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Abstract. The construction of zkSNARKs involves designing a Poly-
nomial IOP (PIOP) that matches with the constraint system for which
it proves membership. Designing this PIOP is a challenging task because
the constraint system is typically not expressed in terms of polynomials
but in terms of matrices and vectors. To mitigate this mismatch, we pro-
pose a new methodology for designing PIOP, which first designs a middle
layer protocol matching the constraint system, called the Vector Oracle
protocol, and then compiles it into a PIOP. The native first-class citizens
of the Vector Oracle protocol are vectors; and by virtue of matching with
the language of the arithmetic constraint system, Vector Oracle protocols
are more intuitive to design and analyze than PIOPs. The Vector-Oracle-
to-PIOP compilation procedure is protocol-independent, allowing us to
present and optimize it as a standalone component, leading to a series
of improvements.

We apply our methodology to construct three zkSNARKs, each tar-
geting a constraint system: the Rank-1 Constraint System (R1CS), the
Hadamard Product Relation (HPR), and the PLONK circuit. All three
zkSNARKs achieve shorter proofs and smaller or identical verification
costs compared to the state-of-the-art constructions targeting the same
constraint systems. Specifically, VOR1CS defeats Marlin in proof size;
VOHPR and VOPLONK outperform Sonic and PLONK, respectively, in
both proof sizes and verification costs. In particular, the proof of VOPLONK
has only two field elements and seven group elements, thus becoming the
shortest among all existing universal-setup zkSNARKs.
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1 Introduction

Zero-knowledge SNARKs (zkSNARKs), first introduced by Bitansky et
al. in 2012 [1], allow a prover to generate a short proof π for a computa-
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tion output y = F (x,w) of an arbitrary function F , such that a resource-
restricted verifier can validate y with at most O(polylog(|F |)) computa-
tional and storage costs while learning nothing about the secret input w.
Recent years witnessed a surge of zkSNARKs with various properties,
e.g., constant verification time [2,3,4,5], universal setup [3,4,5,6,7,8,9],
transparent setup [6,7,8,9], and post-quantum security [7,8,10]. New de-
signs emerge rapidly with smaller construction and verification costs,
shorter proofs, and fewer security assumptions. Despite its short history,
zkSNARKs have already been deployed in many blockchain-based sce-
narios, e.g., Zcash [11], the first fully anonymous cryptocurrency, and
Aztec [12] and zkSync [13], two projects boosting the scalability and pri-
vacy of Ethereum—the cryptocurrency with the second-largest market
capitalization.

Albeit diverse in the underlying techniques, most zkSNARKs share
the same construction workflow centered on a Polynomial IOP (PIOP)
protocol, as pointed out by Bünz et al. [6]. In this workflow, the to-be-
verified equation y = F (x,w) is first transformed into a constraint system
over a finite field F. Second, a PIOP protocol is designed to verify that
an instance-witness pair (x,w) satisfies the constraint system. The PIOP
protocol involves two parties: a prover and a verifier. The prover sends
to the verifier, potentially in multiple rounds, a set of polynomials, each
encapsulated in a polynomial oracle—a kind of idealized functionality.
The verifier may query these oracles for evaluations of these polynomi-
als at arbitrary elements of F. Finally, the PIOP protocol is compiled
into a zkSNARK by a polynomial commitment scheme, e.g., KZG [14]
or DARK [6]. Concurrent with [6], the notion PIOP is also proposed by
Chiesa et al. with the name Algebraic Holographic Proof (AHP) [4] and
Gabizon et al. as Polynomial Protocols [3]. As a middle layer between the
constraint system and the zkSNARK, PIOP abstracts away the complex-
ities in the latter’s underlying cryptography. Moreover, this middle layer
leaves the choice of the polynomial commitment scheme flexible, allowing
practitioners to fine-tune the trade-off between higher efficiency and fewer
security assumptions.

This paper focuses on the PIOP-designing step. We observe a com-
mon pattern among prior constructions: they all need to implement, with
polynomial equations, one or both of two basic vector operations, which
are (1) the inner product, and (2) the Hadamard product, i.e., entry-wise
product. For example, in Libra [15], Marlin [4] and Fractal [8], the inner
product is implemented using the sumcheck protocol [16] or its univari-
ate variant [10], and the Hadamard product directly corresponds to the
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polynomial product. The ubiquity of these vector operations inspires us
to propose a new zkSNARK construction methodology, which first de-
signs a Vector Oracle protocol that translates the constraint system into
inner- and Hadamard-product checks, and then implements this protocol
as a PIOP protocol. Figure 1 illustrates the proposed modification to the
zkSNARK construction workflow.

y = F (x,w) Contraint System PIOP zkSNARK

arithmetization protocol design crypto compile

Vector Oracle Protocol

protocol design VO compile

Our methodology

Fig. 1. The zkSNARK construction workflow. The Vector Oracle protocol is more
intuitive to design than PIOP, and the VO-to-PIOP compilation is independent of the
constraint system.

This new construction method, named VOProof for “Vector Oracle
Proof”, has the following two-fold advantage. First, a Vector Oracle (VO)
protocol is more intuitive to design than a PIOP protocol targeting the
same constraint system, because the constraint system usually consists
of equations of matrices and vectors rather than polynomials. Second,
by defining the VO protocol as a standalone abstraction, we explicitly
separate the polynomial representations of the aforementioned basic vec-
tor operations from the protocol-specific logic. This separation enables
the flexible combination of the VO protocol and the polynomial repre-
sentation of the vector operations, thus opening a large design space for
optimization. We formalize this method, explore the design space, and
show that the new method is capable of producing zkSNARKs, for vari-
ous constraint systems, with shorter proofs and verification time than the
state of the art. Specifically, our contributions include:

The Vector Oracle Formalization. We simplify the PIOP design by
explicitly separating the constraint-system-specific protocol logic from the
polynomial-related techniques. The protocol logic is described via a VO
protocol (Sect. 3), where the parties have access to a vector oracle. The
vector oracle stores vectors submitted from the prover and receives queries
from the verifier to manipulate these vectors. The verifier may also query
the oracle to check vector identities involving Hadamard products and
inner products.

We compare designing zkSNARKs using PIOP directly and using the
VO model as follows.
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– Equivalence with PIOP: a VO protocol can be compiled to a PIOP
protocol targeting the same constraint system and vice versa, i.e., VO
protocols can prove the same set of constraint systems as PIOP.

– Straightforward Design: VO protocols are simpler to design than PI-
OPs, due to the intuitive interface provided by the vector oracle.

– New Optimization Techniques: zkSNARKs from VO protocols are eas-
ier to optimize due to the simplicity and the separation of the pro-
tocol logics from the compilation. In fact, the VO model uncovers
the optimizations of vector concatenation and the batching of all the
Hadamard- and inner-product checks into a single polynomial equa-
tion. In prior constructions, these optimizations are tricky to apply
and thus left unnoticed.

– Zero-Knowledge: the zero-knowledge of VO-based SNARKs is ensured
by the compilation and no longer a duty of the protocol designer.

– Expressiveness: the PIOPs compiled from VO protocols are only a
subset of all zero-knowledge PIOPs, i.e., the VO model is not expres-
sive enough to capture all PIOP protocols. Despite the limited ex-
pressiveness, VO protocols can prove all the constraint systems that
PIOPs are capable of.

Implementing VO Protocols for Influential Circuit-based Con-
straint Systems. We present VOProof, a collection of three VO protocols
targeting three circuit-based constraint systems, respectively. In Sect. 4,
we construct protocols for R1CS (Rank-1 Constraint System) and HPR
(Hadamard Product Relation). In Sect. 5, we provide a protocol for the
constraint system of PLONK [17]. We name these protocols VOR1CS,
VOHPR and VOPLONK. These protocols are constructed in a modular
manner by composing building-block protocols. These building blocks are
independently useful in constructing specialized-purpose SNARKs, e.g.,
for verifying the matrix-vector product.

New zkSNARKs with Shorter Proofs and Smaller Verification
Costs. We present zkSNARKs with competitive efficiency compared to
the state of the art (Sect. 6). We first compile VOProof to PIOPs us-
ing our VO-to-PIOP compiler, then transform the PIOPs to universal-
setup preprocessing zkSNARKs via the KZG [14] polynomial commit-
ment. Compared to the state-of-the-art constructions for the same con-
straint systems, all VOProof zkSNARKs reduce the proof sizes by half or
more, while two of them also lower the verification costs. In particular, the
proof of VOPLONK has only two field elements and seven group elements,
becoming the shortest among all known universal-setup zkSNARKs.
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The efficiency improvements result from (1) the vector concatenation
technique applied in the VO protocols, (2) the batching technique in the
Vector Oracle compiler, and (3) a concrete-level optimization inspired by
PLONK [3]. Although the vector concatenation technique slightly sacri-
fices the efficiency in proof construction, the proving cost remains com-
parable (increased by two to three times) to the concurrent constructions
due to other optimizations. For comparison, we also analyzed the effi-
ciency of the VOProof zkSNARKs without using the vector concatena-
tion. These zkSNARKs have the same or better performances in both
proving efficiencies and proof sizes compared to prior works.

1.1 Related Works

We classify zkSNARKs into three groups, based on how they achieve suc-
cinctness—the “S” in zkSNARK. The first group includes BulletProofs [18]
and Aurora [10], which achieve logarithmic proof sizes and linear verifier
complexities. The second group target only uniform circuits, i.e., those
with very short representations. Examples include Libra [15], which re-
quires the circuit to be layered and log-space uniform, and STARK [7]
and vRAM [19], which target Random-Access-Machines (RAMs) that are
equivalent to circuits consisting of repetitions of the same sub-circuit.

Most zkSNARKs fall into the third group, which introduces prepro-
cessing, allowing the verifier to read a short digest instead of the com-
plete circuit. Spartan [9] and Fractal [8] do not require trusted setups and
Fractal is proved post-quantum secure [20]. Pinocchio [21] and Groth16 [2]
are pairing-based zkSNARKs that require per-circuit trusted setups. In
comparison, Marlin [4], PLONK [3] and Sonic [5] only require a universal
trusted setup. These pairing-based zkSNARKs have constant proof sizes
and verifier complexities.

Supersonic [6] and Claymore [22] cross the group boundaries by focus-
ing more on the methodology instead of standalone zkSNARKs. Specif-
ically, Supersonic proposes the DARK polynomial commitment and the
PIOP formalization, and Claymore focuses on the PIOP protocol. Our
work is inspired by them as we also focus on improving the methodology
and constructing abstract-level protocols.
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2 Preliminaries

2.1 Notations

Let Z be the set of integers. For convenience, we abbreviate the set {i}ni=1

by [n], and {i}ni=m by [m..n] for m < n. Throughout this paper, we use a
unique finite field F. Elements in F are also called scalars.

We denote the vectors by bold lowercase letters, e.g., a ∈ Fn is a
vector of size n over F. We use a[i] for the i-th element of the vector a,
where the indices start from 1. Let a[i..j] := (a[i], · · · ,a[j]) for i ≤ j. For
i > n, we treat a[i] = 0 for convenience.

We use the following binary operations between vectors. For two vec-
tors a ∈ Fn1 and b ∈ Fn2 , their concatenation is a‖b := (a[1], · · · ,a[n1],

b[1], · · · , b[n2]) ∈ Fn1+n2 . Their sum is a + b := (a[i] + b[i])
max{n1,n2}
i=1 ∈

Fmax{n1,n2}. Their inner product is a · b :=
∑

i∈[min{n1,n2}] a[i] · b[i]. Their

Hadamard (entry-wise) product is a◦b := (a[i]·b[i])
min{n1,n2}
i=1 ∈ Fmin{n1,n2}.

We will use power vectors, i.e., vectors of the form (1, α, α2, · · · , αn−1),
denoted by αn where α ∈ F. In particular, 1n and 0n are the all-one and
all-zero vectors of size n. We also use unit vectors ei that has a single one
at position i and zeros anywhere else.

We use bold capital uppercase letters for matrices, e.g., M ∈ Fm×n
is a matrix of size m × n over F. The element of M in the i-th row
and j-th column of the matrix is M [i,j]. The matrix-vector product is

denoted by either Mv for right multiplication of vectors or vTM for left
multiplication.

We write f(X) ∈ F<d[X] as a polynomial of degree less than d over
field F. When the context is clear, we use fi to represent the coefficient
for Xi. For a vector v ∈ Fd, let fv(X) ∈ F<d[X] be the polynomial that
uses the elements of v as coefficients, i.e., fv(X) =

∑d
i=1 v[i]X

i−1.

