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Abstract. The construction of zkSNARKs involves designing a Poly-
nomial IOP that matches with the constraint system for which it proves
membership. Designing this Polynomial IOP is a challenging task be-
cause the constraint system is typically not expressed in terms of poly-
nomials but in terms of matrices and vectors. To mitigate mismatch, we
propose a new methodology for the first step in SNARK construction,
that first designs a matching Vector Oracle protocol before compiling it
into a Polynomial IOP. The native first-class citizens of the Vector Oracle
protocol are vectors; and by virtue of matching with the language of the
arithmetic constraint system, Vector Oracle protocols are more intuitive
to design and analyze. The Vector-Oracle-to-PIOP compilation proce-
dure is protocol-independent, allowing us to present and optimize it as a
standalone component, leading to the discovery of a series of acceleration
techniques.

We apply our methodology to construct three zkSNARKs, each tar-
geting a constraint system: the Rank-1 Constaint System (R1CS), the
Hadamard Product Relation (HPR), and a modified PLONK circuit. All
three zkSNARKs achieve shorter proofs and/or smaller verification costs
compared to the state-of-the-art constructions targeting the same con-
straint systems. Specifically, VCProof/R1CS defeats Marlin in proof size,
with a slightly higher verification cost; VCProof/HPR and VCProof/POV
outperform Sonic and PLONK, respectively, in both proof sizes and veri-
fication costs. In particular, the proof of VCProof/POV has only two field
elements and six group elements, thus becoming the shortest among all
existing universal-setup zkSNARKs.
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1 Introduction

Zero-knowledge SNARKs (zkSNARKs), first introduced by Bitansky et
al. in 2012 [1], allow a prover to generate a short proof π for a computa-
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tion output y = F (x,w) of an arbitrary function F , such that a resource-
restricted verifier can validate y with at most O(polylog(|F |)) computa-
tional and storage cost while learning nothing about the secret input w.
Recent years witnessed a surge of zkSNARKs with various properties,
e.g., constant verification time [2,3,4,5], universal setup [3,4,5,6,7,8,9],
transparent setup [6,7,8,9], and post-quantum security [7,8,10]. New de-
signs emerge rapidly with smaller construction and verification costs,
shorter proofs, and fewer security assumptions. Despite its short history,
zkSNARKs have already been deployed in many blockchain-based sce-
narios, e.g., Zcash [11], the first fully anonymous cryptocurrency, and
Aztec [12] and zkSync [13], two projects boosting the scalability and pri-
vacy of Ethereum—the cryptocurrency with the second-largest market
capitalization.

Albeit diverse in the underlying techniques, most zkSNARKs share
the same construction workflow centered on a Polynomial IOP (PIOP)
protocol, as pointed out by Bünz et al. [6]. In this workflow, the to-be-
verified equation y = F (x,w) is first transformed into a constraint system
over a finite field F. Second, a PIOP protocol is designed to verify that
an instance-witness pair (x,w) satisfies the constraint system. The PIOP
protocol involves two parties: a prover and a verifier. The prover sends
to the verifier, potentially in multiple rounds, a set of polynomials, each
encapsulated in a polynomial oracle—a kind of idealized functionality.
The verifier may query these oracles for evaluations of these polynomi-
als at arbitrary elements of F. Finally, the PIOP protocol is compiled
into a zkSNARK by a polynomial commitment scheme, e.g., KZG [14]
or DARK [6]. Concurrent with [6], the notion PIOP is also proposed by
Chiesa et al. with the name Algebraic Holographic Proof (AHP) [4] and
Gabizon et al. as Polynomial Protocols [3]. As a middle layer between the
constraint system and the zkSNARK, PIOP abstracts away the complex-
ities in the latter’s underlying cryptography. Moreover, this middle layer
leaves the choice of the polynomial commitment scheme flexible, allowing
practitioners to fine-tune the trade-off between higher efficiency and fewer
security assumptions.

This paper focuses on the PIOP-designing step. We observe a com-
mon pattern among prior constructions: they all need to implement, with
polynomial equations, one or both of two basic vector operations, which
are (1) the inner product, and (2) the Hadamard product, i.e., entry-wise
product. For example, in Libra [15], Marlin [4] and Fractal [8], the inner
product is implemented using the sumcheck protocol [16] or its univariate
variant [10], and the Hadamard product directly corresponds to the poly-
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nomial product. The indispensability of these vector operations inspires
us to propose a new zkSNARK construction methodology, which first de-
signs a Vector Oracle protocol that translates the constraint system into
inner-product and Hadamard-product checks, and then implements this
protocol as a PIOP protocol.

This new construction method, named VCProof for “VeCtor Proof”,
has the following two-fold advantage. First, a Vector Oracle protocol is
more intuitive to design than a PIOP protocol targeting the same con-
straint system, because the constraint system usually consists of equations
of matrices and vectors, rather than polynomials. Second, by defining the
Vector Oracle protocol as a standalone abstraction, we explicitly sepa-
rate the polynomial representations of the aforementioned basic vector
operations from the protocol-specific logic. This separation enables flex-
ible combination of the Vector Oracle protocol and the polynomial rep-
resentation of the vector operations, thus opening a large design space
for optimization. We formalize this method and show that it is capa-
ble of producing zkSNARKs, for various constraint systems, with shorter
proofs and verification time than the state of the art. Specifically, our
contributions include:

The Vector Oracle Formalization. We simplify the PIOP protocol
design by separating (1) the implementation of the Hadamard product
and the inner product operations from (2) the constraint-system-specific
protocol logic, which is described via a Vector Oracle protocol (Sect. 3).
A Vector Oracle protocol is formalized as an interactive protocol in which
the prover and the verifier have access to a vector oracle, which receives
vector submissions from the prover, and receives queries from the ver-
ifier to manipulate these vectors or to check vector identities involving
Hadamard products and inner products. We show that a Vector Oracle
protocol can be compiled to a PIOP protocol targeting the same con-
straint system, and vice versa. This formalization also uncovers the op-
timization technique of batching all the Hadamard- and inner-product
checks into a single polynomial equation. The resulting PIOP protocol
is significantly optimized in the number of polynomial oracles (only one
more than the number of prover-submitted vectors) and the number of
evaluation queries (two to four distinct points).

Efficient Vector Oracle Protocols for Verifying Vector Permu-
tation and Sparse Matrix Vector Multiplication. We present a
protocol for verifying vector permutations with only one preprocessed
vector and one prover-submitted vector, and a protocol for sparse matrix
vector multiplications with only two preprocessed vectors and four prover-
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submitted vectors (Sect. 4). These protocols serve as building blocks for
protocols that verify the circuit-based constraint systems. These building
blocks are also useful in building zkSNARKs for specialized tasks, e.g.,
cryptographic tools like vector commitments, matrix commitments, range
proofs, without resorting to general-purpose zkSNARKs that usually have
higher proving and verification costs.

Implementing Vector Oracle Protocols for Influential Circuit-
based Constraint Systems. We present three Vector Oracle protocols
targeting three circuit-based constraint systems, respectively: the Rank-1
Constraint System (R1CS), the Hadamard Product Relation (HPR), and
a modified version of the PLONK circuit which we name the POV (Per-
mutation Oecumenical Vector-oracle) relation (Sect. 5). We name these
protocols VCProof/R1CS, VCProof/HPR and VCProof/POV. These pro-
tocols are constructed in a modular manner by composing the aforemen-
tioned building blocks, and further optimized by the vector concatenation
technique to reduce the number of vectors submitted by the prover.

New zkSNARKs with Shorter Proofs and Smaller Verification
Costs. Finally, we compile our Vector Oracle protocols to produce zk-
SNARKs with competitive efficiency compared to the state of the art
(Sect. 6). We transform the above three Vector Oracle protocols to PIOP
protocols, which are further compiled into zkSNARKs via both KZG [14]
and DARK [6] polynomial commitment schemes. When compiled with
KZG, these PIOP protocols produce preprocessing zkSNARKs with uni-
versal trusted setups. Compared to the state-of-the-art constructions for
the same constraint systems, all three zkSNARKs reduce the proof size by
roughly a half, while two of them also lower the verification cost. The ef-
ficiency improvements result from (1) the vector concatenation technique
applied in the Vector Oracle protocols, (2) the batching technique in the
Vector Oracle compiler, and (3) a concrete-level optimization inspired
by PLONK [3]. Although the vector concatenation technique slightly sac-
rifices the efficiency in proof construction, the prover efficiency remains
comparable to the concurrent constructions due to other optimizations. In
more detail, the verification cost of VCProof/R1CS is slightly larger than
Marlin by 20 group exponentiations. For HPR, compared to Sonic, the
verifier of VCProof/HPR is faster by roughly six times. For the PLONK
circuit, the verifier of VCProof/POV outperforms PLONK by six group
exponentiations. In particular, the proof of VCProof/POV has only two
field elements and six group elements, becoming the shortest among all
known universal-setup zkSNARKs. If we compile the PIOP protocols us-
ing DARK instead, the resulting zkSNARKs have transparent setups at
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the cost of a logarithmic blowup in proof sizes and verifier costs with
respect to the circuit size.

1.1 Related Works

We classify zkSNARKs into three groups, based on how they achieve suc-
cinctness—the “S” in zkSNARK. The first group includes BulletProof [17]
and Aurora [10], which achieve logarithmic proof sizes and linear verifier
complexities. The second group target only uniform circuits, i.e., those
with very short representations. Examples include Libra [15], which re-
quires the circuit to be layered and log-space uniform, and STARK [7]
and vRAM [18], which target Random-Access-Machines (RAMs) that are
equivalent to circuits consisting of repetitions of the same sub-circuit.

Most zkSNARKs fall into the third group, which introduce preprocess-
ing, allowing the verifier to read a short digest instead of the complete
circuit. The hash-based design Fractal [8] does not require trusted setup
and is presumably post-quantum secure. Pinocchio [19] and Groth16 [2]
are pairing-based zkSNARKs that require per-circuit trusted setups. In
comparison, Marlin [4], PLONK [3] and Sonic [5] only require a universal
trusted setup. These pairing-based zkSNARKs have constant proof sizes
and verifier complexities.

Supersonic [6] and Claymore [20] cross the group boundaries by focus-
ing more on the methodology instead of standalone zkSNARKs. Specif-
ically, Supersonic proposes the DARK polynomial commitment and the
PIOP formalization, and Claymore focuses on the PIOP protocol. Our
work is inspired by them as we also focus on improving the methodology
and constructing abstract-level protocols.

2 Preliminaries

2.1 Notations

Let Z be the set of integers and N the set of nonnegative integers. For
convenience, we abbreviate the set {i}ni=1 by [n], and {i}ni=m by [m..n] for
m < n. Throughout this paper, we use a unique finite field F. Elements
in F are also called scalars.

We denote the vectors by bold lowercase letters, e.g., a ∈ Fn is a
vector of size n over F. We use a[i] for the i-th element of the vector a,
where the indices start from 1. Let a[i..j] := (a[i], · · · ,a[j]) for i ≤ j. For
i > n, we treat a[i] = 0 for convenience.
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We use the following binary operations between vectors. For two vec-
tors a ∈ Fn1 and b ∈ Fn2 , their concatenation is a‖b := (a[1], · · · ,a[n1],

b[1], · · · , b[n2]) ∈ Fn1+n2 . Their sum is a + b := (a[i] + b[i])
max{n1,n2}
i=1 ∈

Fmax{n1,n2}. Their inner product is a · b :=
∑

i∈[min{n1,n2}] a[i] · b[i]. Their

Hadamard (entrywise) product is a◦b := (a[i] ·b[i])
min{n1,n2}
i=1 ∈ Fmin{n1,n2}.

We will use power vectors, i.e., vectors of the form (1, α, α2, · · · , αn−1), de-
noted by αn. In particular, 1n and 0n are the all-one and all-zero vectors
of size n.

We use bold capital uppercase letters for matrices, e.g., M ∈ Fm×n is
a matrix of size m×n over F. The element of M in the i-th row and j’th
column of the matrix is M [i,j]. The i-th row is a vector of size n denoted
by M [i,..] and the j’th column is M [..,j] ∈ Fm. The matrix-vector product

is denoted by either by Mv for right multiplication of vectors or vTM
for left multiplication.

We write f(X) ∈ Fd[X] as a polynomial of degree at most d over field
F. When the context is clear, we use fi to represent the coefficient for Xi.
For a vector v ∈ Fd, let fv(X) be the polynomial of degree less than d
that uses the elements of v as coefficients, i.e., fv(X) =

∑d
i=1 v[i]X

i−1.

2.2 Polynomial IOP for Indexed Relations

This work focuses on protocols that admit a preprocessing procedure
which, on input the index for the target relation, produces helpful in-
formation for the prover and the verifier in the protocol. The indexed
relation is a convenient notion in this context. Formally, an indexed re-
lation R is a set of triples (i,x,w) where i is the index, x is the in-
stance, and w is the witness. The indexed language induced by R is
L(R) := {(i,x) : ∃w, (i,x,w) ∈ R}.

A PIOP (Polynomial Interactive Oracle Proof) protocol [6] is an in-
teractive protocol in which a prover shows a verifier that (i,x) ∈ L(R).
The protocol may involve an indexer which preprocesses the index i and
sends helpful information to the prover and the verifier. Unlike ordinary
interactive protocols, the prover and the indexer in a PIOP protocol may
send polynomial oracles to the verifier. Furthermore, the prover messages
are restricted to polynomial oracles. A polynomial oracle is an idealized
functionality that encapsulates a polynomial, say f(X). The verifier can
query any z ∈ F to the oracle and receive f(z) as the reply. We denote
the polynomial oracle for f(X) by [f(X)].

We focus on public-coin protocols where the verifier messages are all
fresh uniformly random strings.
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Definition 1 (Public-Coin Preprocessing PIOP). An preprocess-
ing PIOP protocol with degree bound d for an indexed relation R is a
protocol consisting of three PPT algorithms (I,P,V). The input to this
protocol is a tuple (i,x,w). The indexer I takes as input i and out-
puts iP , iV and a list of polynomials f (1)(X), · · · , f (m)(X) ∈ Fd[X].
The prover P takes as input iP ,x,w, and the verifier V takes as in-
put iV ,x. Then P and V proceed in r rounds. In the i-th round, V may
send to P uniformly random strings obtained by tossing a public coin,
and P produces a polynomial f (m+i)(X) of degree at most d. After the
last round, V produces the query points {(zi,1, · · · , zi,ni)}m+r

i=1 , and re-
ceives {(yi,1, · · · , yi,ni)}m+r

i=1 := {(f (i)(zi,1), · · · , f (i)(yi,ni))}m+r
i=1 . Finally,

V outputs b ∈ {0, 1}, which is regarded as the output of the entire pro-
tocol on input (i,x,w), denoted by b ← 〈I,P,V〉(i,x,w). The tran-
script of the PIOP protocol consists of all the verifier messages, all
the evaluation points {(zi1, · · · , zini)}m+r

i=1 , and all the evaluation results
{(yi1, · · · , yini)}m+r

i=1 . The transcript is denoted by tr〈I,P,V〉(i,x,w).
A PIOP protocol may have the following properties:

– It has completeness error εc (or perfect completeness for εc = 0) if for
any (i,x,w) ∈ R, we have

Pr [b = 0 | b← 〈I,P,V〉(i,x,w)] ≤ εc.

– It has soundness error εs (or perfect soundness for εs = 0) if for any
(i,x) 6∈ L(R), and any unbounded algorithm P∗, we have

Pr [b = 1 | b← 〈I,P∗,V〉(i,x,⊥)] ≤ εs.

The probabilities are over the randomnesses of the prover and the public
coin tossed by the verifier.

The notion zero-knowledge (ZK) requires that any verifier cannot ac-
quire any information by interacting with the honest prover. This security
is formally defined by a simulator which, without learning the witness,
outputs the transcript whose distribution is indistinguishable from that of
a real execution of the protocol. In this paper, we focus on honest-verifier
statistical zero-knowledge, which only requires that the simulator exists
for the honest verifier. This version of zero-knowledge suffices in the con-
text of public-coin protocols which can be transformed into zkSNARKs
via the Fiat-Shamir heuristic.

Definition 2 (Honest-Verifier Statistical Zero-Knowledge). The
Polynomial IOP (I,P,V) for the indexed relation R is statistical honest-
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verifier zero-knowledge if for any (i,x,w) ∈ R there exists a PPT algo-
rithm S such that the statistical distance between the distributions of the
following two random variables is bounded by a negligible value ε:

tr← tr〈I,P,V〉(i,x,w) and tr′ ← S(i,x)

where the distributions are over the randomnesses of the prover, the public
coin, and the randomnesses of the simulator. We call S the simulator that
simulates the transcript of this protocol with statistical distance ε.

3 Vector Oracle Model

We propose the Vector Oracle model where the verifier has oracle access
to functionalities for checking the Hadamard- and inner-product relations
between vectors. A protocol in the Vector Oracle model involves two
parties, namely the prover and the verifier, together with a vector oracle
OV that, intuitively, provides the following functionalities:

– OV maintains a set of vectors V , each vector has size at most n.
– The prover may submit to OV arbitrary vectors of size at most n,

and OV stores these vectors in V .
– The verifier may also submit to OV vectors of size at most n, and OV

stores these vectors in V . However, the verifier vectors are limited to
the following types:
• sparse vector, i.e., the number of nonzero entries is O(1);
• power vector, i.e., of the form αn = (1, α, · · · , αn−1) for α ∈ F;
• a vector obtained by applying a constant number of operations to

the vectors in V , where the operations may include vector addi-
tion, scalar multiplication, right shifting, and concatenation.

– The verifier may ask OV to check Hadamard relations of the form
a ◦ b = c ◦ d, or inner product relations of the form a · b = c · d, for
arbitrary (a, b, c,d) ∈ V 4.

