
Bridging Machine Learning and Cryptanalysis
via EDLCT

Yi Chen and Hongbo Yu

Department of Computer Science and Technology, Tsinghua University, P.R. China
chenyi19@mails.tsinghua.edu.cn

yuhongbo@mail.tsinghua.edu.cn

Abstract. Machine learning aided cryptanalysis is an interesting but
challenging research topic. At CRYPTO’19, Gohr proposed a Neural
Distinguisher (ND) based on a plaintext difference. The ND takes a ci-
phertext pair as input and outputs its class (a real or random ciphertext
pair). At EUROCRYPTO’20, Benamira et al proposed a deeper analysis
of how two specific NDs against Speck32/64 work. However, there are
still three research gaps that researchers are eager to fill in. (1) what
features related to a ciphertext pair are learned by the ND? (2) how to
explain various phenomena related to NDs? (3) what else can machine
learning do in conventional cryptanalysis?
In this paper, we filled in the three research gaps: (1) we first propose
the Extended Differential-Linear Connectivity Table (EDLCT) which is
a generic tool describing a cipher. Features corresponding to the EDLCT
are designed to describe a ciphertext pair. Based on these features, var-
ious machine learning-based distinguishers including the ND are built.
To explore various NDs from the EDLCT view, we propose a Feature Set
Sensitivity Test (FSST) to identify which features may have a significant
influence on NDs. Features identified by FSST share the same charac-
teristic related to the cipher’s round function. Surrogate models of NDs
are also built based on identified features. Experiments on Speck32/64
and DES confirm that features corresponding to the EDLCT are learned
by NDs. (2) We explain phenomena related to NDs via EDLCT. (3)
We show how to use machine learning to search differential-linear prop-
agations ∆ → λ with a high correlation, which is a tough task in the
differential-linear attack. Applications in Chaskey and DES demonstrate
the advantages of machine learning.
Furthermore, we provide some optional inputs to improve NDs.

Keywords: Machine learning · Distinguishing attack · EDLCT · Neural
distinguisher · Differential-Linear attack.

1 Introduction

1.1 Priliminaries and Motivations

Supervised learning. Machine learning is a family of algorithms that can
automatically learn hidden knowledge from collected samples for performing

some tasks [17]. It can be divided into supervised learning [20], unsupervised
learning [2], and reinforcement learning [13] basically.

Supervised learning is widely used in solving classification and regression
problems. In this field, each sample is represented by a feature set Xi, i ∈ [1, n]
and labeled with a label Y related to the final task. Supervised learning aims
at training a model M over numerous labeled samples. Given a sample X =
[x1, · · · , xn] where each xi is an instance drawn from Xi, i ∈ [1, n], M will
output a prediction label.

Model M can be explainable models (eg. logistic regression [15]) or unex-
plainable ones (eg. neural networks [12]). Explainable models usually make a
prediction based on input features Xi, i ∈ [1, n]. The prediction of unexplainable
tools usually contains two stages: generate new features from input features, and
make a prediction based on these new features.

The performance of the model on the final task depends on two factors: first,
whether features for prediction-making are related to Y . Second, whether M has
learned the accurate relation between these features and Y .

In cryptography, many issues can be modeled as classification or regression
problems. For example, regarding encryption as a regression task, Greydanus
successfully simulated a simplified version of Enigma by recurrent neural net-
works [11]. Modeling signal processing as a classification problem, researchers
have applied supervised learning to side-channel cryptanalysis [3, 14].

Distinguishing attack. Let E : {0, 1}m → {0, 1}m be an encryption func-
tion. The distinguishing attack aims at judging whether E is a pseudo-random
permutation.

To solve this problem, a typical technique in conventional cryptanalysis is the
differential attack [7]. Here we choose a plaintext difference ∆P and generate
a plaintext pair (P0, P1)|P0 ⊕ P1 = ∆P . If there exists a ciphertext difference

∆C = C0 ⊕ C1 that makes Pr(∆P
E−→ ∆C) > 2−m hold, then E is not a

pseudo-random permutation.
The mechanism behind the differential attack is the same as supervised learn-

ing. The judging about E is a binary classification problem. The difference pro-

pogation probability Pr(∆P
E−→ ∆C) is the feature. If it exceeds a threshold

2−m, the prediction is that E is not a pseudo-random permutation.
Thus, the distinguishing attack can be done by supervised learning. Accord-

ing to the type of model M, it can be achieved from two directions. The first
direction is to design features for explainable models. This is still a research
gap since it is hard to design related features. The second direction is to use
unexplainable models to explore related features.

Neural distinguisher. At CRYPTO’19, Gohr made the first step in the second
direction by proposing a ND based on a plaintext difference constraint [10].

The ND needs to distinguish two classes of ciphertext pairs (C0, C1): real
pairs (the label is Y = 1) corresponding to plaintext pairs with a difference
∆P , random pairs (the label is Y = 0) corresponding to plaintext pairs with

2

a random difference. We input a ciphertext pair X = C0||C1, and the ND will
predict its label. If the ND achieves a distinguishing accuracy higher than 0.5,
the cipher E is not a pseudo-random permutation.

Adopting a deep residual network asM, Gohr built four NDs against round
reduced Speck32/64. Surprisingly, these NDs achieve higher accuracy than pure
differential distinguishers. Except for the ciphertext difference, NDs learn some
unknown features that result in advantages in accuracy. Due to the black-box
nature of neural networks, Gohr didn’t figure out what the unknown features
are, which is an important open problem.

CNN and its feature learning mechanism. The above open problem related
to NDs needs to be explored based on the feature learning mechanism of the
Convolutional Neural Network (CNN) since the deep residual network adopted
by Gohr is a CNN.

Although there are many tricks for designing various CNNs now, CNNs share
the same feature learning mechanism. Fig. 1 shows a classic four-layer CNN.

Fig. 1. A classic four-layer CNN.

The learning on features is accomplished by convolution layers. The function
of the (i + 1)-th convolution layer is to learn new features X i+1 from X i. For
deep residual networks, X i+1 is learned from features (eg. X i,X i−1, · · ·) learned
by multiple convolution layers.

In the machine learning community, there are three important concepts: low-
level features (eg. X 1) learned by a shallow layer, middle-level features (eg. X 2)
learned by a middle layer, and high-level features (eg. X 3) learned by a deep
layer [19]. Low-level features are related to the input. High-level features are
abstract features related to the prediction label, while middle-level features play
the role of a bridge.

In the background of NDs, low-level features could be the ciphertext differ-
ence C0 ⊕ C1. Middle-level features could be features related to cipher E, such
as the difference propagation probability p = Pr(C0 ⊕ C1 = ∆C|∆P) where
∆C is a specific value. High-level features could be the posterior probability
Pr(Y = 1|p).

High-level features can be used to make an accurate prediction. But they
can not directly provide any insights related to E since they are related to the
prediction label instead of E. The work introduced by Benamira et al [6] affirms
this contradiction.

3

Surrogate model. To understand how NDs proposed by Gohr work, Benamira
et al [6] built surrogate models of NDs.

Fig. 2. The mechanism of the surrogate model. M/M
′

: Target model / Surrogate

model. X/X
′

: Features used for decision-making. R/R
′

: Decision rules. X : The raw

input. Y/Y
′

: The prediction of M/M
′
.

Fig.2 summarizes the mechanism of the surrogate model [18]. If a surrogate
model M′

can always make a prediction Y
′

that is equivalent to the prediction
Y given by the target model M, it means that the decision rules R,R′

of two
models are the same. Furthermore, the features X ,X ′

used for decision-making
are treated as the same features.

In general, it is difficult to build a perfect surrogate model. Thus, the match-
ing ratio between the prediction given by M′

and the prediction given by M is
used to judge whether a surrogate model is efficient. The higher the matching
ratio is, the better the surrogate model is.

To obtain good surrogate models of NDs, Benamira et al [6] proposed a
concept named Masked Output Distribution Table (M-ODT). With the help of
M-ODT, a ciphertext pairX = C0||C1 is finally represented by multiple posterior
probabilities Pr(Y = 1|f(X)) where f(X) is a transformation on X. By training
a classifier on these probabilities, they obtained good surrogate models of 5/6-
round ND against Speck32/64. However, researchers are still not able to obtain
more useful insights since the posterior probabilities are high-level features.

To obtain some insights related to cipher E, we should focus on middle-level
or even low-level features.

Our targets. According to the feature learning mechanism of CNNs, Gohr’s
NDs should have learned a class of features describing a ciphertext pair. More-
over, this class of features should be related to an unknown tool describing the
cipher.

In this paper, our core target is finding such a class of features as well as the
unknown tool. The requirement is that the tool and the class of features could
be used to explain phenomena related to NDs. Besides, a reasonable explanation
about how NDs work could be provided.

The ND proposed by Gohr is a generic distinguisher that can be applied to
other ciphers [9]. Thus, we are curious about the following issues: 1) how does

4

the nature of a cipher E affect this class of features? 2) Can we obtain some
interesting insights, such as how to improve cryptanalysis techniques?

1.2 Contributions

The ND proposed by Gohr is built on a plaintext difference. Benamira et al [6]
also showed NDs may learn linear or differential-linear characteristics. Thus, we
first analyze the Differential-Linear Connectivity Table (DLCT) [1], and find
that the DLCT can not describe the cipher completely.

Inspired by this research, we propose the Extended Differential-Linear Con-
nectivity Table (EDLCT). To describe a ciphertext pair, we design a class of
features corresponding to the EDLCT. Various machine learning-based distin-
guishers are built with this class of features. The EDLCT not only fills in the
research gap between supervised learning and distinguishing attack, but also
provides a new way to explore NDs.