Finally, we introduce the indexed relation, a convenient notion for
defining protocols with a preprocessing procedure. An indexed relation R
is a set of triples (i,x,w) where i is the index, x is the instance, and w

is the witness. The indexed language induced by R is L(R) := {(i,x) :
∃w, (i,x,w) ∈ R}.

2.2 Interactive Proof for Indexed Relations

This work focuses on protocols that admit a preprocessing procedure
which, on inputting an index of the relation, produces helpful information
for the prover and the verifier in the protocol.
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Definition 1 (Preprocessing Interactive Proof). A preprocessing
interactive proof is a tuple of PPT algorithms (I,P,V) named the indexer,
the prover, and the verifier, respectively:

1. I takes input i and outputs helpful information iP and iV for the prover
and the verifier, respectively;

2. P takes inputs iP , iV ,x,w and V takes inputs iV ,x; they interact with
each other; in the end, the verifier outputs one bit b.

The above procedure is denoted by b← 〈I(i),P(x,w),V(x)〉.
We say (I,P,V) verifies the relation R with completeness error εc if

for any (i,x,w) ∈ R,

Pr[b = 0 | b← 〈I(i),P(x,w),V(x)〉] ≤ εc,

and soundness error εs if for any (i,x) 6∈ L(R) and any unbounded algo-
rithm P∗,

Pr[b = 1 | b← 〈I(i),P∗,V(x)〉] ≤ εs.

We say (I,P,V) is public-coin if all the randomnesses used by V are public
coins, i.e., they are sent to the prover immediately after they are read by
the verifier from the random tape.

The transcript of an execution of (I,P,V) is the string consisting of
iV and all the messages exchanged between P and V. The transcript is
denoted by tr〈I(i),P(x,w),V(x)〉.

For convenience, whenever we mention “interactive proof”, we are
referring to “preprocessing interactive proof”, unless otherwise stated.
Similarly, by “PIOP” and “zkSNARK”, we refer to the preprocessing
versions by default.

The notion zero-knowledge (ZK) requires that any verifier cannot ac-
quire any information by interacting with the honest prover. This notion
is formalized by a simulator that samples the transcript indistinguishably
from those of honest executions. In this paper, we focus on honest-verifier
statistical zero-knowledge (HVSZK), which only requires that the simula-
tor exists for the honest verifier. This version of ZK suffices in the context
of public-coin protocols, which can be transformed into zkSNARKs via
the Fiat-Shamir heuristic.

Definition 2 (Honest-Verifier Statistical Zero-Knowledge). The
preprocessing interactive proof (I,P,V) for the indexed relation R is statis-
tical honest-verifier zero-knowledge (HVSZK) if there exists a PPT algo-
rithm S such that for any (i,x,w) ∈ R, the statistical distance between the
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distributions of the following two random variables tr and tr′ is bounded
by a negligible ε:

tr← tr〈I(i),P(x,w),V(x)〉 and tr′ ← S(i,x),

where the distributions are over all random coins. We say S simulates the
transcript of this protocol with statistical distance ε.

2.3 Polynomial IOP

A PIOP (Polynomial Interactive Oracle Proof) protocol [6] is an interac-
tive proof where, unlike in ordinary interactive proofs, the prover and the
indexer may send polynomial oracles to the verifier. A polynomial oracle
encapsulates a polynomial, say f(X), and replies f(z) when queried with
any z ∈ F. We denote the polynomial oracle for f(X) by [f(X)].

Definition 3 (Preprocessing PIOP). A preprocessing PIOP with de-
gree bound D is a public-coin interactive proof (I,P,V), except:

– I and P do not send messages to V; instead, they output polynomials
of degree less than D;

– for every polynomial f(X) output by I or P, V has access to the evalu-
ation oracle of f(X), denoted by [f(X)]. Specifically, the verifier may
query [f(X)] with arbitrary z ∈ F and receives the reply y = f(z).

The notions completeness and soundness follow directly from those of
interactive proofs. However, the definition of HVSZK should be handled
carefully, as the verifier no longer reads the entire polynomials but only
their evaluations at a few points. Moreover, the randomness for comput-
ing the evaluation queries should also appear in the transcript, although
they do not appear in the verifier messages. Therefore, we redefine the
transcript of a PIOP execution as the string consisting of 1) iV , 2) all
the verifier randomnesses, and 3) the replies from the polynomial oracles.
With this new definition of the transcript, the definition of HVSZK of
PIOP is the same as in Definition 2.

2.4 The zkSNARK Construction Workflow

Here we illustrate the zkSNARK construction workflow (Fig. 1) in more
detail. The starting point of this workflow is a computation, usually rep-
resented by an arithmetic circuit C that computes a function over F.

The first step of this workflow, called arithmetization, transforms the
arithmetic circuit into a constraint system formalized as indexed relations.
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Several constraint systems are available for this step. In this paper, we
build zkSNARKs for the following popular constraint systems:

– R1CS (Rank-1 Constraint System) is used in Pinocchio [21], Groth16 [2],
Aurora [10], Fractal [8], Marlin [4], Spartan [9].

– HPR (Hadamard Product Relation) was proposed by Bootle et al. [23].
Its variations are used in BulletProofs [18], Sonic [5], Claymore [22]. A
recent lattice-based zkSNARK [24] also chooses this relation.

– The constraint system of PLONK is used solely in PLONK [3], one of
the most efficient and popular zkSNARKs in the literature.

The second step in the workflow produces a PIOP for verifying the
indexed relation specified by the constraint system. This step is where
most zkSNARK constructions vary and is the focus of this work.

Finally, the PIOP is compiled into a zkSNARK via two cryptographic
tools. First, the polynomial oracles are replaced by polynomial commit-
ments, and the evaluation queries are replaced by an interactive protocol
between the prover and the verifier. This step turns the PIOP into an
interactive proof in the standard model. Next, this interactive proof is
turned into a zkSNARK by the Fiat-Shamir transformation [25] that
replaces the verifier messages by query replies from a random oracle ap-
proximated by a collision-resistant hash function.

3 Vector Oracle Model

The Vector Oracle model introduces a vector oracle to interactive proofs.
A vector oracleO maintains a dictionary of vectors. Each vector is indexed
by a bit-string referred to as the vector’s name. The indexer and the prover
may submit arbitrary vectors in Fn to O. The verifier, however, can only
submit a restricted class of vectors, including sparse vectors and power
vectors of the form αk := (1, α, α2, · · · , αk−1). Although the oracle does
not limit the density of the sparse vector, submitting a dense vector in the
place of a sparse vector will not lead to any attacks, but only affects the
computational workload of the verifier. The verifier can also manipulate
existing vectors by linear combinations and right-shiftings. Finally, the

verifier may query O to check Hadamard relations like a ◦ b ?
= c ◦ d or

inner-product relations like a · b ?
= c · d.

For convenience, we introduce the following notations. If we right-shift
v ∈ Fn by k positions, we get v→k := 0n−k‖v[1..n−k] ∈ Fn, i.e., remove
the right-most k elements and prefix the vector with k zeros. Denote the
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dictionary of vectors be V . For any name ∈ {0, 1}∗, we write name ∈ V if
V stores a vector under the key name, and refer to this vector by V [name].

Definition 4 (Vector Oracle). A vector oracle of vector size n inter-
nally maintains a dictionary V : {0, 1}∗ → Fn which starts out to be
empty. The oracle accepts the following types of queries:

– VEC(name ∈ {0, 1}∗,v ∈ Fn): sets V [name]← v;

– POW(name ∈ {0, 1}∗, α ∈ F, k ∈ [n]): sets V [name]← αk‖0n−k;

– SPA(name ∈ {0, 1}∗,v ∈ Fn) where v is sparse: sets V [name]← v;

– ADD(name, left, right ∈ {0, 1}∗): sets V [name]← V [left] + V [right];

– MUL(name, src ∈ {0, 1}∗, α ∈ F): sets V [name]← α · V [src];

– SHR(name, src ∈ {0, 1}∗, k ∈ [n− 1]): sets V [name]← V [src]→k;

– HAD(a, b, c, d ∈ {0, 1}∗): aborts if V [a] ◦ V [b] 6= V [c] ◦ V [d];

– INN(a, b, c, d ∈ {0, 1}∗): aborts if V [a] · V [b] 6= V [c] · V [d].

If a query tries to store a vector in a key already in V , or read a key not
in V , the oracle also aborts.

A Vector Oracle (VO) protocol is an interactive protocol where the
parties have access to the vector oracle.

Definition 5 (Preprocessing VO Protocol). A preprocessing VO
protocol with vector size n for an indexed relation R is a tuple of PPT
algorithms (I,P,V) that have access to a vector oracle O with vector size
n, such that:

– (I,P,V) is a preprocessing interactive protocol for R;

– I and P’s accesses to O are restricted to VEC queries;

– V’s accesses to O are restricted to queries except VEC;

– P does not send any messages to V; and

– V outputs 1 if and only if O does not abort.

The notions public-coin, completeness and soundness follow from those
of preprocessing interactive protocols.

Note that the verifier does not receive any information from the prover
or O except if O aborts or not. Therefore, any VO protocols trivially
satisfy HVSZK in Definition 2.

Theorem 1 shows that we can compile a VO protocol to an HVSZK
PIOP with small overhead, no impact on completeness, and negligible
degradation to soundness.
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Theorem 1. Assume that the preprocessing VO protocol (VO.I, VO.P,
VO.V) with vector size n verifies the indexed relation R with completeness
error εc and soundness error εs. Assume that VO.I submits m vectors,
VO.P submits r vectors, VO.V issues tH HAD queries, tI INN queries.
Then there exists a preprocessing PIOP protocol (I,P,V) with degree bound
4n+1 that verifies R with completeness error εc and soundness error εs+
tH+tI+6n+6
|F|−1 , and HVSZK where the simulator S simulates the transcript

of 〈I,P,V〉(i,x,w) with statistical distance 1
|F|−1 . Moreover, I sends m

polynomial oracles, and P sends r + 3 polynomial oracles to V, and V
makes at most 2(m+ r) + 6 evaluation queries at 3 distinct points.

If tI = 0, i.e., the VO protocol does not use any INN queries, P sends
r+2 online polynomial oracles, and the verifier makes at most 2(m+r)+4
evaluation queries at 3 distinct points.

We provide an overview of the VO-to-PIOP compiler, followed by a sketch
of the security proof for the compiled PIOP. We leave the complete
proof to Appendix A. The compiler is partially inspired by the batched
InnerProduct protocol in Claymore [22].

Compiler. Given any VO protocol (VO.I,VO.P,VO.V), the compiled PIOP,
namely (I,P,V), works as follows:

1. I executes exactly as VO.I, except for every v ∈ Fn submitted to O, I
instead sends a polynomial [fv(X)] of degree at most n− 1 to V;

2. P and V interact exactly as VO.P and VO.V, except that the queries
to O are handled differently. Generally speaking, all the vectors in-
volved in the protocol are replaced by polynomial oracles: the vectors
submitted by VO.P are encapsulated in polynomial oracles and sent
to V by P; the polynomial oracles for vectors submitted by VO.V can
be simulated by V locally due to their special structures.

– For every VEC(name,v) query, P samples δ
$← Fq, computes vname :=

v‖δ and sends the polynomial [fvname(X)] of degree at most n+q−1
to V, where q is a small integer decided later when we discuss ZK;

– for every POW(name, α, k) query, P computes vname := αk, and V
simulates the polynomial oracle [fαk(X)] of degree k−1 by locally

computing fαk(z) = (αz)k−1
αz−1 for αz 6= 1 or k for αz = 1;

– for every SPA(name,v) query, P stores vname := v, and V simu-
lates the polynomial oracle [fv(X)] by evaluating this polynomial
locally using the sparse representation of v;

– for every ADD(name, left, right) query, P computes vname := vleft +
vright and V simulates the polynomial oracle [fvname(X)] of degree
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at most max{|vleft|, |vright|}−1 by querying the polynomial oracles
[fvleft(X)] and [fvright(X)] and adding the responses;

– for every MUL(name, src, α) query, P computes vname := α · vsrc
and V simulates the polynomial oracle [fvname(X)] of degree at
most |vsrc| − 1 by querying the polynomial oracle [fvsrc(X)] and
multiplying the response with α;

– for every SHR(name, src, k) query, P computes vname := 0k‖vsrc
and V simulates the polynomial oracle [fvname(X)] of degree at
most |vsrc| + k − 1 by querying the polynomial oracle [fvsrc(X)]
with z and multiplying the response with zk;

– INN and HAD queries demand more complicated processing, whose
details are in step 3 and step 4 to 7, respectively.

