O) can then be represented
by vectors a € B(N), where typically N < #C1(O). Intervals B; are of the types
[-B;, B;] or [0, B;] for B; € N (see e.g. [5,7,9]). Throughout this work, we will
use the former case for simplicity, for which it holds d; = 2B; + 1. The case
[0, B;] follows completely analogously.

We write ideals in CI(Q) in the fraktur font (e.g. a,b,s,...) while the cor-
responding vectors in B(NN) are written in bold font (e.g. a,b,s,...). If the
class group is known, we write elements from Z.ci(o) in the standard font (e.g.
a,b, s,...). Note that we assume C1(O) to be cyclic with publicly known gen-
erator g.! We always assume elements using the same letters to be related, e.g.
a € Zycio) and a € B(N) will always represent a € C1(O), while the same holds
for (b,b,b), (s,s,5) etc. Let a = (aq,...,a,), then we can express this relation
as follows:

[¢ = g°.

)
1

a=

n
=
Note that vector entries are also written in the standard font. Their distinction
from elements in Z4c)) will always be clear from context.

It is useful to note that multiplications between elements in Cl(O) natu-
rally translate to additions in Zycy) and B(N), while divisions translate to

subtractions. As an example, ab~! can be represented by a — b or by a — b.

Security. Security of CSIDH and related protocols is generally based on the
following hard problem.

Definition 1 (Group action inverse problem (GAIP)). [7] Given two su-
persingular elliptic curves E,E’ over F, with the same Fy-rational endomor-
phism ring O, find an ideal a € CI(O) such that B/ = a* E.

Classical security is based on a meet-in-the-middle attack, where the attacker
generates paths of length n/2 from both curves and succeeds if they meet. The
query complexity of this attack is O(y/#CL(O)). Quantum security of CSIDH is

! Throughout this work, we will only consider the known class group established in [3].
In any other case, where C1(O) would not be cyclic, we can always assume to work
in a cyclic subgroup. For simplicity, we will still refer to it as the class group and
write C1(O).

still subject to scrutiny. For current estimates of the quantum security, we refer
the reader to [4,7,9] and [23]. We will use these estimates for later assessment
of our schemes and always refer to the source in question. We write A(N) for a
generic quantum security parameter for a class group of size approximately N.

Evaluation cost. Remember that for efficiency reasons, isogenies are computed
using the actions of low degree isogenies defined by the ideals [1, . .., [,. We define
Iy, as the cost of computing an isogeny of prime degree ¢;. The cost of an isogeny
given by the ideal a = [];_, [{* can be computed as the sum of a; consecutive
l;-isogenies for ¢ = 1,...,n, with the order being not important. We therefore

define . .
I(a)=1 <H [;?i) => aily,
i=1 i=1

as the cost of evaluating the isogeny given by a. Note that this notation is only
heuristic and implicitly includes the operations needed in evaluating the class
group action (cf. Algorithm 2 in [7]), such as point generation, point mapping
and scalar multiplication, in the parameters I;,. For concrete estimates of these
costs, we refer the reader to e.g. [19] and to [2]; in this work, we will not need
explicit estimates for Iy, as our results are expressed as relative costs only.

3 Secure and Verifiable Delegation

3.1 Security model by Hohenberger and Lysyanskaya

The secure delegation model of Hohenberger and Lysyanskaya [15] is defined
around three central entities: a delegator T, a set of auxiliary servers U and the
environment £. The delegator interacts with the servers, denoted as 7Y, so that
they jointly implement an algorithm Alg at a lower computational cost for T,
than if 7 would run Alg itself. The environment represents any third party, that
might observe the interaction or that might later (or previously) interact with 7
itself. Most notably, £ includes the manufacturer of the service provided by U.
A key assumption of the model is that after T starts using U, there is no more
direct channel between U/ and £ or between the different servers in /. However
these entities can still try to communicate indirectly. Thus, this interaction has
multiple threats to mitigate: First, 7 has to make sure that neither £ nor U
gain any sensitive information from 7’s interaction with &/ (and possibly later
with £). In general, this means that 7 has to find a way to shroud sensitive data
before passing it on to U and be able to recover its desired result (i.e. the output
of Alg) from whatever U returns. Secondly, to be able to do so, T also needs a
way to verify that the output of U is indeed correct. This is generally achieved
by checking that the outputs fulfill some verification conditions that adversarily
produced outputs could only fulfill with a low probability.

Definition 2 (Outsource-security). [15] Let Alg be an algorithm with the
following outsource input/output specification: We distinguish secret, protected

and unprotected inputs and outputs, depending on whether only T has access,
only T and € have access, or all parties have access, respectively. The non-secret
inputs are further subdivided into honest and adversarial, depending on whether
they originate from a trusted source or not. Then, the pair (T ,U) constitutes an
outsource-secure implementation of Alg if:

— Correctness: T is a correct implementation of Alg.

— Security: For all PPT adversaries A = (E,U), there exist PPT simulators
(81, S2) that can simulate the views of € and U indistinguishable from the real
process. If U consists of multiple servers U;, then there is a PPT-simulator
Sa,; for each of their views. We formalize this with the following pairs:

o Pair One: EVIEW gy ~ EVIEW geqi: € learns nothing about the secret
inputs and outputs.
o Pair Two: UVIEW gy ~ UVIEW,4eqi: U learns nothing about the
secret and (honest/adversarial) protected inputs and outputs.
For a more formal description of these experiments, we refer the reader to
Definition 2.2 of [15].

Two important parameters to assess delegations are the reduction in com-
putational cost a that T profits from, when compared to the local computation
of Alg, as well as the degree of certainty § that the outputs of the servers are
correct. These are formalized in the following definition.

Definition 3 ((«, 8)-outsource-security [15]). A pair of algorithms (T,U)
are an («, B)-outsource secure implementation of an algorithm Alg, if

— (T,U) are an outsource-secure implementation of Alg,

— for all inputs x, the running time of T is at most an a-multiplicative factor
of the running time of Alg(z) (i.e. Time(T) < aTime(Alg)),

— for all inputs x, if U deviates from its advertised functionality during the
execution of TH(z), then T will detect the error with probability > .

Many adversarial models for ¢ have been proposed in the literature, differing
along the number of servers and their adversarial powers. In this work, we will
use the following assumptions.

Definition 4 (1HBC [10]). The one honest-but-curious program model de-
fines the adversary as A = (E,U), where U consists of a single server that always
returns correct results, but may try to extract sensitive data.

Definition 5 (OMTUP [15]). The one-malicious version of a two untrusted
program model defines the adversary as A = (€, (Ur,Us)) and assumes that at
most one of the two servers Uy or Us deviates from its advertised functionality
(for a non-negligible fraction of the inputs), while T does not know which one.

We further define the following model, based on Definition 4:

Definition 6 (2HBC). The two honest-but-curious program model defines
the adversary as A = (&, (U, Us)), where Uy and Us are servers that always
return correct results, but may try to extract sensitive data.

3.2 Advertised server functionality

For our purposes throughout this work, we assume that as input, we give the
servers multiple pairs (a1, E1), ..., (ax, Ex) consisting of ideals a; and associated
elliptic curves F;. The servers then generate and return the codomain curves
a; x B; for each i =1,... k. We write

(Cll *El,...,ak*Ek) eU((al,El),...,(ak,Ek)).

We assume that the input elements are always given in a random order as to
avoid distinguishability of the elements. We define two ways for the delegator to
transmit ideals to the server:

— In the case where Cl(O) is known with generator g, we assume that we
can give an element a € Zyucyo) to the server, which represents the ideal
a = g*. The server can efficiently compute a short representation of a using
the relation lattice by applying the procedure described in [3].