The EDLCT is the desired tool describing the cipher. The features corre-
sponding to the EDLCT are learned by NDs. To confirm our opinion, we explore
various NDs from the EDLCT view.

The exploration is carried out in three areas. First, a Feature Set Sensitivity
Test (FSST) is proposed to identify which features corresponding to the EDLCT
have a significant influence on the accuracy of NDs. Second, we analyze the
relationship between identified features and the round function of the cipher.
Third, surrogate models are built with identified features.

By performing experiments on NDs against two ciphers (Speck32/64 and
DES), we find that the features having a significant influence share the same
characteristic related to the round function. Although the features corresponding
to the EDLCT are not directly related to the final prediction, it’s still possible
to build good surrogate models using these features.

We investigate the phenomena related to NDs that researchers have discov-
ered so far. These phenomena related to NDs are all explained via EDLCT.

Furthermore, we obtain two useful insights from the EDLCT view. First,
we show how to use machine learning to search differential-linear propagation
∆ → λ with a high correlation, which is a tough task in the differential-linear
attack. Applying this technique to Chaskey and DES, we find some better
differential-linear propagations. This technique also proves that the differential-
linear distinguisher against 8-round DES [1] is the optimal one. Second, we can
improve NDs by changing the input describing a ciphertext pair, NDs can be
accelerated without reducing the accuracy.

Outline. We introduce the EDLCT in Section 2. How to build various ma-
chine learning-based distinguishers via EDLCT is shown in Section 3. From the
EDLCT view, we explore various NDs in Section 4 and explain phenomena re-
lated to NDs in Section 5. In Section 6, we show how to search differential-linear
propagations via machine learning. In Section 7, we present a method to improve
NDs.

5

2 The Extended Differential-Linear Connectivity Table

To better introduce our work, we adopt the definition of correlation [5]

Corx∈S [f(x)] :=
1

|S|
∑
x∈S

(−1)f(x), (1)

where S is a sample set. The DLCT is first introduced to improve the conven-
tional differential-linear attack [1].

Definition of the DLCT [1]. Let E : {0, 1}m → {0, 1}m be an encryption
function. The DLCT of E is an 2m × 2m table whose rows correspond to input
differences to E and whose columns correspond to bit masks of outputs of E.
Formally, for ∆ ∈ {0, 1}m and λ ∈ {0, 1}m, the DLCT entry (∆,λ) is

DLCTE(∆,λ) , |{P |λ · E(P) = λ · E(P ⊕∆)}| − 2m−1 (2)

When E is a pseudo-random permutation, DLCTE(∆,λ) should always
be 0 for each (∆,λ). For convenience, we say DLCT is balanced in (∆,λ) if
DLCTE(∆,λ) = 0. If the DLCT of E could be constructed, the distinguishing
attack on E can be directly performed. But this is an unpractical target so far.

The DLCT entry (∆,λ) can be described with the correlation. We say that

the differential-linear propagation ∆
E−→ λ is satisfied with the correlation

CorP∈Fm
2

[(λ · E(P))⊕ (λ · E(P ⊕∆))] =
DLCTE(∆,λ)× 2

2m
. (3)

Definition of the EDLCT. Let E : {0, 1}m → {0, 1}m be an encryption
function. The EDLCT of E is an 2m×2m×2m table. Formally, for ∆ ∈ {0, 1}m,
λ0 ∈ {0, 1}m and λ1 ∈ {0, 1}m, the EDLCT entry (∆,λ0, λ1) is

EDLCTE(∆,λ0, λ1) , |{P |λ0 · E(P) = λ1 · E(P ⊕∆)}| − 2m−1 (4)

Similarly, we say EDLCT is balanced in (∆,λ0, λ1) if EDLCTE(∆,λ0, λ1) =

0. Besides, we also say that the differential-linear propagation ∆
E−→ (λ0, λ1) is

satisfied with the correlation

CorP∈Fm
2

[(λ0 · E(P))⊕ (λ1 · E(P ⊕∆))] =
EDLCTE(∆,λ0, λ1)× 2

2m
. (5)

It is clear that the DLCT only covers entries of the EDLCT with λ0 = λ1.
Compared with the DLCT, the EDLCT can describe the encryption function

E more completely. When E is not a pseudo-random permutation, the entries
(∆,λ0, λ1)|λ0 6= λ1 that are not covered by the DLCT may also not be 0. Table
1 shows the partial EDLCT of the fourth S-box S4 of DES. The difference
constraint is ∆ = 0x10. As expected, the EDLCT is not balanced in many
entries (∆,λ0, λ1) where λ0 6= λ1.

The EDLCT is balanced in (∆,λ0, λ1) where λ0 = 0 or λ1 = 0. Besides, the
EDLCT is symmetric since the entry (∆,λ0, λ1) is always equal to (∆,λ1, λ0).

6

Table 1. The partial EDLCT of S4 of DES. ∆ = 0x10

λ0\λ1 0 1 2 3 4 5 6 7 8 9 A B C D E F

0 32 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

1 0 -8 0 0 -8 4 4 8 -12 0 8 -4 4 4 4 -4

2 0 0 -8 0 -12 -4 -4 4 8 -4 -4 8 0 4 -4 0

3 0 0 0 -16 0 4 4 0 -4 -4 4 4 -8 4 -4 0

4 0 -8 -12 0 -8 -4 4 4 0 4 -4 4 0 8 -4 0

5 0 4 -4 4 -4 0 -4 -4 -8 -4 8 0 4 0 0 -8

6 0 4 -4 4 4 -4 8 4 4 -16 4 4 -4 -4 4 -8

7 0 8 4 0 4 -4 4 0 4 0 0 0 4 16 -4 -4

8 0 -12 8 -4 0 -8 4 4 -8 0 -4 -4 0 4 8 -4

9 0 0 -4 -4 4 -4 -16 0 0 8 4 4 4 -4 0 -8

A 0 8 -4 4 -4 8 4 0 -4 4 0 0 4 0 4 8

B 0 -4 8 4 4 0 4 0 -4 4 0 0 4 -4 -16 0

C 0 4 0 -8 0 4 -4 4 0 4 4 4 -16 4 0 0

D 0 4 4 4 8 0 -4 16 4 -4 0 -4 4 0 0 0

E 0 4 -4 -4 -4 0 4 -4 8 0 4 -16 0 0 0 -4

F 0 -4 0 0 0 -8 -8 -4 -4 -8 8 0 0 0 -4 16

3 Bridge Supervised Learning and Distinguishing Attack
via EDLCT

The EDLCT provides a class of features that can bridge the gap between super-
vised learning and distinguishing attack.

3.1 Features Corresponding to the EDLCT

Features describing the ciphertext pair. Given two linear masks λ0, λ1 ∈
Fm
2 , a unique feature describing a ciphertext pair (C0, C1), C0, C1 ∈ Fm

2 is

X (λ0, λ1, C0, C1) = (C0 · λ0)⊕ (C1 · λ1).

Traversing the linear mask pair, we can obtain 22m features describing a cipher-
text pair. For convenience, we denote this class of features as

X (λ0, λ1) = (C0 · λ0)⊕ (C1 · λ1) ∈ {0, 1}. (6)

Relations to the EDLCT. From the machine learning perspective, each
EDLCT entry (∆,λ0, λ1) is a middle-level feature describing the encryption
function E.

Based on the 22m features X (λ0, λ1), each EDLCT entry (∆,λ0, λ1) can be
represented as

EDLCTE(∆,λ0, λ1) = (Pr(X (λ0, λ1) = 0|∆)− 0.5)× 2m, (7)

where C0 = E(P) and C1 = E(P ⊕∆). In other words, X (λ0, λ1) is a class of
features corresponding to the EDLCT. Then we obtain two important properties.

Property 1. We say the features X (λ0, 0),X (0, λ1) are trivial features. Since the
EDLCT is balanced in (∆,λ0, λ1) where λ0 = 0 or λ1 = 0, trivial features obey
the uniform distribution.

7

Property 2. Non-trivial features X (λ0, λ1)|λ0 6= 0, λ1 6= 0 can be generated from
two trivial features since X (λ0, λ1) = X (λ0, 0) ⊕ X (0, λ1). But non-trivial fea-
tures could obey the non-uniform distribution.

Property 1 and Property 2 explain some phenomena related to NDs. Besides,
we know the following transformations also hold

ρ = Pr(X (λ0, λ1) = 0|∆)− Pr(X (λ0, λ1) = 1|∆)

=
|{P |(C0 · λ0)⊕ (C1 · λ1) = 0}| − |{P |(C0 · λ0)⊕ (C1 · λ1) = 1}|

2m

= CorP∈Fm
2

[(λ0 · C0)⊕ (λ1 · C1)].

Thus, the larger the correlation is, the larger the value of ρ is. This leads to a
useful conclusion adopted in this article. Conclusion 1 is verified in Section 3.3.

Conclusion 1 Consider a machine learning-based distinguisher built on a plain-
text difference ∆. If a feature X (λ0, λ1) has a significant influence on this dis-

tinguisher, then ∆
E−→ (λ0, λ1) is satisfied with a high correlation.

Relation to the ciphertext difference. NDs can learn the ciphertext dif-
ference. Next, we check whether the ciphertext difference can be generated from
the class of features corresponding to the EDLCT .

Consider a ciphertext pair (C0, C1) where C0, C1 ∈ Fm
2 , the ciphertext dif-

ference ∆C = C0 ⊕ C1 can be described as a set of conditions

X (λi0, λ
i
1) = ∆C[i], i ∈ [0,m− 1] (8)

where λi0 = λi1 = 1� i.
Thus, once the class of features X (λ0, λ1) is learned by NDs, the ciphertext

difference can be learned.