3. Let the vectors referred to by the INN queries be {a(i), b(i), c(i),d(i)}tIi=1.
These vectors have sizes at least n. Note that P has computed all of
them, and V has access to their polynomial oracles. The INN queries

are equivalent to a
(i)
[1..n] · b

(i)
[1..n] = c

(i)
[1..n] · d

(i)
[1..n] for every i ∈ [tI ]. To

prove this, V samples β
$← F and sends β to P. P computes

r :=
∑
i∈[tI ]

βi
(
a

(i)
[1..n] ◦ b

(i)
[1..n] − c

(i)
[1..n] ◦ d

(i)
[1..n]

)
,

samples δ
$← Fq and computes r̃ :=

(∑i
j=1 r[j]

)n
i=1
‖δ. P sends [fr̃(X)]

of degree n + q − 1 to V. It suffices for P to show that r̃[n] = 0 and
that (r̃ − (0‖r̃)− r)[1..n] = 0, which will be proved together with the
HAD queries in the next step;

4. Let the vectors referred to by the HAD queries be {ā(i), b̄
(i)
, c̄(i), d̄

(i)}tHi=1.
We summarize what P needs to prove as follows:

– ā
(i)
[1..n] ◦ b̄

(i)
[1..n] − c̄

(i)
[1..n] ◦ d̄

(i)
[1..n] = 0 for every i ∈ [tH ];

–
(
r̃ − (0‖r̃)−

∑
i∈[tI ] β

i
(
a(i) ◦ b(i) − c(i) ◦ d(i)

))
[1..n]

= 0;

– r̃ ◦ en = 0.

To prove the above, V samples α
$← F and sends α to P. P samples

δ
$← Fq and computes

t := δ +
∑
i∈[tH ]

αi
(
ā(i) ◦ b̄(i) − c̄(i) ◦ d̄(i)

)

+ αtH+2

r̃ − (0‖r̃)−
∑
i∈[tI ]

βj
(
a(j) ◦ b(j) − c(j) ◦ d(j)

) .
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P sends the polynomial oracle [ft(X)] of degree at most 2n+ q− 1 to
V. It suffices to show that

0 = −t ◦ (0n‖1n+q) +
∑
i∈[tH ]

αi
(
ā(i) ◦ b̄(i) − c̄(i) ◦ d̄(i)

)
+ αtH+1r̃ ◦ en

+ αtH+2

r̃ − (0‖r̃)−
∑
i∈[tI ]

βj
(
a(j) ◦ b(j) − c(j) ◦ d(j)

) . (1)

5. V samples ω
$← F and sends ω to P, and P computes

h(X) := −(ωX−1)nf1n+q(ωX
−1)ft(X)

+
∑
i∈[tH ]

αi
(
fā(i)(ωX−1)f

b̄
(i)(X)− fc̄(i)(ωX

−1)f
d̄
(i)(X)

)
+ αtH+1(ωX−1)n−1fr̃(X) + αtH+2

(
f1n+q(ωX

−1) · (1−X)fr̃(X)
)

− αtH+2
∑
i∈[tI ]

βj
(
fa(j)(ωX−1)fb(j)(X)− fc(j)(ωX

−1)fd(j)(X)
)
,

i.e., replace every pair of Hadamard product v ◦v′ in Equation (1) by
the polynomial fv(ωX−1)fv′(X) whose constant term is fv◦v′(ω). It
suffices to show that the constant term of h(X) is 0.

6. Let γ be a generator of the multiplicative group F∗. P samples δ
$← F

and computes h̄(X) := δX2n+q−1 +X2n+q−1
∑

i 6=0
hi
γi−1

Xi. Note that

(γX)−2n−q+1h̄(γX)−X−2n−q+1h̄(X) is exactly h(X) except that the
constant term is set to zero.

7. P sends the polynomial oracle [h̄(X)] of degree at most 4n+ q − 2 to
V, and V checks the identity

h(X) = (γX)−2n−q+1h̄(γX)−X−2n−q+1h̄(X) (2)

at a random point z
$← F, by querying [h̄(X)] and evaluating h(z)

according to its definition using all the polynomial oracles at hand.

Proof (Sketch). Completeness and soundness follow intuitively, and we
refer to Appendix A for a more rigorous proof. HVSZK follows from the
fact that every polynomial is queried at most twice (at z and ωz−1, or at
z and γz for h̄(X)), and that each polynomial sent by the prover contains
at least q uniformly random coefficient in F, except h̄(X), which contains
only one random coefficient. Therefore, by letting q = 2, we ensure that
all the evaluation results are uniformly random and independent of each
other, except the last query to h̄(X). However, the simulator can solve
for the last query result using the identity in Equation (2). ut
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Note that the number of evaluation queries in Theorem 1 is only a
worst-case upper bound, which is reached only if every prover vector is
involved in both a HAD and an INN query. In practice, this number is
much smaller due to a series of optimizations in Sect. 6.

Remark 1. The compiler presented in this paper uses the monomial basis,
i.e., the vectors are embedded into the coefficients of the polynomials.
Prior works often use the Reed-Solomon code basis where a vector is
identified by its interpolation polynomials over a domain H ⊂ F. The VO-
to-PIOP compilation can also be implemented using the Reed-Solomon
code basis. However, the VO model must be modified as follows to avoid
several efficiency issues:

– In the monomial basis, the polynomial for power vector αk admits
fast evaluation. This is not the case in the Reed-Solomon code basis.
Instead, the verifier has access to the identity vector (h)h∈H corre-

sponding to f(X) := X. Moreover, the vector
(

1
α−h

)
h∈H

is also avail-

able, as the polynomial vH(X)·vH(α)−1−1
X−α has fast evaluation method

when H has special structures, where vH(X) is the vanishing polyno-
mial over H. We should replace the POW with queries for submitting
these types of vectors instead.

– In the Reed-Solomon code basis, the Hadamard product is identified
with the polynomial multiplication. Therefore, the functionality of the
HAD query is changed to submitting V [name] ← V [left] ◦ V [right].

Then we also need a ZERO(name) query to check that V [name]
?
= 0.

– In the monomial basis, shifting a vector v effectively multiplies Xk to
the polynomial fv(X). In the Reed-Solomon code basis, the shifting is
implemented by replacing f(X) with f(g−k ·X) assuming H is a mul-
tiplicative subgroup generated by g ∈ F∗. This shifting is cyclic rather
than zero-padded, and the SHR query should be redefined accordingly.

In compiling this modified VO model, the INN queries can be batched
together and checked by one invocation of the univariate sumcheck pro-
tocol [10,4,8]. We will not dive into the details which are off the topic
of this paper. We choose the monomial basis in this work because our
protocols rely heavily on the power vector and that the monomial basis
permits a more flexible choice of vector sizes.

Theorem 2 shows that PIOP protocols (not necessarily HVSZK) can
be compiled back to VO protocols. This implies that the VO protocols
are sufficiently powerful to prove the same relations as PIOP protocols.
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Theorem 2. Assume the preprocessing PIOP protocol (PIOP.I, PIOP.P,
PIOP.V) of degree bound n verifies the relation R with completeness error
εc, and soundness error εs, where I sends m polynomial oracles, P sends
r polynomial oracles, and V makes s evaluation queries. Assume that the
PIOP.V is computed by an arithmetic circuit of size V . There exists a
VO protocol (I,P,V) with vector size n that verifies R with completeness
error εc + O(V/|F|) and soundness error εc + O(V/|F|), where I submits
m vectors, P submits r+ 2 vectors, and the verifier makes s INN queries,
4 HAD queries.

We leave the proof of Theorem 2 to Appendix B.

4 Vector Oracle Protocols for R1CS and HPR

Now we apply the VO model to construct zkSNARKs for the linear-
algebra-based relations R1CS and HPR, defined in Equation (3) and (4),
respectively. In this section, we construct VO protocols for these relations.
Afterward, these VO protocols can be compiled to zkSNARKs via the
VO-to-PIOP compiler introduced in Sect. 3 followed by the cryptographic
compilation explained in Sect. 2.4.

RR1CS =



(
H,K, `
A,B,C

)
,

x,
w


∣∣∣∣∣∣∣∣
A,B,C ∈ FH×K
x ∈ F`,w ∈ FK−`−1

(Az) ◦ (Bz) = Cz
where z = 1‖x‖w

 , (3)

RHPR =



(

H,K, `
A,B,C,d

)
,

x,
w1,w2,w3


∣∣∣∣∣∣∣∣∣∣
A,B,C ∈ FH×K ,d ∈ FH
x ∈ F`,w1,w2,w3 ∈ FK
w1 ◦w2 = w3

Aw1 +Bw2 +Cw3 + d
= x‖0H−`

 . (4)

The matrices A,B,C are usually sparse. We start from the SparseMVP
protocol to deal with the matrix-vector products in these relations.

4.1 Sparse Matrix Vector Product

Let M ∈ FH×K be a sparse matrix with at most S nonzero elements.
Given the input vector a ∈ Fn, the protocol SparseMVP checks that
a[1..H] = Ma[H+1..H+K], where “given a vector a” means the vector is
stored in the vector oracle, and the prover learns the content of a.
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Random Linear Combination. Lemma 1 allows the verifier to check
that two vectors are the same when one or both of them are not stored
in the vector oracle.

Lemma 1. Let γ be a generator of the multiplicative group F∗. For any
nonzero vector v ∈ FH , for uniformly random α ∈ F\{γi}i=1, the proba-

bility Pr[rα · v = 0] ≤ H
|F|−|H| , where rα :=

(
1

α−γi

)H
i=1

.

Proof. Note that

H∑
i=1

v[i]

α− γi
= 0⇔

H∑
i=1

v[i]

∏
j 6=i

(α− γj) = 0⇔ vTΓαH = 0,

where Γ is a matrix of size H×H whose i-th row is the coefficient vector
of polynomial

∏
j 6=i(X − γj), which (after normalized) is the Lagrange

basis polynomial over {γi}Hi=1. Since the Lagrange basis polynomials are
linearly independent, Γ is an invertible matrix, therefore vTΓ 6= 0. Since
vTΓαH = fvTΓ (α), the conclusion follows from Schwartz-Zippel Lemma.

ut

The verifier samples α
$← F\{γi}Hi=1 and sends to the prover. By

Lemma 1, if the prover shows that rα · a[1..H] = rTαMa[H+1..H+K], the
verifier is confident that a[1..H] = Ma[H+1..H+K] with high probability.

To prove this, the prover submits the vector c = rTαM ∈ FK together
with rα and shows the following statements:

1. rα is as defined;
2. rα · a[1..H] = c · a[H+1..H+K]; and

3. c = rTαM .

The verifier checks the first condition by a HAD query for the relation
rα ◦ (α · 1H − γH) = 1H , and the second condition by an INN query for

r→n−Hα · a→n−H = c→n−K · a→n−H−K ,

where n is the vector size of the vector oracle, and the right-shifts by
n−∗ align the inner-product ranges to the right boundary and effectively
remove any redundant elements outside the range to prevent them from
affecting the inner product.

Now we focus on the third condition. By applying Lemma 1 again, the

verifier picks another random element β
$← F\{γi}Ki=1 and asks the prover

to show that c · rβ = rTαMrβ, where rβ :=
(

1
β−γi

)K
i=1

. This proves that

c = rTαM . Therefore, the problem boils down to showing that rTαMrβ is
equal to the inner product c · rβ, which is solved next.
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Sparse Representation of Matrix. Since the matrix M has only S
nonzero entries, we represent M by the row indices (row1, · · · , rowS) ∈
[H]S , the column indices (col1, · · · , colS) ∈ [K]S and the nonzero entries
v ∈ FS , such that for each i ∈ [S], M [rowi,coli] = v[i]. By the definition of
rα, rβ and matrix-vector product,

rTαMrβ =

H,K∑
i,j=1

M [i,j] · rα[i] · rβ [j] =
∑
i∈[S]

v[i]

(α− γrowi)(β − γcoli)
.

This is the inner product between v and t :=
(

1
(α−γrowi )(β−γcoli )

)S
i=1

. Since

v depends only on the matrix, the indexer may preprocess and submit v
to the vector oracle. The prover computes and submits the vector t. The
verifier checks v · t = c · rβ by an INN query.

Checking t. Finally, the vector t is validated by the identity

t ◦ (αβ · 1S − α ·w − β · u+ u ◦w) = 1S ,

where u := (γrowi)Si=1 and w :=
(
γcoli

)S
i=1

can be preprocessed by the
indexer. Moreover, the indexer also preprocesses the vector u ◦w to save
one online vector. Using these preprocessed vectors, the verifier can check
the above identity by one HAD query, thus finishes the protocol.