A Vector Oracle protocol is similar to an interactive protocol, with the
following exceptions: (1) the prover does not send messages to the verifier
directly but submits vectors to OV instead; (2) beside sending messages
to the prover, the verifier may submit vectors to OV , and query OV to
check Hadamard- or inner-product relations; and (3) the output of this
protocol is not decided by the verifier. Instead, the protocol outputs 1 if
all the Hadamard- and inner-product checks are satisfied, and 0 otherwise.

Before we present a formalization of the Vector Oracle model, we
introduce the notion structured vectors, which intuitively refer to vectors
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with succinct representations. This notion covers both sparse vectors and
power vectors. Formally, a vector v is structured if fv(X) can be evaluated
by a few field operations.

Definition 3 (Structured Polynomials and Vectors). A polynomial
f(X) is structured if there exists an arithmetic circuit C over F that
computes f(X), where |C| = O(log(deg(f(X)))). A vector v ∈ Fn is
structured if fv(X) is structured.

In particular, the power vector γn is structured since the value of
fγn(X) can be efficiently evaluated by computing (γX)n−1

γX−1 for X 6= 1/γ,
or n for X = 1/γ. A sparse vector with a constant number of nonzero
entries is also structured.

We observe that applying addition, scaling, and shifting operations
to a vector v is equivalent to multiplying the polynomial fv(X) by a
sparse (thus structured) polynomial. This observation allows us to unify
all the verifier submissions into a single type of query. Specifically, let v
and v′ be two vectors stored in V , the verifier may specify two structured
polynomials ψ(X) and ψ′(X), and submit to OV the coefficient vector of
fv(X) · ψ(X) + fv′(X) · ψ′(X). This query covers all the needed vector
operations. Furthermore, the verifier may submit arbitrary structured
vectors to OV by letting v = 11 and ψ′(X) = 0.

We focus on public-coin protocols where the verifier messages are uni-
formly random. Formally, we define the verifier as a deterministic algo-
rithm and let the verifier messages be read from a random tape shared
by both parties.

Definition 4 (Public-Coin Preprocessing Vector Oracle Proto-
col). A Vector Oracle protocol for an indexed relation R is a tuple
(I,P,V), where P is a probabilistic polynomial-time machine, I and V are
two deterministic polynomial-time machines. Let R be a random tape con-
sisting of uniformly random bits.

Syntax. For any (i,x,w), this protocol decides whether (i,x,w) ∈ R
as follows. First, I takes input i and outputs vectors v1, · · · ,vm, together
with some helping information iP and iV for P and V respectively, where
iV can be computed from iP . Let r > 0, ni ∈ [n], ki ≥ 0 for i ∈ [r]. Let
the initial state of P be st0 := (iP ,x,w). Then, for i from 1 to r:

– Read a uniformly random string ωi ∈ {0, 1}ki from the tape R;
– P computes (vi+m, sti)← P(sti−1, ωi) where vi+m ∈ Fni.

Next, V computes (A,H,Q)← V(iV , ω1, · · · , ωr) where
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– A = {(`i, ψi(X), `′i, ψ
′
i(X))}si=1 are the Add queries, where `i, `

′
i ∈ [m+

r + i− 1] ∪ {⊥} and ψi(X), ψ′i(X) ∈ F[X] are structured polynomials
such that deg(ψi(X)) + |v`i | ≤ n and deg(ψ′i(X)) + |v`′i | ≤ n, where

v⊥ is defined to be 11;
– H = {hij}i∈[tH ],j∈[4] ∈ [m+ r + s]tH×4 are the Hadamard queries;
– I = {qij}i∈[tI ],j∈[4] ∈ [m+ r + s]tI×4 are the InnerProduct queries.

For i ∈ [s], let vm+r+i be the coefficient vector of ψi(X) ·fv`i (X)+ψ′i(X) ·
fv`′

i
(X) of size max{deg(ψi(X)) + |v`i |,deg(ψ′i(X)) + |v`′i |}.
Finally, the protocol outputs 1 if for every i ∈ [tH ], vhi1 ◦vhi2 = vhi3 ◦

vhi4, and for every i ∈ [tI ], vqi1 ·vqi2 = vqi3 ·vqi4. Otherwise, this protocol
outputs 0. The output of this protocol is denoted by 〈I,P,V〉(i,x,w), which
is a random variable whose distribution is over the randomness of P and
the random tape R.

Efficiency. We say this protocol uses m preprocessed vectors, r rounds
(or prover vectors), vector size bound n, s Add queries (or verifier vec-
tors), tH Hadamard queries, tI InnerProduct queries.

Security. The Vector Oracle protocol (I,P,V) verifies a relation R with
completeness error εc and soundness error εs, if for any (i,x,w) ∈ R,

Pr[〈I,P,V〉(i,x,w) = 0] ≤ εc

and for any (i,x) /∈ L(R) and any unbounded algorithm P∗,

Pr[〈I,P∗,V〉(i,x,⊥) = 1] ≤ εs.

The protocol has perfect completeness (soundness) if εc = 0 (εs = 0).

We do not define zero-knowledge for Vector Oracle protocols, as the
syntax has already guaranteed that the verifier learns nothing except
the validity of (i,x). However, to compile a Vector Oracle protocol to
a zero-knowledge PIOP protocol, we need the protocol to have q-wise
independence as in Definition 5.

Definition 5 (q-wise Independence). Let (I,P,V) be an r-round Vec-
tor Oracle protocol that uses m preprocessed vectors and r prover vectors
vm+1, vm+2, · · · , vm+r. This protocol is said to be q-wise independent,
if for any i,x ∈ L(R) and public coin randomnesses ω1, · · · , ωr, and for
each i ∈ [m+ 1..m+ r], vi either:

– contains at least q independent uniformly random elements over F; or
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– is deterministically and efficiently computable from the public infor-
mation, namely i, x and ω1, · · · , ωr.

The distribution is over the random coins of P.

Theorem 1 presents a compiler from Vector Oracle protocols to PIOP
protocols. If the Vector Oracle protocol is q-wise independent for q ≥ 3,
then the resulting PIOP protocol is honest-verifier zero-knowledge.

Theorem 1. Let the preprocessing Vector Oracle protocol (VO.I, VO.P,
VO.V) verify the relation R with vector size bound n, m preprocessed
vectors, r rounds, s Add queries, tH Hadamard queries, tI InnerProduct
queries, completeness error εc, and soundness error εs. There exists a
preprocessing PIOP protocol (I,P,V) that verifies R with completeness
error εc and soundness error εs + 2n·r+3n+tH+tI−2

|F|−1 . This PIOP protocol

has m preprocessed polynomial oracles, r + 1 rounds (online polynomial
oracles), degree bound 2n−1, and at most 3(m+r)+2 evaluation queries
at 4 distinct evaluation points.

The protocol (I,P,V) is honest-verifier zero-knowledge if the Vector
Oracle protocol (VO.I, VO.P, VO.V) is q-wise independent for q ≥ 3.
Specifically, there exists a PPT algorithm S that simulates the transcript
of 〈I,P,V〉(i,x,w) with statistical distance 4

|F|−1 for any (i,x,w) ∈ R.
If either tH = 0, i.e., the Vector Oracle protocol does not use any

Hadamard queries, or alternatively tI = 0, i.e., not any InnerProduct
queries, the honest-verifier zero-knowledge is achieved with q ≥ 2 and
statistical distance 2

|F|−1 , and the protocol uses at most 2(m+ r) + 2 eval-
uation queries at 3 distinct evaluation points.

We provide a proof sketch as an overview of how this Vector Oracle com-
piler works and leave the complete proof in Appendix A due to the space
limit. One of the key insights of the proof is inspired by (and modifies)
the batched InnerProduct protocol of Claymore [20].

Proof (Sketch). We construct a PIOP protocol (I,P,V) that verifies, with
degree bound 2n−1, the same relationR, and show that this PIOP proto-
col has the desired properties. The PIOP protocol works in the same way
as (VO.I,VO.P,VO.V) except that we replace the vectors with the corre-
sponding polynomials. More specifically, for every vector vi submitted to
OV by either VO.I or VO.P, in the PIOP protocol I or P correspondingly
sends the polynomial oracle [fvi(X)] to V.

When VO.V submits a vector by an Add query (`i, ψi(X), `′i, ψ
′
i(X)), V

simulates the corresponding polynomial oracle [fvm+r+i(X)] by querying
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[fv`i (X)] and [fv′`i
(X)] and evaluating ψi(X) · fv`i (X) + ψ′i(X) · fv′`i (X)

locally. Recall that ψ(X) and ψ′(X) are structured polynomials, therefore
V can evaluate them efficiently.

As a result, V has oracle access to all the polynomials fvi(X) for
i ∈ [m + r + s]. To implement the restriction on the vector sizes, the
Hadamard queries, and the InnerProduct queries, V needs to check the
following types of statements:

– The prover polynomials have the expected degrees. To show
that deg(fvm+i(X)) < ni, P sends the polynomial h(X) = X2n−ni ·
fvm+i(X) to V. The degree bound of the PIOP model guarantees
that P only send polynomials of degree less than 2n, thus ensuring
deg(fvi(X)) < ni.

– The Hadamard relations. To check that vi ◦ vj = vk ◦ v`, V sends
a uniformly random α ∈ F∗ to P, and P replies with a polynomial
h(X) = Xn−1 · (fvi(αX−1) · fvj (X)− fvk(αX−1) · fv`(X)). Note that
if vi ◦ vj 6= vk ◦ v` then the coefficient for Xn−1 in h(X) is nonzero
with overwhelming probability for uniformly random α.

– The inner product relations. To check that vi · vj = vk · v`, P
sends h(X) = Xn−1 · (fvi(X−1) · fvj (X) − fvk(X−1) · fv`(X)) to V.
Note that vi · vj = vk · v` if and only if the coefficient for Xn−1 in
h(X) is zero.

Therefore, P needs to send r + tH + tI polynomial oracles to V, denoted
by {[hi(X)]}r+tH+tI

i=1 respectively, and show that for all i ∈ [r + tH + tI ],
hi(X) is computed as specified above, and for all i ∈ [r + 1..r + tH + tI ],
the coefficient for Xn−1 in hi(X) is zero.

The key insight to boost the efficiency of the compiled PIOP pro-
tocol is to batch all these checks together. Specifically, V sends a ran-
dom β ∈ F∗ to P. Instead of sending the bunch of hi(X), P computes
h(X) :=

∑r+tH+tI
i=1 βi−1hi(X) and sends [h(X)] to V. V checks that [h(X)]

is computed as expected by querying [h(X)] at a random point z, and
compares the response with the result of evaluating h(z) locally using α, β
and querying the polynomial oracles [fvi(X)]. After validating [h(X)], V
is convinced that for i ∈ [r], deg(hi(X)) is bounded by 2n− 1, because if
not, deg(h(X)) will be at least 2n with overwhelming probability.

It remains to show that for all i ∈ [r + 1..r + tH + tI ], the coefficient
for Xn−1 in hi(X) is zero. Since ni ≤ n for i ∈ [r], the coefficient for
Xn−1 in hi(X) := X2n−ni · fvm+i(X) are already guaranteed to be zero.
Therefore, it suffices for V to check that the coefficient of Xn−1 in h(X)

12



is zero, which fails with overwhelming probability if any hi(X) does not
satisfy the condition.

To show that h(X) has a zero Xn−1 term, P does not send h(X) to
V directly, but instead sends a polynomial h̄(X) to V such that h(X) =
h̄(γ · X) − γn−1 · h̄(X) where γ is an element with multiplicative order
larger than 2n. Note that such h̄(X) exists if and only if the coefficient
for Xn−1 in h(X) is zero. Now V checks h(X) is computed as expected
as before, but by querying [h̄(X)] and computing h̄(γ ·X)− γn−1 · h̄(X)
instead of directly querying [h(X)].

We have completed the description of the PIOP protocol. We refer to
Appendix A for the strict security proof of this above protocol. Here we
give an intuitive explanation for why it is honest-verifier zero-knowledge.
Note that in the PIOP protocol, every polynomial fvm+i(X) is queried
at most three times at z, z−1 and αz−1 respectively, and the q ≥ 3 in-
dependent and uniform coefficients in vi suffice to randomize the query
responses, and the simulator samples them uniformly over F. For the two
queries to h̄(X) at γ · z and z, the simulator may sample h̄(z) uniformly
over F, and computes h̄(γ · z) as h(z) + γn−1 · h̄(z), where h(z) is eval-
uated according to the definition of h(X) and using the sampled query
responses from fvm+i(X). The uniformity of h̄(z) follows from the fact
that P may set the coefficient for Xn−1 in h̄(X) arbitrarily without af-
fecting the identity h(X) = h̄(γ ·X)−γn−1 · h̄(X). Setting this coefficient
to a uniformly random element over F justifies the uniformity of h̄(z).

We conclude with the efficiency of the PIOP protocol. The protocol
uses m preprocessed and r+1 online polynomial oracles, i.e., [fvi(X)] for
i ∈ [1..m + r] and [h̄(X)]. Each [fvi(X)] is queried at most three times
and [h̄(X)] is queried twice, so the total number of evaluation queries
is at most 3(r + m) + 2, at four distinct points, i.e., z, αz−1, z−1, γ · z.
If Hadamard (or InnerProduct) query is never issued is the Vector Oracle
protocol, the evaluation queries at αz−1 (or z−1) will be unnecessary, and
we are left with 2(r +m) + 2 evaluation queries at three distinct points.

ut

We remark that the number of evaluation queries in Theorem 1 is only
a worst-case upper bound, assuming that every prover vector depends on
the witness and is involved in all the Hadamard or InnerProduct queries.
In practice, this number can be much smaller. We reduce the evaluation
queries in our protocols by several optimizations introduced in Section 6.

Theorem 2 shows that PIOP protocols (not necessarily zero-knowledge)
can also be compiled to q-wise independent Vector Oracle protocols. This
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implies that the Vector Oracle protocols are sufficiently expressive to cap-
ture the same relations as PIOP protocols.

Theorem 2. Let the preprocessing PIOP protocol (PIOP.I, PIOP.P, PIOP.V)
verify the relation R with m preprocessed polynomial oracles, r rounds,
polynomial degree bound n, s evaluation queries, completeness error εc,
and soundness error εs. Assume that the PIOP.V is computed by an arith-
metic circuit of size V . For any q ≥ 0, there exists a q-wise independent
Vector Oracle protocol (I,P,V) that verifies R with r + 2 rounds (prover
vectors), m preprocessed vectors, s InnerProduct queries, 4 Hadamard queries,
completeness error εc +O((q + V )/|F|) and soundness error εc +O((q +
V )/|F|).

We leave the proof of Theorem 2 in Appendix B.

4 Verify Permutations and Sparse Linear Algebra

Now we present building blocks for the Vector Oracle protocols verifying
the circuit-based constraint systems in the next section. These building
blocks function as part of a complete protocol and are refered to as subpro-
tocols. The subprotocols do not strictly follow the syntax of Definition 4,
as they are designed to prove certain relationships between vectors already
stored in the vector set V maintained by the vector oracle. However, the
definition of completeness, soundness, and q-wise independence still apply
to the subprotocols, by viewing all the executions before this subprotocol
as the preprocessing procedure, the indices of the input vectors in V as
the instance, and the concrete values of the input vectors as the witness.

At the core of these subprotocols is the Permute subprotocol, which
checks two vectors are reordering of each other. The Permute subprotocol
is partially inspired by the shuffle argument of Bayer, et al. [21]. The same
insights also appear in the permutation check of PLONK [3] and the signa-
ture of correct computation by Sonic [5]. Permute leads to the CopyCheck
subprotocol which checks particular elements in a vector are identical to
each other. Based on CopyCheck, we develop the SparseMVP subprotocol
for checking sparse matrix vector multiplications. Due to the space limit,
we leave the proofs for all lemmas and theorems in Appendix C.

We start with a formal definition of the (batched) permutation.

Definition 6 (Permutation). We say a bijection σ : [n] → [n] is a
permutation over [n] and denote the set of all permutations over [n] by
Σ([n]). The permutation of v ∈ Fn by σ is σ(v) := (v[σ(i)])

n
i=1, and the

14



batched permutation of the matrix V = (v1, · · · ,vm) ∈ Fn×m by σ is
σ(V ) := (σ(v1), · · · , σ(vm)).

The following lemma characterizes the insights behind the Permute
protocol.

Lemma 1. Let A = (a1, · · · ,am),B = (b1, · · · , bm) ∈ Fn×m. If A and
B are not batched permutations of each other, then for uniformly random
α0, α1, · · · , αm ∈ F, the probability that

n∏
i=1

α0 +

m∑
j=1

αjaj [i]

 =

n∏
i=1

α0 +

m∑
j=1

αjbj [i]


is bounded by n

|F| .

Before we apply Lemma 1 to construct the Permute protocol, we first
introduce a tool to check that the product of elements in vector a is the
same as the product of elements in vector b.

4.1 Product Equality

Given inputs a and b of size m and n respectively, the ProductEq protocol
checks that

∏`
i=1 a[i] =

∏`
i=1 b[i] for some ` ≤ min{m,n}. This protocol

assumes that a and b contain no zero in their first ` elements.
The prover computes and submits the vector r to OV given by:

r := (r[i])
`
i=1 where r[i] :=

i∏
j=1

a[j]

b[j]
.

The verifier checks that: 1) the vector r is indeed computed by the above
equation; 2) r[`] = 1 which is equivalent to

∏`
i=1 a[i] =

∏`
i=1 b[i].

The first condition is equivalent to the following identities:

1 · a[1] = r[1] · b[1], r[1] · a[2] = r[2] · b[2], · · · r[`−1] · a[`] = r[`] · b[`].