— Otherwise, the delegator can give a vector a € B, representing a = [, ;*/,
to the servers.

4 Shrouding

4.1 The ShrVec algorithm

Before we present implementations for our delegation algorithms, we discuss how
to shroud ideals. The basic idea is to split the secret s into a pair of randomly
looking ideals (a1, az), so that a; * (ag * E) = s % E. In the case where Cl(O) is
known, we can simply generate (a,s — a) for a < Zyc)(0)-

On the other hand, if C1(O) is unknown, we cannot simply generate (a,s — a)
for a random vector a = (aq,...,a,) € B since s — a would no longer be in B and
leak information about the secret [29]. A similar problem was addressed in [13]
using rejection sampling: taking vector elements a; + [—(6;+1)B;, (§;4+1) B;] for
integers §; > 1, so that s; — a; € [-6;B;,6;B;] for all i € {1,...,n} makes s —a
look uniform. On the other hand, a is then no longer uniformly distributed in
B(N), since e.g. s; = —B would exclude the values of a; > (6 — 1)B. This is not
an issue in [13], since a is never directly revealed. In our case, however, we also
want to delegate the computation of the isogeny defined by a, and currently this
would reveal information about the secret. We circumvent this problem by using
the procedure defined in Algorithm 1. Let x(k) denote the uniform distribution
in [—k,k] and let 6B(N) = [—613176181] X oo X [—(S”By“(San]

Notation. We write the invocation of Algorithm 1 as (rg,ry,r*) < ShrVecs(s).
We generally omit § in the index if it is clear from the context or not explicitly
needed.

Input : secret s = (s1,...,5,) € B and parameters 6 = (61,...,0n)
Output: ro,r1 € 6B uniform, r* € B small, such that ro +r1 +1r* =s

1 fori=1,...,ndo
2 repeat
3 T0,i < X(((S»L + 1)B~L)
4 T1,i = Si —T0,i
5 until ‘7”071'| S 5231 or |T‘1,i| S 6131
6
7 b+ {0,1}
8 if |T0,i| > 5131 then
9 if b == 0 then 71 ; + x(8:B;)
10 To,i = —T1,4
11 Ty =8;
12 else if |ri;| > 0;B; then
13 if b == 0 then T0,i < X((SzBl)
14 1,6 = —T0,i
15 Ty =8;
16 else rj =
17 end
18 return rg = (7‘0717 ce ,To,n), r; = (7“1717 ce. ,Tl,n), r’ = (TI, ce ,’I":L).

Algorithm 1: ShrVec: Shrouding a vector in B.

Analysis. We analyze different properties of Algorithm 1. The following holds for
any ¢ € {1,...,n}, we will therefore omit the index i. Let O[z] denote the (right-
continuous) discrete Heaviside step function. We define the rectangular function
Qm[mstart;xcnd} = 9[1' - xstart] - @[.’E — Tend — 1] for Tstart < Tend- We also
write f(x) j“:dt = f(2)Oz[Tstart, Tend] as a shorthand. For further conciseness in
notation, we troduce

Ck=(5—|-k)B and Ap =2c¢, +1,

as well as d = 2B + 1. In general, we denote the distribution of a value by
the corresponding capital letter, e.g. S(z) represents the distribution of s etc.
Finally, we write convolutions as f(z) * g(z) = >°,2 f(y)g(z — y). As an
example for our notation, consider the trapezoidal distribution

x(eo) % X(B) = (dAo) ™" (& + 1 +1)]

—eomly d!?c[) +(—x+ec + 1)|Z;H))

—c1

We further denote by H, = Y1, % the n-th harmonic number. We establish
expected values for elements sampled from the distributions surrounding ShrVec.
Since all of these distributions will turn out be symmetric, we define the expected
values in terms of the absolute values of the elements. The expected absolute
value of an element from a distribution F(x) is thus

o0

Expi= Y |ylF(y).

y=—00

As an example, consider the uniform distribution x(x) for which we find

Ex, (z) = 2@+) This allows us to determine the expected values of elements
X 2041

from e.g. S(z) and R(x):

Exs(B) := Ex,(B) = éB(B +1) and Exg(d,B) := Ex,(co) = ——co(co + 1)

(1)

1
Ao
Lemma 1. Algorithm 1 is correct.

Proof. After the repeat loop, we have rg + 71 = s and r* = 0. If either of the
following if-conditions succeed, then ro + r; = 0 and r* = s. In either case,
ro + r1 + r* = s holds. O

Lemma 2. If s is uniformly distributed in B(N), the outputs ro and r1 of Al-
gorithm 1 are uniformly distributed in éB(N).

Proof. In order to prove this lemma, we analyze how the distribution of s and
of ro and r; change throughout the algorithm. We define different instances of
the distributions with different subscripts ().

1. We first analyze what happens in the repeat-loop. In order to fulfill the
condition at the end of the loop, we distinguish two possible cases for rq:
— 19 € [—co, ¢o]: The until-condition always succeeds and we have

z4+ei+1, x€[-e,—c1],
*X(B) = (dAl)_l d, xT € [—671,071],
—x4+c1+1, z€le_q1,c]

Ox[—co, co]

B (@) = =4

— 19 € [—c1,—co — 1] U [co + 1, ¢1]: In this case, we have

T+co+1 € [—c2,—c1 — 1],

B € [-c1,—co — 1],
RO() = (day~ {7 e wE el

T —c_q € [e—1, o),

B x € [co+1,¢1],

—T4+co+1 z€[er+1,co

At the end of the repeat-loop, the distribution of r1 is simply the average
of these two cases, excluding |rgl,|r1]| > co because of the until-condition
(and changing the normalization appropriately). We note that

1 —c_q

(x+c1 + 1)|:Z1

C()l

(az+cl+1)} e

co—1 d|Cg

+(fxfc_1)| +d|:L1

—co

(fx+cl+1)|zil+(x—c_1)|671 c,lJr(a:+cl+1)| 41

10

so that finally we find

xr+ea+1, x€[-c1,—co—1],
RW(z) =K' 44, x € [—co, col,
—x4+ca+1, z€cn+1,al

where K = B(B 4 1) 4+ d4¢ is the normalization constant, guaranteeing
that ZZO:_OO RM(y) = 1. We note that exchanging the roles of 79 and r;
within the repeat-clause yields the same distributions after fulfillment of the
until-condition. Thus, R (x) describes the distribution of either 7 and 7
after the repeat-loop. We establish the probability of either ry or r; being
outside [—cg, col:

B(B+1)

Pri=Prlirl> colr e BO@)] = Sy ¥

. In the second part of the algorithm, whenever |rg| > ¢o or |ri| > co, these
values are reassigned to [—co, ¢g]. For simplicity, we consider only the case
|ro| > co. Note that if this is the case, then since r; = s — rg, s € x(B) and
|r1] < ¢o, the counterpart to |rg| > ¢o is the “flipped”

—c_1—1

r € F(r) = K™* ((—:1: —ca)|_,, (- c,l)‘zo_ﬁ_l) :

We distinguish two cases, depending on the random parameter b.