Combining the Vectors. In the above protocol, the prover needs to
submit four vectors: rα, c, rβ and t. We suggest an alternative method in
which the prover concatenates those four vectors into two: s := rα‖(−c)
and h := rβ‖t. The HAD and INN queries are modified by shifting the
vectors accordingly. See Algorithm 1 for more details.

4.2 R1CS

With the SparseMVP protocol ready, now we construct a Vector Oracle
protocol for verifying R1CS. Given an index of the R1CS relation, the
indexer concatenates the matrices into M = (AT‖BT‖CT)T ∈ F3H×K

and invokes the indexer of SparseMVP with M . The prover computes
z = 1‖x‖w, y = Mz, and submits u = y‖z to O. The R1CS relation is
equivalent to the following conditions on u:

1. u[1..H] ◦ u[H+1..2H] = u[2H+1..3H];
2. u[3H+1..3H+`+2] = 1‖x;
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Algorithm 1 SparseMVP Protocol

Index: a sparse representation of a matrix M ∈ FH×K : {rowi, coli, vali}Si=1

Input: a ∈ Fn Check: a[1..H] = Ma[H+1..H+K]

Preprocessing:

1: I computes u = (γrowi)Si=1 ‖0
n−S ,w =

(
γcoli

)S
i=1
‖0n−S ,v = (vali)

S
i=1 ‖0

n−S and
y = u ◦w

2: I sends H,K, S, γ,u,w,v,y to P, and H,K, S, γ to V, and submits u,w,v,y to O.

Online:

1: V samples α
$← F∗ and sends α to P;

2: P computes rα =
(

1
α−γi

)H
i=1

, c = rTαM ;

3: P computes s = rα‖(−c)‖0n−H−K and submits s to O;
4: V queries O to check that s ◦ (α · 1H − γH) = 1H ;
5: V queries O to check that s→n−H−K · a→n−H−K = 0;

6: V samples β
$← F∗ and sends β to P;

7: P computes rβ =
(

1
β−γi

)K
i=1

, t =
(

1

(α−γrowi )(β−γcoli )

)S
i=1

8: P computes h = rβ‖t‖0n−S−K and submits h to O;
9: V queries O to check that h ◦ (β · 1K − γK) = 1K ;

10: V queries O to check that h ◦ (αβ · 1S − α ·w − β · u+ y)→K = 1[K+1..K+S];
11: V queries O to check that −h→n−K · s→n−H−K = h→n−S−K · v→n−S .

3. u[1..3H] = Mu[3H+1..3H+K].

The verifier checks the first condition by a HAD query. For the second
condition, the verifier subtracts 1‖x from the target range of u and tests
if the result is zero by multiplying a masking vector consisting of zeros
and ones. The masking vector can be obtained by first submitting a power
vector 1`+1 then right-shifting it appropriately. Finally, the verifier checks
the third condition by SparseMVP. See Algorithm 2 for more details.

Algorithm 2 VOR1CS Protocol

Index: A,B,C ∈ FH×K where A,B,C have s nonzero entries in total
Instance: x ∈ F` Witness: w ∈ FK−`−1

Check: (A(1‖x‖w)) ◦ (B(1‖x‖w)) = C(1‖x‖w)
Preprocessing:

1: I computes the sparse representation of M = (AT‖BT‖CT)T ∈ F3H×K of length s
and invokes SparseMVP.I with this representation.

Online:

1: P submits u = (M(1‖x‖w)) ‖1‖x‖w‖0n−3H−K to O;
2: P and V run the protocol SparseMVP with inputs u;
3: V queries O to check that u→n−H ◦ u→n−2H = 1[n−H+1..n] ◦ u→n−3H ;
4: V queries O to check that 1[3H+1..3H+`+1] ◦ (u− e3H+1 − x→3H+1) = 0.
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Theorem 3. The VOR1CS protocol in Algorithm 2 is a VO protocol
for the relation RR1CS with perfect completeness and soundness error

3H+K
|F|−3H−K .

4.3 HPR

We construct the Vector Oracle protocol for HPR similarly. Let M =
(d‖A‖B‖C) ∈ FH×(3K+1), and the indexer preprocesses M by invok-
ing the indexer of SparseMVP. The prover computes and submits w =
w1‖w2‖w3. Then the HPR relation is equivalent to w[1..K] ◦w[K+1..2K] =

w[2K+1..3K] and M(1‖w) = x‖0H−`. The verifier checks these equations
by a HAD query and SparseMVP. See Algorithm 3 for more details.

Algorithm 3 VOHPR Protocol

Index: A,B,C ∈ FH×K ,d ∈ FH where A,B,C,d have s nonzero entries in total
Instance: x ∈ F` Witness: w1,w2,w3 ∈ FK
Check: Aw1 +Bw2 +Cw3 + d = x‖0H−` and w1 ◦w2 = w3

Preprocessing:

1: I computes the sparse representation of M = (d‖A‖B‖C) ∈ FH×(3K+1) of length
s and invokes SparseMVP.I with this representation

Online:

1: P submits w = w1‖w2‖w3‖0n−3K to O;
2: P and V run the protocol SparseMVP with inputs x+ eH+1 +w→H+1;
3: V queries O to check that w→n−K ◦w→n−2K = 1[n−K+1..n] ◦w→n−3K .

Theorem 4. The VOHPR protocol in Algorithm 3 is a VO protocol for
the relation RHPR with perfect completeness and soundness error H+3K

|F|−H−3K .

5 Vector Oracle Protocol for PLONK

The constraint system of PLONK characterizes fan-in-two circuits. We
formalize this system to an indexed relation referred to as the PLONK re-
lation. To better explain our protocol, we start with a high-level overview
of the transformation from fan-in-two circuits to the PLONK relation.

5.1 The PLONK Relation

Assume the circuit contains C gates, including Ca addition gates, Cm
multiplication gates and Cc constant gates, where C = Cc + Ca + Cm.

19



For the i-th gate, denote its left input by ai, its right input by bi and its
output by ci. We view the circuit as the following constraints over the
variables {ai, bi, ci}Ci=1:

– addition constraints: let Ia ⊂ [C] be the index set for the addition
gates, these constraints require that ai + bi = ci for i ∈ Ia;

– multiplication constraints: let Im ⊂ [C] be the index set for the
multiplication gates, then ai · bi = ci for i ∈ Im;

– constant constraints: let Ic ⊂ [C] be the index set for the constant
gates, and for i ∈ Ic, denote the constant value of the i-th gate by
di, which is publicly known as part of the circuit description, it is
required that the output of the i-th gate is ci = di for i ∈ Ic;

– public input/output: let w := (ai)
C
i=1‖(bi)Ci=1‖(ci)Ci=1 ∈ F3C , and

Ix ⊂ [3C] be the indices of public inputs/outputs in w, then it is
required that w[i] = xi for i ∈ Ix and public input/output values xi;

– copy constraints: let [3C] be partitioned into [3C] = S1 ∪ · · · ∪ SL,
then it is required that for any pair of (i, j) ∈ [3C]2 in the same parti-
tion, w[i] = w[j]. This partition is decided by the wiring of the circuit
such that variables connected by wires fall into the same partition.

PLONK collects these variables into three vectors a, b, c ∈ FC . To charac-
terize the above constraints, PLONK introduces five vectors qL, qR, qO,
qM and qC . By properly setting the values of these five vectors, the first
three types of constraints are equivalent to

a ◦ qL + b ◦ qR + c ◦ qO + a ◦ b ◦ qM + qC = 0. (5)

PLONK handles the public input/output constraints by dummy gates and
the copy constraints by a permutation argument. We omit these details
in our definition, and refer interested readers to [17].

Before we present a formal definition of the PLONK relation, we apply
an optimization by sorting the gates in the circuit by their types. Con-
cretely, we index the constant gates by [Cc], the multiplication gates by
[Cc+ 1..Cc+Cm], and the addition gates by [Cc+Cm+ 1..C]. As a result
of sorting, we eliminate the vectors qL, qR, qO and qM , and replace qC
by a shorter vector d ∈ FCc , i.e., the vector of all the constant-gate values.
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Formally, we define the PLONK relation as

RPLONK :=




Cc, Ca,Cm,d,
Π, Ix


x,

(a, b, c)



∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

C = Cc + Ca + Cm
Π is a partition over [3C]
a, b, c ∈ FC ,x ∈ F3C ,d ∈ FCc
c[1..Cc] = d

a[Cc+1..Cc+Cm] ◦ b[Cc+1..Cc+Cm]

= c[Cc+1..Cc+Cm]

a[Cc+Cm+1..C] + b[Cc+Cm+1..C]

= c[Cc+Cm+1..C]

(a‖b‖c)[i] = x[i] for i ∈ Ix
a‖b‖c satisfies the copy

constraint of Π



. (6)

Note that the sorted PLONK relation is equivalent to the original one up
to a quasi-linear-time reduction.

To prove the multiplication constraints, the prover splits b into b× :=
b[1..Cc+Cm] and b+ := b−b×. Therefore, the prover submits four vectors to
O: a, b×, b+, c. The verifier checks the addition, multiplication constraints
and constant constraints by the following HAD queries, where the first
check ensures that b× and b+ contain zeros in appropriate positions:

1[Cc+Cm+1..C] ◦ b× = 1[1..Cc+Cm] ◦ b+

1[Cc+1..Cc+Cm] ◦ c = a ◦ b×
1[Cc+Cm+1..C] ◦ (a+ b+ − c) = 0

1[1..Cc] ◦ (c− d) = 0.

To check the public inputs and outputs, the verifier splits the sparse vector
x into x = x(1)‖x(2)‖x(3) each of length C. The verifier then computes
the sparse vectors t(1) :=

∑
i∈[C]∩Ix ei, t

(2) :=
∑

i∈[C+1..2C]∩Ix ei, and

t(3) :=
∑

i∈[2C+1..3C]∩Ix ei. Using t(i) as the masking vectors, the verifier
checks the public inputs/outputs constraints by

t(1) ◦
(
a− x(1)

)
= 0, t(2) ◦

(
b− x(2)

)
= 0, t(3) ◦

(
c− x(3)

)
= 0.

For the copy constraints, we will develop a CopyCheck protocol in the
subsequent subsections. Given the vectors a, b, c, the CopyCheck protocol
verifies that a‖b‖c satisfies the copy constraint of a partition Π. The
CopyCheck protocol is an adaption of the permutation-check in PLONK
for the VO model.
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Combining the Vectors. Similar to SparseMVP, we apply the vector
concatenation technique to improve the verifier efficiency at the cost of
increased vector size and prover computations.

In more detail, the prover computes the concatenated vector w :=
a‖b‖c of size 3C and submits w to O instead of submitting a, b, c sepa-
rately. The verifier then checks the addition and multiplication constraints
by HAD queries involvingw shifted to different positions. The verifier then
checks the public input/output in the same way as before, except that
the vectors x and t are not split. See Algorithm 4 for more details. We
leave the version without vector concatenation to Appendix E.

Algorithm 4 VOPLONK Protocol

Index: d ∈ FCc , Ca, Cm, Ix ⊂ [3C], partition Π over [3C] where C = Cc+Ca+Cm
Instance: x ∈ F3C which is sparse Witness: a, b, c ∈ FC
Check: ((Cc, Ca, Cm,d, Π, Ix) ,x, (a, b, c)) ∈ RPLONK

Preprocessing:

1: I runs CopyCheck.I with index Π;
2: I submits d to O, sends d, Cc, Ca, Cm, Ix to P, and Cc, Ca, Cm, Ix to V.

Online:

1: P submits w = a‖b‖c to O;
2: V queries O to check that w→n−C ◦w→n−2C = 1[n−Cm−Ca+1..n−Cm] ◦w→n−3C ;
3: V queries O to check that 1[3C−Ca+1..3C] ◦

(
w→2C +w→C −w

)
= 0;

4: V submits t =
∑
i∈Ix ei to O and V queries O to check that t ◦ (w − x) = 0;

5: V queries O to check that 1[2C+1..2C+Cc] ◦
(
w − d→2C

)
= 0;

6: P and V run the protocol CopyCheck with inputs w.

Theorem 5. The VOPLONK protocol in Algorithm 4 is a VO protocol
that validates the relation RPLONK with completeness error 3C

|F|−1 , sound-

ness error 15C
|F|−1 .

The rest of this section is devoted to the CopyCheck protocol.