The verifier appends a dummy identity (r[`] − 1) · a[`+1] = 0 · b[`+1] to
these identities and summarize them in the Hadamard query

((1‖r)− (0`‖1)) ◦ a = r ◦ b. (1)

The verifier checks the second condition, i.e., r[`] = 1, by another
Hadamard query

(r − (0`−1‖1)) ◦ (0`−1‖1) = 0 (2)
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Recall that we require the protocols to have q-wise independence,
which means every prover vector contains q uniformly random elements.

Therefore, the prover uniformly samples the randomizer δ
$← Fq and

appends δ to r. Note that the identity (2) is not affected by appending δ.
To avoid breaking the identity (1), the prover pads max{m,n} − ` zeros
to r before appending δ to it.

This protocol is formalized in Algorithm 1. For clarity and conve-
nience, we do not bother to formalize the protocol in rounds or expand
the verifier queries explicitly.

Algorithm 1 ProductEq Protocol
Input: a ∈ Fm, b ∈ Fn, ` ∈ [min{m,n}] where a[i], b[i] 6= 0 for any i ∈ [`]

Check:
∏`
i=1 a[i] =

∏`
i=1 b[i]

1: P samples δ
$← Fq;

2: P computes r =
(∏i

j=1(a[j]/b[j])
)`
i=1
‖0max{m,n}−`‖δ;

3: P submits r of size max{m,n}+ q to OV ;
4: V queries OV to check that ((1‖r)− (0`‖1)) ◦ a = r ◦ b;
5: V queries OV to check that (r − (0`−1‖1)) ◦ (0`−1‖1) = 0.

Theorem 3. The ProductEq protocol in Algorithm 1 is perfectly com-
plete, perfectly sound, and q-wise independent.

4.2 Batched Permutation

Given input vectors {a(i)}mi=1, {b
(i)}mi=1 and an integer ` where ` ≤ |a(i)|

and ` ≤ |b(i)| for every i ∈ [m], the subprotocol Permute checks that the

matrices A = (a
(1)
[1..`], · · · ,a

(m)
[1..`]) and B = (b

(1)
[1..`], · · · , b

(m)
[1..`]) are batched

permutations of each other.

The verifier uniformly samples α0, α1, · · · , αm
$← F and sends them

to the prover. Let a = α0 ·1`+
∑m

i=1 αi ·a(i) and b = α0 ·1`+
∑m

i=1 αi ·b
(i).

By Lemma 1, if A and B are indeed batched permutations of each other,
then we have

∏`
i=1 a[i] =

∏`
i=1 b[i]. Otherwise, the identity holds with

negligible probability. With an overwhelming probability, a and b do not
contain any zeros in their first ` elements. Therefore, it suffices that the
prover and the verifier run the ProductEq protocol on inputs a, b and `.
This protocol is formalized in Algorithm 2.
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Algorithm 2 Permute Protocol

Input: {a(i)}mi=1, {b(i)}mi=1 ∈ Fn, ` ≤ n
Check: There exists σ ∈ Σ([`]) such that a

(i)

[1..`] = σ(b
(i)

[1..`]) for every i ∈ [m].

1: V samples α0, α1, · · · , αm
$← F∗ and sends α0, α1, · · · , αm to P;

2: V submits a = α0 · 1 +
∑m
i=1 αi · a

(i) of size n;

3: V submits b = α0 · 1 +
∑m
i=1 αi · b

(i) of size n;
4: P and V run the protocol ProductEq with inputs a, b, `.

Theorem 4. The Permute protocol in Algorithm 2 has completeness er-
ror `

|F| (or has perfect completeness in the case of ProductEq), soundness

error 2`
|F|−1 (or `

|F|−1 in the case of ProductEq), and q-wise independence.

4.3 Copy Check

The above Permute protocol allows us to check that some elements in a
vector are identical. Formally,

Definition 7 (Copy Condition). Let n be an integer, Π = {S1, · · · , St}
be a partition over [n]. We say v ∈ Fn satisfies the copy condition un-
der partition Π, if Π partitions v into groups of identical elements, i.e.,
for any k ∈ [t] and i, j ∈ Sk, v[i] = v[j].

Given a partition Π over [n], the subprotocol CopyCheck verifies that
the input vector v ∈ Fn satisfies the copy condition of Π. First, the
indexer finds a permutation σ over [n] such that for any i 6= j ∈ [n], i
and j are partitioned in the same group of Π if and only if σt(i) = j for
some t ∈ Z. In another word, the cycles of σ induces a partition, denoted
by Πσ, that is the same as Π. By the group theory, such σ exist for every
partition and can be found in O(n) time.

The indexer applies σ to an identity vector whose elements are dif-
ferent from each other, e.g., the power vector γn = (1, γ, · · · , γn−1) for
some generator γ of the multiplicative group F∗. Let the permuted vector
be σ := (γσ(i)−1)ni=1. The indexer submits σ to OV .

Next, the prover and the verifier execute the Permute protocol to check
that {v,γn} and {v,σ} are batched permutations of each other, which
is equivalent to σ(v) = v. Therefore, for any i 6= j ∈ [n] partitioned in
the same group of Π, σk(i) = j implies v[i] = v[σ(i)] = · · · = v[σk(i)] =
v[j], and v satisfies the copy condition of Π. This is formalized as the
CopyCheck protocol in Algorithm 3.

Theorem 5. The CopyCheck protocol in Algorithm 3 has completeness
error `

|F| , soundness error 2`
|F|−1 , and q-wise independence.
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Algorithm 3 CopyCheck Protocol

Index: ` ∈ Z+ and a partition Π over [`]
Input: v ∈ Fn with n ≥ `
Check: v[1..`] satisfies the copy condition of Π.
Preprocessing:

1: I finds σ ∈ Σ([`]) such that Πσ = Π;
2: Let γ be a generator of the multiplicative group F∗;
3: I computes σ = (γσ(i)−1)`i=1;
4: I sends σ, ` to P, sends γ, ` to V, and submits σ of size ` to OV .

Online:

1: V submits γ = (γi−1)`i=1 of size `;
2: P and V run the protocol Permute with inputs {v,γ}, {v,σ}, `.

4.4 Sparse Matrix Vector Product

Finally, we develop a protocol that verifies the matrix-vector product
for sparse matrices. Formally, let M ∈ Fm×n be a sparse matrix that
contains at most ` nonzero elements. Given the input vectors a ∈ Fn and
b ∈ Fm, the protocol SparseMVP checks that Ma = b. We first explain
the insights behind this protocol.

Random Linear Combination. For uniformly random α
$← F∗, if we

have (αm)TMa = αm · b, which is equivalent to fMa(α) = fb(α), we are
confident thatMa = b due to the Schwartz-Zippel lemma. Therefore, the
verifier sends a uniformly random α to the prover, the prover computes
c = (αm)TM and submits c to OV , and the verifier checks that c · a =
αm · b. If c is indeed computed as expected, the verifier is convinced that
Ma = b.

It remains to show that c is indeed (αm)TM . By applying the idea
of random linear combination again, the verifier sends another random

element β
$← F∗ to the prover. If c · βn = (αm)TMβn, by applying the

Schwartz-Zippel lemma again, the verifier is confident that c = (αm)TM .

Therefore, the problem boils down to showing that (αm)TMβn is
equal to the inner product c · βn.

Sparse Representation of Matrix. Since the matrix M has only `
nonzero entries, we represent M by the row indices (row1, · · · , row`) ∈
[m]`, the column indices (col1, · · · , col`) ∈ [n]` and the nonzero entries
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v ∈ F`, such that for each i ∈ [`], M [rowi,coli] = v[i]. Note that

(αm)TMβn =

m,n∑
i,j=1

M [i,j] · αi · βj =
∑
i∈[`]

αrowi · βcoli · v[i].

This value can be viewed as the inner product between v and (αrowi ·
βcoli)`i=1. The latter is the Hadamard product of (αrowi)`i=1 and (βcoli)`i=1.
The vector v, depending only on the matrix, is submitted by the indexer.
The prover submits the other two vectors. Specifically, the prover com-
putes r = (αrowi)`i=1, s = (βcoli)`i=1 and t = s ◦ t, and submits them to
OV . The verifier checks that t = r ◦ s and t · v = c · βn.

It remains to show that r and s are indeed the expected vectors.

Copy Check. To check that r = (αrowi)`i=1, the verifier concatenates r
with αm to obtain u = r‖αm ∈ F`+m, and asks the prover to show that
u[i] = u[`+rowi] for every i ∈ [`]. This is exactly checking that u satisfies
the copy condition for the partition Π = {Si = {j : j ∈ [`], rowj =
i} ∪ {`+ i}}i∈[m] over [`+m]. This partition depends only on the public
matrix M , so the indexer may preprocess it as in the CopyCheck protocol.

Combine Two Copy Checks. The vector s can be verified in exactly
the same way as r. However, we may combine these two copy checks into
a single one. In more detail, let u = r‖s‖αm‖βn and the partition be

Π = {{j : j ∈ [`], rowj = i} ∪ {2`+ i}}i∈[m] ∪
{{j + ` : j ∈ [`], colj = i} ∪ {2`+m+ i}}i∈[n].

Then u satisfying the copy condition of Π implies that r = (αrowi)`i=1

and s = (βcoli)`i=1.
As another optimization, the prover combines r and s into w = r‖s

and submits w instead of the original two vectors. The condition that
r ◦ s = t is instead checked by 0`‖t = w ◦ (0`‖w).

The above insights are formalized as the SparseMVP protocol in Algo-
rithm 4. The formal presentation restricts the matrix-vector product to
the prefixes of a and b to allow them to contain randomizers. Note that
the vectors c, r, s, t are not randomized because they depend only on the
public information M and α, β.

Theorem 6. The SparseMVP protocol in Algorithm 4 has completeness
error 2`+m+n

|F| , soundness error 3n+3m+4`
|F|−1 , and q-wise independence.
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Algorithm 4 SparseMVP Protocol

Index: a sparse representation of a matrix M ∈ Fm×n: {rowi, coli}`i=1 and v ∈ F`

Input: a ∈ Fn
′
, b ∈ Fm

′
where n′ ≥ n,m′ ≥ m

Check: Ma[1..n] = b[1..m]

Preprocessing:

1: I invokes CopyCheck.I with input 2`+m+ n and

Π = {Si = {j : j ∈ [`], rowj = i} ∪ {2`+ i}}i∈[m] ∪
{Si = {j + ` : j ∈ [`], colj = i} ∪ {2`+m+ i}}i∈[n].

2: I sends m,n, `,v to P, and m,n, ` to V, and submits v of size ` to OV .

Online:

1: V samples α
$← F∗ and sends α to P;

2: P computes c = (αm)TM and submits c of size n to OV ;
3: V queries OV to check that c · a = αm · b;
4: V samples β

$← F∗ and sends β to P;

5: P computes w = (αrowi)`i=1 ‖
(
βcoli

)`
i=1

, t = w[1..`] ◦w[`+1..2`];

6: P submits w of size 2` and t of size ` to OV ;
7: P and V run the protocol CopyCheck with inputs w‖αm‖βn and index Π;
8: V queries OV to check that w ◦ (0`‖w) = 12` ◦ (0`‖t) and v · t = c · βn.

5 Vector Oracle Protocols for Constraint Systems

Now we apply the building blocks in the previous sections to construct
Vector Oracle protocols for verifying circuit-based constraint systems. We
focus on three influential indexed relations:

– The R1CS (Rank-1 Constrait System). The zkSNARKs targeting this
relation include Pinocchio [19], Groth16 [2], Aurora [10], Fractal [8],
Marlin [4], Spartan [9].

– The HPR (Hadamard Product Relation). This relation was first pro-
posed by Bootle, et al. [22]. The zkSNARKs for variations of this
relation include BulletProof [17], Sonic [5], Claymore [20]. A recent
lattice-based zkSNARK [23] also chooses this relation.

– The PLONK relation for fan-in-2 circuits. This relation is used solely
in the PLONK [3] scheme. We propose a Vector Oracle protocol for
a modified version of the PLONK relation, which we call POV (Per-
mutations for Oecumenical Vector-oracle) following the same naming
strategy of PLONK.

5.1 Vector Oracle Protocols for R1CS and HPR

We first present the Vector Oracle protocols for verifying the R1CS and
the HPR relations defined in Equation (3) and (4). Since these relations
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involve only the Matrix-vector product and the Hadamard product, their
verifying protocols are straightforward compositions of the SparseMVP
subprotocol and Hadamard queries. Note that the matrices in these re-
lations are usually sparse in practice. However, our protocol also works
even if they are dense.

RR1CS =



(
m,n, `
A,B,C

)
,

x,
w


∣∣∣∣∣∣∣∣
A,B,C ∈ Fm×n
x ∈ F`,w ∈ Fn−`−1
(A(1‖z)) ◦ (B(1‖z)) = C(1‖z)

where z = x‖w

 (3)

RHPR =



(

m,n, `
A,B,C,d

)
,

x,
w1,w2,w3


∣∣∣∣∣∣∣∣∣∣
A,B,C ∈ Fm×n,d ∈ Fm
x ∈ F`,w1,w2,w3 ∈ Fn
w1 ◦w2 = w3

Aw1 +Bw2 +Cw3 + d
= x‖0m−`

 . (4)

R1CS. Given an index of the R1CS relation, the indexer concatenates
the matrices into M = (AT‖0n×q‖CT‖BT)T ∈ F(3m+q)×n and invokes

the indexer of SparseMVP with M . The prover samples δ1, δ2
$← Fq,

computes z = x‖w‖δ1 and y = (M(1‖z[1..n−1]))‖δ2, and submits w,y

to OV . Note that y is the concatenation of A(1‖z), 0q, C(1‖z), B(1‖z)
and δ2. As a result, the Hadamard relation required in R1CS becomes

y[1..m] ◦ y[2m+q+1..3m+q] = y[m+q+1..2m+q].

The verifier checks this relation by Hadamard-multiplying the shifted y
with itself. Formally

y ◦ (02m+q‖y) = (0m‖y) ◦ (02m+q‖1m).

The verifier then checks y[1..3m+q] = Mz[1..n−1] by the SparseMVP pro-
tocol. The above procedure is formalized in the VCProof/R1CS protocol
in Algorithm 5.

Theorem 7. The VCProof/R1CS protocol in Algorithm 5 is a VIOP pro-
tocol for the relation RR1CS with completeness error 2s+3m+n+q

|F| , sound-

ness error 4s+9m+3n+3q
|F|−1 , and q-wise independence.

HPR. Similarly, let M = (d‖A‖0n×q‖C‖B) ∈ Fm×(3n+q+1), and the

indexer preprocessed M as in SparseMVP. The prover samples δ
$← Fq
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Algorithm 5 VCProof/R1CS Protocol

Index: A,B,C ∈ Fm×n,m, n, ` where A,B,C have s nonzero entries in total
Input: x ∈ F`
Witness: w ∈ Fn−`−1

Check: (A(1‖x‖w)) ◦ (B(1‖x‖w)) = C(1‖x‖w)
Preprocessing:

1: I computes the sparse representation of M = (AT‖0n×q‖CT‖BT)T ∈ F(3m+q)×n of
length s and invokes SparseMVP.I with this representation.

Online:

1: P samples δ1
$← Fq;

2: P computes u = w‖δ1, y = (M(x‖w))‖δ2;
3: P submits u of size n− `+ q − 1 and y of size 3m+ 2q to OV ;
4: P and V run the protocol SparseMVP with inputs 1‖x‖u,y and with the sparse

representation of M as the index;
5: V queries OV to check that y ◦ (02m+q‖y) = (0m‖y) ◦ (02m+q‖1m).

and computes w = (w1‖δ‖w3‖w2). Then the HPR relation is equivalent
to M(1‖w) = x‖0m−` and w[1..n] ◦w[2n+q+1..3n+q] = w[n+q+1..2n+q]. The
first is checked by the SparseMVP protocol, and the second by

w ◦ (02n+q‖w) = (0n‖w) ◦ (02n+q‖1n).

The above procedure is formalized in the VCProof/HPR protocol in Al-
gorithm 6.

Algorithm 6 VCProof/HPR Protocol

Index: A,B,C ∈ Fm×n,d ∈ Fm,m, n, ` where A,B,C,d have s nonzero entries
Index: in total
Input: x ∈ F`
Witness: w1,w2,w3 ∈ Fn
Check: Aw1 +Bw2 +Cw3 + d = x‖0m−` and w1 ◦w2 = w3

Preprocessing:

1: I computes the sparse representation of M = (d‖A‖0n×q‖C‖B) ∈ Fm×(3n+q+1) of
length s and invokes SparseMVP.I with this representation

Online:

1: P samples δ
$← Fq;

2: P computes w = w1‖δ‖w3‖w2;
3: P submits w of size 3n+ q to OV ;
4: P and V run the protocol SparseMVP with inputs 1‖w,x‖0m−` and with the sparse

representation of M as the index;
5: V queries OV to check that w ◦ (02n+q‖w) = (0n‖w) ◦ (02n+q‖1n).
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Theorem 8. The VCProof/HPR protocol in Algorithm 6 is a VIOP pro-
tocol for the relation RHPR with completeness error 2s+m+3n+q+1

|F| , sound-

ness error 4s+3m+9n+3q+3
|F|−1 , and q-wise independence.

5.2 The POV Protocol

The PLONK circuit is dramatically different from the previous two con-
straint systems. We introduce the POV relation that optimizes the PLONK
relation for the Vector Oracle model, and refer interested readers to [3]
for the details of the original PLONK.

We start with an intuitive explanation of how does a POV relation
characterize the computations of a fan-in-two circuit. Let circuit C con-
tain n gates, including na addition gates and nm multiplication gates
where n = na + nm. Then this circuit C can be viewed as a set of con-
straints over the following variables:

– {xi}`i=1: public inputs and outputs;

– {ai}3nai=1: left and right inputs, and outputs of the addition gates;

– {mi}3nmi=1 : left and right inputs, and outputs of the multiplication gates;

– {zi}ki=1: the distinct constants involved in this circuit.