3.2 Build Machine Learning-based Distinguishers via EDLCT

Now, the distinguishing attack can be tackled in both directions introduced in
Section 1. Specifically, machine learning-based distinguishers can be built using
the class of features X (λ0, λ1) corresponding to the EDLCT.

Build distinguishers with explainable models. Explainable models M
share the same working mechanism. Therefore, the method of building distin-
guishers is generic.

The whole process is divided into two stages: we first select n features X (λi0, λ
i
1),

i ∈ [1, n] corresponding to the EDLCT, train the modelM. In the second stage,
we will generate two datasets (one for training, one for testing) according to the
selected features. Algorithm 1 summarizes the dataset generation.

How to combine these features to obtain the desired output is determined by
the explainable model M itself. In this paper, we introduce our work by taking
the Logistic Regression (LR) as an example of explainable models.

8

Algorithm 1 Generate the training/test dataset dataset via EDLCT.

Require: the cipher, E; the difference constraint, ∆; the number of samples, N ;
n features corresponding to the EDLCT, X (λj

0, λ
j
1), j ∈ [1, n].

Ensure: a dataset consisting of N samples.
1: Randomly generate N plaintexts P i

0 and N sample labels Yi, i ∈ [1, N];
2: for i = 1 to N do
3: if Yi = 1 then
4: P i

1 = P i
0 ⊕∆;

5: else
6: Randomly generate a plaintext P i

1 6= P i
0 ⊕∆;

7: end if
8: Ci

0 = E(P i
0), Ci

1 = E(P i
1);

9: Compute the value xij of each feature X (λj
0, λ

j
1) :

xij = (λj
0 · C

i
0)⊕ (λj

1 · C
i
1), j ∈ [1, n];

10: Save (Xi = [xi1, · · · , xin], Yi) as the i-th sample;
11: end for
12: Return (Xi, Yi), i ∈ [1, N] as the dataset.

The LR can be expressed as

z =
1

1 + e−WT×X =
1

1 + e−(w0+w1×x1+···+wn×xn)
, 0 6 z 6 1, (9)

where X is the feature vector consisting of n feature values, and wi is the weight
of the feature value xi, i ∈ [1, n]. When we build distinguishers based on the LR,
the predicted label of the input sample is 1 if z > 0.5.

The reasons to choose LR as an example are: (1) it’s very fast to train the LR
and (2) the feature weights WT = [w0, · · · , wn] can directly tell which features
have a higher influence on the prediction.

Build distinguisher with unexplainable models. Actually, it is a tough
task to artificially select features for building distinguishers. Unexplainable mod-
els such as neural networks provide an alternative way to build distinguishers
via EDLCT.

The whole process is divided into two stages: (1) we first design a repre-
sentation X for a ciphertext pair, (2) train the model M. The requirement is
that any feature X (λ0, λ1) corresponding to the EDLCT can be derived from
X. For example, X = C0||C1 is an applicable representation, which is adopted
by Gohr’s NDs as the input.

Here we provide an explanation about how Gohr’s NDs work. The NDs have
the ability of generating new features from some features X (λ0, λ1) correspond-
ing to the EDLCT. By selecting different features X (λ0, λ1), more new features
are generated for the final prediction.

Since the EDLCT is a generic tool describing ciphers, we have the following
conjecture

9

Conjecture 1. When building NDs for different ciphers, which features X (λ0, λ1)
have a higher influence on NDs is determined by the unique nature of the cipher.

Conjecture 1 is challenged by exploring NDs against two round reduced ciphers
(DES, Speck32/64) in Section 4.

3.3 Property of Machine Learning-based Distinguishers

For machine learning-based distinguishers, the most important target is to achieve
a high distinguishing accuracy.

Machine learning-based distinguishers share the same property:

Property 3. If more related features are provided, the machine learning-based
distinguisher is more likely to achieve better distinguishing accuracy.

To better explain Property 3, we have trained a series of distinguishers (Al-
gorithm 1, N = 107) by taking the fourth S-box S4 of DES as a toy encryption
function E. Table 2 summarizes these distinguishers.

Table 2. Summary of machine learning-based distinguishers against S4 of DES. acc:
distinguishing accuracy. Feature weights only retain 2 decimal places. ∆ = 0x10.

ID M X / X (λ0, λ1) WT = [w1, · · · , wn, w0] acc

1 LR X (0x3, 0x3) [1.1,−0.69] 0.625

2 LR X (0x3, 0x3),X (0xc, 0xc) [0.96, 0.96,−1.21] 0.688

3 LR
all the 15 X (λ, λ),
λ ∈ [0x1, 0xf]

[3.29, 3.29, 3.5, 3.29, 0, -0.2, 0, 3.29,
-0.2, 0, 0, 3.5, 0, 0, -0.7, -12.48]

0.718

4 LR
all the 256 X (λ0, λ1),

λ0, λ1 ∈ F4
2

- 0.925

5 NN X = C0||C1 - 0.925

By adding more features X (λ0, λ1), the distinguisher can achieve better ac-
curacy. The accuracy comparison of the first four distinguishers (ID = 1,2,3,4)
fully reflects this property. In fact, the idea of adding more features has been
verified in [6,9]. By adopting batches of ciphertexts instead of pairs, the accuracy
of NDs is improved since the input contains more features.

Because the encryption function E is only an S-box of DES, N = 107 is suffi-
cient to cover all possible samples including the two classes of samples. Thus the
distinguishing accuracy can be regarded as the upper bound under corresponding
settings.

For example, since EDLCTE(0x10, 0x3, 0x3) = −16 < 0 (see Table 1), if we
predict that the label of (C0, C1)|C0 ·0x3 6= C1 ·0x3 is 1, the ideal distinguishing
accuracy is

1

2
× 1

2
+

1

2
× 48

64
= 0.625

It’s clear that the first distinguisher (ID = 1) can achieve the ideal distinguishing
accuracy. Besides, LR also captures the same decision rule since w1 = 1.1 >
|w0| = 0.69.

10

Besides, there is another interesting phenomenon in Table 2. Let M be the
deep residual network proposed by Gohr and X = C0||C1. The final distinguish-
ing accuracy is 0.925. If we adopt LR as the model M and exploit all the 256
features X (λ0, λ1), the accuracy is also 0.925. This phenomenon implies that the
neural network has learned all the features corresponding to EDLCT.

As introduced, the feature weights WT of LR can tell which features have a
higher influence. Taking the third distinguisher (ID=3) as an example, we know
that the feature X (0x3, 0x3) has a higher influence than X (0x1, 0x1) because
w3 = 3.5 > w1 = 3.29. Table 1 also shows that

|EDLCTE(∆, 0x3, 0x3)| = 16 > |EDLCTE(∆, 0x1, 0x1)| = 8.

As long as the two feature weights are higher than 0 or lower than 0 simultane-
ously, we can apply the above rule.

The above rule also verifies Conclusion 1 presented in Section 3.1.

4 Explore Neural Distinguishers from the EDLCT View

The EDLCT provides an explanation about how NDs work. In this section, we
will explore various NDs from the EDLCT view.

Three areas are mainly explored. First, we identify which features X (λ0, λ1)
have a significant influence on NDs. Second, we explore how the nature of a
cipher affects the influence of these features. Third, we build surrogate models
based on identified features.

4.1 Feature Set Sensitivity Test

To efficiently identify features that may have a significant influence on NDs, we
propose a scheme denoted as Feature Set Sensitivity Test (FSST).

The idea of FSST. Suppose that the decision-making rules of a ND are
related to a feature X (λ0, λ1), the distinguishing accuracy of the ND will be
affected if we randomize this feature. If the feature is not exploited by the ND,
the distinguishing accuracy will not be affected.

Given a feature set Ω, we randomize all the features belonging to Ω simul-
taneously. If all the features X (λ0, λ1) ∈ Ω are not exploited, the distinguishing
accuracy will not be affected. Then we can filter a set of features at a time.

To select a set of features that can be randomized simultaneously, we can
describe features corresponding to the EDLCT in a new form. Let X = C0||C1,
and λ = λ0||λ1. It follows that

X (λ0, λ1) = (C0 · λ0)⊕ (C1 · λ1) = X · λ =

(
⊕
i∈S

X[i]

)
⊕
(
⊕
j /∈S

X[j]

)
(10)

where S is a bit index subset that can divide ciphertext bits selected by λ into

two parts. Specifically,

(
⊕
i∈S

X[i]

)
is the unfree part related to S and

(
⊕
j /∈S

X[j]

)
is the free part.

11

Once S is determined, we obtain a feature set Ω. All the features belonging
to Ω have the same unfree part. For E : {0, 1}m → {0, 1}m and a fixed ∆, if S
contains n bit indexes, there are 22m−n features belonging to Ω.

For example, let S = {m−1, 2m−1}. The feature set Ω contains the following
22m−2 features

Ω = {X (λ0, λ1)|λ0, λ1 ∈ Fm
2 ;λ0[m− 1] = 1;λ1[m− 1] = 1}.

After we obtain a feature set Ω, randomizing Ω is equivalent to randomizing the
unfree part related to S.

Implementation of FSST. Suppose the distinguishing accuracy of a ND is
acc1. After randomizing a feature set Ω, we denote the new accuracy of the ND
as acc2. Then acc1 − acc2 is defined as the Feature Set Sensitivity (FSS) that is
used to measure the influence of the feature set on the ND.

To estimate the FSS ofΩ, the accuracy change is solely caused byΩ. Actually,
this is not easy when S is a large set. To explain how to implement FSST, we
focus on |S| = 1 and |S| = 2 at this initial stage.