5.2 Product Equality

The most fundamental building block of CopyCheck is the ProductEq pro-
tocol, which allows the prover to prove that two vectors u,v ∈ Fn satisfy∏`
i=1 u[i] =

∏`
i=1 v[i] for some ` ≤ n. This protocol assumes that u and

v contain no zero in their first ` elements.
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First, the prover submits to O the accumulated vector r defined by:

r[i] :=
i∏

j=1

(
u[j]/v[j]

)
for 1 ≤ i ≤ `.

To check that r is indeed computed as defined, note that the definition
of r is equivalent to:

1 · u[1] = r[1] · v[1], r[1] · u[2] = r[2] · v[2], · · · , r[`−1] · u[`] = r[`] · v[`].

The verifier may check these equations in a single HAD query. Now∏`
i=1 u[i] =

∏`
i=1 v[i] is equivalent to r[`] = 1, which can be checked

by another HAD query. See Algorithm 5 for more details.

Algorithm 5 ProductEq Protocol
Input: u,v, 1 ≤ ` ≤ n where u[i],v[i] 6= 0 for any i ∈ [`]

Check:
∏`
i=1 u[i] =

∏`
i=1 v[i]

1: P computes r =
(∏i

j=1(u[j]/v[j])
)`
i=1
‖0n−`;

2: P submits r to O;
3: V queries O to check that (r→n−`+1 + en−`+1) ◦ u→n−` = r→n−` ◦ v→n−`;
4: V queries O to check that (r − e`) ◦ e` = 0.

For the VOPLONK protocol without vector concatenation, we will

need the ProductEq protocol to check
∏
i∈[`],j∈[3] u

(j)
[i] =

∏
i∈[`],j∈[3] v

(j)
[i]

given three pairs of vectors u(j),v(j) for j ∈ [3]. This is accomplished
by applying the ProductEq protocol to u := u(1) ◦ u(2) ◦ u(3) and v :=
v(1) ◦ v(2) ◦ v(3). However, a naive implementation of this requires the
prover to submit five vectors to O, i.e., u,u(1) ◦ u(2),v,v(1) ◦ v(2) and
r. The TripleProductEq protocol in Algorithm 8 applies a technique to
reduce the number of submitted vectors to three. We leave this protocol
to Appendix E.

5.3 Permutation

Given vectors u,v ∈ Fn and an integer ` ≤ n, the protocol Permute checks
that u[1..`] is a reorder of v[1..`], i.e., there exists a permutation σ : [`]→ [`]
such that u[σ(i)] = v[i] for every i ∈ [`], denoted by u[1..`] ∼ v[1..`].

Obviously, u[1..`] ∼ v[1..`] implies that ProductEq(u,v, `) = 1. Al-
though the reverse implication is not true, Lemma 3 (in Appendix C)
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indicates that if u[1..`] 6∼ v[1..`] then ProductEq(u+ α · 1,v + α · 1, `) 6= 1
with overwhelming probability for uniformly random α ∈ F. This idea
is formalized in Algorithm 6, and the tripled version TriplePermute in
Algorithm 9 is left to Appendix E.

Algorithm 6 Permute Protocol
Input: u,v ∈ Fn, ` ≤ n
Check: u[1..`] ∼ v[1..`].

1: V samples α
$← F∗ and sends α to P;

2: P and V run the protocol ProductEq with inputs u+ α · 1`,v + α · 1` and `.

5.4 Copy Check

Given a vector v ∈ Fn, the protocol CopyCheck verifies that v[1..`] satisfies
the copy constraint of some partition Π over [`]. Assume that Π partitions
[`] into the non-overlapping union of subsets S1 ∪ S2 ∪ · · · ∪ St. First, the
indexer finds a permutation σ over [`] such that for any i 6= j ∈ [`], i
and j are partitioned in the same subset Sk if and only if σs(i) = j for
some s ∈ Z. In another word, the cycles of σ induce a partition, denoted
by Πσ, that is the same as Π. By group theory, such σ exists for every
partition and can be found in O(`) time.

The indexer applies σ to an identity vector whose elements are differ-
ent from each other, e.g., the power vector γ` = (1, γ, · · · , γ`−1) for some
generator γ of the multiplicative group F∗. Let the permuted vector be
σ := (γσ(i)−1)`i=1. The indexer submits σ to O.

Next, the verifier sends a uniformly random β
$← F, and the prover and

the verifier execute Permute to check that v+βγ` is a reorder of v+βσ.
By Lemma 4, this implies that v remains unchanged after permuted by
σ. Therefore, for any i 6= j ∈ [`] in the same Sk, σ

s(i) = j implies
v[i] = v[σ(i)] = · · · = v[σs(i)] = v[j], and v satisfies the copy constraints of
Π. This is formalized as the CopyCheck protocol in Algorithm 7, and the
tripled version in Algorithm 10 in Appendix E.

6 Efficiency Analysis

We compile the VO protocols in the last two sections into PIOP protocols
and compare them with other PIOP-based works with respect to the
number of polynomial oracles and evaluation queries. Then we transform
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Algorithm 7 CopyCheck Protocol
Index: A partition Π over [`] Input: v ∈ Fn
Check: v[1..`] satisfies the copy constraint of Π.
Preprocessing:

1: I finds a permutation σ over [`] such that Πσ = Π;
2: I computes σ := (γσ(i)−1)`i=1 where γ is a generator of the multiplicative group F∗;
3: I sends σ, γ, ` to P, sends γ, ` to V, and submits σ to O.

Online:

1: V samples β
$← F∗ and sends β to P;

2: P and V run the protocol Permute with inputs v + βγ`,v + βσ and `.

these protocols into zkSNARKs and compare them with concurrent works
w.r.t. concrete efficiency. The PIOP protocols and zkSNARKs in our work
improves over prior works in several respects. These improvements are
attributed to the following three optimization techniques, among which
the latter two are uncovered by the VO model.

The first optimization is inspired by a technique in PLONK (attributed
to Mary Maller in Sect. 4 of [3]) to reduce the number of evaluation queries
in the PIOP protocol. This optimization exploits the fact that if the
underlying polynomial commitment scheme is homomorphic, the verifier
may linearly combine polynomial oracles into a new oracle and query
this new oracle directly. See Appendix A.1 for more details about this
optimization. As a showcase, consider checking the identity f1(αX−1) ·
g1(X) − f2(αX−1) · g2(X) = h(X). The verifier first queries f1(X) and
f2(X) with α · z−1 and receives y1 and y2, then computes the polynomial
oracle for y1 · g1(X)− y2 · g2(X)− h(X) and checks that this polynomial
evaluates to 0 at z. In this example, the optimization saves 2 queries
compared to naively querying each of g1(X), g2(X) and h(X) and linearly
combining the responses.

The above technique inspires another optimization in the Vector Ora-
cle protocol level. Specifically, as a result of the polynomial merging, the
corresponding polynomials of the right operands in all the HAD and INN
queries will never be queried. Therefore, we have carefully ordered the
operands in the HAD and INN queries to place most of the prover vectors
in the right operands, eliminating more than half of the evaluation queries
and one distinct evaluation point.

Finally, we apply the vector concatenation technique to reduce the
number of prover vectors and consequently the number of polynomial
commitments in the ultimate zkSNARK. However, this technique also
increases the maximal polynomial degrees, thus sacrificing the proving
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efficiency. To estimate the effects of the vector combination on the prov-
ing efficiency, we also include in our comparison the protocols without
applying this technique.

6.1 Comparison

We first compare our work with other PIOP protocols in Table 1. For the
number of (distinct) evaluations, the VOProof protocols have at most six
evaluations and two distinct points, which are smaller than all prior works.
For the number of polynomials, the VOProof protocols are also smaller
than all prior works, except that the prover-efficient versions have one or
two more online polynomials than PLONK. As for the maximal degree,
the prover-efficient versions of VOProof are all roughly the same as prior
works, except the verifier-efficient version of VOPLONK, whose maximal
degree is doubled compared to PLONK.

Table 1. Comparison with other PIOPs. H,K, S are the numbers of rows, columns,
and nonzero entries of the matrices in R1CS and HPR, C is the number of gates. The
“*” refers to the prover-efficient versions.

relation protocol
# polynomials # evalua- # distinct # max
offline/online tions points degree

R1CS
Marlin [4] 9/12 18 3 6S
VOR1CS 4/7 4 2 6S +K
VOR1CS∗ 4/10 6 2 6S −K

HPR
Sonic [5] 6/16 16 4 7K
VOHPR 4/7 4 2 6S + 5K
VOHPR∗ 4/9 5 2 6S −K
PLONK [3] 8/7 7 2 3C

PLONK VOPLONK 2/5 3 2 5C + Ca
VOPLONK∗ 4/9 5 2 C

Next, we apply the KZG [14] polynomial commitment and the Fiat-
Shamir heuristic to compile the VOProof protocols into zkSNARKs. Ta-
ble 2 compares the proving costs, verification costs, and proof sizes of
VOProof with other zkSNARKs with constant-sized verifiers.

For reference, we present in Appendix D the compiled zkSNARKs,
which is generated automatically by a Python script powered by Sympy.
PIOP can also be compiled to zkSNARKs using other polynomial com-
mitments. In particular, DARK [6] also supports homomorphic addition
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Table 2. Concrete comparison with other zkSNARKs with constant-sized verifiers. S
is the number of nonzero matrix entries, K is the number of matrix columns, C is the
number of gates, and ` is the size of public input/output. For clarity, we neglected
some small terms in the numbers for G1/2-exp. The “*” refers to the prover-efficient
versions.

relation zkSNARK
proving cost verification cost proof size

G1/2-exp F-mul Pairings G1-exp G1/2 F

R1CS

Groth16 [2] 3S + 2K O(S log(S)) 3 ` 3 —
Marlin [4] 18S + 18K O(S log(S)) 2 O(1) 13 21
VOR1CS 27S + 13K O(S log(S)) 2 17 9 3
VOR1CS∗ 27S + 5K O(S log(S)) 2 20 12 5

HPR
Sonic [5] 273K O(K log(K)) 13 O(1) 20 16
VOHPR 27S + 30K O(S log(S)) 2 17 9 3
VOHPR∗ 27S + 6K O(S log(S)) 2 19 11 4

PLONK

PLONK1 [3] 11C O(C log(C)) 2 16 7 7
PLONK2 [3] 9C O(C log(C)) 2 18 9 7
VOPLONK 26C + 4Ca O(C log(C)) 2 12 7 2
VOPLONK∗ 10C O(C log(C)) 2 18 11 4

of commitments thus allows using the optimization techniques discussed
before.

Proving Cost. The proving cost is dominated by the group exponentia-
tions and the finite field operations in Fast-Fourier-Transforms (FFT). It
is hard to compute the concrete numbers of field operations contributed
by the FFT, so we only compare the concrete numbers of group expo-
nentiations. In this metric, both versions of VOHPR outperform Sonic by
five to ten times, while both versions of VOR1CS increase this number
by 50% compared to Marlin. The prover-efficient version of VOPLONK is
roughly the same as PLONK, but the verifier-efficient version increases
this number by two to three times.

Verification Cost. Marlin and Sonic do not provide the concrete number
of G1 exponentiations beside the two pairings. Since the pairings are typi-
cally far more expensive than group exponentiations, we consider VOProof
has roughly the same verification cost as Marlin, while the efficiency of
VOHPR improves over Sonic by six times. Meanwhile, the verifier-efficient
version of VOPLONK outperforms PLONK by four to six group exponen-
tiations.

Proof Size. The proof sizes of all the verifier-efficient versions of VOProof
outperform the prior works (apart from Groth16, which relies on per-
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circuit setups). In particular, VOPLONK sets a new record of proof size
with two field elements and seven group elements. The prover-efficient
versions of both VOR1CS and VOHPR are also smaller than both Marlin
and Sonic, while the prover-efficient version of VOPLONK is roughly the
same as PLONK.

7 Conclusion

We introduced the Vector Oracle model that assisted us in construct-
ing zkSNARKs for various constraint systems. These zkSNARKs achieve
shorter proofs and faster verifications than the state of the art, thanks
to the techniques of vector concatenation and the linear combination of
polynomial commitments. Although it is possible to construct our pro-
tocols and apply the optimizations directly in the language of PIOP, the
simplicity brought by the Vector Oracle model plays an indispensable role
in uncovering these constructions and optimizations.

For each constraint system, we provide two versions of zkSNARKs
prioritizing the verifier or the prover, respectively. We prefer the verifier-
efficient version because zkSNARKs have wide applications in blockchains,
where the verifiers induce significantly higher costs than the provers. For
example, on Ethereum, assuming an ETH is $2000, the transaction fee for
verifying each SNARK proof is typically two magnitudes greater than the
cost of generating this proof [26]. In scenarios where the prover is more
critical, we also have the prover-efficient version available. This flexibility
in choosing different trade-offs is another benefit brought by the simplicity
and high modularity of VOProof.