—If b = 1, we simply redefine ry = —r;, which amounts to
R (2) = RV (2)|”, + F(2) = dK1O,[—co, o] + F(x).
— If b = 0, rqy is first resampled from x(cp), then we redefine rg = —ry,

which means F'(z) is subtracted from y(cp), then resampled from x(cp).
In terms of the distributions, this implies Rll(z) () = (14 P*)x(co)—F(x).
Averaging over both cases, we get

1
RO (2) = 3 (R@) (z) + R/@)(r)) = Ay 0u[~co, col,

which is the uniform distribution in [—¢g, ¢o]. Again, this distribution holds
for both rg and r1.

O

4.2 Distribution and expected value of r*

We analyze how r* is distributed at the end of Algorithm 1. Since r* either takes
the value of s or is zero, we first establish the probability of non-zero r* for a
given s. With the same considerations as in the proof of Lemma 2, we find that
after the repeat-loop, the probability of r or r; being outside [—cy, ¢q] is

5]
Pl=—
* o Aols|

11

for fixed s. Note that by substituting |s| with Exg(B), we immediately recover
equation (2). Since either rg or 7y can be outside [—cg, ¢o], 7* has probability
2P} of taking the value of s and probability 1 — 2P} of being zero. Averaging
over all possible s, we find

R*(2) = (27l o B B+ (4A0(HAO+B —Ha) - 2B+ 1)995[070]) .

T d \ Ay + |z
The second term represents the case r* = 0, occurring when |rg|, |r1] < ¢
©:[0,0] \~B 2y|
and can be computed as ==~ Zy:_B (1 — Ao+|y|)' We can now compute the

expected value of |r*| as

1 2|yl? 1
Expe (6,B) = = 3 % = —(2B(B+1)+440(~B+A0(Ha, 15— Ha,))

d
—
(3)
We analyze the asymptotic dependency of Exg«(d, B) on §. The first term of (3)
is just an offset, while the second term strongly depends on Ag = 20B + 1. In
fact,

B B
1
Ao(Hag+p — Ha,) = E —_— < E 1=18,

1+yAy?

y=1 y=1

since yA; ! > 0, which means that the second term in (3) is negative. Using

B
Y
4A0(- B + AO(HA0+B - HA())) = 74;:1 m 5
we can compute its limit for large 9:
lim (—4) ZB: B f4ZB:y = —2B(B+1)
d— o0 p 1+ yAal ot)

which is exactly the offset, thus lims_, o, Exg+(d, B) — 0. For ¢ small, the behav-
ior is dominated by the difference of the harmonic numbers.

4.3 Splitting s

We present Algorithm 2, which splits a vector s into two vectors s’ and s*, so
that s* has a given Hamming weight.

Correctness of the algorithm is straightforward. We analyze how the outputs
are distributed. We again drop the indices ¢ and indicate distributions by the
corresponding capital letters. Since #C* = k, we have Pr[i € C*] = % for

12

Input : secret s = (s1,...,8,) € B, and parameter k
Output: s’,s* € B, such that s* has Hamming weight < k and s’ +s* = s.

1 Sample a uniform subset C* « {1,...,n} of size k.

2 fori=1,...,ndo

3 if i € C* then

o || sl = (50,0)

5 else

6 | | (s =(0,50)

7 end

8 end

9 return s* = (s7,...,s5),8" = (s1,...,50).

Algorithm 2: Split: Splitting a secret vector in B.

i€ {l,...,n}. It immediately follows that

R N .
o=k k

6.[0,0],

We can determine the expected value of s* as

k k
Exs+(B,n,k) = —B(B+1) = —Exg(B). 4
xg+(B,n, k) dn (B+1) n XS() ()
Lemma 3. Let (s*,s’) <« Split(s,k) where s <« B(N) uniform and let

(rg,r1,1*) < ShrVecs(s’). Then, the outputs ro and r1 of Algorithm 1 are uni-
formly distributed in 0B(N).

Proof. From Algorithm 2, it immediately follows that an entry s} is either uni-
form in [—B;, B;] or zero. Following Lemma 2, the first case results in 7o ; and 1 ;
being uniform. If s} = 0 this also immediately follows from the first repeat-loop
in Algorithm 1. O

4.4 Cost reduction functions

Using the expectation values established in equations (1), (3) and (4), we define

the following functions:

(14 b)Exg~ (9, B) 4+ Exg+«(B,n, k)
EXS(B) ’

EXR(5, B)
EXS(B) ’
(5)
which we call the cost reduction functions. Later in Section 5, the parameter

b € {0,1} will allow us to distinguish between the 2HBC and OMTUP cases.
Assuming B, n and k fixed, these functions asymptotically behave as

a(d, B,n, k,b) :=

(Xu(5, B) =

(6, B,n,k,b) = O (b0*(Hay+s — Ha,)) and oy (8, B) = O(6).

13

Note also that lims_,o (9, B,n, k,b) = %ﬁ’%”c). Cost reduction functions
will later allow us to estimate the relative cost of isogenies. For instance, let
s=[]", " and v =[[,_, (", and let a; = r;/s; for all i € {1,...,n}. Then, we
can express the relative cost of I(t) and I(s) as follows:

I(e) _ Yiaride 3 aisid,

I(E) B Z?:l SiIEi B Z?:l 52’[&1

If r; and s; are not fixed, but rather sampled randomly, we can still express this
ratio using the expected values Exg(0;, B;) and Exg(DB;), respectively. We then

find
I(v) i1 Exr(0i, Bi)Ie, _ 3oiy ou(di, Bi)Exs(Bi) I,
I(s) i Exs(BiI, Yo Exs(Bi) I,
We are especially interested in the case where all ;7 = - = §, and all
B; = --- = B,. In that case, we can express
(L+b)I(x*) + I(s*) I(v)
0,B,n,k,b) = d 0,B) = —=.
a(y D, 1, R,) I(S) an Cku()) 1(5)

Thus, for equal ¢; and B;, ayy(0, B) represents the relative cost of the action of
an ideal v, represented by the vector r, to the action of s on an elliptic curve,
while «(d, B, n, k,b) expresses the relative cost of computing the action s* and
(14 b) times the action t* versus the action of s.

5 Delegation Algorithms

In this section, we present two delegation algorithms and their implementation
under different assumptions. In both algorithms we want to delegate the com-
putation of s * E from (s, E). The first algorithm, Clso keeps s hidden from
the servers, while the second algorithm Hlso, keeps s and s x E' hidden from the
servers. For the efficiency reasons discussed in [7], we assume that there is a short
representation s = (s1,...,s,) € B(N) of s =[]\~ I*". In the case where C1(O)
is known, we further assume that s € Z4c) () is known by the delegator, such
that s = g°. We define the two algorithms below, using the formalism from [15].

Definition 7 (Clso and Hlso). The isogeny computation algorithm Clso and
the hidden isogeny computation algorithm Hlso take as inputs a supersingular
elliptic curve E defined over ¥y, and an ideal s, either as an element in Zy cyo)
or a vector in B(N), then return the elliptic curve s * E. The input E is (hon-
est/adversarial) unprotected, while s is secret or (honest/adversarial) protected.
The output s * E of Clso is unprotected, while it is protected in the case of Hlso.
We write
s*x F + Clso(s,E) and sxFE <« Hlso(s, E).

Below, we motivate and present implementations for both Clso and Hlso in the
OMTUP and 2HBC assumptions (Definitions 5 and 6). All algorithms work in
two rounds of delegation.