When |S| = 1, only one feature set Ω is involved. Let S = {i}. The feature
X (λ0, λ1) is described as

X (λ0, λ1) = X[i]⊕
(
⊕
j /∈S

X[j]

)
. (11)

By XOR X[i] with a random binary mask η, all the features belonging to Ω are
randomized since

Pr(η = 0) =
1

2
⇒ Pr

(
η ⊕X[i]⊕

(
⊕
j /∈S

X[j]

)
= 0

)
=

1

2
.

Features that do not belong to Ω are not randomized by the operation above.
Thus, when |S| = 1, the FSS of Ω is estimated as follows:

a) Generate N ciphertext pairs (C0, C1): half corresponding to plaintext pairs
with a difference ∆, half corresponding to random plaintext pairs.

b) Test the distinguishing accuracy acc1 of the ND over (C0, C1).
c) Generate N random binary masks η, and get the masked ciphertext pairs

C1,0||C1,1 ← (C0||C1)⊕ (η � i)

where S = {i}.
d) Test the distinguishing accuracy acc2 of the ND over (C1,0, C1,1).
e) Return acc1 − acc2 as the FSS.

When |S| = 2, three features sets Ω1, Ω2, Ω3 are involved. For convenience,
let S = {i1, i2}. It yields that

Ω1 =

{
X (λ0, λ1)|X (λ0, λ1) = X[i1]⊕

(
⊕

j /∈{i1}
X[j]

)}
, (12)

12

Ω2 =

{
X (λ0, λ1)|X (λ0, λ1) = X[i2]⊕

(
⊕

j /∈{i2}
X[j]

)}
, (13)

Ω3 =

{
X (λ0, λ1)|X (λ0, λ1) = X[i1]⊕X[i2]⊕

(
⊕
j /∈S

X[j]

)}
. (14)

The third set Ω3 is the target feature set to be randomized. Additionally, it is
clear that |Ω1| > |Ω3| and |Ω2| > |Ω3| both hold.

To test the influence of the target feature set on the distinguishing accuracy,
we will conduct the following steps:

1. Randomize Ω1, Ω2 by XOR X[i1], X[i2] with one mask

X[i1]← X[i1]⊕ η1, X[i2]← X[i2]⊕ η1.

2. Randomize Ω1, Ω2, Ω3 by XOR X[i1], X[i2] with two independent masks

X[i1]← X[i1]⊕ η2, X[i2]← X[i2]⊕ η3.

Then the distinguishing accuracy difference in the two stages is caused only by
Ω3.

Hence, when |S| = 2, the FSS of Ω is estimated as follows:

a) Generate N ciphertext pairs (C0, C1): half corresponding to plaintext pairs
with a difference ∆, half corresponding to random plaintext pairs.

b) Generate N random binary masks η1, and get the masked ciphertext pairs

C1,0||C1,1 ← (C0||C1)⊕ (η1 � i1)⊕ (η1 � i2).

where S = {i1, i2}.
c) Test the distinguishing accuracy acc1 of the ND over (C1,0, C1,1).
d) Generate N random binary mask pairs (η2, η3), and get the masked cipher-

text pairs
C2,0||C2,1 ← (C0||C1)⊕ (η2 � i1)⊕ (η3 � i2)

e) Test the distinguishing accuracy acc2 of the ND over (C2,0, C2,1).
f) Return acc1 − acc2 as the FSS.

If |S| > 3, there are more feature sets to be considered. Then the estimation
of the FSS is more complex. But these two cases (|S| = 1, |S| = 2) are sufficient
to explore NDs.

Select features using FSST. If a feature X (λ0, λ1) has a high influence on
the distinguishing accuracy of the ND, each feature set Ω that contains this
feature will obtain a high FSS. Then it is worth performing FSST under two
settings (|S| = 1, |S| = 2).

Let X = C0||C1 ∈ F2m
2 and λ = λ0||λ1 ∈ F2m

2 . First, we traverse S = {i}, i ∈
[0, 2m − 1] and perform FSST. If S = {i} leads to a high FSS, λ[i] = 1 will
hold for the feature X (λ0, λ1). Second, we traverse each possible S = {i1, i2}
and perform FSST. If a high FSS is obtained, λ[i1] = 1 and λ[i2] = 1 will hold
simultaneously for the feature X (λ0, λ1).

These clues derived from FSST can be used to select features that may have
a significant influence on NDs.

13

4.2 Explore Neural Distinguishers against Speck32/64

Brief introduction of Speck32/64. Speck32/64 is an ARX cipher [4]. Fig.
3 shows the round function of Speck32/64.

Fig. 3. The round function of Speck32/64. SKi+1 : the round key. Li+1||Ri+1 : the
state of the (i+ 1)-th round.

Phenomena found by FSST. Let the plaintext difference be ∆ = 0x40/0x0,
Gohr built NDs against Speck32/64 reduced to 5/6/7/8 rounds respectively.
Table 3 summarizes the FSS estimations of the 5-round ND.

Table 3. The FSS of the 5-round ND against Speck32/64.

subset Type FSS i/(i1, i2) number of subsets

S = {i}
> 0.1

C0 : 2 ∼ 5, 10 ∼ 12, 17 ∼ 21, 26 ∼ 28
C1 : 2 ∼ 5, 10 ∼ 12, 17 ∼ 21, 26 ∼ 28

30

[0.01, 0.1)
C0 : 9,13,14,16,24,25,29,30
C1 : 9,13,14,16,24,25,29,30

16

(0, 0.01) others 64− 30− 16 = 18

S = {i1, i2} > 0.1

{(i1, i2)|i1 = i, i2 = i+ 16, i ∈ B},
{(i1, i2)|i1 = i, i2 = i+ 32, i ∈ B},
{(i1, i2)|i1 = i, i2 = i+ 48, i ∈ B},

{(i1, i2)|i1 = i+ 16, i2 = i+ 32, i ∈ B},
{(i1, i2)|i1 = i+ 16, i2 = i+ 48, i ∈ B},
{(i1, i2)|i1 = i+ 32, i2 = i+ 48, i ∈ B},

B = {2, 3, 4, 5, 10, 11, 12}

42

There are some interesting phenomena shown in Table 3. First, after travers-
ing S where |S| = 1, we find that if S = {i}, i ∈ [0, 31] (the i-th bit of C1) leads
to a high FSS, S = {i+32} (the i-th bit of C0) also leads to a high FSS. Second,
if S = {i}, i ∈ [0, 15] or i ∈ [32, 47] leads to a high FSS, S = {i+ 16} also leads
to a high FSS.

Based on the FSS estimations above, we further perform FSST by set-
ting |S| = 2. Let B = {2 ∼ 5, 10 ∼ 12}. For each i ∈ B, we find any S =
{i1, i2}, i1, i2 ∈ {i, i+ 16, i+ 32, i+ 48} can lead to a similar high FSS.

These three phenomena can be summarized as

14

Phenomenon 1 Let X = C0||C1. If S = {i}, i ∈ [0, 15] leads to a high FSS,
S = {j}, j ∈ B1 and S = {i1, i2}, i1, i2 ∈ B2 can also lead to a similar high FSS
where B1 = {i+ 16, i+ 32, i+ 48},B2 = {i, i+ 16, i+ 32, i+ 48}.

Relation with the round function. Phenomenon 1 is related to the round
function of Speck32/64 (Fig.3).

Let X = C0||C1. It is clear that X[i] = C1[i], X[i + 32] = C0[i], i ∈ [0, 31].
The similarity between C1[i] and C0[i] is that they are both related to SK[i]
where SK[i] is the i-th bit of the last round key. Besides, Fig.3 tells another two
truths. First, both C0[i] and C0[i+ 16], i ∈ [0, 15] are related to SK[i]. Second,
both C1[i] and C1[i+ 16], i ∈ [0, 15] are related to SK[i].

In other words, there is a fact resulted from the round function of Speck32/64.

Fact 1 Let X = C0||C1. Four ciphertext bits X[i], X[i+16], X[i+32], X[i+48]
are related to the same bit SK[i], i ∈ [0, 15] of the last round key.

Fact 1 results in Phenomenon 1. To further confirm this causality, we can
perform FSST on more NDs. If this causality holds, Phenomenon 1 will always
occur.

After performing experiments on the 6/7/8 round ND, we find Phenomenon
1 always occurs. The only change is that the number of bit index subsets (S, |S| =
1) leading to a high FSS decreases. Taking the 6-round ND as an example, Table
4 shows the FSS estimations.

Table 4. The FSS of the 6-round ND against Speck32/64.

subset Type FSS i/(i1, i2) number of subsets

S = {i}
> 0.1

C0 : 3, 4, 5, 11, 12, 19 ∼ 21, 26 ∼ 28
C1 : 3, 4, 5, 11, 12, 19 ∼ 21, 26 ∼ 28

22

[0.01, 0.1)
C0 : 2, 10, 13, 14, 16 ∼ 18, 25, 29, 30
C1 : 2, 10, 13, 14, 16 ∼ 18, 25, 29, 30

22

(0, 0.01) others 64− 20− 20 = 24

S = {i1, i2} > 0.1

{(i1, i2)|i1 = i, i2 = i+ 16, i ∈ B},
{(i1, i2)|i1 = i, i2 = i+ 32, i ∈ B},
{(i1, i2)|i1 = i, i2 = i+ 48, i ∈ B},

{(i1, i2)|i1 = i+ 16, i2 = i+ 32, i ∈ B},
{(i1, i2)|i1 = i+ 16, i2 = i+ 48, i ∈ B},
{(i1, i2)|i1 = i+ 32, i2 = i+ 48, i ∈ B},

B = {3, 4, 5, 11, 12}

30

These experiments prove the causality between Fact 1 and Phenomenon
1. This causality further proves that NDs proposed by Gohr successfully capture
the characteristic related to the round function of Speck32/64.