Future work. As discussed in Section 3, the VO model, after being mod-
ified, can be compiled to PIOP using the Reed-Solomon code basis. This
indicates the possibility to unify all prior zkSNARKs in one framework
using the language of the VO model. Analyzing existing protocols in this
framework may provide more thorough explanations for the different fea-
tures in prior constructions, and potentially reveal new directions for
improvements.
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A Proof of Theorem 1

First, we introduce the Schwartz-Zippel lemma, which is used intensively
in all the proofs thereafter.

Lemma 2 (Schwartz-Zippel). For a u-variate polynomial f(X1, · · · , Xu)
of total degree d over F, let S be a finite subset of F and z1, · · · , zu be se-
lected at random independently and uniformly from S. Then

Pr[f(z1, · · · , zu) = 0] ≤ d

|S|
.

Now we present the proof of Theorem 1. We will define a sequence of
models {VOi}si=0 that starts from the VO model and ends with an alter-
native formalization of the PIOP model. Correspondingly, starting from
the original VO protocol (VO.I,VO.P,VO.V), we construct a sequence of
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protocols (VO.I(i),VO.P(i),VO.V(i))si=0, one for each of the models, and
the last of the sequence would be the PIOP protocol with the desired
properties.

VO0. This is exactly the VO model.

VO1. VO1 is the same as VO0, except the following changes:

– When receiving the query SHR(name, src, k),O sets V [name] = 0k‖V [src],
instead of V [src]→k := 0k‖V [src][1..n−k], i.e., no longer remove the ex-
tra k elements exceeding the length limit. Therefore, in the VO1 model,
V may contain vectors of size larger than n.

– When receiving the query HAD(a, b, c, d), let a := V [a], and b, c,d

are defined similarly, O checks a[1..n] ◦ b[1..n]
?
= c[1..n] ◦ d[1..n], i.e., the

Hadamard relation check is restricted to the “window” of indices from
1 to n.

– Similarly, when receiving the query INN(a, b, c, d), O checks a[1..n] ·
b[1..n]

?
= c[1..n] · d[1..n].

We claim that VO1 is equivalent to VO0 in the sense that for any sequence
of queries, the oracles in these two models will give the same sequence
of replies. In another word, the aforementioned changes does not affect
the behavior of the oracle from the point of view of the parties. To see
the equivalence, note that the change to the SHR queries only affects the
vectors outside the window, since the vectors are never shifted to the left.
Therefore, we can see the oracle in VO0 as a view of the oracle in VO1

restricted to the window. As a result of this equivalence, the original VO
protocol (VO.I,VO.P,VO.V) directly works in the VO1 model.

VO2. VO2 is the same as VO1, except that the queries VEC(name,v) allow
|v| ≥ n. Clearly, this change only affects the part of the vectors outside
the window, and VO2 is equivalent to VO1.

We also modify a bit of the protocol in this model. Specifically, let
VO.P(2) be the same as VO.P except that for any vector v submitted by
VO.P, VO.P(2) uniformly randomly samples δ ∈ Fq and submits v‖δ ∈
Fn+q instead, where q is a small integer to be determined later. This does
not affect completeness since the appended δ never affects the part of the
vectors in the window, nor soundness which does not rely on the prover.
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VO3. VO3 is the same as VO2, except that the oracle allows a new
type of extended Hadamard query. Specifically, O accepts a new query
EHAD({ai, bi}si=1) and checks that

∑s
i=1 ai[1..n] ◦ bi[1..n] = 0. Since this

is a new query, this does not affect completeness. This new query is only
useful to the verifier therefore soundness is not affected.

VO4. VO4 is the same as VO3, except that the INN query is removed.
Assume VO.V(3) issues the following tI queries {INN(ai, bi, ci, di)}tIi=1. The
protocol (VO.I(4),VO.P(4),VO.V(4)) is the same as the protocol in the last
step, except that VO.P(4) does not make any INN queries, and VO.P(4)

and VO.V(4) execute the following steps at the end of the protocol:

1. VO.V(4) uniformly randomly samples β ∈ F∗ and sends β to VO.P(4);
2. VO.P(4) computes r :=

∑tI
i=1 β

i−1 (ai ◦ bi − ci ◦ di)[1..n];

3. VO.P(4) uniformly randomly samples δ ∈ Fq, and computes r̃ :=(∑i
j=1 r[j]

)n
i=1
‖δ;

4. VO.P(4) submits r̃;
5. VO.V(4) submits r′ = r̃ − (0‖r̃);
6. VO.V(4) queries for∑tI

i=1 β
i−1
(
ai[1..n] ◦ bi[1..n] − ci[1..n] ◦ di[1..n]

)
− r′[1..n] ◦ 1n = 0;

7. VO.V(4) queries for r̃[1..n] ◦ en = 0.

Note that step 6 uses an EHAD query and step 7 uses a HAD query.
To justify this change, consider the following statements (where r is

defined as in step 2, and r′ is defined as in step 5, while r̃, submitted by
the untrusted prover, can be arbitrary vector):

ai[1..n] · bi[1..n] = ci[1..n] · di[1..n] ∀i ∈ [tI ] (7)

tI∑
i=1

βi−1(ai[1..n] · bi[1..n] − ci[1..n] · di[1..n]) = 0 (8)

n∑
i=1

r[i] = 0 (9)

r̃[i] =

i∑
j=1

r[j] for i ∈ [n] (10)

r̃[n] = 0 (equivalent to step 7 accepted) (11)

r′[1..n] = r (equivalent to step 6 accepted) (12)
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Assume that the original INN queries are accepted, i.e., (7) is correct,
then the best strategy of the prover is to follow the above steps, in which
case (10) ⇒ (12). Then we have (7) ⇒ (8) ⇔ (9), and (9)(10) ⇒ (11).

On the other hand, when VO.V(4) accepts, which implies (12) and (11)
are correct, we have (12) ⇒ (10), (10)(11) ⇒ (9) ⇔ (8). By Schwartz-
Zippel Lemma, Pr[(8) | ¬(7)] ≤ (tI−1)/(|F|−1). Therefore, if the original
INN queries are not accepted, the probability that VO.V(4) accepts is no
more than (tI − 1)/(|F| − 1). By the union bound, the soundness error of
(VO.I(4),VO.P(4),VO.V(4)) is bounded by εs + (tI − 1)/(|F| − 1).

In this step we eliminate the INN queries, at the cost of one more
prover-submitted vector, one more HAD query, one EHAD query, and
negligible increment to the soundness error.

VO5. VO5 modifies VO4 by further removing the HAD query. We then
modify the protocol and let the verifier use the extended Hadamard
query instead. Recall that VO.V(4) issues tH + 1 HAD queries, denoted by
{HAD(ai, bi, ci, di)}tH+1

i=1 . VO.V(5) is the same as VO.V(4), except that it
does not make these HAD queries, but replaces them with a single EHAD
query in the end of the protocol. To accomplish this, VO.V(5) uniformly
randomly samples α ∈ F∗, and queries for

tH+1∑
i=1

αi−1(ai[1..n] ◦ bi[1..n] − ci[1..n] ◦ di[1..n]) = 0.

Note that this corresponds to an EHAD query with s = 2tH + 2 pairs.
Obviously, if the original HAD queries are accepted, this new query

will also be accepted. On the other hand, if there exists at least one pair
of i ∈ [tH + 1], j ∈ [n] such that ai[j] · bi[j] − ci[j] · di[j] 6= 0, by the

Schwartz-Zippel Lemma, the probability that
∑tH+1

i=1 αi−1(ai[j] · bi[j] −
ci[j] · di[j]) = 0 is bounded by tH/(|F| − 1), so is the probability that
the EHAD query is accepted. By the union bound, the soundness error of
VO.V(5) is εs + (tI + tH − 1)/(|F| − 1).

VO6. VO6 modifies VO5 by requiring that the verifier can only make
one EHAD query. VO.V(5) uses 2 EHAD queries of size tI + 1 and tH + 1
respectively. Denote them by EHAD({ai, bi}tI+1

i=1 ) and EHAD({a′i, b′i}
tH+1
i=1 ).

VO.V(6) is the same as VO.V(5) except that it replaces the two EHAD
queries by a single one. Specifically, VO.V(6) uniformly randomly samples
ζ ∈ F∗ and queries for EHAD({ai, bi}tI+1

i=1 ∪ {ζ · a′i, ζ · b′i}
tH+1
i=1 ). Obviously,

if the original two EHAD queries are accepted, this new query is also
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accepted; if the original queries are invalid, this new query is accepted
with probability at most 1/(|F| − 1). Therefore, the soundness error of
VO.V(6) is bounded by εs + (tI + tH)/(|F| − 1).

VO7. VO7 modifies VO6 by eliminating the window restriction on the
extended Hadamard check. Instead of checking

∑s
i=1 ai[1..n] ◦ bi[1..n] = 0,

the EHAD query checks
∑s

i=1 ai ◦ bi = 0, where the vectors are zero-
padded to the size of the longest vector.

Assume that the EHAD query made by VO.I(6) is EHAD({ai, bi}si=1).
Let the protocol (VO.I(7),VO.P(7),VO.V(7)) be the same as in the last
model, except that the EHAD query is replaced by the following steps:

1. VO.P(7) uniformly randomly samples δ ∈ Fq, computes and submits
t = δ +

∑s
i=1 ai ◦ bi;

2. VO.V(7) queries for
∑s

i=1 ai ◦ bi − t ◦ (0n‖1|t|−n) = 0.

Obviously, step 2 is accepted if and only if the original EHAD query is
accepted, i.e.,

∑s
i=1 ai[1..n] ◦bi[1..n] = 0, assuming q ≤ n and the prover is

trying the best effort to make the verifier accept. Therefore, completeness
error and soundness error are the same as before, while the prover submits
one more vector to the oracle.

VO8. VO8 modifies VO7 by adding a new query EVAL(name, z ∈ F) which
replies with fV [name](z). This query is only available to the verifier, thus
does not affect soundness of the protocol.

VO9. VO9 modifies VO8 by removing the EHAD query. We then modify
the protocol to replace the only EHAD query by the following procedure.

Let the EHAD query issued by VO.V(8) be EHAD({ai, bi}si=1). Instead
of this query, VO.P(9) and VO.V(9) execute the following steps:

1. VO.V(9) uniformly samples ω ∈ F∗ and sends ω to VO.P(9);
2. VO.P(9) computes h(X) := X2n+q ·

∑s
i=1 fai(ωX

−1) · fbi(X);
3. VO.P(9) uniformly samples δ ∈ F and computes h̄(X) such that h(X) =
h̄(γX) − γ2n+qh̄(X) and the X2n+q term of h̄(X) is δ (we will later
show that this is only possible if the EHAD query is accepted), where
γ is a fixed and publicly known generator of F∗;

4. VO.P(9) submits the coefficient vector h of h̄(X) to O;
5. VO.V(9) uniformly samples z ∈ F. Then for i ∈ [s], let ui := EVAL(ai, ω·
z−1), vi := EVAL(bi, z). Let y1 := EVAL(h, γ ·z), and y2 := EVAL(h, z).

6. VO.V(9) checks
∑s

i=1 ui · vi = y1 − γ2n+q · y2.
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We show that the probability of verifier acceptance is negligibly different
from that of the original EHAD. Consider the following statements:

s∑
i=1

ai ◦ bi = 0 (13)

The X2n+q term of h(X) is 0 (14)

h(X) = h̄(γX)− γ2n+qh̄(X) (15)

h(z) = h̄(γ · z)− γ2n+qh̄(z) (16)

s∑
i=1

ui · vi = y1 − γ2n+q · y2 (17)

By the definition of h(X), the X2n+q term of h(X) is

X2n+q ·
s∑
i=1

2n+q∑
j=1

ωj−1ai[j] · bi[j] = X2n+qf∑s
i=1 ai◦bi(ω).

Therefore, (13) ⇒ (14), and by Schwartz-Zippel Lemma, (14) ⇒ (13)
except with probability (2n+ q)/(|F| − 1).

If the X2n+q term of h(X) is 0, let h̄i = hi/(γ
i − γ2n+q) for i ∈

[4n]\{2n+q} where hi is the coefficient for Xi in h(X), and for i = 2n+q,
h̄i can be arbitrary. It is easy to check that the h̄(X) defined as above
satisfies (15). On the other hand, for arbitrary h̄(X), h̄(γX)−γ2n+qh̄(X)
is guaranteed to have a zero X2n+q term. Therefore, assuming the prover
is trying its best to convince the verifier, (14) ⇔ (15).