14

5.1 Clso: Unprotected codomain

The main concept of delegating with Clso is to keep s hidden from the servers.
Our general approach to shroud s is to split it up into two ideals a, as, such that
the consecutive application of both yields a; * (ag * F) = ag % (a1 * E) = 5 x E,
i.e. that we can compute the desired codomain in two rounds of delegation. In
the 2HBC case, this can be implemented more or less straightforwardly. But in
the case where one of the servers is malicious, it could simply return a wrong
codomain, thus in the OMTUP case we want to be able to verify these compu-
tations. Unfortunately, unlike in the DLOG setting (e.g. see [15]), we can not
compose elliptic curves in order to verify correctness, so we have to resort to
comparisons, i.e. let two servers compute the same curve and check if they are
the same. Note that simply going two different paths to s x £ and comparing
the results is also not possible, since the malicious server would take part in the
computation of both of them and could simply apply another isogeny defined by
an ideal ¢ to its result in both rounds yielding the result r* (s x E') in both cases.

The goal of the verification is that the servers do not return an incorrect
codomain without the delegator realizing (up to a certain probability). Note
that we need to be able to verify intermediate results as well. We resort to
direct comparisons, i.e. giving both servers common queries whose output we can
directly compare. In the first round, we have the starting curve at our disposal,
which easily allows to make the same queries to both servers. The second round
becomes more tricky, however, since all the curves at our disposal are the starting
curve and the curves generated by the servers in the first round, potentially
maliciously. Reusing the starting curve in some queries while not in others makes
the queries distinguishable. One obvious possibility would be to generate curves
ourselves, which would however defeat the purpose of delegating in the first
place. An alternative would be to work with lookup-tables analogous to the
DLOG setting, but since we can not combine multiple elliptic curves, elements
of the form (a, ax E) could only be used individually. Again, using such sets ends
up defeating the need for delegation. Therefore our algorithm in the OMTUP
case resorts to delegating sets of extra curves in order to increase verifiability.

To this end, we generate a set S of tuples (c1,¢a,01,02) of ideals that sat-
isfy ¢1co = 07102. In the case where we work over Lycr(0), this is straightfor-
ward. If we work with elements in éB(N), we can implement this as follows: for
i=1,...,n, generate ¢y, C24,d1,; < x(8;B;) and define do; = ¢1; + c2; — d1
until dg ; € [—6;B;, 0; B;]. Note that this approach might yield some information
about ¢ ; +c2; (at most that it is positive or negative) given ¢; ; only, but we do
not really need to care about that, since this is not enough information to be able
to distinguish dz; from a random value (mainly because d; ; remains unknown),
so this will neither reduce the security nor the verifiability of the scheme. In the
first round, we further delegate the computation of a second set R of ideals ap-
plied to the starting curve and directly compare between the servers to increase
verifiability.

15

We present our approach for the 2HBC assumption in Figure 1 and our
approach for the OMTUP assumption in Figure 2. We analyze these protocols
and discuss secure parameter sizes in Section 5.3.

Clso: 2HBC case.

Input : Ideal s, elliptic curve E.
Output : Elliptic curve s x E or L.

1. Generate the ideals a;, az as follows.

(a) If CI(O) is known, generate a1 < Zygci(o)y uniformly at random and compute
a2 =S —aj.

(b) If CI(O) is not known, generate (a1, az,a") < ShrVec(s).

Delegate the computation of Ey « Ui ((a1, E)).

In the case where Cl(O) is not known, compute E; < a* x E; locally.

Delegate the computation of Ey < Uz((az, E1)).

Return FEs.

Cus LN

Fig. 1. Implementation of Clso in the 2HBC assumption.

5.2 Hlso: Hidden codomain

Next to keeping s hidden, Hlso also does not disclose the codomain curve to the
auxiliary servers. The idea works similar to Clso, but rather than shrouding and
delegating the computation of the isogeny generated by some secret ideal s, we
do the same for an ideal s’ to yield a codomain s’ * E that can be known to
the servers. The goal is to choose s', so that s’ x E is close enough to s * F,
that the path can be efficiently computed by the delegator, while searching the
space of potential curves is too large to reasonably allow an attacker to find
s * ' by walking from s’ x £. We call the remaining path s* = ss5'~!, so that
§** (' x E) =sE.

To be able to assess path lengths, we work with ideals only in their vector
representation in B(IV). In the case where the class group Cl(O) is known, this is
achieved by working modulo the relation lattice [3].2 We then call B(N) C B(N)
the subset from which s* is sampled. We can achieve this splitting of s using the
Split-procedure (Algorithm 2). The protocol then uses Clso as a subroutine with
s’ as the secret argument. It is summarized in Figure 3. Note that the protocol
has the same description in the 2HBC and OMTUP assumptions, and that Clso
is called with the appropriate assumption.

2 Note that B(N) does not necessarily contain a representation for all elements in
Cl(O). We ignore this case here and assume we can still delegate such elements
using simple heuristics, such as computing the “overshoot” locally, or simply by
resampling.

16

Clso: OMTUP case.

Input : Ideal s, elliptic curve E.
Output : Elliptic curve s x E or L.

1. Generate the ideals a;, a2, b1, b2 as follows.
(a) If C1(O) is known, generate two random elements a1,b1 < Zycioy and com-
pute az = s — a1 and bo = s — by.
(b) If CI(O) is not known, generate (a1, az,a”) « ShrVec(s) and
(bl, b2, b*) < ShrVec(s).
Further, generate a set of random ideals R = {e | ¢ < CI(O)} and a set of random
ideal tuples S = {(c1, ¢2,01,02) « 01(0)4 | c1c2 = 0102}, where all the ideals are
generated using Zci(o) or 0B(NV), respectively.
2. Delegate the computation of

Boy B, } A} U (01,), {(e1, B) | &2 € S} {(e, B) | e € R})

By, { By }, {EL} Z/lz(([n,E), {((01,E) |01 €S} {(e.E) | e R}) .

3. Verify if F. z E! for ¢ € R. If not, return L, otherwise continue.
4. In the case with C1(O) unknown, locally compute

Eo < a" % Eq, Ep, < 0" xEp, .
5. Delegate the computation of
By, {Bo} < U (b2, o), {02, Bvy) | 02 € S}),

E. {E.} + u2((a2,Eu1), {(c2, Ee,) | 2 € 5}) .

6. Verify if F, z E. and if all E, z E.. If not, return 1, otherwise return Fj.

Fig. 2. Implementation of Clso in the OMTUP assumption.

5.3 Analysis

Size of k. Assume we work with a class group of size approximately N, which
has an associated quantum security level A(IV) with respect to GAIP (Definition
1). Let D = #B(NN) denote the number of possible vectors in B(N). The basic
idea is to define a subset B(N) C B(N) of size D = #B(N), that is big enough
that searching the entire space is at least as hard as breaking a GAIP instance.
Since the servers are only given ' F, they can not resort to a meet-in-the-middle
attack to find information about s * F, but rather have to resort to a database
search of size D to find it. We assume that they would be able to identify the cor-
rect curve once found (e.g. by being able to decrypt a given ciphertext). The best
known quantum algorithm for this database search is Grover’s algorithm [14],
which runs in O(l~)1/ 2). Thus in order to ensure a quantum security level of A,

17

Hlso: General case

Input : Ideal s, elliptic curve E, parameter k.
Output : Elliptic curve s x E or L.

Compute (s*,s’) < Split(s, k).
Delegate E’ < Clso(s', E).
Compute Es = s* x E’ locally.
Return E;.

L e

Fig. 3. Implementation of Hlso for both 2HBC and OMTUP assumptions.

_ 22)\

we choose D2 = 22, which corresponds to D . We can therefore define

B(N) analogously to B(N), i.e.