Surrogate models. Although the class of features X (λ0, λ1) is not directly
related to the prediction, it’s still possible to build a good surrogate model when
there are sufficient features that have a significant influence on NDs.

Based on the FSST results, many clues about features X (λ0, λ1) having a
significant influence on NDs can be obtained. Taking Table 3 as an example, we
obtain that:

15

1. Because S = {i}, i /∈ B1 where

B1 = {3 ∼ 5, 11, 12, 19 ∼ 21, 26 ∼ 28, 35 ∼ 37, 43, 44, 51 ∼ 53}

does not lead to a high FSS, the features X (λ0, λ1) where λ = λ0||λ1, λ[i] =
1, i /∈ B1 can be discarded.

2. Because S = {i1, i2}, i1, i2 ∈ {i, i + 16, i + 32, i + 48} can lead to a similar
high FSS when i ∈ B2 = {2, 3, 4, 5, 10, 11, 12}, features X (λ0, λ1) that satisfy
at leaset one following condition can be saved

λ = λ0||λ1, λ[i] = λ[i+ 16] = λ[i+ 32] = λ[i+ 48] = 1, i ∈ B2.

Thus, we choose the following 128 features X (λ0, λ1) to build the surrogate
model of the 5-round ND

X 1 = {X (λ0, λ1)|λ0 = λ1;λ0[i] = λ0[i+ 16], i ∈ [0, · · · , 15];
λ0[i] = 0, i /∈ {2, 3, 4, 5, 10, 11, 12}}. (15)

Using the same reasoning method, we choose the following 32 features X (λ0, λ1)
to build the surrogate model of the 6-round ND

X 2 = {X (λ0, λ1)|λ0 = λ1;λ0[i] = λ0[i+ 16], i ∈ [0, · · · , 15];
λ0[i] = 0, i /∈ {3, 4, 5, 11, 12}}. (16)

By comparison, the folloing two feature sets are also considered

X 3 = {X (λ0, λ1)|λ0 = λ1;λ0[i] = λ0[i+ 16], i ∈ [0, · · · , 15];
λ0[i] = 0, i /∈ {2, 3, 4, 5, 10, 11, 12, 9}}, (17)

X 4 = {X (λ0, λ1)|λ0 = λ1;λ0[i] = λ0[i+ 16], i ∈ [0, · · · , 15];
λ0[i] = 0, i /∈ {3, 4, 5, 11, 12, 1, 2, 10}}. (18)

By adopting LR as the model M, we build four surrogate models. Table 5
summarizes the quantitative studies for the prediction between surrogate models
and NDs.

Table 5. A comparison between surrogate models and NDs against Speck32/64.

Nr Model Number of features Accuracy Prediction Matching Ratio

5
ND5

LR + X 1

LR + X 3

-
128
256

0.926
0.845
0.847

-
0.881
0.885

6
ND6

LR + X 2

LR + X 4

-
32
256

0.783
0.634
0.667

-
0.678
0.725

It is surprising that surrogate models (LR +X 1, LR +X 3) achieve a predic-
tion matching ratio higher than 0.88. After all, this class of features X (λ0, λ1)
corresponding to the EDLCT is not directly related to the final decision-making
of NDs. It is difficult to build a good surrogate model by directly adopting these

16

features X (λ0, λ1) for a decision-making process. Thus, the results shown in
Table 5 can further prove that features X (λ0, λ1) are learned by NDs.

With the number of encryption rounds increasing, the number of features
X (λ0, λ1) having a significant influence decreases. In other words, all the features
corresponding to EDLCT tend to make an equal contribution. This is why the
fourth surrogate model (LR +X 4) can achieve a significant improvement over
the third surrogate model (LR +X 4).

If the target is to build a surrogate model with a higher prediction matching
ratio, it’s better to design high-level features approximating the features adopted
byNDs for the final decision-making. This target has been achieved by Benamira
et al [6]. They built surrogate models that can achieve a prediction matching
ratio higher than 0.9.

4.3 Explore Neural Distinguishers against DES

In Conjecture 1 (Section 3.2), we mention that the ND proposed by Gohr is
generic. Besides, the unique nature of the cipher can be captured by the ND. To
challenge Conjecture 1, we perform experiments on DES.

Phenomena found by FSST. Let ∆ = 0x200008/0x400 be the plaintext
difference and N = 107 (the number of training samples). We successfully build
NDs against DES reduced to 5 and 6 rounds respectively. Table 6 summarizes
the FSS estimations of the 5-round ND.

Table 6. The FSS of the 5-round ND against DES. {35,45,53,60}: the bit index set
corresponding to S6 in the 4-th round. {38,44,54,63}: the bit index set corresponding
to S4 in the 4-th round.

subset Type FSS i/(i1, i2) number of subsets

S = {i}
> 0.01

C0 : 35,36,38,44,46,53,54,60,63
C1 : 35,36,38,44,46,53,54,60,63

18

[0.005, 0.01)
C0 : 32,39,42,45,51,52,61,62
C1 : 32,39,42,45,51,52,61,62

16

< 0.005 others 128− 18− 16 = 94

S = {i1, i2}
> 0.01

{(i1, i2)|i1, i2 ∈ B,
B = {38, 44, 54, 63, 102, 108, 118, 127}} 28

> 0.005
{(i1, i2)|i1, i2 ∈ B,

B ∈ {35, 45, 53, 60, 99, 109, 117, 124}} 28

There are some interesting phenomena as shown in Table 6. First, if S =
{i}, i ∈ [0, 63] (the i-th bit of C1) leads to a high FSS, then S = {i + 64} (the
i-th bit of C0) also leads to a high FSS. Second, S = {i}, i ∈ B where B contains
the bit indexes related to the same S-box are likely to lead to a unique high FSS
simultaneously.

Based on the FSS estimations under the setting |S| = 1, we perform the
FSST for |S| = 2. Let B contain the bit indexes related to the same S-box such
as S4/S6 in the 4-th round. We find that all the S = {i1, i2}, i1, i2 ∈ B can lead
to a unique high FSS.

17

These three phenomena can be summarized as

Phenomenon 2 Let j1, j2, j3, j4 be the 4 bit indexes corresponding to the output
of an S-box. All the S = {i}, i ∈ B and S = {i1, i2}, i1, i2 ∈ B where B =
{j1, j2, j3, j4, j1 + 64, j2 + 64, j3 + 64, j4 + 64} may lead to a unique high FSS
simultaneously.

Relation with the round function. Phenomenon 2 is also related to the
round function of DES.

Let X = C0||C1. X[i] = C1[i], X[i+ 64] = C0[i], i ∈ [0, 63] are related to the
same round key bits. Besides, the input of each S-box is related to 6 round key
bits, and the output of each S-box is controlled by the input.

Thus, there is a fact resulted from the round function of DES.

Fact 2 Let X = C0||C1. Eight ciphertext bits X[j1], X[j2], X[j3], X[j4], X[j1 +
64], X[j2 + 64], X[j3 + 64], X[j4 + 64] where j1, j2, j3, j4 correspond to the same
S-box are related to the same 6 bits of a round key.

Similarly, in order to prove the causality between Fact 2 and Phenomenon
2, we perform the FSST on the 6-round ND. Table 7 summarizes the estimation
results of FSS.

Table 7. The FSS of the 6-round ND against DES. {34,40,48,58}: the output of S3 in
the 5-th round. {33,41,47,55}: the output of S1 in the 5-th round.

subset Type FSS i/(i1, i2) number of subsets

S = {i}
> 0.01

C0 : 33,40,41,47,48,55
C1 : 33,40,41,47,48,55

12

[0.005, 0.01)
C0 : 34,37,39,43,49,56,59,61
C1 : 34,37,39,43,49,56,59,61

16

(0, 0.005) others 128− 12− 16 = 100

S = {i1, i2}
> 0.01

{(i1, i2)|i1, i2 ∈ B},
B = {33, 41, 47, 55, 97, 105, 111, 119} 28

> 0.005
{(i1, i2)|i1, i2 ∈ B},

B = {34, 40, 48, 58, 98, 104, 114, 122} 28

Phenomenon 2 also occurs. This can prove the causality between Fact 2
and Phenomenon 2. Besides, this causality proves that NDs also successfully
capture the characteristic related to the round function of DES.

Surrogate models. Based on our analysis above, it suffices for us to focus on
the ciphertext bits related to the same S-box.

To obatin the surrogate model of the 5-round ND, we choose the following
32 features X (λ0, λ1)

X 5 = {X (λ0, λ1)|λ0 = λ1;λ0[i] = 0, i /∈ {38, 44, 54, 63}}
+{X (λ0, λ1)|λ0 = λ1;λ0[i] = 0, i /∈ {35, 45, 53, 60}}. (19)

18

To obatin the surrogate model of the 6-round ND, we choose the following 32
features X (λ0, λ1)

X 6 = {X (λ0, λ1)|λ0 = λ1;λ0[i] = 0, i /∈ {33, 41, 47, 55}}
+{X (λ0, λ1)|λ0 = λ1;λ0[i] = 0, i /∈ {34, 40, 48, 58}}. (20)

By adopting LR as the model M, we build two surrogate models. Table 8
summarizes the quantitative studies for the prediction between surrogate models
and NDs.

Table 8. A comparison between surrogate models and NDs against DES.

Nr Model Number of features Accuracy Prediction Matching Ratio

5
ND5

LR + X 5
-

32
0.627
0.623

0.958

6
ND6

LR + X 6
-

32
0.551
0.543

0.815

Compared with the 5-round ND against DES, the surrogate model yields
a ratio of 0.958 identical predictions. When Nr increases to 6, the prediction
matching ratio reduces to 0.815. These results prove that features X (λ0, λ1)
corresponding to the EDLCT are learned by NDs. When Nr increases, these
features tend to have an equal influence on the ND.