(15) ⇒ (16) is straightforward, and by Schwartz-Zippel Lemma, (16)
⇒ (15) except with probability (4n+ 2q)/|F|.

Finally, (16) ⇔ (17) by definition of ui, vi and y1, y2. In conclusion, if
the original EHAD check passes, then VO.V(9) also accepts, and complete-
ness is preserved. On the other hand, the soundness error is increased by
less than (6n+ 3q)/(|F| − 1).

VO10. VO10 modifies VO9 by requiring that in any EVAL(name, z) query,
name must refer to a vector submitted by a VEC query.

We modify the protocol subjecting to the above restriction. Let VO.V(10)

be the same as VO.V(9) except that for every EVAL(name, z) query, VO.V(10)

executes one of the following according to the type of vector referred to
by name:
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1. if name is submitted by a POW query, say POW(name, α, k), VO.V(10)

computes the reply by y = (αz)k−1
αz−1 or y = k · 1 if αz = 1;

2. if name is submitted by a SPA query, say SPA(name,v), VO.V(10) di-
rectly computes y = fv(z) using the sparse representation of v;

3. if name is submitted by an ADD query, say ADD(name, left, right), let
yl = EVAL(left, z) and yr = EVAL(right, z), and VO.V(10) computes
the reply of this query by y = yl + yr;

4. if name is submitted by an MUL query, say MUL(name, src, α), let
ys = EVAL(src, z), then VO.V(10) computes the reply of this query by
y = α · ys;

5. if name is submitted by an SHR query, say SHR(name, src, k), let ys =
EVAL(src, z), then VO.V(10) computes the reply of this query by y =
zk · ys.

The equivalence between VO.V(10) and VO.V(9) follows directly from the
definition of EVAL query and the POW, SPA, ADD, MUL and SHR queries.

VO11. VO11 modifies VO10 by removing the POW, SPA, ADD, MUL and
SHR queries. Since the vectors submitted by these types of queries are
never referenced, we can safely remove all these queries from the protocol.

VO11 has only two types of queries left: VEC and EVAL. This model is
equivalent to the PIOP model, and the transformation from the protocol
(VO.I(11),VO.P(11),VO.V(11)) to a PIOP protocol (I,P,V) is straightfor-
ward: every VEC query corresponds to a polynomial oracle sent from the
indexer or the prover to the verifier, and every EVAL query corresponds to
an evaluation query to a polynomial oracle. Note that the degree bound
for the protocol is at least 4n+ q − 1, which is one more than the maxi-
mal degree of the polynomial h̄(X). However, in PIOP model with higher
degree bound, the protocol also works, since VO11 does not limit the size
of the vectors submitted by the prover.

The number of polynomials sent by the indexer is still m, while the
number of polynomials sent by the prover is r+ 3, where the three addi-
tional polynomials correspond to the vectors r̃, t and h respectively. Note
that in VO.V(11) the vector r̃ is queried at most once, t is queried at most
once, and h is queried at most twice, i.e., at z and γ · z respectively. For
every vector submitted by the VEC query in the original protocol, this
vector is queried at most twice in the end, once at z and another time at
ω · z−1. Therefore, there are at most 2(m + r) + 4 evaluation queries at
3 distinct points. If the original protocol does not make any INN query,
i.e., tI = 0, the vector r̃ is no longer necessary, the prover polynomials
becomes r+2 and the number of evaluation queries becomes 2(m+r)+3.
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The completeness error is εc, and the soundness error is bounded by
εs + (tI + tH + 6n+ 3q)/(|F| − 1).

Honest-Verifier Statistical Zero-Knowledge. We show that the PIOP
protocol (I,P,V) is honest-verifier zero-knowledge. Note that every poly-
nomial sent by P, except fh(X), contains q fresh uniformly random coeffi-
cients δ ∈ Fq, while fh(X) contains a single uniformly random coefficient
δ ∈ F.

We construct a simulator S that given i,x samples the verifier view
with negligible statistical distance. The verifier view contains the following
values: the verifier messages, i.e., the verifier messages in the original
protocol together with α, β, ω, z, and the responses from the evaluation
queries, i.e., fvi(ω · z−1), fvi(z) for i ∈ [m + r + 2] where vi is the i-th
vector submitted by the VEC query, and y1 = h̄(γ · z), y2 = h̄(z).

The simulator S samples the verifier view by simulating a run of the
protocol that differs from an honest run in the following respects:

– the prover sends dummy polynomial oracles to the verifier;
– for each evaluation query:
• if it is a query for fvi(ωz

−1) or fvi(z) where i ∈ [m], i.e., this vector
is submitted by the indexer, since S has access to the index, S may
compute vi and therefore the polynomial evaluations accordingly;
• if it is a query for fvi(ωz

−1) or fvi(z) where i ∈ [m+ 1..m+ r+ 2]
or for y2 = h̄(z), i.e., this vector is submitted by the prover, S
uniformly randomly sample the query result from F;

• finally, for the query y1 = h̄(γ · z), compute y1 according to the
identity (17).

We show that the output of the above-defined S only has a negligible
statistical difference from the verifier view. Since S has access to all the
information that the verifier has, the verifier messages simulated by S fol-
low exactly the same distribution of that of an honest run of the protocol.
We only need to show that the query results ui, vi for i ∈ [m+1..m+r+2]
and y2 in the real execution are uniformly random over F independent of
the rest of the verifier view. Consider the following matrices:

V =


vTm+1

vTm+2
...

vTm+r+2

 X =


1 1

ω · z−1 z
(ω · z−1)2 z2

...
...

(ω · z−1)n+q−1 zn+q−1

 .
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Note that every 2 rows of matrix X form an invertible sub-matrix except
when ω · z−1 = z which happens with probability bounded by 1

|F|−1 . Also
note that every row of matrix V contains q uniformly random elements
in F. Let q = 2, then we have

fvm+1(ωz−1) fvm+1(z)
fvm+2(ωz−1) fvm+2(z)

...
...

fvm+r+2(ωz−1) fvm+r+2(z)

 = V X

is uniformly random over F(r+2)×2. Finally, since h contains one element
δ ∈ F that is uniformly random over F, y2 is also uniformly random.
In conclusion, the statistical difference between the output of S and the
verifier view is at most 1

|F|−1 .

A.1 Optimizations

The above-defined compiler may benefit from several optimizations. The
most significant optimization exploits the additive homomorphism of the
underlying polynomial commitment scheme that instantiates the polyno-
mial oracles. The additive homomorphism allows the verifier to linearly
combine existing polynomial oracles into a new oracle, and queries this
oracle at the cost of a single query instead of simulating it using the orig-
inal oracles. The PIOP model does not characterize the homomorphism
of the underlying polynomial commitment scheme. Therefore, we did not
apply this optimization in the formal proof.

We optimize the compiler as follows. Note that in the end, the verifier
verifies a single identity

∑s
i=1 uivi = y1−γ2n+q ·y2, where ui and vi are lin-

ear combinations of {fvi(ωz−1)}i∈[m+r+2] ∪ {1}, and linear combinations
of {fvi(z)}i∈[m+r+2]∪{1}, respectively. Let u = (fv1(ωz−1), · · · , fvm+r+2(ωz−1), y1, 1)
and v = (fv1(z), · · · , fvm+r+2(z), y2, 1), the above identity can be rewrit-
ten in the form

uTMv = 0

where the matrix M is known to the verifier.
Since all the variables in v are queried at point z, V checks the above

identity using the following strategy. V makes at most m+r+3 evaluation
queries to obtain the vector u. Then V computes c := uTM . Finally, V
linearly combines the polynomial oracles of fv1(X), · · · , fvm+r+2(X), h̄(X)
and 1 using c as the coefficients, and obtains the oracle for a polynomial
g(X). V queries g(X) at z and checks if g(z) = 0. This optimization also
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reduces the number of query points for each polynomial oracle to 1, i.e.,
at ωz−1 only, therefore q = 1 suffices to ensure zero-knowledge.

The ability to linearly combine the polynomial oracles also allows
another strategy that eliminates the evaluation point γ · z at the cost
of one more polynomial oracle. This trade-off is worthwhile because it
results in smaller zkSNARK proofs and also reduces the degree bound
from 4n+ q − 1 to 2n+ q − 1.

To understand how this strategy works, recall that we introduced the
polynomial h̄(X) for showing that h(X) has coefficient 0 for the X2n+q

term. This purpose can be accomplished alternatively by splitting h(X)
into two polynomials h̄1(X) and h̄2(X) of degrees at most 2n+q−1, such
that h(X) = h̄1(X)+X2n+q+1 ·h̄2(X). Now soundness relies on the ability
to limit the degree of the polynomials sent by the prover, h̄1(X) and h̄2(X)
should be shifted to align with the degree bound D. In detail, P sends the
polynomials h̄′1(X) := XD−(2n+q−1) · h̄1(X) and h̄′2(X) := XD−(2n+q−1) ·
h̄1(X) to V, who checks

∑
uivi = (h̄1(z) + z2n+q+1h̄2(z)) · z2n+q−1−D by

putting both h̄1(z) and h̄2(z) in the vector v. This optimization eliminates
the query response h̄(γ · z) from the zkSNARK proof together with one
distinct evaluation point (i.e., γ · x), and reduces the degree bound to
2n+ q − 1, at the cost of one more polynomial oracle.

B Proof of Theorem 2

Here we present the proof of Theorem 2. The idea is to simulate polyno-
mial oracle using VEC and INN queries, and prove the verifier computation
result using the VOPLONK protocol.

The algorithms I and P work in the same way as PIOP.I and, PIOP.P,
except that whenever PIOP.I or PIOP.P sends to PIOP.V a polynomial
oracle [f(X)] of degree at most n − 1 to PIOP.V, P instead submits its
coefficient vector v of size n to O.

Finally, V sends to P all the random coins that are needed to compute
the evaluation queries z1, · · · , zs. Denote the polynomial oracle to which
zi is queried to by [f (ki)(X)]. P computes the query results y1, · · · , ys
where yi = f (ki)(zi).

Since the PIOP protocol is public coin, at the end of the interaction, all
the verifier randomnesses are public coins which are already learned by the
prover. Denote by ω all the public coins the verifier used, then the verifier
response is a deterministic function of (ω, iV ,x, y1, · · · , ys). Denote this
function by F. Then P convinces V that F(ω, iV ,x, y1, · · · , ys) = 1 using
the VOPLONK protocol presented in Algorithm 11, with the following
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differences: the preprocessed vectors are hard-coded into P and V, and
submitted toO by V instead of by I. This is possible since the preprocessed
vectors depend only on the circuit of PIOP.V. This incurs an overhead on
V that is linear to the computation time of PIOP.V.

Recall that in Algorithm 11, P sends to V a vector w that contains
all the input/output of the gates in the circuit, including all of the query
results y1, · · · , ys. Assume the positions of these values in v are `1, · · · , `s
respectively. Note that these positions are determined by the circuit of
PIOP.V and can be hard-coded into P and V. Then, for each i ∈ [s], V
checks f (ki)(zi) = yi by an INN query for

wki · (1, zi, · · · , z
n−1
i ) = w · e`i

where vki is the coefficient vector of f (ki)(X).

Completeness follows from those of the PIOP protocol and the VOPLONK
protocol by design. Therefore, the completeness error is εc + O(V/|F|).
For soundness, note that if V accepts then f (ki)(zi) = yi for every i ∈ [s].
Therefore, by soundness of the PIOP protocol, the probability that all the
INN queries are accepted when (i,x) is invalid is bounded by εs. Finally,
by soundness of the VOPLONK protocol, the probability that V accepts
while F(ω, iV ,x, y1, · · · , ys) 6= 1 is bounded by O(V/|F|). By union bound,
the soundness error of the VIOP protocol is εs +O(V/|F|).

The number of prover vectors is r + 2, i.e., one vector for each poly-
nomial oracle, and two vectors induced by the VOPLONK protocol. The
number of HAD queries is 4 brought by the VOPLONK protocol. The
number of INN queries is s, i.e., one for each evaluation query.

C Security Proofs for Vector Oracle Protocols

C.1 Lemmas

Lemma 3 (restate of Lemma A.3 of [17]). Let u,v ∈ F`. If u and
v are not permutations of each other, then for uniformly random α ∈ F,
the probability that

∏
i∈[`](u[i] + α) =

∏
i∈[`](v[i] + α) is bounded by `

|F| .