B(N)=B; x --- x B, ,

where B; € {[0,0],B;} of size d; € {1,d;}, such that D = I, d; ~ 22\,

The input parameter k of Split determines the number of non-zero B;. Thus,
we need to choose k large enough such that an adversary’s search space is approx-
imately 22*. We note that due to Lemma 3, the adversary can not distinguish
in which entries s’ is zero and can therefore not know the subset C*. Thus, the
size of the search space can be determined by searching through any k-out-of-n
subsets and running through all permutations in these subsets. Therefore, we
have to choose k, such that

(Z) [T d:~2>. (6)

i€C*

Verifiability in the OMTUP case. In the OMTUP case, the servers success-
fully cheat if all of the verification conditions succeed but the output is wrong,
i.e. E5 # sxE. Let us assume U; is the malicious server. In order to be successful,
U, needs to correctly identify the query (aj, E) in the first round and (b2, Eb,)
in the second round. Note that i/; can also change the elements in S, as long as
it does so consistently in both rounds. The elements in R have to be returned
correctly, since they are directly compared to Us’s results.

Let ms = #S and m, = #R. By choosing a random subset of size x €
{1,...,14+ms} among the queries of the first round, the probability of choosing a
set that includes a; (or by) and no elements of R is given by (;’11) / (Hmjm"))

Furthermore, in the second round, the malicious server has to identify the same
subset, which it achieves with probability 1 / (H:’S), yielding the full success

18

probability for the adversary of

ms
k—1 Kk Kl(mg+my+1—k)!
(l—i—ms—i—mr) (1—|—mg>_1—|—mS (ms +my + 1)!
K K

Pr{success] =

(7)
If m, =0, 1,2, this probability is maximal for k = 1 + mg, while for m,. > 3, we
find k = 1 to be optimal. In the latter case, the upper probability simplifies to
1

Prlsuccess | my, > 3| = Arm)itmrm)

Since this probability decreases quadratically with bigger m,, we minimize the
overall set sizes (and thus communication cost) by fixing m, = 3 and choosing
mg to yield the desired verifiability. We thus find the verifiability

m?2+5ms + 3

) =1-—P =3 = .
B(my) r[success | m] o B ——

(8)
Theorem 1. Figure 1 is an outsource-secure implementation of Clso in the
2HBC assumption.

Proof. Correctness follows immediately from a; + a2 = s or from the correctness
of ShrVec, respectively. We prove security by proposing the following simulators:

— Environment £: If s is not secret, both simulators behave as in the real
execution of the protocol. Otherwise, in each round, S; generates random
ideals up,uy either as elements in Zyc) oy (case (a)) or as vectors in 0B(V)
(case (b)). In the second case, S; further generates u* < B(N). Then S
makes the query Fy < U;((u, F)), computes F; < u* * E; if applicable,
then makes the query Fy < Us((ug, E7)). S; returns Es and saves its own
state and those of the servers. In any round, the input values uj,u, are
indistinguishable from a;, as. In case (b), this is given by Lemma 2.

— Servers Uy, Us: For any s, the simulator Sy proceeds exactly as the simulator
S for a secret 5. UVIEW, o0y ~ UVIEW;4ea) is guaranteed by the indistin-
guishability of u, us, u* and ap, as, a*. Note that applying a** F; between the
two queries has the advantage that neither server will see both the domain
and the codomain of this isogeny and therefore cannot recover a*. 0

Theorem 2. Figure 2 is an outsource-secure implementation of Clso in the
OMTUP assumption.

Proof. Correctness of the output follows again from the definition of s. Concern-

ing the verification conditions, correctness of F, = E, follows from the definition
of S. The other verification conditions are simple comparison operations between
both servers. We prove security by proposing the following simulators:

19

— Environment &: If s is not secret, both simulators behave as in the real
execution of the protocol. Otherwise, in each round, S; generates random
ideals uj,ug,07,09 and in case (b) further u*,v* as vectors in B(N). &
further generates two random sets of ideals M7, My of size m, and four
sets of ideals N7, N2, N3, Ny of size my, such that for (nqy,n2,ng,ny); € N7 X
N3 x N3 x My, it holds that n;ny = nons, pairwise for i = 1,...,ms. Then
81 makes the queries

Bu (B} { By} Us (1, B), (0, E) [11 € AL} {(mo, B) [my € M0})

Boy A} (Bny} < Ua (01, B). {(n2, B) |y € Ao} {(ma, E) | mz € Mo}).

Sy verifies the results. If either of the elements in {Ey,} or {En,} are in-
correct, then S; returns L, otherwise it continues. In case (b), S; computes
E,, +u xFE, and FE,, <+ v* * E,,. Then, in the second round, S§; makes
the queries

EUQ7{EH3}7 <_Z/{l ((027E01)7{(n3>En2) | ns S NS}))

Buyy { By}, = Ua (2, Buy) {(ns, Euy) [s € NGY)

Again, S; verifies the results. If fix : E,, = (xuitp) * E A Ey, = (10103) * E,
S returns L. Otherwise, let x be the number of pairs (Ey,, Fy,) for which
there doesn’t exist such an r. Then with probability 1 — Pr[success] (as
given in equation (7)), S; returns E,, otherwise Sy returns L. S; saves
the appropriate states. In any round of the simulation, the input tuple
(U1, ug, u*, 01, 02, 0%, My, Mo, N7, No, N3, Ny) is indistinguishable from the
tuple (ai, a9, a*,b1,b2, 6% R, R, {c, € S}, {0, € S}, {0, € S}, {c, € S}), due
to uniform sampling or because of Lemma 2. If a server cheats, S; outputs a
wrong result with probability Pr[success], otherwise it returns L, as in the
real execution of the protocol. It follows EVIEW, .1 ~ EVIEW,geal-

— Servers Uy, Us: For any s, the simulator Sy proceeds exactly as the simula-
tor Sp for a secret s, except for the verification procedure after the second
round, which is not necessary. UVZEW . ~ UVIEW, ., is guaranteed by
the indistinguishability of the tuple described above. O

Theorem 3. Figure 3 is an outsource-secure implementation of Hlso in both the
2HBC and OMTUP assumptions.

Proof. Correctness of the output follows from the correctness of Split and Clso.
Security follows from the outsource-security of Clso and the appropriate choice
of the parameter k as determined by equation (6). O

Remark 1. Note that Definition 6 implies that U; and Us might try to collude.
Yet, since their outputs are honestly generated, their indirect communication
channel through 7 is in fact non-existent. For example, F;, output by U; and

20

input to Us, is honestly generated and can therefore not contain any auxiliary
information that iy could use to learn any information about a;.

Definition 5 implies that at least one of the two servers is honest, so that
collusion is not possible in the OMTUP case.

Computational costs. We establish the computational cost for the delegator
for Clso and Hlso in the 2HBC and OMTUP assumptions. We define the bit b as
an indicator to distinguish between the 2HBC (b = 0) and the OMTUP (b= 1)
assumptions.

After the first delegation round of Clso, if C1(O) is unknown, the delegator
has to compute 1 + b isogenies of size I(v*) = Y. | Exg-(8;, B;)Is;, given by
equation (3). In the case of Hlso, the delegator further has to compute an isogeny
of size I(s*) = Y| Exg«(Bj, n, k)1, given by equation (4). We ignore the costs
of comparison operations, point generation in Zycio) and invoking ShrVec, as
they are negligible in comparison to isogeny computations. We find the relative
cost of the delegator’s computation compared to the local computation:

I(s*) 4+ (1 4+b)I(x*) B Z?:l(EXS* (Biyn, k) + (1 + b)Exg=(9;, B;)) 1y,
I(s) B Yo Exs(Bi)IL, '

Note that in the case of Clso, we have k = 0 and Exg+(B;,n,0) = 0. If all
{0;}i=1,...n and {B;}i=1,... »n are equal, we find

I(s*) + (L +b)I(x") _ Exs-(B,n, k) + (1 + b)Exz- (5, B)
1(s) B Exs(B)

= «(d, B,n, k,b).