5 Explain Phenomena Related to Neural Distinguishers

Researchers have found some other phenomena related to NDs. In fact, all these
phenomena are related to the EDLCT.

5.1 The Phenomenon Found at CRYPTO’19 [10]

Based on the real difference experiment [10], Gohr found the following phe-
nomenon

Phenomenon 3 Consider a ND built on a plaintext difference ∆ ∈ Fm
2 . Let

K ∈ Fm
2 be the random mask. The ND can distinguish real ciphertext pairs

(C0, C1) from masked real ciphertext pairs (C0 ⊕K,C1 ⊕K) without retraining.

Table 9 shows the results of Gohr’s real difference experiment. Since C0⊕C1 =
(C0 ⊕ K) ⊕ (C1 ⊕ K), masked real ciphertext pairs have the same difference
distribution as real ciphertext pairs. Based on Phenomenon 3, Gohr concluded
NDs could capture some unknown features except for the ciphertext difference.

From the EDLCT perspective, Phenomenon 3 can be explained. Real
ciphertext pairs (C0, C1) provide two kinds of features corresponding to the
EDLCT

{X (λ0, λ1)|λ0 = λ1}, {X (λ0, λ1)|λ0 6= λ1}.

19

Table 9. Accuracies of NDs against Speck32/64 in the real difference experiment [10].

Nr Distinguisher Accuracy

5
6
7
8

ND5

ND6

ND7

ND8

0.707
0.606
0.551
0.507

Masked real ciphertext pairs (C0⊕K,C1⊕K) only provide one kind of features

{X (λ0, λ1)|λ0 = λ1}.

As long as NDs exploit features X (λ0, λ1) where λ0 6= λ1, Phenomenon 3
will occur. We prove this explanation with the following experiment :

1. Denote the accuracy of a ND as acc1 and let X = C0||C1, X ∈ F2m
2 .

2. Randomize X[i] = C1[i], X[i+m] = C0[i], i ∈ [0,m− 1] by letting

X ← X ⊕ (η � i)⊕ (η � (i+m)) (21)

where η is a random binary mask.

3. Denote the accuracy of the ND over masked ciphertext pairs as acc2.

4. Return acc1 − acc2 as the accuracy change.

If the condition acc1−acc2 6= 0 holds for a certain bit index i ∈ [0,m−1], the
ND must exploit some features X (λ0, λ1) where λ0[i] 6= λ1[i]. Table 10 shows
partial testing results of NDs against Speck32/64.

Table 10. Partial experiment results of Gohr’s NDs against Speck32/64. Only three
decimals are kept.

Bit index
Accuracy change

ND8 ND7 ND6 ND5

18 0 0.001 0.018 0.071

19 0.001 0.003 0.023 0.119

20 0.002 0.004 0.016 0.028

The results in Table 10 prove our explanation for Phenomenon 3 is correct.
NDs against Speck32/64 do exploit some features X (λ0, λ1) where λ0 6= λ1.

5.2 The Phenomena Found at EUROCRYPTO’20 [6]

When analyzing ND5, ND6 against Speck32/64, Benamira et al [6] found some
interesting phenomena that can be summarized as

Phenomenon 4 NDs may learn short but strong differential, linear or differential-
linear characteristics. Consider a ND against h-round Speck32/64. The ND re-
lies strongly on the differences at round h− 1 and even strongly at round h− 2
sometimes.

20

Phenomenon 4 can be explained via EDLCT. First, each EDLCT entry
is indeed a type of differential-linear characteristic. Second, we divide E into
E2 ◦E1. Suppose E1 covers h−1 rounds and E2 covers 1 round. Then we get the

characteristic ∆
E1−−→ ∆h−1

E2−−→ (λ0, λ1) where ∆h−1 is the difference at round
h− 1.

As we have presented, if ∆
E−→ (λ0, λ1) is satisfied with a high correlation

Cor, the feature X (λ0, λ1) has a significant influence on NDs. Let p denote the

probability Pr(∆
E1−−→ ∆h−1). Besides, we assume ∆h−1

E2−−→ (λ0, λ1) is satisfied
with the correlation r. Then Cor ≈ p× r holds according to the work in [5].

Because E2 covers 1 round, r is very likely to be close to 1. Then Cor ≈ p
holds and the ND will rely strongly on ∆h−1. Similarly, if some characteristics
∆h−2 → (λ0, λ1) are satisfied with a very high correlation, the ND will rely on
∆h−2 too.

In fact, Benamira et al did an interesting experiment that can prove the
features X (λ0, λ1) are learned by NDs. They extracted the output of the first
convolution layer of Gohr’s NDs. They found that the output is equivalent to
twenty-four non-linear Boolean expressions on the input X [6]. Many Boolean
expressions are only related to partial ciphertext bits.

Denote the 2D input of the first convolution layer as [C0l, C0r, C1l, C1r]. Tak-
ing one Boolean expression Z = C0l ∧ C1l ∧ C1r ∈ F16

2 (presented in Table 14
in [6]) as an example, we know that Z[0] is related to C0l[0], C1l[0], C1r[0]. Let
X = C0l||C0r||C1l||C1r, then the three bits actually corrspond to three features
X (0x10000, 0x0), X (0x0, 0x10000), and X (0x0, 0x1) respectively.

This experiment presented by Benamira et al proves our explanation about
how NDs work. But the performance of NDs is surprising since the first convo-
lution layer simultaneously achieves two targets: select some features X (λ0, λ1),
generate new features.

Property 2 (Section 3.1) shows non-trivial features are also useful, and NDs
indeed exploit this property. Thus, we think that the guess of Benamira et al is
right. Neural networks indeed find the easiest way to achieve the best accuracy.

5.3 The Phenomenon Found by Chen et al [8]

Chen et al [8] found another phenomenon related to NDs. It can be described as

Phenomenon 5 Consider a ND taking the ciphertext pair X = C0||C1 as the
input. If the input X is transformed into (C0 ⊕K)||C1 or C0||(C1 ⊕K) where
K ∈ Fm

2 is a random mask. ND can’t distinguish masked real ciphertext pairs
from masked random ciphertext pairs anymore.

We perform experiments on NDs against two ciphers (Speck32/64, DES)
again. Results prove that Phenomenon 5 always occurs. Actually this phe-
nomenon is normal.

Taking this operation X ← (C0⊕K)||C1 as an example, we know the features
X (λ0, λ1) where λ0 6= 0 are all randomized. Furthermore, the features X (λ0, λ1)
where λ0 = 0 are trivial. Thus, all the features X (λ0, λ1) obey the uniform

21

distribution. In other words, the masked pair (C0 ⊕ K,C1) is equivalent to a
random ciphertext pair now. As a result, Phenomenon 5 occurs.

All the phenomena found by previous researchers can be well explained from
the EDLCT view. This further strongly proves that the features corresponding
to the EDLCT are learned by NDs.

6 Improved Differential-Linear Propagation Search

Our work and Conclusion 1 provide a method to improve the differential-linear
attack.

6.1 Differential-Linear Attack

In the latest scheme of differential-linear attack, the whole cipher E is divided
into three parts E1, E2, E3 as shown in Fig.4. DLCT covers the middle part E2.

Fig. 4. The scheme of differential-linear attack. DLCT covers the middle part E2.

Assume that the differential-linear propagation ∆mid
E2−−→ λmid is satisfied

with the correlation

Corx∈S [(λmid · x)⊕ (λmid ⊕ E2(x⊕∆mid))] = r. (22)

This correlation r is usually experimentally evaluated.

In particular, we assume that the differential ∆in
E1−−→ ∆mid holds with prob-

ability

Prx∈Fm
2

[E1(x)⊕ E1(x⊕∆in) = ∆mid] = p. (23)

We further assume that the linear approximation λmid
E3−−→ λout is satisfied with

the correlation

Corx∈Fm
2

[(λmid · x)⊕ (λout · E3(x))] = q. (24)

Then the total correlation of ∆in
E−→ λout can be estimated as prq2 [5].

Since the EDLCT can describe E more completely, the scheme shown in
Fig.4 is a special case if we replace the DLCT with the EDLCT. However, com-
pared with the middle part E2, E3 has a more significant impact on the total
correlation. Thus, it may still be a better choice by covering E2 with the DLCT.

22

6.2 Search Differential-Linear Propagations via Machine Learning

In the differential-linear attack, both the optimal difference propagation ∆in
E1−−→

∆mid and the optimal linear approximation λmid
E3−−→ λout can be obtained by

some automated search techniques. However, the searching of differential-linear

propagations ∆mid
E2−−→ λmid still needs to be solved.

For convenience, we denote a differential-linear propagation as a simple form

∆
E−→ λ. We propose a machine learning-based method for searching differential-

linear propagations with a high correlation.
We first build a ND on ∆. If a feature λ, λ has a significant influence on the

ND, we know that ∆
E−→ λ is satisfied with a high correlation, which is derived

from Conclusion 1.
Thus, searching differential-linear propagations with a high correlation is

equivalent to identifying features X (λ, λ) that have a significant influence on
NDs. This generic method is summarized in Algorithm 2.

Algorithm 2 Search differential-linear propagations via machine learning

Require: the cipher, E : {0, 1}m → {0, 1}m; the plaintext difference, ∆.

Ensure: Differential-linear propagations ∆
E−→ λ with a high correlation.

1: Based on ∆, randomly generate N ciphertext pairs: half real ciphertext pairs, half
random ciphertext pairs.