The circuit exerts the following types of constraints over these variables:

– addition constraint, i.e., ai+ai+na = ai+2na for i ∈ [na], corresponding
to the addition gates;

– multiplication constraint, i.e., mi · mi+nm = mi+2nm for i ∈ [nm],
corresponding to the multiplication gates;

– copy constraint, i.e., a collection of identities each requiring one vari-
able to equal another variable, corresponding to the wires.

We collect the variables involved in this circuit into four vectors: x ∈
F`,a ∈ F3na ,m ∈ F3nm and z ∈ Fk. Therefore, the addition constraint
becomes a[1..na] + a[na+1..2na] = a[2na+1..3na] and the multiplication con-
straint becomes m[1..nm] ◦m[nm+1..2nm] = m[2nm+1..3nm].

For the copy constraint, we concatenate all the above vectors into:

u = m[1..nm]‖0q‖a‖m[2nm+1..3nm]‖m[nm+1..2nm]‖x‖z

and let Π be the partition over [3n+k+`+q] such that any two variables
in u are connected by wire (directly or indirectly) if and only if they are in
the same partition of Π. Moreover, for i ∈ [nm+ 1..nm+ q], i.e., positions
corresponding to the q zeros, i is included in a single partition. Therefore,
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the copy constraint is equivalent to u satisfying the copy condition of Π.
The ordering of variables in u can be arbitrary, and we pick this particular
ordering to permit the shift-and-multiply technique in our protocol.

Formally,

RPOV :=




na, nm,k, `

Π,z


x,

(a,m)



∣∣∣∣∣∣∣∣∣∣∣∣∣∣

Π is a partition over [3n+ k + `+ q]
where n = na + nm
z ∈ Fk,a ∈ F3na ,m ∈ F3nm ,x ∈ F`
a[1..na] + a[na+1..2na] = a[2na+1..3na]

m[1..nm] ◦m[nm+1..2nm] = m[2nm+1..3nm]

m[1..nm]‖0q‖a‖m[2nm+1..3nm]‖m[nm+1..2nm]‖x‖z
satisfies the copy condition of Π


(5)

Now we explain the VCProof/POV protocol that verifies the above
relation. First, the indexer preprocesses Π as in the CopyCheck protocol.

Then the indexer submits z to OV . Next, the prover samples δ
$← Fq and

assembles the vector:

v = m[1..nm]‖δ‖a‖m[2nm+1..3nm]‖m[nm+1..2nm].

Here we replace the q zeros in v by δ, which does not affect v‖x‖z
satisfying the copy condition since Π places each of these q positions in
a distinct group.

If we right shift v by 3na + 2nm + q positions and multiply with
v itself, we are effectively multiplying m[1..nm] and m[nm+1..2nm]. Then
we check the multiplication constraints by comparing the result against
v[3na+nm+q+1..3na+2nm+q]. Formally, the multiplication constraints are equiv-
alent to

(03na+2nm+q‖v) ◦ v = (03na+2nm+q‖1nm) ◦ (0nm‖v).

By a similar technique, the verifier checks the addition constraints by

((02na‖v) + (0na‖v)− v) ◦ (0nm+2na+q‖1na) = 0.

Finally, the prover and the verifier execute the CopyCheck subprotocol
to check that u := v‖x‖z satisfies the copy condition of Π. The above
procedure is formalized in Algorithm 7.

Theorem 9. The VCProof/POV protocol in Algorithm 7 is a VIOP pro-
tocol that validates the relation RPOV with completeness error 3n+k+`

|F| ,

soundness error 2(3n+k+`)
|F|−1 , and q-wise independence.
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Algorithm 7 VCProof/POV Protocol

Index: z ∈ Fk, na, nm, `, k, and partition Π over [3n+k+`+q] where n = na+nm
Instance: x ∈ F`
Witness: a ∈ F3na ,m ∈ F3nm

Check: a[1..na] + a[na+1..2na] = a[2na+1..3na],
Check: m[1..nm] ◦m[nm+1..2nm] = m[2nm+1..3nm], and
Check: a‖m‖x‖z satisfies the copy condition of Π
Preprocessing:

1: I runs CopyCheck.I with index Π and 3n+m+ `+ q;
2: I submits z to OV , sends z, k, na, nm, ` to P, and k, na, nm, ` to V.

Online:

1: P samples δ1, δ2
$← Fq;

2: P computes v = m[1..nm]‖δ‖a‖m[2nm+1..3nm]‖m[nm+1..2nm];
3: P submits v of size 3n+ q to OV ;
4: V queries OV to check that (0nm+2na+q‖1na) ◦ ((02na‖v) + (0na‖v)− v) = 0;
5: V queries OV to check that (03na+2nm+q‖v) ◦ v = (03na+2nm+q‖1nm) ◦ (0nm‖v);
6: P and V run the protocol CopyCheck with inputs v‖x‖z and the index Π and

3n+ k + `+ q.

6 Efficiency Analysis

We compile the Vector Oracle protocols in the last section into PIOP
protocols and compare them with other PIOP-based works in the number
of polynomial oracles and evaluation queries. Then we transform these
protocols into zkSNARKs and compare them with concurrent works in
concrete efficiency. The comparison shows that the PIOP protocols and
zkSNARKs in our work have significant advantages, which are attributed
to various optimization techniques summarized below.

First, we extensively apply the vector concatenation technique to re-
duce the number of prover vectors, thus the number of polynomial com-
mitments in the ultimate zkSNARK. This technique is embodied in com-
bining the copy checks in SparseMVP protocol, and concatenating the wit-
ness vectors in VCProof/R1CS, VCProof/HPR and VCProof/POV. How-
ever, this technique also increases the maximal polynomial degrees, thus
undermining the proving efficiency.

Another significant optimization is inspired by a technique in PLONK
(attributed to Mary Maller in Section 4 of [3]) to reduce the number
of evaluation queries in the PIOP protocol. This optimization exploits
the fact that if the underlying polynomial commitment scheme is homo-
morphic, the verifier may linearly combine polynomial oracles into a new
oracle and query this oracle directly. See Appendix A.1 for more details
about this optimization. As a showcase, consider checking the identity
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f1(αX
−1) · g1(X) − f2(αX−1) · g2(X) = h(X). The verifier first queries

f1(X) and f2(X) with α · x−1 and receives y1 and y2, then computes the
polynomial oracle for y1 · g1(X)− y2 · g2(X)− h(X) and checks that this
polynomial evaluates to 0 at x. In this example, the optimization saves
2 queries compared to naively querying each of g1(X), g2(X) and h(X)
and linearly combining the responses.

The above technique inspires another optimization in the Vector Ora-
cle protocol level. Specifically, as a result of the polynomial merging, the
right operands in all the Hadamard and InnerProduct queries will never
be evaluated after compiled into a PIOP protocol. Therefore, we have
carefully ordered the operands in the Hadamard and InnerProduct queries
to place most of the prover vectors in the second operand, eliminating
more than half of the evaluation queries and a distinct query point.

6.1 Comparison

We first compare our work with other PIOP protocols. Table 1 shows
that the VCProof protocols have significant advantages in the number
of polynomial oracles and evaluations, whereas the maximal polynomial
degrees are almost doubled compared to Marlin and PLONK, which is
expected as the result of the vector concatenation technique.

Table 1. Comparison between the VCProof protocols and other PIOPs. M,N are the
numbers of rows and columns of the matrices in R1CS and HPR, C is the number
of gates, Ca is the number of addition gates, ` is the number of public input/output
values. Regarding Sonic, the total number of nonzero elements in each row of the three
matrices is bounded by m = 3. The columns are split if the matrix is too dense, and
the increase to the column number depends on the shape of the circuit, thus the big-O
notation.

relation protocol
# polynomials # evalua- # distinct # max
offline/online tions points degree

R1CS
Marlin [4] 9/12 18 3 6S + 6

VCProof/R1CS 2/8 6 3 6S + 3M +N + 7

HPR
Sonic [5] 6/16 16 4 O(N)

VCProof/HPR 2/7 6 3 6S +M + 3N + 7

Fan-in-2 PLONK [3] 8/7 7 2 3C
Circuit VCProof/POV 2/4 3 2 5C + Ca + 4

Next, we apply polynomial commitment schemes and the Fiat-Shamir
heuristic to compile the VCProof protocols into zkSNARKs. We only con-
sider polynomial commitment schemes that support homomorphic addi-
tion of commitments, in particular, the batched version of KZG [14] and
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DARK [6], to apply the aforementioned concrete-level optimization. For
reference, we present the KZG version of our zkSNARKs in Appendix D.
Table 2 is a summary of the proving costs, verification costs and proof sizes
of the KZG version of VCProof with other constant-verifier zkSNARKs.
See Appendix E for a more comprehensive comparison that includes the
DARK version of VCProof and more concurrent zkSNARKs.

Table 2. Concrete comparison of verifier costs and proof sizes between the constant-
verifier zkSNARKs. S is the number of matrix nonzero entries, N is the number of
matrix columns, C is the number of gates, Ca is the number of addition gates, and `
is the size of public input/output. For clarity, we neglected some small terms in the
numbers for G1/2-exp.

relation zkSNARK
proving cost verification cost proof size

G1/2-exp F-mul Pairings G1-exp G1/2 F

R1CS
Groth16 [2] 3S + 2N O(S log(S)) 3 ` 3 -
Marlin [4] 21S O(S log(S)) 2 - 13 21

VCProof/R1CS 48S + 29N O(S logS) 2 20 11 5

HPR
Sonic [5] 273N O(N log(N)) 13 - 20 16

VCProof/HPR 46S + 30N O(S log(S)) 2 19 10 5

Fan-in-2 PLONK1 [3] 11C O(Cm log(Cm)) 2 16 7 7
Circuit PLONK2 [3] 9C O(Cm log(Cm)) 2 18 9 7

VCProof/POV 27C + 3Ca O(C log(C)) 2 12 6 2

The proving cost is dominated by the group exponentiations and the
finite field operations in Fast-Fourier-Transforms (FFT). We only collect
enough information to compare the number of group exponentiations.
Although VCProof/HPR outperforms Sonic in this metric, the others in-
crease this number by a factor of approximately 2-3 compared to the
concurrent works, due to the doubled maximal polynomial degree. Re-
garding the verification cost, the VCProof/R1CS is slightly more expen-
sive than Marlin, while VCProof/POV outperforms PLONK. Compared to
Sonic, VCProof/HPR reduces the number of pairings, at the cost of 19
group exponentiations. Since the pairings are typically much more ex-
pensive than group exponentiations, the efficiency of VCProof/HPR is
considerably better. Finally, the proof sizes of the VCProof zkSNARKs
outperform the others in each relation (ignoring Groth16 which relies on
per-circuit setups). In particular, the KZG version of VCProof/POV sets
a new record of proof size with two field elements and six group elements.
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7 Conclusion

We introduced the Vector Oracle model that assisted us in construct-
ing zkSNARKs for various constraint systems. These zkSNARKs achieve
shorter proofs and faster verifications than the state of the art, thanks
to the techniques of vector concatenation and linear combination of poly-
nomial commitments. Although it is possible to construct our protocols
and to apply the optimizations directly in the language of PIOP, the sim-
plicity brought by the Vector Oracle model plays an indispensable role in
uncovering these constructions and optimizations.

The zkSNARKs proposed in this work prioritize shorter proofs and
lower verification costs over the proving efficiency. We choose this prior-
ity because in typical scenarios, in particular blockchains, the prover is
executed only once for each instance, while the proof is stored and veri-
fied a potentially infinite number of times. However, it is straightforward
to modify our protocols to prioritize the prover by splitting the vectors,
at the cost of several more group elements in the proof and more group
exponentiations in the verifier. This flexibility in choosing different trade-
offs is another benefit brought by the simplicity and high modularity of
VCProof.

Acknowledgement. We thank Alan Szepieniec for his valuable com-
ments both to the writing and the technical part of this paper.
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A Proof of Theorem 1

First, we introduce the Schwartz-Zippel lemma, which is used intensively
in all the proofs thereafter.

Lemma 2 (Schwartz-Zippel). For a u-variate polynomial f(X1, · · · , Xu)
of total degree d over F, let S be a finite subset of F and z1, · · · , zu be se-
lected at random independently and uniformly from S. Then

Pr[f(z1, · · · , zu) = 0] ≤ d

|S|
.

Now we present the proof of Theorem 1. We first construct the PIOP
protocol (I,P,V). Then we show that it has the claimed security and
efficiency.

Construct the PIOP Protocol. The algorithm I computes (v1, · · · ,
vm, iP , iV ) ← VO.I(i). Then I computes fvi(X) =

∑|vi|
j=1 vi[j]X

j−1 for
every i ∈ [m]. Finally, I sends iP to P, and sends iV to V together with
the polynomial oracles [fvi(X)] for every i ∈ [m].

The algorithms P and V work in the same way as VO.P and VO.V,
except that P produces polynomials instead of vectors. In more detail,
after receiving iP , P computes st0 = (iP ,x,w). Then for each i from 1 to
r:

– If ki > 0, samples ωi
$← {0, 1}ki uniformly randomly and sends them

to P;
– P computes (vm+i, sti) ← VO.P(sti−1, ωi), and produces the polyno-

mial fvm+i(X)←
∑ni

j=1 vm+i[j]X
j−1.

Next, V computes the queries (A,H,Q)← VO.V(iV , ω1, · · · , ωr). Re-
call that we required iV to be computable from iP , therefore P can also
produce (A,H,Q) by executing VO.V.

Let the queries beA = {(`i, ψi(X), `′i, ψ
′
i(X))}si=1,H = {hij}i∈[tH ],j∈[4],

and I = {qij}i∈[tI ],j∈[4], exactly as in Definition 4. For each i ∈ [s], P com-
putes fvm+r+i(X) = ψi(X) ·fv`i (X)+ψ′i(X) ·fv`′

i
(X). By the limit on the

degree of ψ(X) and ψ′(X), we have deg(fvm+r+i(X)) < n. Note that since
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ψi(X) and ψ′i(X) are structured, P can compute the polynomial multipli-
cations in O(n) time, i.e., by applying the vector operations represented
by ψ(X) and ψ′(X).

Now P and V check the Hadamard and inner product relations, i.e.,
vhi1 ◦ vhi2 = vhi3 ◦ vhi4 for i ∈ [tH ], and vqi1 · vqi2 = vqi3 · vqi4 for i ∈ [tI ].
P and V also check the degree of the prover polynomial fvm+i(X) is less
than ni for every i ∈ [r]. In more detail, P and V proceed as follows.

1. Let γ ∈ F∗ be a generator of the multiplication group F∗.
2. V samples α, β ← F∗ and sends α, β to P.

3. P computes

h(X) = Xn−1
∑
i∈[t1]

βi−1
(
fvhi1 (αX−1)fvhi2 (X)− fvhi3 (αX−1)fvhi4 (X)

)
+Xn−1

∑
i∈[t2]

βt1+i−1
(
fvqi1 (X−1)fvqi2 (X)− fvqi3 (X−1)fvqi4 (X)

)
+
∑
i∈[r]

βt1+t2+i−1X2n−ni · fvm+i(X) (6)

4. P samples δ
$← F and computes

h̄(X) =

2n−1∑
i=0

h̄iX
i where h̄i =

{
hi · (γi − γn−1)−1, i 6= n− 1
δ, i = n− 1

(7)

5. P sends the polynomial oracle [h̄(X)] to V. Now the interaction be-
tween P and V finishes. V completes the rest of the work.

6. V samples x
$← F∗ and let z = α · x−1.

7. For i ∈ [m+ r], V evaluates y
(1)
i = fvi(z) by querying [fvi(X)].

For i ∈ [s], V evaluates y
(1)
m+r+i = fvm+r+i(z) by computing ψi(z) ·

y
(1)
`i

+ ψ′i(z) · y
(1)
`′i

locally.

8. For i ∈ [m+ r], V evaluates y
(2)
i = fvi(x

−1) by querying [fvi(X)].

For i ∈ [s], V evaluates y
(2)
m+r+i = fvm+r+i(x

−1) by computing ψi(x
−1)·

y
(2)
`i

+ ψ′i(x
−1) · y(2)

`′i
locally.
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9. Let

g(X) = γn−1 · h̄(X) +
∑
i∈[t1]

xn−1 · βi−1
(
y
(1)
hi1
· fvhi2 (X)− y(1)hi3

· fvhi4 (X)
)

+
∑
i∈[t2]

xn−1 · βt1+i−1
(
y
(2)
hi1
· fvqi2 (X)− y(2)hi3

· fvqi4 (X)
)

+
∑
i∈[r]

x2n−ni · βt1+t2+i−1 · fvm+i(X). (8)

Note that g(x) = γn−1 · h̄(x) + h(x) because g(X) is simply replac-
ing part of h(X), i.e., the fvhi1 (α ·X−1), fvhi3 (α ·X−1), fvhi1 (X−1),

fvhi3 (X−1) and X2n−ni , by their evaluations at x.

10. For i ∈ [m+ r], V evaluates y
(3)
i = fvi(x) by querying [fvi(X)].

For i ∈ [s], V evaluates y
(3)
m+r+i = fvm+r+i(x) by computing ψi(x) ·

y
(3)
`i

+ ψ′i(x) · y(3)
`′i

locally.

11. V queries (x, γ · x) to [h̄(X)] and receives (h1, h2) respectively. Then
V computes

g = g(x) = γn−1 · h1 +
∑
i∈[t1]

xn−1 · βi−1
(
y
(1)
hi1
· y(3)hi2

− y(1)hi3
· y(3)hi4

)
+
∑
i∈[t2]

xn−1 · βt1+i−1
(
y
(2)
hi1
· y(3)qi2 − y

(2)
hi3
· y(3)qi4

)
+
∑
i∈[r]

x2n−ni · βt1+t2+i−1 · y(3)m+i (9)

If h2 = g, V outputs 1. Otherwise, V outputs 0.