Each server has to compute (2mgs + m, + 1)b + 1 isogenies of cost given by
I(r) = 3" Exg(d;, B;)Iy,. In the case of equal §; and equal B; we find the
relative cost

(2ms +m, +1)b+1)I(r) ((2ms 4+ m, +1)b+ 1)Exg(0, B)

I(s) - Exs(B)
= ((2ms + m, + 1)b+ 1)y (6, B).

In the case where Cl(O) is known, the t*-isogeny does not need to be com-
puted, so that we can set Exg- = 0. As established in Section 4.4, this is the
same as considering the limit § — 0o, so that we can define

I(s*) Exge(B,n,k)
I(s) Exs(B)

aclo) (Ba n, k) = 511)120 CX((S, B7 n, k: b) =

Communication cost. We want to be able to express the communication cost
between the delegator and the server. We do this by looking at the information
content of the exchanged elements in bits. We establish the following maximal
costs.

21

Element of Maximal cost in bits

Zyci(0) [log, #C1(O)]
B(N) o logy d;
dB(N) > iy logy Ag i

Fy [log, p]

The actual average communication cost of elements in B and dB is smaller than
the maximal cost if the individual vector entries are expressed using the minimal
amount of bits. We can estimate the communication costs by establishing the
minimal number of bits of an element uniformly sampled from JB as

4;B;
1

Ex;(0B) =) —— [loga 2]yl + D)1 -
i—1 <0 y=—0;B;

Using this representation considerably lowers the communication cost, especially
for large 6;.

We can now establish the communication cost for the delegation of Clso (note
that Hlso has the same cost). In the 2HBC case, the delegator has to upload one
element from either Z,ciy or éB(N) and download one elliptic curve from
each server, defined by a parameter in F,. In the OMTUP case, the delegator
uploads 2 +2m, 4+ m, elements from either Zc(o) or dB(N) to each server and
downloads the same amount of elliptic curves. We define

(14 (2mgs + m, + 1)b)Ex;(B), x = 0B, ©)

Down = (1 + (2ms + m, + 1)b)[log, p|,

Up(z) = {(1 + (2ms +m, + 1)b)[log, #C1(O)], z = CL(O),

as the upload and download costs per server in the 2HBC (b = 0) and OMTUP
(b=1) case.

6 Applications

In this section we discuss how to apply our delegation algorithm to some of the
isogeny-based protocols in the CSIDH setting.

6.1 Delegating the CSIDH key exchange protocol

We briefly revisit the CSIDH key exchange protocol in this section and then
show how to delegate it. CSIDH uses a prime p = 4]_[?:1 l; — 1 of appropriate
size and defines the starting curve as Ey : y* = 2® 4+ z over F,,. Further, CSIDH
uses symmetric boxes around 0, all of equal size, i.e. B(N) = [-B, B|".

— Key generation: Alice’s private key is a vector s € B(NN) representing s and
her public key is EF4 = s * Ej.

22

— Key exchange: Using Bob’s public key Ep, Alice can compute the shared
secret s x F'p.

In terms of the input/output specifications from Definition 2, we consider s as a
secret input, s* Fy as an unprotected output, and s+ E'p as a secret or protected
output. Note that we have to consider Ep as honestly generated, which can
always be achieved by authenticating the public key. We can then use Clso to
delegate the key generation step and Hlso for the key exchange step as follows:

— Key generation: Delegate E4 < Clso(s, E).
— Key exchange: Delegate s x Ep < Hlso(s, E).

Because of the simple structure of B(IV), we can express the reduced cost for the
delegator using the cost reduction functions defined in equation (5), i.e. the cost
in the key generation step is given by (1+b)I(t*) = (5, B,n,0,b)I(s), while the
cost in the key exchange step is given by I(s*)+(14+b)I(v*) = «(d, B,n, k,b)I(s).
In order to estimate the cost reduction function for the complete protocol, we
define

Exs+(B,n, k) + 2(1 4+ b)Exg- (6, B)
2EXS(B) ’

acsipu (0, B,n, k,b) = (10)

assuming we use the same J in both rounds.

We now turn our attention to specific instantiations of CSIDH and try to
estimate the reduced cost for the delegator. While the security of CSIDH is still
subject of scrutiny, we go on a limb and make certain assumptions in this section,
which the reader should take with caution. Our estimates for A are mainly based
on the results in [4, Table 8], [9, Table 3] and [23, Figure 1].

CSIDH-512. The original proposal from [7] uses the following parameters:
n = 74, logyp ~ 512, B = 5, so that D = #B(N) = (2B + 1)™ ~ 2256, For
the key exchange round, we have to define k such that equation (4) is fulfilled.
Looking at the different security assessments found in the literature, we take the
lower estimate of A ~ 58 from [23, Figure 1], which corresponds to k = 18.

Table 1 shows the theoretically estimated cost reduction (left table) using
equation (10), for the 2HBC (b = 0) and OMTUP (b = 1) assumptions. We also
used the Velusqrt implementation of CSIDH-512,% introduced in [2], to bench-
mark the different delegation subprocesses in MAGMA (right table). Note that
the case for § — oo also corresponds to the cost of delegating CSIDH if the class
group structure and relation lattice are known. For the CSIDH-512 parameter
set this is indeed the case as the class group has been computed in [3].

3 https:/ /velusqrt.isogeny.org/software.html

23

acsmu 0=1 5 10 100 — oo apgashmarkis— 1510 100 1000
2HBC [0.610 0.255 0.191 0.129 0.117 2HBC |0.485 0.261 0.214 0.142 0.111
OMTUP|1.098 0.388 0.261 0.136 0.117 OMTUP (0.929 0.369 0.305 0.153 0.136

Table 1. In the left table are theoretical estimates for the cost reduction function
acsiou (6, 5, 74,18, b) from equation (10) for different ¢ in the 2HBC and OMTUP as-
sumptions. The right table represents benchmarks using the Velusqrt software package
from [2], where we define abgashmark a9 the ratio between the number of CPU cycles
the delegator has to perform during the delegated protocol execution and the number
of CPU cycles in the local computation. The benchmarks were done in Magma v2.25-6

on an Intel(R) Xeon(R) CPU E5-2630 v2 @ 2.60GHz with 128 GB memory.

We can see that the theoretical predictions in Table 1 match quite accu-
rately with the benchmarks. Except in the case § = 1, the delegator cost is
slightly higher than expected, which is due to the fact that some of the overhead
of the CSIDH protocol is done by the delegator rather than the servers. The
benchmarks also further support our assumption that ShrVec is negligible as its
cost generally constitutes less than 0.01% of the cost of the delegator in terms
of CPU cycles.

Server cost. Table 2 shows the theoretical and benchmarked values for the com-
putational costs of the auxiliary servers. The theoretical values are estimated
using

2((2ms +m, +)b+ 1)I(v)

21(9) = ((2ms+m,+1)b+1)ay (4, B),

ay,csmu (9, B) =

using (9, B) from equation (5). Our predictions in Table 2 match with the
benchmarks for low §. For higher §, the overhead of the local computation (which
is taken over by the delegator) becomes more important, so that the actual
relative cost of the servers is actually lower than the expected one.