2: Train a ND over the N ciphertext pairs.
3: Perform the FSST on the ND.
4: Save all the bit index sets S that lead to a high FSS.
5: Select features X (λ, λ) that may lead to a high FSS.
6: Adopt LR as the modelM, and build another distinguisher using selected features.
7: For features that have a feature weight w > 0, save features X (λ, λ) that the feature

weight has a high absolute value |w|.
8: For features that have a feature weight w < 0, save features X (λ, λ) that the feature

weight has a high absolute value |w|.
9: Verify the correlation of ∆

E−→ λ corresponding to saved features experimentally.

10: Return ∆
E−→ λ having a high correlation.

There may be many features that are selected by the FSST. Steps 3,4,5 can
be used to further filter features that do not have a high correlation.

6.3 Application to Chaskey

Brief introduction of Chaskey. Chaskey is a lightweight MAC algorithm
whose underlying primitive is an ARX-based permutation in an Even-Mansour
construction, i.e., Chaskey-EM [16]. The permutation operates on four 32-bit
words and employs 12 rounds of the form as shown in Fig.5.

Denote the difference of a, b as

∆a = ∆a0||∆a1||∆a2||∆a3, ∆b = ∆b0||∆b1||∆b2||∆b3.

23

Fig. 5. The round function of Chaskey.

Similarly, the linear mask of four 32-bit words is also denoted in the same order.
For convenience, we also adopt a simple form for describing an integer consisting
of four 32-bit words. For example, let X = x0||x1||x2||x3 where xi ∈ F32

2 , i ∈
[0, 3]. If the following 4 bits satisfy x0[j0] = x1[j1] = x2[j2] = x3[j3] = 1, then X
can be described as

X = [j0]||[j1]||[j2]||[j3], j0, j1, j2, j3 ∈ [0, 31].

Differential-linear propagations observed via rules. Based on the scheme
of differential-linear attack shown in Fig.4, Christof et al [5] built a 6-round
distinguisher by dividing this cipher into three parts, i.e, E1 covering 1.5 rounds,
E2 covering 4 rounds, and E3 covering 0.5 rounds. The DLCT covers the middle
part E2.

Since it is infeasible to verify all possible differential-linear propagations

∆b1
E2−−→ λ, Christof et al [5] only verify the case where the input difference

of Hamming weight is 1 and linear masks have the form [i] or [i, i+ 1], i.e., 1-bit
or consecutive 2-bit linear masks.

As a result, when there is a non-zeros difference only in the 31st bit (msb)
of b12, i.e.

∆b1 = []||[]||[31]||[],

Christof et al [5] observed the following two differential-linear propagations

∆b1 = []||[]||[31]||[] E2−−→ λ = [20]||[]||[]||[],
∆b1 = []||[]||[31]||[] E2−−→ λ = [20, 19]||[]||[]||[].

(25)

The corresponding correlations are both approximately 2−5.1.

Differential-linear propagations searched via machine learning. Based
on algorithm 2, we are ready to search differential-linear propagations without
any restrictions on the linear masks.

We first attempted to build a 4-round ND based on ∆b1 = []||[]||[31]||[],
however, it was not successful. After analyzing the round function of Chaskey,
we observe the optimal differential convering 1.5 rounds

∆b1 = []||[]||[31]||[]→ ∆a3 = [31, 15, 7]||[6]||[]||[31, 20, 15, 12, 7].

24

The transition probability is 2−2.
Taking ∆a3 as the difference constraint, we successfully build a ND covering

2.5 rounds. After running algorithm 2, we first notice that the following bit index
sets can lead to a FSS higher than 0.05

{S = {i, i+ 128}|i ∈ {28, 30, 116, 118, 123, 124, 126}}. (26)

Then a distinguisher is built using the following features

{X (λ, λ)|λ[i] = 0, i /∈ {28, 30, 116, 118, 123, 124, 126}}. (27)

The feature weights WT extracted from LR show that there are 7 features having
a significant influence

{X (λ, λ)|λ ∈ {λ1, λ2, λ3, λ4, λ5, λ6, λ7}}

where
λ1 = [20]||[]||[]||[]

λ2 = [20, 19]||[]||[]||[]
λ3 = [28]||[]||[]||[28]

λ4 = [28, 20]||[]||[]||[28]
λ5 = [27, 20]||[]||[]||[27]

λ6 = [28, 27]||[]||[]||[28, 27]
λ7 = [28, 27, 20]||[]||[]||[28, 27].

(28)

Finally, we experimentally verify differential-linear propagations correspond-
ing to the 7 linear masks. Table 11 summarizes the experimental correlations.

Table 11. 4-round differential-linear propagations searched via machine learning. E2

covers 4 rounds b1 → b5 of Chaskey.

differential-linear propagation Correlation

∆b1
E2−−→ λ1 2−5.1

∆b1
E2−−→ λ2 2−5.1

∆b1
E2−−→ λ3 2−3.4

∆b1
E2−−→ λ4 2−2.7

∆b1
E2−−→ λ5 2−5.1

∆b1
E2−−→ λ6 2−3.8

∆b1
E2−−→ λ7 2−2.7

Except for the first two differential-linear propagations observed by Christof
et al [5], Algorithm 2 helps us find five more differential-linear propagations.

6.4 Application to DES

Differential-linear propagations searched by traversing differentials.
Based on the scheme of differential-linear attack shown in Fig.4, Bar-On [1] build

25

a 7-round distinguisher by dividing 7-round DES into three parts, i.e., E1 covers
2 rounds, E2 covers 3 rounds, and E3 covers 2 rounds. The DLCT covers the
middle part E2.

The differential with a probability of 16
64 presented in [1] is

∆in = 0x200008||0x0400
E1−−→ ∆mid = 0x0||0x60000000.

The differential-linear propagation is

∆mid = 0x0||0x60000000
E2−−→ λmid = 0x0||0x808202.

And the corresponding correlation is about 0.52. The linear approximation is

λmid = 0x0||0x808202
E3−−→ λout = 0x80000000||0x808202.

Remark 1. There is a minor mistake in [1]. The value of∆mid should be 0x0||0x0400

instead of 0x0||0x60000000. ∆in
E1−−→ ∆mid = 0x0||0x0400 is satisfied with a

probability of 16
64 . ∆mid = 0x0||0x0400

E3−−→ λout is satisfied with a correlation
0.52 (the bias is 0.26).

The 3-round differential-linear propagation presented in [1] is obtained by
looking at all 3-round differentials starting with the input difference ∆mid =
0x0||0x0400.

If we remove∆mid, we can derive the equivalent 5-round / 6-round differential-
linear propagation adopted in [1]. Specifically, the 5-round differntial-linear prop-
agation is

∆in = 0x200008||0x0400
E2◦E1−−−−→ λmid = 0x0||0x808202. (29)

By extending 1 round, the 6-round differential linear propagation is

∆in = 0x200008||0x0400
E

′
2◦E1−−−−→ λ

′

mid = 0x808202||0x0 (30)

where E
′

2 covers 4 rounds. The corresponding correlations are both about 0.13 =
1
4 × 0.52, which are also experimentally verified.

Differential-linear propagations searched via machine learning. Based
on the plaintext difference ∆in = 0x200008||0x0400, we successfully build NDs
against DES reduced to 5 and 6 rounds respectively.

Thus, we directly find 5-round or 6-round differential-linear propagations
via machine learning. Furthermore, there is no need to check all the 5-round
/ 6-round differentials. In Section 4.3, the FSST has been performed on two
NDs. Based on the results shown in Table 6 and Table 7, we continue running
algorithm 2.

Finally, we identify more differential-linear propagations with a high correla-
tion. Table 12 summarizes differential-linear propagations searched via machine
learning.

26

Table 12. Differential-linear propagations searched via machine learning. E2◦E1 covers
5 rounds of DES. E

′
2 ◦ E1 covers 6 rounds. ∆in = 0x200008||0x0400.

rounds differential-linear propagation Correlation

5 {∆in
E2◦E1−−−−→ λmid|λmid 6= 0;λmid[i] = 0, i /∈ {63, 54, 44, 38}} > 0.13

5 {∆in
E2◦E1−−−−→ λmid|λmid 6= 0;λmid[i] = 0, i /∈ {60, 53, 45, 35}} > 0.13

6 ∆in
E

′
2◦E1−−−−→ λ

′
mid = 0x808202||0x0 0.13

Taking 0.13 as the correlation threshold, we find 30 more 5-round differential-
linear propagations that are satisfied with a correlation higher than 0.13. We
further verify that only one 6-round differential-linear propagation is satisfied
with a correlation of 0.13. In fact, it is the equivalent 6-round differential-linear
propagation adopted in [1].

The result above proves the 7-round differential-linear distinguisher presented
in [1] is the optimal one, which is one of our extra findings. All the above re-
sults including the extra finding fully prove that the advantage of searching
differential-linear propagations via machine learning.

7 Improve the Neural Distinguisher

We prove that features corresponding to the EDLCT are learned by NDs. This
finding provided an insight (Conjecture 2) for accelerating NDs.

Conjecture 2. As long as most features X (λ0, λ1) corresponding to the EDLCT
can be derived from the input X of NDs, the concrete form of X will not affect
the distinguishing accuracy.

Optional Inputs. Actually, most features X (λ0, λ1) corresponding to the
EDLCT can be derived from many optional inputs. To challenge Conjecture 2,
we propose a generic method for generating optional inputs.

We divide a ciphertext C into two parts C = Cl||Cr with the same length. A
ciphertext pair can be described as (C0, C1) = (C0l||C0r, C1l||C1r). Then there
are more available types of representation that can be used as the input of NDs.
Table 13 summarizes some possible forms of the input X.