Completeness and Soundness. We show that the above defined PIOP
protocol has the claimed completeness error and soundness error.

Consider the following sequence of statements:

(i,x) ∈ L(R) (10)

vhi1 ◦ vhi2 = vhi3 ◦ vhi4 ∀i ∈ [tH ] (11)

vqi1 · vqi2 = vqi3 · vqi4 ∀i ∈ [tI ] (12)

deg(fvm+i(X)) < ni ∀i ∈ [r] (13)

fvhi1◦vhi2 (α)− fvhi3◦vhi4 (α) = 0 for all i ∈ [t1] (14)
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The coefficient for Xn−1 in the following polynomial is zero ∀i ∈ [tH ]

Xn−1 · (fvhi1 (αX−1) · fvhi2 (X)− fvhi3 (αX−1) · fvhi4 (X)) (15)

The coefficient for Xn−1 in the following polynomial is zero ∀i ∈ [tI ]

Xn−1 · (fvqi1 (X−1) · fvqi2 (X)− fvqi3 (X−1) · fvqi4 (X)) (16)

deg(h(X)) ≤ 2n− 1 (17)

The coefficient for Xn−1 in h(X) is zero (18)

h̄i = hi · (γi − γd−1)−1 ∀i ∈ [0..2n− 2]\{n− 1} (19)

hi = h̄i · (γi − γn−1) ∀i ∈ [0..2n− 2] (20)

h(X) = h̄(γ ·X)− γn−1 · h̄(X) (21)

h̄(γ · x) = γn−1 · h̄(x) + h(x) (22)

h2 = g (23)

Completeness follows from the fact that (10)(13) and (19) hold when the
prover is honest, and the sequences of implications

– (10) ⇒ (11)(12) that follows the completeness of (VO.I,VO.P,VO.V)
and fails with probability at most εc;

– (11) ⇒ (14) ⇒ (15) where the second implication follows from the
fact that the constant term of

fvhi1 (αX−1) · fvhi2 (X)− fvhi3 (αX−1) · fvhi4 (X)

is
∑n

j=1(vhi1 [j] ·vhi2 [j]−vhi3 [j] ·vhi4 [j]) ·αj−1 which is exactly the left

hand side of (14);

– (12) ⇒ (16) that follows from the fact that the constant term of

fvqi1 (X−1) · fvqi2 (X)− fvqi3 (X−1) · fvqi4 (X)

is
∑n

j=1(vqi1 [j] · vqi2 [j] − vqi3 [j] · vqi4 [j]) which is exactly vqi1 · vqi2 −
vqi3 · vqi4 ;

– (13) ⇒ (17) that follows from the definition of h(X);

– (15)(16) ⇒ (18) that follows from the definition of h(X) and the fact
that ni ≤ n for every i ∈ [r];

– (18)(19) ⇒ (20) ⇒ (21) ⇒ (22) ⇒ (23) where the last implication
follows from g(x) = γn−1 · h̄(x) + h(x).
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Therefore, the completeness error of the protocol is εc.
For the soundness error, note that the verifier accepts if and only if

(17) and (23) holds. The soundness follows from the following sequences
of implications:

– (23) ⇒ (22) ⇒ (21) where the second implication follows from the

Schwartz-Zippel Lemma and fails with probability at most 2(n−1)
|F|−1 ;

– (21) ⇒ (20) ⇒ (18) ⇒ (16)(15) where the last implication follows
from the fact that ni ≤ n for i ∈ [r] and the Schwartz-Zippel Lemma,
and fails with probability at most t1+t2

|F|−1 ;

– (17) ⇒ (13) that follows from the Schwartz-Zippel lemma and fails
with probability at most 2n·r

|F|−1 ;

– (16)(15)(13) ⇒ (14)(12);
– (14) ⇒ (11) that follows from the Schwartz-Zippel Lemma and fails

with probability at most n
|F|−1

– (12)(11)⇒ (10) that follows from the soundness of (VO.I, VO.P, VO.V)
and fails with probability at most εs.

Therefore, the event that (23) 6⇒ (10) happens with probability εs +
2n·r+3n+t1+t2−2

|F|−1 , which is the soundness error of (I,P,V).

Honest-Verifier Statistical Zero-Knowledge. Assuming that the
VIOP protocol (VO.I, VO.P, VO.V) is q-wise independent for q ≥ 3, we
show that the PIOP protocol (I,P,V) is honest-verifier zero-knowledge
as follows. Recall that q-wise independence requires for every i ∈ [r],
vm+i contains at least q uniformly random independent elements or is
deterministically computable from the public information.

We construct a simulator S that given i,x samples the verifier view
with negligible statistical distance. The verifier view contains the following
values: the verifier messages, i.e., αi1, · · · , αini for i from 1 to r and α, x, β,

and the responses from the evaluation queries, i.e., y
(1)
i := fvi(α · x−1),

y
(2)
i := fvi(x

−1), y
(3)
i := fvi(x) for every i ∈ [m+ r], and h1 = h̄(x), h2 =

h̄(γ · x).
The simulator S executes I and V with the inputs i and x to simulate

a run of the protocol without the prover and computes everything it can
without the witness. The rest of the verifier view that cannot be directly

computed from the public information are h1, h2 and y
(1)
i , y

(2)
i , y

(3)
i for

i ∈ I where I ⊆ [m+1..m+r] is the set of indices for prover vectors that

depend on the witness. S samples y
(1)
i , y

(2)
i , y

(3)
i for i ∈ I and h1 uniformly

randomly from F, and computes h2 = g by Equation (9).
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We show that the output of the above-defined S only has a negligi-
ble statistical difference from the verifier view. It suffices to show that
y
(1)
i , y

(2)
i , y

(3)
i for i ∈ I and h1 in the real execution are uniformly ran-

dom over F|I|+1 independent of the rest of the verifier view. Consider the
following Vandermonde matrix of size 3× n.

X =


1 1 1

α · x−1 x x−1

(α · x−1)2 x2 x−2

...
...

...

(α · x−1)n−1 x(n−1) x−(n−1)


Every 3 rows of this matrix form an invertible sub-matrix except when
α · x, x and x−1 contain duplicates, which happens if x2 = 1 or α ∈
{1, x−2}, whose probability is bounded by 4

|F|−1 .

For any i ∈ [r], (y
(1)
i , y

(2)
i , y

(3)
i ) = vTm+iX. By the q-wise independence,

vm+i contains q ≥ 3 uniformly random elements, (y
(1)
i , y

(2)
i , y

(3)
i ) is also

uniformly random over F3, except with probability 4
|F|−1 . Moreover, h1 is

uniform over F because h̄(X) contains the uniform and independent δ as
its coefficient for Xn−1. In conclusion, the statistical difference between
the output of S and the verifier view is at most 4

|F|−1 .

Efficiency. The number of online polynomial oracles involved in this
protocol is r + 1, i.e., a polynomial oracle for each round of the VIOP
protocol plus [h̄(X)]. The number of preprocessed polynomial oracles is
the same as the number of preprocessed vectors, which is m. There are
4 distinct evaluation points, α · x−1, x, x−1 and γ · x, and for each of the
r +m polynomial oracles sent by the prover or the indexer, the oracle is
queried at most three times with α · x−1, x and/or x−1. Therefore, the
total number of evaluation queries is at most 3(r+m) plus the two queries
to [h̄(X)].

Restricted to Hadamard-Only or Inner-Product-Only. If the veri-
fier in VIOP protocol (VO.I,VO.P,VO.P) does not issue any InnerProduct
queries (or alternatively any Hadamard queries), then in the compiled
PIOP protocol (I,P,V) the evaluation point x−1 (or α · x−1) needs not
be queried. Therefore, the total number of evaluation queries becomes
2(r + m) + 2, and the number of distinct evaluation points becomes 3.
The above analysis of zero-knowledge still holds except that the Vander-
monde matrix X has only two columns. Therefore, each of the prover
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vectors needs to contain only q ≥ 2 randomizers to make y
(1)
i , y

(2)
i uni-

form. The probability that X contains singular submatrix becomes 2
|F|−1 .

A.1 Optimizations

The above-defined compiler may benefit from several optimizations. The
most significant optimization exploits the additive homomorphism of the
underlying polynomial commitment scheme that instantiates the polyno-
mial oracles. The additive homomorphism allows the verifier to linearly
combine existing polynomial oracles into a new oracle, and queries this
oracle at the cost of a single query instead of simulating it using the orig-
inal oracles. The PIOP model does not characterize the homomorphism
of the underlying polynomial commitment scheme. Therefore, we did not
apply this optimization in the formal proof.

We optimize the compiler as follows: the verifier computes the poly-
nomial oracle of g(X) in Equation (8) and evaluates g = g(x) with a
single query. In more detail, for i ∈ [s], V computes the polynomial oracle
for f̄vm+r+i(X) := ψi(x) · fv`i (X) + ψ′i(x) · fv`′

i
(X) by locally computing

ψi(x), ψ′i(x) and linearly combining the oracles for fv`i (X) and fv`′
i
(X).

Finally, V computes the oracle for ḡ(X) with Equation (8) by linearly
combining the oracles for every fvhij (X), fvqij (X) and h̄(X).

We remark that the resulting polynomial oracle is not an oracle for
the original g(X), but for another polynomial ḡ(X) that satisfies ḡ(x) =
g(x), since the ψi(X) and ψ′i(X) are replaced by their evaluations at x.
However, this is not a problem since the goal of V is to evaluate g(x) only.

The ability to linearly combine the polynomial oracles also allows
another strategy that eliminates the evaluation point γ · x at the cost
of one more polynomial oracle. This trace-off is worthwhile because it
results in smaller zkSNARK proofs and also reduces the degree bound
from 2n− 1 to n− 1.

To understand how this strategy works, recall that we introduced the
polynomial h̄(X) for showing that h(X) has coefficient 0 for the Xn−1

term. This purpose can be accomplished alternatively by splitting h(X)
into two polynomials h̄1(X) and h̄2(X) of degrees at most n − 2 and
n − 1 respectively, such that h(X) = h̄1(X) + Xn · h̄2(X). P sends the
polynomials h̄′1(X) := X · h̄1(X) and h̄2(X) to V, who computes the
polynomial oracle for ḡ(X) as before, but this time the γn−1 · h̄(X) term
in ḡ(X) is replaced by −x−1 · h̄′1(X) − xn · h̄2(X). If h̄1(X) and h̄2(X)
are correct, g(x) should be 0, and V checks this by a single query. This
optimization eliminates two query responses (i.e., ḡ(x) and h̄(γ ·x)) from
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the zkSNARK proof together with one distinct evaluation point (i.e., γ·x),
and reduces the degree bound to n−1, at the cost of one more polynomial
oracle.

B Proof of Theorem 2

Here we present the proof of Theorem 2. The idea is to do the opposite
of the proof of Theorem 1, i.e., replace the polynomials with vectors.

The algorithm I computes f (1)(X), · · · , f (m)(X) ← PIOP.I and sub-
mits their coefficient vectors v1, · · · ,vm to OV for every i ∈ [m]. Finally,
I sends iP , iV and v1, · · · ,vm to P, and iV to V.

The algorithms P and V work in the same way as PIOP.P and PIOP.V,
except that whenever PIOP.P sends a polynomial oracle [f (m+i)(X)] of

degree at most n − 1 to PIOP.V, P samples δm+i
$← Fq and computes

vm+i which is the concatenation of the coefficient vector of f (m+i)(X) of
size n and δm+i.

Finally, V sends to P all the randomnesses that are needed to compute
the evaluation queries, and they both compute {(zi1, · · · , zini)}m+r

i=1 . Then
P computes {(yi1, · · · , yini)}m+r

i=1 ← {(f (i)(zi1), · · · , f (i)(yini))}
m+r
i=1 .

Since P knows all the inputs to PIOP.V (i.e., iV , x) and all the verifier
messages, P learns the state of PIOP.V, denoted by stV , when PIOP.V
computes the final decision bit. Therefore, P and V can execute the
VCProof/POV protocol in Algorithm 7 to show that

PIOP.V(stV , {(yi1, · · · , yini)}m+r
i=1 ) = 1 (24)

using stV as the public input x, with the following differences: the pre-
processed vectors are hard-coded into P and V, and submitted to OV by
V instead of by I. This is possible since the preprocessed vectors depend
only on the circuit of PIOP.V. This incurs an overhead on V that is linear
to the computation time of PIOP.V.

During the execution of Algorithm 7, P sends to V a vector v that
contains all the input/output of the gates in the circuit, including all
of {(yi1, · · · , yini)}m+r

i=1 . Assume the positions of these values in v are
{(`i1, · · · , `ini)}m+r

i=1 . Note that these positions are determined by the cir-
cuit of PIOP.V and can be hard-coded into P and V. Then, for each
i ∈ [m+ r] and j ∈ [ni], V checks f (i)(zij) = yij by an InnerProduct query
for

vi · (1, zij , · · · , zn−1ij ) = v · e`ij
where e`ij is the unit vector consisting of all zeros except a single 1 at
position `ij .
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The completeness of the above protocol follows from those of the PIOP
protocol and the VCProof/POV protocol by design. Therefore, the com-
pleteness error is εc+O(V/|F|). For soundness, note that if V accepts then
f (i)(zij) = vi · (1, zij , · · · , zn−1ij ) = yij for every i ∈ [m + r] and j ∈ [ni].
Therefore, by the soundness of the PIOP protocol, the probability that
Equation (24) holds when (i,x) is invalid is bounded by εs. Finally, by
the soundness of the VCProof/POV protocol, the probability that V ac-
cepts while (24) does not hold is bounded by O(V/|F|). By union bound,
the soundness error of the VIOP protocol is εs +O(V/|F|).

The number of prover vectors is r+2, i.e., one vector for each polyno-
mial oracle, and two vectors induced by the VCProof/POV protocol. The
number of Hadamard queries is 4 brought by the VCProof/POV proto-
col. The number of InnerProduct queries is s, i.e., one for each evaluation
query.

C Security Proofs for Vector Oracle Protocols

C.1 Proof of Lemma 1

We first introduce the following lemma.

Lemma 3. Let A,B ∈ Fn×m where n < |F|. If for any x ∈ Fm, Ax and
Bx are permutations of each other, then A,B are batched permutations
of each other.

Proof. Claim 1. For any nonzero vector a ∈ Fm, there are exactly |F|m−1
vectors x ∈ Fm such that x ·a = 0. To see this, note that if a[k] 6= 0, then

for any x[1], · · · ,x[k−1],x[k+1], · · · ,x[m] ∈ F, x[k] = −a−1[k] ·
∑

i 6=k(a[i] ·x[i])
is the only choice such that x ·a = 0. As a corollary, for any a 6= b ∈ Fm,
there are exactly |F|m−1 choices of x such that a · x = b · x.

We prove Lemma 3 by induction on n. Obviously, for n = 1, A and
B are vectors, and Ax and Bx are permutations of each other if and
only if they are identical. By Claim 1, if Ax = Bx for all x ∈ Fm, we
immediately have A = B.

Now we assume that Lemma 3 holds for 1, · · · , n − 1, and prove the
case for n. We claim that the first row of A is contained in the rows of B.
Otherwise, by Claim 1, there are at most n · |F|m−1 vectors x such that
(Ax)[1] is contained in Bx. By n < |F|, there exists at least one x such
that (Ax)[1] is not contained in Bx, contradiction to the assumption that
Ax and Bx are permutations of each other for all x. Therefore, the first
row of A is contained in the rows of B. If we remove the first row of A
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and the identical row in B and let the result matrices be A′ and B′, then
A′x and B′x are still permutations of each other for every x. By the
induction assumption of n − 1, A′ and B′ are batched permutations of
each other, therefore A and B are batched permutations of each other.

ut

We recall Lemma 1 as follows.

Lemma 1. Let A = (a1, · · · ,am),B = (b1, · · · , bm) ∈ Fn×m. If A and
B are not batched permutations of each other, then for uniformly random
α0, α1, · · · , αm ∈ F, the probability that

n∏
i=1

α0 +
m∑
j=1

αjaj [i]

 =
n∏
i=1

α0 +
m∑
j=1

αjbj [i]


is bounded by n

|F| .

Proof. Assume that A,B are not batched permutations of each other.
Consider the multivariate polynomials

f(X0, X1, · · · , Xm) =

n∏
i=1

X0 +

m∑
j=1

aj [i] ·Xj


g(X0, X1, · · · , Xm) =

n∏
i=1

X0 +

m∑
j=1

bj [i] ·Xj


both of total degree n.

We claim that f(X0, X1, · · · , Xm) 6= g(X0, X1, · · · , Xm). Otherwise,
for any x ∈ Fm, f(X0,x) and g(X0,x) are the same polynomial with
respect to X0 and have the same roots. Note that the roots of f(X0,x)
are exactly the elements in Ax, and the roots of g(X0,x) are exactly the
elements in Bx. Therefore, the vectors Ax and Bx are permutations of
each other. By Lemma 3, A and B are batched permutations of each
other, contradiction to the assumption.