QU CSIDH 5=1 5 10 100 SRy 5=1 5 10 100
2HBC 1.0 4.67 9.26 91.76 2HBC 0.971 4.59 8.84 91.9
OMTUP (ms = 0)| 5.0 23.446.3 458.8 OMTUP (ms = 0)|4.83 20.5 42.1 395
OMTUP (ms = 8)|21.0 98.1 194 1927 OMTUP (ms = 8)| 19.1 80.5 170 1376

Table 2. In the left table are theoretical estimates for the cost reduction function
au,csipu(6,5) for different § in the 2HBC and OMTUP assumptions. We choose
m, = 3 and compare the cases ms = 0 (8 = 75%) and ms = 8 (8 = 99%). The
right table represents benchmarks using the Velusqrt software package from [2]. We
define o &8T5 as the ratio between the number of CPU cycles the servers has to
perform during the delegated protocol execution and the number of CPU cycles for
a local computation. The benchmarks were done in Magma v2.25-6 on an Intel(R)

Xeon(R) CPU E5-2630 v2 @ 2.60GHz with 128 GB memory.

24

Communication cost. The communication cost of the full protocol is given by
four times the costs established in equation (9), since Clso is invoked twice with
two servers each time. The total costs are summarized in Table 3. The OMTUP
case is strongly dependent on m,, ms. But even if we want high verifiability
and low cost in the OMTUP case, the communication cost is manageable, e.g.
assuming m, = 3 and setting § = 100 and ms = 100, we find 33kB of upload
and 13kB of download.

Upload Download
Clo) 6=1 5 10 100
2HBC 129 B 108 B 180B 215B 333B 256 B

OMTUP (ms=0)| 645B 539 B 900B 1074 B 1663 B 1280 B
OMTUP (ms = 8)|2.63 kB 2.21 kB 3.69 kB 4.40 kB 6.82 kB 5.25 kB

Table 3. Communication costs of CSIDH-512 in the 2HBC and OMTUP assumptions.
In the OMTUP case, we choose m, = 3 and compare the cases ms =0 (8 = 75%) and
ms =8 (8 =99%).

CSIDH-1792. As a comparison to CSIDH-512, we also consider the larger
parameter set for CSIDH-1792 proposed and analyzed in [4], with log, p ~ 1792,
n = 209, B = 10. We take the value A\ = 104 from [4, Table 8] and find k = 24.
We summarize our results on the left table of Table 4.

SQALE’d CSIDH-4096. We look at the SQALE’d CSIDH-4096 proposal from
[9]. CSIDH-4096 uses n = 417, logy p &~ 4096 and B = 1, which yields #B(N) =
2661 « #C1(0). Using A = 124 as an estimate (cf. [9, Table 3]) yields k = 40.
Our results are summarized on the right of Table 4. It is interesting to note that
the gains are similar to the CSIDH-1792 case. This is mainly due to the fact,
that the authors of [9] chose a key set that covers only a subset of the class
group, such that the relative cost of local computations is lower than if the full
group would be covered.

e 60=1 5 10 100 — oo adsbr [0=1 5 10 100 — oo

2HBC |0.545 0.186 0.124 0.064 0.057 2HBC]0.548 0.215 0.139 0.058 0.048
OMTUP|1.033 0.315 0.191 0.071 0.057 OMTUP|1.048 0.381 0.230 0.068 0.048

Table 4. Theoretical estimates for different 6 for the cost reduction functions
adiby = acson(d, 10,209, 24,b) and adfbn := acsmn(6, 1,417,40,b), representing
CSIDH-1792 from [4] and SQALE’d CSIDH-4096 from [9], respectively, in the 2HBC
and OMTUP assumptions.

25

6.2 Signature protocols

SeaSign. SeaSign is a signature protocol based on Fiat-Shamir with aborts [13]
for cases where the class group is unknown. During the signature process, the
signer needs to compute ¢ isogenies by, ..., b; as commitments, where ¢ is a se-
curity parameter that depends amongst others on the public key size 2°. Secure
instantiations require st > A. The exponents b; that define these isogenies are
sampled from B(N) = [—(nt + 1)B, (nt + 1)B]™ in order to guarantee a rea-
sonable success probability. Further steps are the typical hashing and response
computation, which we assume to have negligible cost. The verification has the
same average computational cost as the signing process, as the commitments are
verified using response vectors in B(N).

Delegation can be achieved by using ¢ instances of Clso (possibly in parallel).
The delegator is left with computing the t*-part of each of these delegations, we
therefore find

Exg- (8, (nt + 1)B)
Exs((nt+1)B)

aSeaSign((Sy Ba n, ta b) = (1 + b)

choosing the same § for each step. The instantiation in [13] again uses the pa-
rameter set from CSIDH-512 [7]. We show the cost reduction for different values
of § in Table 5. We consider the case b = 0 only, as b = 1 is simply double the
value.

Because of the size of the set B, the communication costs of delegating
SeaSign become more expensive. In the OMTUP case, since we repeat the proto-
col throughout many rounds, we choose m,, = 3 and my = 0 for our assessment
of the communication costs, which are summarized in Table 6.

QSeaSign 0=1 5 10 100 — o0
2HBC |0.487 0.124 0.064 0.007 0.000
OMTUP|0.975 0.248 0.129 0.013 0.000

Table 5. Theoretical estimates of the cost reduction function ageasign (9, 5, 74, t,b) for
different §. The cost difference between different t € {1,...,128} is negligible, so that
the results hold for any of these choices.

CSI-FiSh. One the main results of the CSI-FiSh paper [3] is the computation
of the class group structure and relation lattice for the CSIDH-512 parameter
set. Using the knowledge of Cl(Q), the authors construct a signature scheme
in the random oracle model based on the original identification protocol from
Rostovtsev and Stolbunov [25, 28]. The main computational effort of the signa-
ture process comes, analogous to SeaSign, from the fact that the signer needs to
compute ¢ isogenies given by by, ..., b;, depending on the public key size 2°. In

26

Upload Download
0=1 5 10 100
2HBC, t = 32 7.87 kB 9.19 kB 9.77 kB 11.7 kB 4.0 kB
2HBC, t =128 (36.1 kB 41.4 kB 43.7 kB 51.4 kB 16.0 kB
OMTUP, ¢t = 32 [39.4 kB 45.9 kB 48.8 kB 58.5 kB 20.0 kB
OMTUP, ¢t = 128| 181 kB 207 kB 218 kB 257 kB 80.0 kB

Table 6. Communication cost of SeaSign in the CSIDH-512 parameter instantiation
(assuming unknown Cl(0)) in the 2HBC and OMTUP assumptions. We compare the
cases t = 32 and t = 128, which depend on the public key size and the targeted security
level.

contrast to SeaSign however, these elements can simply be sampled from Zcy(0)
and then translated into short vectors using the relation lattice. A verifier has to
compute the same amount of isogenies and therefore has the same computational
cost as the signer.

Both the prover and verifier can delegate these isogenies using Clso, but
knowing Cl(O) has now the advantage of not having to resort to ShrVec, and
therefore not needing to compute the t* part of the isogeny. This means that
from the point of view of the delegator, the signature and its verification are
basically free, up to element generation in Zycy o) and comparison operations.

The communication costs for CSI-FiSh, again assuming m, = 3 and ms; =0
amount to 64.25t bytes upload and 128t bytes download in the 2HBC case and
321.25t bytes upload and 640t bytes download in the OMTUP case.