Table 13. Some available forms of the input X of NDs

X1 (C0l ⊕ C1l)||(C0r ⊕ C1r)||(C0l ⊕ C0r)

X2 (C0l ⊕ C1l)||(C0r ⊕ C1r)||(C1l ⊕ C1r)

X3 (C0l ⊕ C0r)||(C1l ⊕ C1r)||(C0l ⊕ C1l)

X4 (C0l ⊕ C0r)||(C1l ⊕ C1r)||(C0r ⊕ C1r)

X5 (C0l ⊕ C0r)||(C1l ⊕ C1r)||(C0l ⊕ C1r)

X6 (C0l ⊕ C0r)||(C1l ⊕ C1r)||(C0r ⊕ C1l)

X7 (C0l ⊕ C1r)||(C0r ⊕ C1l)||(C0l ⊕ C0r)

X8 (C0l ⊕ C1r)||(C0r ⊕ C1l)||(C1l ⊕ C1r)

Taking the first possible form X1 as an example, we prove that most features
X (λ0, λ1) corresponding to the EDLCT can be derived from X1.

27

Proof. Denote λ
′

0, λ
′

1, λ
′

2, λ
′

3 as four independent linear masks. First, all the
features X (λ0, λ1) where λ0 = λ1 can be obtained as follows:

[λ
′

0 · (C0l ⊕ C1l)]⊕ [λ
′

1 · (C0r ⊕ C1r)]

= [(λ
′

0||λ
′

1) · (C0l||C0r)]⊕ [(λ
′

0||λ
′

1) · (C1l||C1r)]

⇒ λ0 = λ1 = λ
′

0||λ
′

1.

Since λ
′

0, λ
′

1 are two independent linear masks, it follows that all the features
X (λ0, λ1) where λ0 = λ1 can be obtained.

Most features X (λ0, λ1) where λ0 6= λ1 can be obtained as follows:

(C0l ⊕ C1l)⊕ (C0r ⊕ C1r)⊕ (C0l ⊕ C0r) = C1l ⊕ C1r

⇒ [λ
′

0 · (C0l ⊕ C1l)]⊕ [λ
′

1 · (C0r ⊕ C1r)]⊕ [λ
′

2 · (C0l ⊕ C0r)]⊕ [λ
′

3 · (C1l ⊕ C1r)]

= [(λ
′

0 ⊕ λ
′

2)||(λ
′

1 ⊕ λ
′

2)] · C0 ⊕ [(λ
′

0 ⊕ λ
′

3)||(λ
′

1 ⊕ λ
′

3)] · C1

⇒ λ0 = (λ
′

0 ⊕ λ
′

2)||(λ
′

1 ⊕ λ
′

2), λ1 = (λ
′

0 ⊕ λ
′

3)||(λ
′

1 ⊕ λ
′

3).

If we first fix λ0 by fixing λ
′

0, λ
′

1, and λ
′

2, then λ0 can be any possible value and
λ1 will only face a weak restriction. Generally speaking, most features X (λ0, λ1)
corresponding to EDLCT can be obtained.

Using a similar reasoning method, we arrive at the same conclusion when
another form Xi, i ∈ [2, 8] is considered. From the EDLCT perspective, both
the available forms of the input X in Table 13 and X = C0l||C0r||C1l||C1r can
provide many of the same features. Thus, we reduce the input length of NDs.
This can accelerate NDs and the distinguishing accuracy may not be affected.

Accelerate neural distinguishers by reducing the input length. To
prove Conjecture 2, we build several NDs against Speck32/64 from scratch. Four
optional inputs X1, X3, X5, X7 in Table 13 are adopted as examples. The deep
residual network proposed by Gohr is adopted.

Table 14 summarizes the accuracies of various NDs. All the NDs with new in-
puts (X1, X3, X5, X7) can achieve the similar distinguishing accuracy as Gohr’s
NDs (NN + X).

Table 14. Accuracies of various NDs considering different inputs. NN + X stands for
Gohr’s NDs. X = C0l||C0r||C1l||C1r

Speck32/64

Distinguisher NN + X NN + X1 NN + X3 NN + X5 NN + X7

Nr

5 0.926 0.926 0.926 0.926 0.926

6 0.783 0.784 0.784 0.784 0.783

7 0.609 0.61 0.609 0.61 0.61

However, the length of new inputs is three-quarters of that of X, which
can reduce the computation of NDs. We have also tested the practical time
consumption of various NDs. The time consumption of new NDs is reduced to
about three-quarters of that of Gohr’s NDs.

28

Results shown in Table 12 further prove that features corresponding to
EDLCT are learned by Gohr’s NDs.

Build nearly perfect surrogate models by changing the input. Since
most features X (λ0, λ1) can be derived from optional inputs shown in Table 13,
efficient surrogate models will be obtained by changing the input of NDs.

Taking X1 as the input of the deep residual network proposed by Gohr, we
build surrogate models of NDs against Speck32/64. Table 15 summarizes the
quantitative studies for the prediction between surrogate models and NDs.

Table 15. A comparison between surrogate models and NDs against Speck32/64.

Nr Model Accuracy Prediction Matching Ratio

5
ND5

NN + X1
0.926
0.926

0.992

6
ND6

NN + X1
0.783
0.782

0.979

7
ND7

NN + X1
0.609
0.607

0.964

As expected, all the surrogate models achieve a very high prediction matching
ratio. These surrogate models further strongly prove that features corresponding
to the EDLCT are learned by NDs.

8 Conclusion

In this article, we propose the Extended Differential-Linear Connectivity Table
(EDLCT). Various machine learning-based distinguishers can be built via a class
of features corresponding to the EDLCT. By exploring various NDs, we prove
that NDs work by exploiting features corresponding to the EDLCT. All the phe-
nomena related to NDs that are found are explained exactly via EDLCT. We
further show how to search differential-linear propagations with a high correla-
tion via machine learning. As a result, we find many better differential-linear
propagations for Chaskey and DES. Besides, we propose a method to improve
NDs.

Our work not only explains NDs, but also provides a new tool (EDLCT) to
describe a cipher. Besides, some cryptanalysis techniques are improved from the
perspective of EDLCT. We believe that our work can inspire more interesting
research in the future.

References

1. Bar-On, A., Dunkelman, O., Keller, N., Weizman, A.: Dlct: a new tool for
differential-linear cryptanalysis. In: Annual International Conference on the The-
ory and Applications of Cryptographic Techniques. pp. 313–342. Springer (2019)

2. Barlow, H.B.: Unsupervised learning. Neural computation 1(3), 295–311 (1989)

29

3. Batina, L., Bhasin, S., Jap, D., Picek, S.: Poster: Recovering the input of neu-
ral networks via single shot side-channel attacks. computer and communications
security pp. 2657–2659 (2019)

4. Beaulieu, R., Shors, D., Smith, J., Treatmanclark, S., Weeks, B., Wingers, L.: The
simon and speck lightweight block ciphers. design automation conference p. 175
(2015)

5. Beierle, C., Leander, G., Todo, Y.: Improved differential-linear attacks with ap-
plications to arx ciphers. In: Annual International Cryptology Conference. pp.
329–358. Springer (2020)

6. Benamira, A., Gerault, D., Peyrin, T., Tan, Q.Q.: A deeper look at machine
learning-based cryptanalysis. IACR Cryptol. ePrint Arch 287, 2021 (2021)

7. Biham, E., Shamir, A.: Differential cryptanalysis of des-like cryptosystems. Journal
of CRYPTOLOGY 4(1), 3–72 (1991)

8. Chen, Y., Yu, H.: Neural aided statistical attack for cryptanalysis. Cryptology
ePrint Archive, Report 2020/1620 (2020), https://eprint.iacr.org/2020/1620

9. Chen, Y., Yu, H.: A new neural distinguisher model considering derived fea-
tures from multiple ciphertext pairs. Cryptology ePrint Archive, Report 2021/310
(2021), https://eprint.iacr.org/2021/310

10. Gohr, A.: Improving attacks on round-reduced speck32/64 using deep learning.
international cryptology conference pp. 150–179 (2019)

11. Greydanus, S.: Learning the enigma with recurrent neural networks. arXiv: Neural
and Evolutionary Computing (2017)

12. Hecht-Nielsen, R.: Theory of the backpropagation neural network. In: Neural net-
works for perception, pp. 65–93. Elsevier (1992)

13. Kaelbling, L.P., Littman, M.L., Moore, A.W.: Reinforcement learning: A survey.
Journal of artificial intelligence research 4, 237–285 (1996)

14. Kim, J., Picek, S., Heuser, A., Bhasin, S., Hanjalic, A.: Make some noise: Unleash-
ing the power of convolutional neural networks for profiled side-channel analysis.
cryptographic hardware and embedded systems 2019(3), 148–179 (2019)

15. Kleinbaum, D.G., Dietz, K., Gail, M., Klein, M., Klein, M.: Logistic regression.
Springer (2002)

16. Mouha, N., Mennink, B., Van Herrewege, A., Watanabe, D., Preneel, B., Ver-
bauwhede, I.: Chaskey: an efficient mac algorithm for 32-bit microcontrollers. In:
International Conference on Selected Areas in Cryptography. pp. 306–323. Springer
(2014)

17. Murphy, K.P.: Machine learning: a probabilistic perspective. MIT press (2012)
18. Pavelski, L.M., Delgado, M.R., Almeida, C.P., Gonçalves, R.A., Venske, S.M.: Ex-

treme learning surrogate models in multi-objective optimization based on decom-
position. Neurocomputing 180, 55–67 (2016)

19. Zeiler, M.D., Taylor, G.W., Fergus, R.: Adaptive deconvolutional networks for mid
and high level feature learning. In: 2011 International Conference on Computer
Vision. pp. 2018–2025. IEEE (2011)

20. Zhu, X., Goldberg, A.B.: Introduction to semi-supervised learning. Synthesis lec-
tures on artificial intelligence and machine learning 3(1), 1–130 (2009)

30