Therefore, f(X0, X1, · · · , Xm) 6= g(X0, X1, · · · , Xm). By Schwartz-
Zippel Lemma, for uniformly random α0, α1, · · · , αm ∈ F, the probability
that f(α0, α1, · · · , αm) = g(α0, α1, · · · , αm) is no more than n

|F| . ut

C.2 Security Proofs for the Protocols

Theorem 3. The ProductEq protocol in Algorithm 1 is perfectly com-
plete, perfectly sound, and q-wise independent.
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Proof. Consider the following statements:

∏̀
i=1

a[i] =
∏̀
i=1

b[i] (25)

r =

 i∏
j=1

a[i]/b[i]

`

i=1

‖0max{m,n}−`‖δ (26)

r[`] = 1 (27)

(r − (0`−1‖1)) ◦ (0`−1‖1) = 0 (28)

a[1] · 1 = r[1] · b[1] and ∀i ∈ [2..`],a[i] · r[i−1] = r[i] · b[i], (29)

a ◦ ((1‖r)− (0`‖1)) = r ◦ b (30)

The completeness follows from the fact that (25) and (26) hold when the
prover is honest, and the sequences of implications (25)(26) ⇒ (27) ⇒
(28), (26) ⇒ (29), and (26)(27)(29) ⇒ (30).

The soundness follows from the fact that (28) and (30) hold when the
verifier accepts, and the sequences of implications (28) ⇒ (27), (30) ⇒
(29), and (29)(27) ⇒ (25).

The q-wise independence follows from the fact that δ is uniformly
random over Fq independent of all the other elements. ut

Theorem 4. The Permute protocol in Algorithm 2 has completeness er-
ror `

|F| (or has perfect completeness in the case of ProductEq), soundness

error 2`
|F|−1 (or `

|F|−1 in the case of ProductEq), and q-wise independence.

Proof. Consider the following statements:

a
(i)
[1..`] = σ(b

(i)
[1..`]) ∀i ∈ {1, 2, · · · ,m} for some σ ∈ Σ([`]) (31)

∏̀
i=1

a[i] =
∏̀
i=1

b[i] (32)

V accepts in the subprotocol ProductEq (33)

The completeness follows from the implications (31) ⇒ (32) due to the
linearity of σ, and (32) ⇒ (33) that follows from the completeness of
protocol ProductEq, which fails if a, b contain zero. Since for any index
i, for any randomizers α1, · · · , αm, there exists at most one α0 such that
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α0 +
∑m

j=1 αj · a
(j)
[i] = 0, so the number of α0’s such that a, b contains 0

is at most `. Therefore, the completeness error is bounded by `
|F| .

The soundness follows from the implications (33) ⇒ (32) due to the
soundness of protocol ProductEq, which fails if a or b contains zero, and
(32) ⇒ (31) which fails with probability at most `

|F|−1 due to Lemma 1.
Therefore, the soundness error of the Permute protocol is bounded by
2`
|F|−1 .

The q-wise independence follows from the subprotocol ProductEq. ut

Theorem 5. The CopyCheck protocol in Algorithm 3 has completeness
error `

|F| , soundness error 2`
|F|−1 , and q-wise independence.

Proof. Consider the following statements:

v satisfies the copy condition of Π (34)

σ(v[1..`]) = v[1..`] (35)

{v[1..`],γ}, {v[1..`],σ} are batched permutations of each other (36)

V accepts in the subprotocol Permute (37)

The completeness follows from the sequence of implications (34) ⇒ (35)
⇒ (36) ⇒ (37) where the last implication follows from the completeness
of the subprotocol Permute which fails with probability `

|F| . Therefore, the

completeness error of CopyCheck is `
|F| .

The soundness follows from the implications (37) ⇒ (36) due to the
soundness of protocol Permute and fails with probability 2`

|F|−1 , and (36)

⇒ (35) because σ is the unique permutation such that σ(γ) = σ, and
(35) ⇒ (34). Therefore, the soundness error of the CopyCheck protocol is
bounded by 2`

|F|−1 .
The q-wise independence follows from that of the subprotocol Permute.

ut

Theorem 6. The SparseMVP protocol in Algorithm 4 has completeness
error 2`+m+n

|F| , soundness error 3n+3m+4`
|F|−1 , and q-wise independence.

Proof. Consider the following statements:

Ma[1..n] = b[1..m] (38)

c = (αm)TM (39)

c · a = αm · b (40)
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w = (αrowi)`i=1‖(βcoli)`i=1 (41)

V accepts in the subprotocol CopyCheck (42)

t = w[1..`] ◦w[`+1..2`] (43)

w ◦ (0`‖w) = 0`‖t (44)

(αm)TMβn = t · v (45)

(αm)TMβn = c · βn (46)

t · v = c · βn (47)

The completeness follows from the fact that if the prover is honest
then all of (38)(39)(41) and (43) are true, and the following implications:

– (38)(39) ⇒ (40)

– (39) ⇒ (46)

– (41) ⇒ (42) that follows from the completeness of CopyCheck that
fails with probability 2`+m+n

|F|
– (43) ⇒ (44)

– (41)(43) ⇒ (45)

– (45)(46) ⇒ (47)

Therefore, the completeness error is 2`+m+n
|F| .

The soundness follows from the fact that (40)(42)(44) and (47) hold
if the verifier accepts, and the following implications:

– (42) ⇒ (41) that follows from the soundness of CopyCheck that fails

with probability 2(2`+m+n)
|F|−1

– (44) ⇒ (43)

– (41)(43) ⇒ (45)

– (45)(47)⇒ (46)⇒ (39) where the second implication follows from the
Schwartz-Zippel lemma and fails with probability n

|F|−1
– (39)(40) ⇒ (38) that follows from the Schwartz-Zippel lemma and

fails with probability m
|F|

Therefore, the soundness error of the SparseMVP protocol is 3n+3m+4`
|F|−1 .

The q-wise independence follows from the fact that all of c,w, t can be
deterministically computed from the index and the verifier randomnesses,
i.e., {rowi, coli}`i=1 and α, β, and that the subprotocol CopyCheck is q-wise
independent. ut
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Theorem 7. The VCProof/R1CS protocol in Algorithm 5 is a VIOP pro-
tocol for the relation RR1CS with completeness error 2s+3m+n+q

|F| , sound-

ness error 4s+9m+3n+3q
|F|−1 , and q-wise independence.

Proof. Consider the following statements:

(A(1‖x‖w)) ◦ (B(1‖x‖w)) = C(1‖x‖w) (48)

y[1..3m+q] = M(1‖x‖w) (49)

V accepts in the subprotocol SparseMVP (50)

y[1..m] = A(1‖x‖w), y[m+q+1..2m+q] = C(1‖x‖w), and

y[2m+q+1..3m+q] = B(1‖x‖w) (51)

y[1..m] ◦ y[2m+q+1..3m+q] = y[m+q+1..2m+q] (52)

y ◦ (02m+q‖y) = (0m‖y) ◦ (02m+q‖1m) (53)

The completeness follows from the fact that (48) and (49) hold if the
prover is honest, and the sequence of implications (49) ⇒ (50) that fol-
lows from the completeness of SparseMVP which fails with probability
2s+3m+n+q

|F| , and (49) ⇒ (51), (48)(51) ⇒ (52) ⇒ (53). Therefore, the

completeness error of VCProof/R1CS is 2s+3m+n+q
|F| .

The soundness follows from the fact that (50) and (53) hold if the
verifier accepts, and the sequence of implications (50) ⇒ (49) due to the
soundness of protocol SpaseMVP and fails with probability 4s+9m+3n+3q

|F|−1 ,

and (53)⇒ (52), (49)⇒ (51), and (51)(52)⇒ (48). Therefore, the sound-
ness error of the VCProof/R1CS protocol is bounded by 4s+9m+3n+3q

|F|−1 .

The q-wise independence follows from the fact that δ1 and δ2 are uni-
formly random and the q-wise independence of the subprotocol SparseMVP.

ut

Theorem 8. The VCProof/HPR protocol in Algorithm 6 is a VIOP pro-
tocol for the relation RHPR with completeness error 2s+m+3n+q+1

|F| , sound-

ness error 4s+3m+9n+3q+3
|F|−1 , and q-wise independence.

Proof. Consider the following statements:

Aw1 +Bw2 +Cw3 + d = x‖0m−` (54)

w1 ◦w2 = w3 (55)
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M(1‖w) = x‖0m−` (56)

V accepts in the subprotocol SparseMVP (57)

w[1..n] ◦w[2n+q+1..3n+q] = w[n+q+1..2n+q] (58)

w ◦ (02n+q‖w) = (0n‖w) ◦ (02n+q‖1n) (59)

The completeness follows from the fact that (54) and (55) hold if the
prover is honest, and the sequence of implications (54) ⇒ (56) ⇒ (57)
where the second implication follows from the completeness of SparseMVP
which fails with probability 2s+m+3n+q+1

|F| , and (55)⇒ (58)⇒ (59). There-

fore, the completeness error of VCProof/HPR is 2s+m+3n+q+1
|F| .

The soundness follows from the fact that (57) and (59) hold if the ver-
ifier accepts, and the sequence of implications (57) ⇒ (56) ⇒ (54) where
the first implication follows from the soundness of protocol SpaseMVP
and fails with probability 4s+3m+9n+3q+3

|F|−1 , and (59)⇒ (58)⇒ (55). There-

fore, the soundness error of the VCProof/R1CS protocol is bounded by
4s+3m+9n+3q+3

|F|−1 .
The q-wise independence follows from the fact that δ is uniformly

random and the q-wise independence of the subprotocol SparseMVP. ut

Theorem 9. The VCProof/POV protocol in Algorithm 7 is a VIOP pro-
tocol that validates the relation RPOV with completeness error 3n+k+`

|F| ,

soundness error 2(3n+k+`)
|F|−1 , and q-wise independence.

Proof. Consider the following statements:

a[1..na] + a[na+1..2na] = a[2na+1..3na] (60)

m[1..nm] ◦m[nm+1..2nm] = m[2nm+1..3nm] (61)

a‖m‖x‖z satisfies the copy condition of Π (62)

v = m[1..nm]‖δ‖a‖m[2nm+1..3nm]‖m[nm+1..2nm] (63)

((02na‖v) + (0na‖v)− v) ◦ (0nm+2na+q‖1na) = 0 (64)

(03na+2nm+q‖v) ◦ v = (03na+2nm+q‖1nm) ◦ (0nm‖v) (65)

V accepts in the subprotocol CopyCheck (66)

Note that (63) always holds since v consists of nothing beyond prover
witnesses and randomnesses, and has no statement to check for. In an-
other word, whatever P provides in v are just regarded as what P intended
to use as the witnesses and randomnesses.

The completeness follows from the fact that if the prover is honest
then all of (60)(61) and (62) are true, and the following implications:
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– (60)(63) ⇒ (64)

– (61)(63) ⇒ (65)

– (62)(63)⇒ (66) that follows from the completeness of the subprotocol
CopyCheck which fails with probability 3n+k+`+q

|F| .

The soundness follows from the fact that (64)(65) and (66) hold if the
verifier accepts, and the following implications:

– (63)(66) ⇒ (62) that follows from the soundness of the subprotocol

CopyCheck which fails with probability 2(3n+k+`+q)
|F|−1 ;

– (65)(63) ⇒ (61)

– (64)(63)⇒ (60)

Therefore, the soundness error of the VCProof/POV protocol is 2(3n+k+`+q)
|F|−1 .

The q-wise independence follows from the fact that δ is uniformly
random independent of all the other elements, and that the subprotocol
CopyCheck is q-wise independent. ut

D The Complete zkSNARKs

For reference, we present the complete zkSNARKs compiled from our
protocols using the optimized compiler and the KZG polynomial com-
mitment scheme.

D.1 Cryptographic Primitives

Prime Field and Bilinear Pairing. We choose F = Fp for a prime
p ≈ 2λ where λ is the security parameter. Let γ be a generator of the
multiplicative group F∗.

A bilinear pairing scheme consists of a tuple (G1,G2,GT , e,G1, G2, GT )
where G1,G2 and GT are groups of size p, e : G1 × G2 → GT is an
efficiently computable bilinear non-degenerate bilinear map, G1, G2 are
uniformly random chosen from G1,G2 respectively, and GT = e(G1, G2).
We use the notations [x]1 := x ·G1 and [x]2 := x ·G2.

Hash to Field. Let H : {0, 1}∗ → F be a hash function modeled as
a random oracle. In cases where multiple random elements are needed
in the same round, let Hi(x) be a convenient alias of H(i‖x) where i is
encoded by its fixed-length binary representation.
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The KZG Polynomial Commitment. For completeness, we present
the KZG scheme here. The description is copied almost verbatim from
PLONK [3], except that we present the non-interactive version by applying
the Fiat-Shamir heuristic using H. The open and vrfy algorithms validates
the evaluations of t = t1 + t2 + t3 polynomials at 3 distinct evaluation
points, which is the maximal number that our algorithm uses.

– gen(D) - choose uniform x ∈ F. Output srs = ([1]1, [x]1, · · · , [xD−1]1, [1]2, [x]2).
– com(f(X), srs) := [f(x)]1.
– open({cmi, yi, fi(X)}t1i=1, {cm′i, y′i, f ′i(X)}t2i=1, {cm′′i , y′′i , f ′′i (X)}t3i=1, {z, z′, z′′})

1. ξ := H1({cmi, yi}t1i=1, {cm′i, y′i}
t2
i=1, {cm′′i , y′′i }

t3
i=1, {z, z′, z′′}) and ξ′, ξ′′

are computed with the same inputs by using H2 and H3 instead.
2. Let

q(X) :=

t1∑
i=1

ξi−1 · fi(X)− yi
X − z

and q′(X), q′′(X) similarly by using f ′i(X), ξ′, z′, y′i and f ′′i (X), ξ′′, z′′, y′′i
instead respectively.

3. Compute W := [q(x)]1, W
′ := [q′(x)]1, W

′′ := [q′′(x)]1 using srs.
4. Output (W,W ′,W ′′)

– vrfy({cmi, yi}t1i=1, {cm′i, y′i}
t2
i=1, {cm′′i , y′′i }

t3
i=1, {z, z′, z′′}, {W,W ′,W ′′}, [x]2)

1. Computes ξ, ξ′, ξ′′ in the same way as in open.

2. r′, r′′
$← F

3. Let

Q :=

t1∑
i=1

ξi−1 · cmi −

[
t1∑
i=1

ξi−1 · yi

]
1

andQ′, Q′′ are computed similarly by using cm′i, ξ
′, y′i and cm′′i , ξ

′′, y′′i
instead respectively.

4. Let F := Q+ r′Q′ + r′′Q′′.
5. Outputs accept if and only if

e(F+z ·W+r′z′ ·W ′+r′′z′′ ·W ′′, [1]2)·e(−W−r′ ·W ′−r′′ ·W ′′, [x]2).

Remark 1. Let t be the number of evaluation points, t∗ the number of
distinct points, di be the maximal degree of polynomials evaluated at the
i-th distinct point zi, then the efficiency of the above scheme is summa-
rized as follows.

– The proof size is t∗ elements in G1.
– For d < D and f(X) ∈ Fd[X], the computation of com is dominated

by d G1 exponentiations.
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– The computation of open is dominated by
∑

i∈[t∗] di G1 exponentia-
tions.

– The computation of vrfy is dominated by 2 pairings and t + 2t∗ − 2
G1 exponentiations.

D.2 The zkSNARK for R1CS

Let A,B,C ∈ FM×N be matrices each has at most S nonzero entries.
For an instance x ∈ F`, the zkSNARK VCProof/R1CS generates a proof
for the existence of w ∈ FN−`−1 such that A(1‖x‖w) ◦ B(1‖x‖w) =
C(1‖x‖w).

Setup. Output srs := gen(D) for D ≥ max{9S + 1, 6S + 3M +N + 4}.

Preprocessing. The inputs are the matrix sparse representations, i.e.,
{rowAi , col

A
i , val

A
i }Si=1, {rowBi , col

B
i , val

B
i }Si=1 and {rowCi , col

C
i , val

C
i }Si=1, where

rowi ∈ [M ], coli ∈ [N ] and vali ∈ F.

1. row := (rowAi )Si=1‖(rowBi + 2M + 3)Si=1‖(rowCi +M + 3)Si=1

2. col := (colAi )Si=1‖(col
B
i )Si=1‖(col

C
i )Si=1

3. val := (valAi )Si=1‖(val
B
i )Si=1‖(val

C
i )Si=1

4. For i ∈ [3S],
– let prevrowi be the maximal j ∈ [i− 1] such that row[j] = row[i],

or 6S + row[i] if such j does not exist;
– let prevcoli be the maximal j ∈ [i− 1] such that col[j] = col[i], or

6S + 3M + 3 + col[i] if such j does not exist.
5. For i ∈ [3M + 3],

– let maxrowi be the maximal j ∈ [3S] such that row[j] = i, or
6S + i if such j does not exist;

6. For i ∈ [N ],
– let maxcoli be the maximal j ∈ [3S] such that col[j] = i, or 3S +

3M + 3 + i if such j does not exist.
7. σ := (γσ(i)−1)6S+3M+N+3

i=1 where

σ(i) :=


prevrowi, 1 ≤ i ≤ 3S
3S + prevcoli−3S , 3S + 1 ≤ i ≤ 6S
maxrowi−6S , 6S + 1 ≤ i ≤ 6S + 3M + 3
3S + maxcoli−6S−3M−3, 6S + 3M + 4 ≤ i ≤ 6S + 3M +N + 3

8. cmv := com(fval(X), srs), cmσ := com(fσ(X), srs)
9. Output

– vk = (cmv, cmσ)
– pk = (row, col,val,σ, cmv, cmσ)
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Prover. The inputs are srs, pk, instance x ∈ F` and witness w ∈ FN−`−1.

1. δ1, δ2
$← F3, u := w‖δ1 ∈ FN−`+3, cmu := com(fu(X), srs).

2. y := (M(1‖x‖w))‖δ2 ∈ F3M+6 where M ∈ F(3M+3)×N is the matrix
with sparse representation row, col,val

3. cmy := com(fy(X), srs).

4. α := H1(cmv, cmσ,x, cmu, cmy).

5. c := (α3M+3)TM ∈ FN , cmc := com(fc(X), srs).

6. β := H1(cmv, cmσ,x, cmu, cmy, cmc).