7 Conclusion

This work presents a first approach of securely and verifiably delegating isogeny
computations to potentially untrusted servers in the CSIDH setting. Delegation
reduces the cost of intensive isogeny-based cryptographic protocols for compu-
tationally limited devices and thus presents a practical approach to large-scale
deployment of post-quantum cryptographic schemes on mobile devices. We pre-
sented two algorithms and showed their application to different instances of
CSIDH [7,4, 9] as well as to the signature schemes SeaSign [13] and CSI-FiSh [3].
Our algorithms present a communication-cost trade-off. In terms of the cost re-
duction function, we reduced the delegator’s cost asymptotically (for large com-
munication cost) down to 11.7% and 4.7% of the cost of the local computation for
CSIDH-512 and SQALE’d CSIDH-4096, respectively, while the cost of SeaSign
quickly reduces to a few percent and asymptotically vanishes. Using the known
class group of CSI-FiSh, its cost reduces to element generation in Zcyo)-

Our protocols work in two rounds of delegation and use either the OMTUP
or the 2HBC server assumptions. It is of interest to try to reduce delegation to
a single round. The tools developed in this work do not seem to allow delegation
to only malicious servers. We leave it open to develop delegation schemes that
work in the two untrusted or one untrusted program model presented in [15].

27

We also leave it as an open question to apply delegation to other post-

quantum cryptographic paradigms, such as lattice-based and code-based cryp-
tography.

References

10.

11.

12.

13.

14.

Reza Azarderakhsh, Matthew Campagna, Craig Costello, Luca De Feo, Basil Hess,
Amir Jalali, David Jao, Brian Koziel, Brian LaMacchia, Patrick Longa, et al. Su-
persingular isogeny key encapsulation. Submission to the NIST Post-Quantum
Standardization project, 2017.

. Daniel Bernstein, Luca De Feo, Antonin Leroux, and Benjamin Smith. Faster

computation of isogenies of large prime degree. arXiv preprint arXiv:2003.10118,
2020.

Ward Beullens, Thorsten Kleinjung, and Frederik Vercauteren. CSI-FiSh: efficient
isogeny based signatures through class group computations. In International Con-
ference on the Theory and Application of Cryptology and Information Security,
pages 227-247. Springer, 2019.

Xavier Bonnetain and André Schrottenloher. Quantum security analysis of CSIDH.
In Annual International Conference on the Theory and Applications of Crypto-
graphic Techniques, pages 493-522. Springer, 2020.

Wouter Castryck and Thomas Decru. Csidh on the surface. In International
Conference on Post-Quantum Cryptography, pages 111-129. Springer, 2020.
Wouter Castryck, Steven D Galbraith, and Reza Rezaeian Farashahi. Efficient
arithmetic on elliptic curves using a mixed Edwards-Montgomery representation.
TACR Cryptol. ePrint Arch., 2008:218, 2008.

Wouter Castryck, Tanja Lange, Chloe Martindale, Lorenz Panny, and Joost Renes.
CSIDH: an efficient post-quantum commutative group action. In International
Conference on the Theory and Application of Cryptology and Information Security,
pages 395—427. Springer, 2018.

Denis X Charles, Kristin E Lauter, and Eyal Z Goren. Cryptographic hash func-
tions from expander graphs. Journal of Cryptology, 22(1):93-113, 2009.

Jorge Chavez-Saab, Jesus-Javier Chi-Dominguez, Samuel Jaques, and Francisco
Rodriguez-Henriquez. The sqale of csidh: Square-root vélu quantum-resistant
isogeny action with low exponents. Technical report, Cryptology ePrint Archive,
Report 2020/1520, 2020. https://eprint. iacr. org ..., 2020.

Céline Chevalier, Fabien Laguillaumie, and Damien Vergnaud. Privately outsourc-
ing exponentiation to a single server: cryptanalysis and optimal constructions. In
FEuropean Symposium on Research in Computer Security, pages 261-278. Springer,
2016.

Andrew Childs, David Jao, and Vladimir Soukharev. Constructing elliptic curve
isogenies in quantum subexponential time. Journal of Mathematical Cryptology,
8(1):1-29, 2014.

Jean Marc Couveignes. Hard homogeneous spaces. TACR Cryptol. ePrint Arch.,
2006:291, 2006.

Luca De Feo and Steven D Galbraith. SeaSign: Compact isogeny signatures from
class group actions. In Annual International Conference on the Theory and Appli-
cations of Cryptographic Techniques, pages 759—789. Springer, 2019.

Lov K Grover. A fast quantum mechanical algorithm for database search. arXiv
preprint quant-ph/9605043, 1996.

28

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.
30.

31.

Susan Hohenberger and Anna Lysyanskaya. How to securely outsource crypto-
graphic computations. In Theory of Cryptography Conference, pages 264-282.
Springer, 2005.

David Jao and Luca De Feo. Towards quantum-resistant cryptosystems from su-
persingular elliptic curve isogenies. In International Workshop on Post-Quantum
Cryptography, pages 19-34. Springer, 2011.

Thorsten Kleinjung. Quadratic sieving. Mathematics of Computation,
85(300):1861-1873, 2016.

Greg Kuperberg. A subexponential-time quantum algorithm for the dihedral hid-
den subgroup problem. SIAM Journal on Computing, 35(1):170-188, 2005.
Kohei Nakagawa, Hiroshi Onuki, Atsushi Takayasu, and Tsuyoshi Takagi. L1-norm
ball for csidh: Optimal strategy for choosing the secret key space. TACR Cryptol.
ePrint Arch., 2020:181, 2020.

NIST. NIST post-quantum cryptography PQC, 2020.
https://csre.nist.gov/projects/post-quantum-cryptography /round-3-submissions.
Robi Pedersen and Osmanbey Uzunkol. Secure delegation of isogeny computa-
tions and cryptographic applications. In Proceedings of the 2019 ACM SIGSAC
Conference on Cloud Computing Security Workshop, pages 29-42, 2019.

Robi Pedersen and Osmanbey Uzunkol. Delegating supersingular isogenies over
F,2 with cryptographic applications. volume 2021, page 506, 2021.

Chris Peikert. He gives C-sieves on the CSIDH. In Annual International Confer-
ence on the Theory and Applications of Cryptographic Techniques, pages 463-492.
Springer, 2020.

Oded Regev. A subexponential time algorithm for the dihedral hidden subgroup
problem with polynomial space. arXiv preprint quant-ph/0406151, 2004.
Alexander Rostovtsev and Anton Stolbunov. Public-key cryptosystem based on
isogenies. IACR Cryptol. ePrint Arch., 2006:145, 2006.

Carl Siegel. Uber die classenzahl quadratischer zahlkorper. Acta Arithmetica,
1(1):83-86, 1935.

SIKE. Supersingular Isogeny Key Encapsulation, 2018. https://sike.org.

Anton Stolbunov. Constructing public-key cryptographic schemes based on class
group action on a set of isogenous elliptic curves. Advances in Mathematics of
Communications, 4(2):215, 2010.

Anton Stolbunov. Cryptographic schemes based on isogenies. 2012.

Osmanbey Uzunkol, Jothi Rangasamy, and Lakshmi Kuppusamy. Hide the mod-
ulus: a secure non-interactive fully verifiable delegation scheme for modular expo-
nentiations via CRT. In International Conference on Information Security, pages
250-267. Springer, 2018.

Jacques Vélu. Isogénies entre courbes elliptiques. CR Acad. Sci. Paris, Séries A,
273:305-347, 1971.

29