7. z := (αrow[i])3Si=1‖(β
col[i])3Si=1 ∈ F6S , cmz := com(fz(X), srs).

8. t := (αrow[i] · βcol[i])3Si=1 ∈ F3S , cmt := com(ft(X), srs).

9. ζ := H1(cmv, cmσ,x, cmu, cmy, cmc, cmz, cmt), compute ζ ′ and ζ ′′ with
the same inputs by using H2 and H3 instead.

10. a := ζ · 16S+3M+N+3 + ζ ′ · (z‖α3M+3‖βN ) + ζ ′′ · γ6S+3M+N+3.

11. b := ζ · 16S+3M+N+3 + ζ ′ · (z‖α3M+3‖βN ) + ζ ′′ · σ.

12. r :=
(∏i

j=1 a[j]/b[j]

)6S+3M+N+3

i=1
∈ F6S+3M+N+3, cmr := com(fr(X), srs).

13. ν := H1(cmv, cmσ,x, cmu, cmy, cmc, cmz, cmt, cmr), compute ω with
the same inputs by using H2 instead.

14. Compute

– h1(X) := fy(ν ·X−1) · fy(X) ·X6M+9

– h2(X) := fy(ν ·X−1) · (νX−1)3M+3 ·
(∑3M+3

i=1 X6M+8+i
)

– h3(X) := fz(ν ·X−1) ·X3S · fz(X)

– h4(X) :=
(∑6S

i=1(νX
−1)i−1

)
· ft(X) ·X3S

– h5(X) :=
(
fr(ν ·X−1) · νX−1 + 1− (νX−1)6S+3M+N+3

)
· fa(X)

– h6(X) := fr(ν ·X−1) · fb(X)

– h7(X) :=
(
fr(ν ·X−1)− (ν ·X−1)6S+3M+N+2

)
·X6S+3M+N+2

– h8(X) := fc(X
−1) · (1 + fx(X) ·X + fu(X) ·X`+1)

– h9(X) :=
(∑3M+3

i=1 (α ·X−1)i−1
)
· fy(X)

– h10(X) := fval(X
−1) · ft(X)

– h11(X) := fc(X
−1) ·

(∑N
i=1(β ·X)i−1

)
15. Compute

h(X) := (h1(X)− h2(X)) + ω · (h3(X)− h4(X)) + ω2 · (h5(X)− h6(X)) +

ω3 · h7(X) + ω4 · (h8(X)− h9(X)) + ω5 · (h10(X)− h11(X)) +

ω6 · fu(X) ·XD−N−3 + ω7 · fy(X) ·XD−3M−6 +

ω8 · fc(X) ·XD−N + ω9 · fz(X) ·XD−6S +

ω10 · ft(X) ·XD−3S + ω11 · fr(X) ·XD−6S−3M−N−3.
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16. Compute h̄1(X) := (XD · h(X)) mod XD, h̄2(X) := bh(X) · X−1c
where b·c means removing all the monomials with negative powers.

17. cmh1 := com(h̄1(X), srs), cmh2 := com(h̄2(X), srs)
18. z := H1(cmv, cmσ,x, cmu, cmy, cmc, cmz, cmt, cmr, cmh1 , cmh2)
19. yy := fy(ν · z−1), yz := fz(ν · z−1), yr := fr(ν · z−1), yc := fc(z

−1),
yval := fval(z

−1)
20. Compute

ḡ(X) :=

(
yy · z6M+9 + ω7 · zD−3M−6 − ω4 · (α · z−1)3M+3 − 1

α · z−1 − 1

)
· fy(X)

+(ω · yz · z3S + ζ ′ · ω2 · (yr · ν · z−1

−(ν · z−1)6S+3M+N+3 − yr + 1) + ω9 · zD−6S) · fz(X)

+

(
ω10 · zD−3S − ω · (ν · z−1)6S − 1

ν · z−1 − 1
· z3S + ω5 · yval

)
· ft(X)

+(ω4 · yc · z`+1 + ω6 · zD−N−3) · fu(X) + ω8 · zD−N · fc(X) +

+ω11 · zD−6S−3M−N−3 · fr(X)− ω2 · yr · ζ ′′ · fσ(X)− z−D · h̄1(X)− z · h̄2(X)

+

(
−yy · ν3M+3 · z

6M+9 − z3M+6

z − 1

+ω2 · (yr · ν · z−1 + 1− (ν · z−1)6S+3M+N+3) · ζ ′′ · (γ · z)6S+3M+N+3 − 1

γ · z − 1

+ω2 · (−yr + yr · ν · z−1 + 1− (ν · z−1)6S+3M+N+3) ·(
ζ · z

6S+3M+N+3 − 1

z − 1
+ ζ ′ · z6S ·

(
(α · z)3M+3 − 1

α · z − 1
+ z3M+3 · (β · z)N − 1

β · z − 1

))
+ω3 · (yr · z6S+3M+N+2 − ν6S+3M+N+2)

+ ω4 · yc · (fx(z) · z + 1)− ω5 · yc ·
(β · z)N − 1

β · z − 1

)
21. cmg := com(ḡ(X), srs) computed by linearly combining cmy, cmz, cmt,

cmc, cmr, cmσ, cmh1 , cmh2 and [1]1.

22. Compute (W,W ′,W ′′) := open


{(cmy, yy, fy(X)), (cmz, yz, fz(X)),

(cmr, yr, fr(X))},
{(cmc, yc, fc(X)), (cmval, yval, fval(X))},
{cmg, 0, ḡ(X)},
{ν · z−1, z−1, z}


23. Output π := (cmu, cmy, cmc, cmz, cmt, cmr, cmh1 , cmh2 , yy, yz, yr, yc, yval,W,W

′,W ′′)

Verifier. The inputs are [x]2, vk,x and π.

1. Compute
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– α := H1(cmv, cmσ,x, cmu, cmy)

– β := H1(cmv, cmσ,x, cmu, cmy, cmc)

– ζ := H1(cmv, cmσ,x, cmu, cmy, cmc, cmz, cmt)

– ζ ′ := H2(cmv, cmσ,x, cmu, cmy, cmc, cmz, cmt)

– ζ ′′ := H3(cmv, cmσ,x, cmu, cmy, cmc, cmz, cmt)

– ν := H1(cmv, cmσ,x, cmu, cmy, cmc, cmz, cmt, cmr)

– ω := H2(cmv, cmσ,x, cmu, cmy, cmc, cmz, cmt, cmr)

– z := H1(cmv, cmσ,x, cmu, cmy, cmc, cmz, cmt, cmr, cmh1 , cmh2)

2. Compute

cmg :=

(
yy · z6M+9 + ω7 · zD−3M−6 − ω4 · (α · z−1)3M+3 − 1

α · z−1 − 1

)
· cmy

+(ω · yz · z3S + ζ ′ · ω2 · (yr · ν · z−1

−(ν · z−1)6S+3M+N+3 − yr + 1) + ω9 · zD−6S) · cmz

+

(
ω10 · zD−3S − ω · (ν · z−1)6S − 1

ν · z−1 − 1
· z3S + ω5 · yval

)
· cmt

+(ω4 · yc · z`+1 + ω6 · zD−N−3) · cmu + ω8 · zD−N · cmc +

+ω11 · zD−6S−3M−N−3 · cmr − ω2 · yr · ζ ′′ · cmσ − z−D · cmh1 − z · cmh2

+

[
−yy · ν3M+3 · z

6M+9 − z3M+6

z − 1

+ω2 · (yr · ν · z−1 + 1− (ν · z−1)6S+3M+N+3) · ζ ′′ · (γ · z)6S+3M+N+3 − 1

γ · z − 1

+ω2 · (−yr + yr · ν · z−1 + 1− (ν · z−1)6S+3M+N+3) ·(
ζ · z

6S+3M+N+3 − 1

z − 1
+ ζ ′ · z6S ·

(
(α · z)3M+3 − 1

α · z − 1
+ z3M+3 · (β · z)N − 1

β · z − 1

))
+ω3 · (yr · z6S+3M+N+2 − ν6S+3M+N+2)

+ ω4 · yc · (fx(z) · z + 1)− ω5 · yc ·
(β · z)N − 1

β · z − 1

]
1

3. Output vrfy

(
{(cmw, yw), (cmz, yz), (cmr, yr)}, {(cmc, yc), (cmval, yval)},
{(cmg, 0)}, {ν · z−1, z−1, z}, {W,W ′,W ′′}, [x]2

)
.

D.3 The zkSNARK for HPR

LetA,B,C ∈ FM×N be matrices each has at most S nonzero entries, and
d ∈ FM has at most S′ nonzero entries. For an instance x ∈ F`, the zk-
SNARK VCProof/HPR generates a proof for the existence ofw1,w2,w3 ∈
FN such that Aw1 +Bw2 +Cw3 + d = x‖0M−` and w1 ◦w2 = w3.
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Setup. Output srs := gen(D) for D ≥ max{9S+ 3S′+ 1, 6S+ 2S′+M +
3N + 4}.

Preprocessing The inputs are the matrix sparse representations, i.e.,
{rowAi , col

A
i , val

A
i }Si=1, {rowBi , col

B
i , val

B
i }Si=1 and {rowCi , col

C
i , val

C
i }Si=1, where

rowi ∈ [M ], coli ∈ [N ] and vali ∈ F, and the sparse representation of d,
i.e., {(rowdi, valdi)}S

′
i=1.

1. row := (rowdi)
S′
i=1‖(rowAi )Si=1‖(rowBi )Si=1‖(rowCi )Si=1

2. col := 1S
′‖(colAi + 1)Si=1‖(col

B
i + 2N + 4)Si=1‖(col

C
i +N + 4)Si=1

3. val := (valdi)
S′
i=1‖(val

A
i )Si=1‖(val

B
i )Si=1‖(val

C
i )Si=1

4. For i ∈ [3S + S′],

– let prevrowi be the maximal j ∈ [i− 1] such that row[j] = row[i],
or 6S + 2S′ + row[i] if such j does not exist;

– let prevcoli be the maximal j ∈ [i− 1] such that col[j] = col[i], or
6S + 2S′ +M + col[i] if such j does not exist.

5. For i ∈ [M ],

– let maxrowi be the maximal j ∈ [3S + S′] such that row[j] = i, or
6S + 2S′ + i if such j does not exist;

6. For i ∈ [3N + 4],

– let maxcoli be the maximal j ∈ [3S + S′] such that col[j] = i, or
3S + S′ +M + i if such j does not exist.

7. σ := (γσ(i)−1)6S+M+3N+4
i=1 where

σ(i) :=


prevrowi, 1 ≤ i ≤ 3S + S′

3S + S′ + prevcoli−3S−S′ , 3S + 1 ≤ i ≤ 6S + 2S′

maxrowi−6S−2S′ , 6S + 2S′ + 1 ≤ i ≤ 6S + 2S′ +M
3S + maxcoli−6S−2S′−M , 6S + 2S′ +M + 1 ≤ i ≤ 6S + 2S′ +M + 3N + 3

8. cmv := com(fval(X), srs), cmσ := com(fσ(X), srs)
9. Output

– vk = (cmv, cmσ)
– pk = (val,σ, cmv, cmσ)

Prover. The inputs are srs, pk, instance x ∈ F` and witnessesw1,w2,w3 ∈
FN .

1. δ
$← F3, w := w1‖δ‖w3‖w2 ∈ F3N+3, cmw := com(fw(X), srs).

2. α := H1(cmv, cmσ,x, cmw).
3. c := (αM )TM ∈ F3N+4, cmc := com(fc(X), srs).
4. β := H1(cmv, cmσ,x, cmw, cmc).
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5. z := (αrow[i])3S+S
′

i=1 ‖(βcol[i])3S+S′i=1 ∈ F6S+2S′ , cmz := com(fz(X), srs).

6. t := (αrow[i] · βcol[i])3S+S′i=1 ∈ F3S+S′ , cmt := com(ft(X), srs).

7. ζ := H1(cmv, cmσ,x, cmw, cmc, cmz, cmt), compute ζ ′ and ζ ′′ with the
same inputs by using H2 and H3 instead.

8. a := ζ ·16S+2S′+M+3N+4 + ζ ′ · (z‖αM‖β3N+4)+ ζ ′′ ·γ6S+2S′+M+3N+4.

9. b := ζ · 16S+2S′+M+3N+4 + ζ ′ · (z‖αM‖β3N+4) + ζ ′′ · σ.

10. r :=
(∏i

j=1 a[j]/b[j]

)6S+2S′+M+3N+4

i=1
∈ F6S+2S′+M+3N+4, cmr :=

com(fr(X), srs).

11. ν := H1(cmv, cmσ,x, cmw, cmc, cmz, cmt, cmr), compute ω with the
same inputs by using H2 instead.

12. Compute

– h1(X) := fw(ν ·X−1) · fw(X) ·X6N+9

– h2(X) := fw(ν ·X−1) · (νX−1)3N+3 ·
(∑3N+3

i=1 X6N+8+i
)

– h3(X) := fz(ν ·X−1) ·X3S+S′ · fz(X)

– h4(X) :=
(∑6S+2S′

i=1 (νX−1)i−1
)
· ft(X) ·X3S+S′

– h5(X) :=
(
fr(ν ·X−1) · νX−1 + 1− (νX−1)6S+2S′+M+3N+4

)
·fa(X)

– h6(X) := fr(ν ·X−1) · fb(X)

– h7(X) :=
(
fr(ν ·X−1)− (ν ·X−1)6S+2S′+M+3N+3

)
·X6S+2S′+M+3N+3

– h8(X) := fc(X
−1) · (1 + fw(X) ·X)

– h9(X) :=
(∑M

i=1(α ·X−1)i−1
)
· fx(X)

– h10(X) := fval(X
−1) · ft(X)

– h11(X) := fc(X
−1) ·

(∑3N+4
i=1 (β ·X)i−1

)
13. Compute

h(X) := (h1(X)− h2(X)) + ω · (h3(X)− h4(X)) + ω2 · (h5(X)− h6(X)) +

ω3 · h7(X) + ω4 · (h8(X)− h9(X)) + ω5 · (h10(X)− h11(X)) +

ω6 · fw(X) ·XD−3N−3 + ω7 · fc(X) ·XD−3N−4 + ω8 · fz(X) ·XD−6S−2S′ +

ω9 · ft(X) ·XD−3S−S′ + ω10 · fr(X) ·XD−6S−2S′−M−3N−4.

14. Compute h̄1(X) := (XD · h(X)) mod XD, h̄2(X) := bh(X) · X−1c
where b·c means removing all the monomials with negative powers.

15. cmh1 := com(h̄1(X), srs), cmh2 := com(h̄2(X), srs)

16. z := H1(cmv, cmσ,x, cmw, cmc, cmz, cmt, cmr, cmh1 , cmh2)

17. yw := fw(ν · z−1), yz := fz(ν · z−1), yr := fr(ν · z−1), yc := fc(z
−1),

yval := fval(z
−1)
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18. Compute

ḡ(X) :=
(
yw · z6N+9 + ω6 · zD−3N−3 − ω4 · yc · z

)
· fw(X)

+(ω · yz · z3S+S
′
+ ζ ′ · ω2 · (yr · ν · z−1

−(ν · z−1)6S+2S′+M+3N+3 − yr + 1) + ω8 · zD−6S−2S′) · fz(X)

+

(
ω9 · zD−3S−S′ − ω · (ν · z−1)6S+2S′ − 1

ν · z−1 − 1
· z3S+S′ + ω5 · yval

)
· ft(X)

+ω7 · zD−3N−4 · fc(X) + ω10 · zD−6S−2S′−M−3N−4 · fr(X)− ω2 · yr · ζ ′′ · fσ(X)

−z−D · h̄1(X)− z · h̄2(X)

+

(
−yw · ν3N+3 · z

6N+9 − z3N+6

z − 1

+ω2 · (yr · ν · z−1 + 1− (ν · z−1)6S+M+3N+3) · ζ ′′ · (γ · z)6S+M+3N+3 − 1

γ · z − 1

+ω2 · (−yr + yr · ν · z−1 + 1− (ν · z−1)6S+2S′+M+3N+4) ·(
ζ · z

6S+2S′+M+3N+4 − 1

z − 1
+ ζ ′ · z6S+2S′ ·

(
(α · z)M − 1

α · z − 1
+ zM · (β · z)3N+4 − 1

β · z − 1

))

+ω3 · (yr · z6S+2S′+M+3N+3 − ν6S+2S′+M+3N+3)− ω4 · (α · z−1)M − 1

α · z−1 − 1
· fx(z)

+ω4 · yc − ω5 · yc ·
(β · z)3N+4 − 1

β · z − 1

)
19. cmg := com(ḡ(X), srs) computed by linearly combining cmw, cmz,

cmt, cmc, cmr, cmσ, cmh1 , cmh2 and [1]1.

20. Compute (W,W ′,W ′′) := open


{(cmw, yw, fw(X)), (cmz, yz, fz(X)),

(cmr, yr, fr(X))},
{(cmc, yc, fc(X)), (cmval, yval, fval(X))},
{cmg, 0, ḡ(X)},
{ν · z−1, z−1, z}


21. Output π := (cmw, cmc, cmz, cmt, cmr, cmh1 , cmh2 , yw, yz, yr, yc, yval,W,W

′,W ′′)

Verifier. The inputs are [x]2, vk,x and π.

1. Compute

– α := H1(cmv, cmσ,x, cmw)

– β := H1(cmv, cmσ,x, cmw, cmc)

– ζ := H1(cmv, cmσ,x, cmw, cmc, cmz, cmt)

– ζ ′ := H2(cmv, cmσ,x, cmw, cmc, cmz, cmt)
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– ζ ′′ := H3(cmv, cmσ,x, cmw, cmc, cmz, cmt)
– ν := H1(cmv, cmσ,x, cmw, cmc, cmz, cmt, cmr)
– ω := H2(cmv, cmσ,x, cmw, cmc, cmz, cmt, cmr)
– z := H1(cmv, cmσ,x, cmw, cmc, cmz, cmt, cmr, cmh1 , cmh2)

2. Compute

cmg :=
(
yw · z6N+9 + ω6 · zD−3N−3 − ω4 · yc · z

)
· cmw

+(ω · yz · z3S+S
′
+ ζ ′ · ω2 · (yr · ν · z−1

−(ν · z−1)6S+2S′+M+3N+3 − yr + 1) + ω8 · zD−6S−2S′) · cmz

+

(
ω9 · zD−3S−S′ − ω · (ν · z−1)6S+2S′ − 1

ν · z−1 − 1
· z3S+S′ + ω5 · yval

)
· cmt

+ω7 · zD−3N−4 · cmc + ω10 · zD−6S−2S′−M−3N−4 · cmr − ω2 · yr · ζ ′′ · cmσ

−z−D · cmh1 − z · cmh2

+

(
−yw · ν3N+3 · z

6N+9 − z3N+6

z − 1

+ω2 · (yr · ν · z−1 + 1− (ν · z−1)6S+M+3N+3) · ζ ′′ · (γ · z)6S+M+3N+3 − 1

γ · z − 1

+ω2 · (−yr + yr · ν · z−1 + 1− (ν · z−1)6S+2S′+M+3N+4) ·(
ζ · z

6S+2S′+M+3N+4 − 1

z − 1
+ ζ ′ · z6S+2S′ ·

(
(α · z)M − 1

α · z − 1
+ zM · (β · z)3N+4 − 1

β · z − 1

))

+ω3 · (yr · z6S+2S′+M+3N+3 − ν6S+2S′+M+3N+3)− ω4 · (α · z−1)M − 1

α · z−1 − 1
· fx(z)

+ω4 · yc − ω5 · yc ·
(β · z)3N+4 − 1

β · z − 1

)
3. Output vrfy

(
{(cmy, yy), (cmz, yz), (cmr, yr)}, {(cmc, yc), (cmval, yval)},
{(cmg, 0)}, {ν · z−1, z−1, z}, {W,W ′,W ′′}, [x]2

)
.

D.4 The zkSNARK for POV

The zkSNARK VCProof/POV generates a proof for the satisfiability of a
fan-in-2 circuit with Ca addition gates, Cm multiplication gates, L wires,
` public inputs/outputs and K constants. Let C = Ca +Cm. The circuit
C is represented in the following format:

– a vector z ∈ FK representing all the constants;
– an array of index pairs {(Vi, V ′i )}Li=1 where each Vi or V ′i is an integer

in [3C + K + ` + 2]\{Cm + 1, Cm + 2}. Each pair (Vi, V
′
i ) represents

a wire that connects two variables. More specifically:
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• the left/right input and the output of the k’th addition gate are
indexed by k + Cm + 2, k + Ca + Cm + 2 and k + 2Ca + Cm + 2
respectively;
• the left/right input and the output of the k’th multiplication gate

are indexed by k, k+ 3Ca + 2Cm + 2 and k+ 3Ca +Cm + 2 respec-
tively;
• the k’th public input/output is indexed by k + 3C + 2;
• the k’th constant is indexed by k + 3C + `+ 2.

Given an instance x ∈ F`, we say x satisfies the circuit C = (z, {(Vi, V ′i )}Li=1)
if there exists a ∈ F3Ca ,m ∈ F3Cm such that

– a[1..Ca] + a[Ca+1..2Ca] = a[2Ca+1..3Ca]

– m[1..Cm] ◦m[Cm+1..2Cm] = m[2Cm+1..3Cm]

– the vector u = m[1..Cm]‖02‖a‖m[2Cm+1..3Cm]‖m[Cm+1..2Cm]‖x‖z sat-
isfies that for every i ∈ [L], u[Vi] = u[V ′i ]

.

Setup. Output srs := gen(D) for D ≥ 5C + Ca + 5.

Preprocessing. On input a circuit C = (z, {(Vi, V ′i )}Li=1), compute the
vector σ ∈ F3C+K+`+2 as follows:

1. Initialize σ := γ3C+K+`+2.
2. For every i ∈ [L], swap the values of σ[Vi] and σ[V ′i ]

.

We remark that the above algorithm works because the wires of a valid
circuit does not contain any cycles.

Compute cmz := com(fz(X), srs) and cmσ := com(fσ(X), srs). Fi-
nally, output pk := (σ, z, cmσ, cmz) and vk := (cmσ, cmz).

Prover. The inputs are srs, pk, instance x and witnesses a ∈ F3Ca ,m ∈
F3Cm .

1. δ1, δ2
$← F2.

2. v := m[1..Cm]‖δ1‖a‖m[2Cm+1..3Cm]‖m[Cm+1..2Cm] ∈ F3C+2.
3. cmv := com(fv(X), srs).
4. ζ := H1(cmσ, cmz,x, cmv), compute ζ ′ and ζ ′′ with the same inputs

by using H2 and H3 instead.
5. c := ζ · 13C+K+`+2 + ζ ′ · (v‖x‖z) + ζ ′′ · γ3C+K+`+2.
6. b := ζ · 13C+K+`+2 + ζ ′ · (v‖x‖z) + ζ ′′ · σ.

7. r :=
(∏i

j=1 c[j]/b[j]

)3C+K+`+2

i=1
‖δ2 ∈ F3C+K+`+4, cmr := com(fr(X), srs).
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8. ν := H1(cmσ, cmz,x, cmv, cmr), ω := H2(cmσ, cmz,x, cmv, cmr)

9. Compute

– h1(X) :=
(∑Ca

i=1(νX
−1)Cm+2Ca+1+i

)
· fv(X) · (X2Ca +XCa − 1)

– h2(X) := fv(νX−1) · (νX−1)3Ca+2Cm+2 · fv(X)

– h3(X) :=
(∑Cm

i=1(νX
−1)2Cm+3Ca+1+i

)
· fv(X) ·XCm

– h4(X) :=
(
fr(ν ·X−1) · νX−1 + 1− (νX−1)3C+K+`+2

)
· fc(X)

– h5(X) := fr(ν ·X−1) · fb(X)

– h6(X) :=
(
fr(ν ·X−1)− (ν ·X−1)3C+K+`+1

)
·X3C+K+`+1

10. Compute

h(X) := h1(X) + ω · (h2(X)− h3(X)) + ω2 · (h4(X)− h5(X)) + ω3 · h6(X)

+ω4 · fv(X) ·XD−3C−2 + ω5 · fr(X) ·XD−3C−K−`−4.

11. Compute h̄1(X) := (XD · h(X)) mod XD, h̄2(X) := bh(X) · X−1c
where b·c means removing all the monomials with negative powers.

12. cmh1 := com(h̄1(X), srs), cmh2 := com(h̄2(X), srs).
13. z := H1(cmσ, cmz,x, cmv, cmr, cmh1 , cmh2).

14. yv := fv(ν · z−1), yr := fr(ν · z−1).
15. Compute

ḡ(X) :=

(
ω4 · zD−3C−2 + (νz−1)Cm+2Ca+2 · (νz−1)Ca − 1

νz−1 − 1
· ((ν · z−1)2Ca + (ν · z−1)Ca − 1)

+ω ·
(
yv · (νz−1)3Ca+2Cm+2 − (νz−1)3C+2 − (νz−1)2Cm+3Ca+2

νz−1 − 1
· zCm

)
+

+ ω2 · ζ ′ ·
((
yr · ν · z−1 + 1− (νz−1)3C+K+`+2

)
· zCm − yr

))
· fv(X)

+ω2 · ζ ′ · z3C+`+2 ·
((
yr · ν · z−1 + 1− (νz−1)3C+K+`+2

)
· zCm − yr

)
· fz(X)

+ω2 · ζ ′′ · fσ(X) + ω5 · zD−3C−K−`−4 · fr(X)− z−D · h̄1(X)− z · h̄2(X)

+

(
ω2 ·

(
ζ ′′ · (γ · z)3C+K+`+2 − 1

γ · z − 1
+ ζ ·

(
(νz−1)3C+K+`+2 − 1

νz−1 − 1
− z3C+K+`+2 − 1

z − 1

))
+ ω3 · (yr − (νz−1)3C+K+`+1) · z3C+K+`+1

)
16. cmg := com(ḡ(X), srs) computed by linearly combining cmv, cmz, cmr,

cmσ, cmh1 , cmh2 and [1]1.

17. Compute (W,W ′) := open

{(cmv, yv, fv(X)), (cmr, yr, fr(X))},
{cmg, 0, ḡ(X)},
{ν · z−1, z}


18. Output π := (cmv, cmr, cmh1 , cmh2 , yv, yr,W,W

′)
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Verifier. The inputs are [x]2, instance x ∈ F` and the proof π.

1. Compute
– ζ := H1(cmσ, cmz,x, cmv)
– ζ ′ := H2(cmσ, cmz,x, cmv)
– ζ ′′ := H3(cmσ, cmz,x, cmv)
– ν := H1(cmσ, cmz,x, cmv, cmr)
– ω := H2(cmσ, cmz,x, cmv, cmr)
– z := H1(cmσ, cmz,x, cmv, cmr, cmh1 , cmh2)

2. Compute

cmg :=

(
ω4 · zD−3C−2 + (νz−1)Cm+2Ca+2 · (νz−1)Ca − 1

νz−1 − 1
· ((ν · z−1)2Ca + (ν · z−1)Ca − 1)

+ω ·
(
yv · (νz−1)3Ca+2Cm+2 − (νz−1)3C+2 − (νz−1)2Cm+3Ca+2

νz−1 − 1
· zCm

)
+

+ ω2 · ζ ′ ·
((
yr · ν · z−1 + 1− (νz−1)3C+K+`+2

)
· zCm − yr

))
· cmv

+ω2 · ζ ′ · z3C+`+2 ·
((
yr · ν · z−1 + 1− (νz−1)3C+K+`+2

)
· zCm − yr

)
· cmz

+ω2 · ζ ′′ · cmσ + ω5 · zD−3C−K−`−4 · cmr − z−D · cmh1 − z · cmh2

+

[
ω2 ·

(
ζ ′′ · (γ · z)3C+K+`+2 − 1

γ · z − 1
+ ζ ·

(
(νz−1)3C+K+`+2 − 1

νz−1 − 1
− z3C+K+`+2 − 1

z − 1

))
+ ω3 · (yr − (νz−1)3C+K+`+1) · z3C+K+`+1

]
1

3. Output vrfy

(
{(cmv, yv), (cmr, yr)}, {(cmg, 0)},
{ν · z−1, z}, {W,W ′}, [x]2

)
.

E Concrete Efficiency

Here we present a more thorough comparison between our works and
other zkSNARKs. We first compare the communication costs, including
the proof sizes and public parameter sizes, and the asymptotic complex-
ities, between both versions of VCProof and a wide range of concurrent
works. After that, we compare the KZG version of VCProof and the other
constant-verifier zkSNARKs with respect to the concrete cost.

Table 3 and 4 compare the costs of our work with a wide range of zk-
SNARKs with respect to the communication costs and asymptotic com-
putation costs. For Aurora,Fractal and Spartan, their proof sizes are an
order of magnitude larger than the others, and we ignore the concrete
values and only leave an asymptotic estimate.
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Note also that the indexers of the VCProof zkSNARKs are all linear, as
opposed to the quasi-linear indexer of other zkSNARKs. This discrepancy
stems from using the monomial base, and as a consequence, the indexer
does not need the FFT to transform the target vector into a polynomial.

Table 3. Comparison of communication costs between the VCProof schemes and other
zkSNARKs. The superscript 1 for VCProof protocols refers to the KZG version, and the
superscript 2 refers to the DARK version. The two versions of PLONK are respectively
the short-proof version and the fast-prover version.

relation zkSNARK
proof

pk size vk size
prover verifier

size setup setup

R1CS

Marlin [4] 21F + 13G1 9SF 9G1 (6S + 6)G1 1G2

Aurora [10] O(log2(S)) - - - -
Fractal [8] O(log2(S)) 9SF 9F - -

Groth16 [2] 2G1 + 1G2
(3 +M + 2N)G1 (`+ 1)G1 - -

+(3 +N)G2 +3G2

Spartan [9] O(log2(S)) O(S) O(1) O(S) O(1)

VCProof/R1CS1 5F + 11G1
(3M +N

2G1
(6S + 3M+

1G2+9S + 3)F N + 7)G1

VCProof/R1CS2 (8 + 2 log(N))GU (3M +N
2GU

(6S + 3M+
1GU+(5 + 4 log(N))F +9S + 3)F N + 7)GU

HPR

Sonic [5] 16F + 20G1 O(N) 6G1 O(N) 1G2

Supersonic [6]
(7 + 2 log(C))GU 8CF 8GU 8CGU 1GU+(2 + 3 log(C))F

BulletProof [17] 2 log(N)G - - - -

VCProof/HPR1 5F + 10G1
(3N +M

2G1
(6S +M

1G2+9S + 3)F +3N + 7)G1

VCProof/HPR2 (7 + 2 log(N))GU (3N +M
2GU

(6S +M+
1GU+(5 + 4 log(N))F +9S + 3)F 3N + 7)GU

PLONK1 [3] 7F + 7G1 6CF 6G1 3CG1 1G2

PLONK2 [3] 7F + 9G1 8CF 8G1 CG1 1G2

Fan-in-2
VCProof/POV1 2F + 6G1

(`+ 2K + 3C
2G1

(5C + Ca 1G2Circuit +2)F +4)G1

VCProof/POV2 (5 + 2 log(N))GU (`+ 2K + 3C
2GU

(5C + Ca 1GU(2 + 3 log(N))F +2)F +4)GU

Table 5 compares the concrete prover and verifier computation costs of
the KZG version of the VCProof with other constant-verifier zkSNARKs,
namely PLONK, Sonic, Marlin and Groth16. The works of Marlin,Groth16
and Sonic do not provide the concrete number of FFTs, so we only present
an asymptotic estimate for the number of field operations. Although the
verifiers also need field operations, we neglect them as their costs are
negligible compared to pairings and group exponentiations.
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Table 4. Comparison of computational costs between the VCProof schemes and other
zkSNARKs. The superscript 1 for VCProof protocols refers to the KZG version, and the
superscript 2 refers to the DARK version. The two versions of PLONK are respectively
the short-proof version and the fast-prover version.

relation zkSNARK prove verify index setup univ. transp.

R1CS

Marlin [4] O(S log(S)) O(1) O(S log(S)) O(S) X
Aurora [10] O(S log(S)) O(S) - - X X
Fractal [8] O(S log(S)) O(log(S)) O(S log(S)) - X X
Groth16 [2] O(N log(N)) O(1) O(S log(S)) -
Spartan [9] O(S) O(log2(S)) O(S log(S)) O(S) X X

VCProof/R1CS1 O(S log(S)) O(1) O(S) O(S) X
VCProof/R1CS2 O(S log(S) O(log(S)) O(S) O(S) X X

HPR

Sonic [5] O(N log(N)) O(1) O(N log(N)) O(N) X
Supersonic [6] O(N log(N)) O(log(N)) O(N log(N)) O(N) X X
BulletProof [17] O(N log(N)) O(N) - - X X
VCProof/HPR1 O(S log(S)) O(1) O(S) O(S) X
VCProof/HPR2 O(S log(S)) O(log(S)) O(S) O(S) X X
PLONK1 [3] O(C log(C)) O(1) O(C log(C)) O(C) X

Fan-in-2 PLONK2 [3] O(C log(C)) O(1) O(C log(C)) O(C) X
Circuit VCProof/POV1 O(C log(C)) O(1) O(C) O(C) X

VCProof/POV2 O(C log(C)) O(log(C)) O(C) O(C) X X

Table 5. Concrete comparison of prover and verifier computation costs between the
constant-verifier zkSNARKs, i.e., VCProof (KZG), PLONK, Sonic, Marlin and Groth16.

relation zkSNARK prove verify

R1CS

Groth16 [2]
(3S +N − `)G1-exp + NG2-exp

3 Pairings + `G1-exp
+ O(S log(S))F-mul

Marlin [4] 21SG1-exp + O(S log(S))F-mul 2 Pairings

VCProof/R1CS

(48S + 29N − `+ 36)G1-exp

2 Pairings + 20G1-exp
4 FFTs of size 12S + 8N

2 FFTs of size 12S
4 FFTs of size 6S or 6N

2 FFTs of size 2N

HPR

Sonic [5] 273NG1-exp + O(N log(N))F-mul 13 Pairings

VCProof/HPR

(46S + 30N + 33)G1-exp

2 Pairings + 19G1-exp
4 FFTs of size 12S + 8N

2 FFTs of size 12S
6 FFTs of size 6S or 6N

PLONK1 [3]

11CG1-exp

2 Pairings + 16G1-exp
8 FFTs of size 4Cm
5 FFTs of size 2Cm

Fan-in-2 12 FFTs of size Cm
Circuit PLONK2 [3] 9CG1-exp + same FFTs as above 2 Pairings + 18G1-exp

VCProof/POV
(27C + 3Ca + 3K + 3`+ 25)G1-exp

2 Pairings + 12G1-exp
6 FFTs of size 6C
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Regarding the prover cost, VCProof/HPR outperforms Sonic while the
number of group exponentiations in VCProof/R1CS and VCProof/POV
are 2-5 times larger than the other works.

We remark that the FFTs in VCProof are involved only in polynomial
multiplications. Apart from the polynomial multiplications, our prover
costs are linear to the problem size. In contrast, in other zkSNARKs,
the FFTs are pervasive as they are needed every time the prover or the
indexer commits to a polynomial. The usage of FFTs also restricts the
choice of finite fields to those with smooth multiplicative subgroups, which
is the case for almost all existing zkSNARKs.
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