Definition 6 (Simultaneous Permutation). Let {u(j)}mj=1, {v(j)}mj=1

be two groups of vectors in F`. We say they are simultaneous permuta-
tions of each other, denoted by {u(j)}mj=1 ∼ {v(j)}mj=1, if there exists a

permutation σ over [`] such that u
(j)
[σ(i)] = v

(j)
[i] for any i ∈ [`] and j ∈ [m].
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Lemma 4. Let {u(j)}mj=1, {v(j)}mj=1 be two groups of vectors in F`. If

{u(j)}mj=1 6∼ {v(j)}mj=1, then for uniformly random α ∈ F, the probability

that
∑m

j=1 α
j−1u(j) ∼

∑m
j=1 α

j−1v(j) is bounded by 2(m−1)`
|F| .

Proof. Consider two sequences of tuples U := {(u(1)
[i] , · · · ,u

(m)
[i] )}i∈[`] and

V := {(v(1)
[i] , · · · ,v

(m)
[i] )}i∈[`]. Since {u(j)}mj=1 6∼ {v(j)}mj=1, obviously U

and V are not permutations of each other. Therefore, there exists some
tuple (a1, a2, · · · , am) that appears different number of times in U and

V . Let Iu be the index set where (u
(1)
[i] , · · · ,u

(m)
[i] ) = (a1, a2, · · · , am)

and Iv be the similarly defined for V . Then |Iu| 6= |Iv|. For any tu-
ple (b1, b2, · · · , bm) 6= (a1, a2, · · · , am), for uniformly random α over F,
the probability that

∑m
j=1 α

j−1aj =
∑m

j=1 α
j−1bj is bounded by m−1

|F| ,
due to Schwartz-Zippel Lemma. By the union bound, the probability

that
∑m

j=1 α
j−1aj =

∑m
j=1 α

j−1u
(j)
[i] for any i 6∈ Iu or

∑m
j=1 α

j−1aj =∑m
j=1 α

j−1v
(j)
[i] for any i 6∈ Iv is less than 2(m−1)`

|F| .

Therefore, except with probability 2(m−1)`
|F| , the value

∑m
j=1 α

j−1aj

appears exactly |Iu| times in vector
∑m

j=1 α
j−1u(j) and |Iv| (i.e. 6= |Iu|)

times in vector
∑m

j=1 α
j−1v(j), which ensures that the two vectors are not

permutations of each other.

C.2 Security Proofs for the Protocols

Theorem 6. The SparseMVP protocol in Algorithm 1 has perfect com-
pleteness and soundness error H+K

|F|−H−K .

Proof. Consider the following statements:

a[1..H] = Ma[H+1..H+K] (18)

s[1..H+K] = rα‖(−rTαM) (19)

s ◦
(
α · 1H − γH

)
= 1H (20)

s→n−H−K · a→n−H−K = 0 (21)

h[1..S+K] = rβ‖
(

1

(α− u[i])(β −w[i])

)S
i=1

(22)

h ◦
(
β · 1K − γK

)
= 1K (23)

h ◦ (αβ · 1S − α ·w − β · u+ y)→K = (1S)→K (24)
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− h→n−K · s→n−H−K = h→n−S−K · v→n−S (25)

Completeness follows from the fact that if the prover is honest then
all of (18)(19) and (22) are true, and the following implications:

– (18)(19) ⇒ (21)
– (19) ⇒ (20)
– (22) ⇒ (23)(24)
– (19)(22) ⇒ (25)

Therefore, completeness error is 0.
Soundness follows from the fact that (20)(21)(23)(24) and (25) hold

if the verifier accepts, and the following implications:

– (23)(24) ⇒ (22)
– (20)(22)(25) ⇒ (19) which fails with probability K

|F|−K
– (19)(21) ⇒ (18) which fails with probability H

|F|−H

Therefore, soundness error of the SparseMVP protocol is less than H+K
|F|−H−K .

ut

Theorem 3. The VOR1CS protocol in Algorithm 2 is a VO protocol
for the relation RR1CS with perfect completeness and soundness error

3H+K
|F|−3H−K .

Proof. Consider the following statements:

(A(1‖x‖w)) ◦ (B(1‖x‖w)) = C(1‖x‖w) (26)

u[1..3H+K] = (M‖1‖x‖w)‖1‖x‖w (27)

u[1..3H] = Mu[3H+1..3H+K] (28)

V accepts in the subprotocol SparseMVP (29)

u[1..H] ◦ u[H+1..2H] = u[2H+1..3H] (30)

u→n−H ◦ u→n−2H = 1[n−H+1..n] ◦ u→n−3H (31)

1[3H+1..3H+`+1] ◦ (u− e3H+1 − x→3H+1) = 0 (32)

Completeness follows from the fact that (26) and (27) hold if the prover is
honest, and the sequence of implications (27)⇒ (28)⇒ (29) that follows
from completeness of SparseMVP, (26)(27) ⇒ (30) ⇒ (31), and (27) ⇒
(32). Therefore, the protocol VOR1CS is perfectly complete.

Soundness follows from the fact that (29)(31) and (32) hold if the
verifier accepts, and the sequence of implications (29) ⇒ (28) due to
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soundness of protocol SpaseMVP and fails with probability 3H+K
|F|−3H−K ,

(28)(32) ⇒ (27), and (27)(30) ⇒ (26). Therefore, soundness error of the
VOR1CS protocol is bounded by 3H+K

|F|−3H−K . ut

Theorem 4. The VOHPR protocol in Algorithm 3 is a VO protocol for
the relation RHPR with perfect completeness and soundness error H+3K

|F|−H−3K .

Proof. Consider the following statements:

Aw[1..K] +Bw[K+1..2K] +Cw[2K+1..3K] + d = x‖0H−` (33)

w[1..K] ◦w[K+1..2K] = w[2K+1..3K] (34)

M(e1 +w→1) = x‖0H−` (35)

V accepts in the subprotocol SparseMVP (36)

w→n−K ◦w→n−2K = 1[n−K+1..n] ◦w→n−3K (37)

Completeness follows from the fact that (33) and (34) hold if the prover
is honest, and the sequence of implications (33)⇒ (35)⇒ (36) where the
second implication follows from completeness of SparseMVP, and (34) ⇒
(37). Therefore, the protocol VOHPR is perfectly complete.

Soundness follows from the fact that (36) and (37) hold if the verifier
accepts, and the sequence of implications (36) ⇒ (35) ⇒ (33) where the
first implication follows from soundness of protocol SpaseMVP and fails
with probability H+3K

|F|−H−3K , and (37) ⇒ (34). Therefore, soundness error

of the VOR1CS protocol is bounded by H+3K
|F|−H−3K . ut

Theorem 5. The VOPLONK protocol in Algorithm 4 is a VO protocol
that validates the relation RPLONK with completeness error 3C

|F|−1 , sound-

ness error 15C
|F|−1 .

Proof. Consider the following statements:

a[Cc+1..Cc+Cm] ◦ b[Cc+1..Cc+Cm] = c[Cc+1..Cc+Cm] (38)

a[Cc+Cm+1..C] + b[Cc+Cm+1..C] = c[Cc+Cm+1..C] (39)

c[1..Cc] = d (40)

t[i] 6= 0⇒ (a‖b‖c)[i] = x[i] ∀i ∈ [3C] (41)

a‖b‖c satisfies the copy constraints of Π (42)

1[3C−Ca+1..3C] ◦ (w→2C +w→C −w) = 0 (43)
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w→n−C ◦w→n−2C = 1[n−Cm−Ca+1..n−Ca] ◦w→n−3C (44)

t ◦ (w − x) = 0 (45)

1[2C+1..2C+Cc] ◦
(
w − d→2C

)
= 0 (46)

V accepts in the subprotocol CopyCheck (47)

Note that w = a‖b‖c holds unconditionally, because the existence of
valid a, b, c is equivalent to the existence of valid w.

Completeness follows from the fact that if the prover is honest then
all of (38)(39)(40)(41) and (42) are true, and the following implications:
(38)⇔ (44), (39)⇔ (43), (41)⇔ (45), (40)⇔ (46) and (42)⇒ (47) that
follows from completeness of the subprotocol CopyCheck which fails with
probability 3C

|F|−1 .

Soundness follows from the fact that (43)(44)(45)(46) and (47) hold
if the verifier accepts. The reverse implication fails only if (47) does not
imply (42), which happens with probability at most 15C

|F|−1 , due to sound-
ness error of CopyCheck. ut

Theorem 7. The ProductEq protocol in Algorithm 5 is perfectly complete
and perfectly sound.

Proof. Consider the following statements:

∏̀
i=1

u[i] =
∏̀
i=1

v[i] (48)

r[1..`] =

 i∏
j=1

u[i]/v[i]

`

i=1

(49)

r[`] = 1 (50)

(r − e`) ◦ e` = 0 (51)

u[1] · 1 = r[1] · v[1] and ∀i ∈ [2..`],u[i] · r[i−1] = r[i] · v[i], (52)

(r→n−`+1 + en−`+1) ◦ u→n−` = r→n−` ◦ v→n−` (53)

Completeness follows from the fact that (48) and (49) hold when the
prover is honest, and the sequences of implications (48)(49) ⇒ (50) ⇒
(51), and (49) ⇒ (52) ⇒ (53).

Soundness follows from the fact that (51) and (53) hold when the
verifier accepts, and the sequences of implications (51) ⇒ (50), (53) ⇒
(52), and (52)(50) ⇒ (48). ut
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Theorem 8. The Permute protocol in Algorithm 6 has completeness er-
ror `

|F|−1 , soundness error 3`
|F|−1 .

Proof. For completeness, note that if u[1..`] ∼ v[1..`] then
∏`
i=1(u[i] +

α) =
∏`
i=1(v[i] + α). Except with probability `

|F|−1 , −α 6∈ u[1..`], which
is equivalent to −α 6∈ v[1..`]. By the perfect completeness of ProductEq

protocol, completeness error of Permute protocol is `
|F|−1 .

For soundness, note that if u[1..`] 6∼ v[1..`], then by Lemma 3,
∏`
i=1(u[i]+

α) 6=
∏`
i=1(v[i] + α) except with probability `

|F| . Moreover, except with

probability 2`
|F|−1 ,−α 6∈ u[1..`]∪v[1..`]. By the perfect soundness of ProductEq

protocol, soundness error of Permute is bounded by 3`
|F|−1 .

ut

Theorem 9. The CopyCheck protocol in Algorithm 7 has completeness
error `

|F|−1 , soundness error 5`
|F|−1 .

Proof. For completeness, note that if v[1..`] satisfies the copy constraint
of Π, then v[i] = v[σ(i)] for every i ∈ [`], and v[1..`] + β · γ is a reorder of
v[1..`] +β ·σ. By completeness of Permute protocol, completeness error of

CopyCheck is at most `
|F|−1 .

For soundness, note that if v[1..`] does not satisfy the copy constraint
of Π, then v[i] 6= v[σ(i)] for some i, therefore

{
v[1..`],γ

}
and

{
v[1..`],σ

}
are not simultaneous permutations of each other. By Lemma 4, except
with probability 2`

|F| , v[1..`] + β · γ is not a reorder of v[1..`] + β · σ. By
soundness of Permute protocol, soundness error of CopyCheck is bounded
by 5`
|F|−1 .

ut

D The Complete zkSNARKs

For reference, we present the complete zkSNARKs compiled from our
protocols using the optimized compiler and the KZG polynomial com-
mitment scheme. The latex code for the provers and the verifiers are
produced by a Python script which implements the VO compiler and the
PIOP compiler in a symbolic way. This script uses the open-source python
library Sympy4 for symbolic computations.

4 https://github.com/sympy/sympy
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D.1 Cryptographic Primitives

Prime Field and Bilinear Pairing. We choose F = Fp for a prime
p ≈ 2λ where λ is the security parameter. Let γ be a generator of the
multiplicative group F∗.

A bilinear pairing scheme consists of a tuple (G1,G2,GT , e,G1, G2, GT )
where G1,G2 and GT are groups of size p, e : G1 × G2 → GT is an
efficiently computable bilinear non-degenerate bilinear map, G1, G2 are
uniformly random chosen from G1,G2 respectively, and GT = e(G1, G2).
We use the notations [x]1 := x ·G1 and [x]2 := x ·G2.

Hash to Field. Let H : {0, 1}∗ → F be a hash function modeled as
a random oracle. In cases where multiple random elements are needed
in the same round, let Hi(x) be a convenient alias of H(i‖x) where i is
encoded by its fixed-length binary representation.

The KZG Polynomial Commitment. For completeness, we present
the KZG scheme here. The description is copied almost verbatim from
PLONK [3], except that we present the non-interactive version by applying
the Fiat-Shamir heuristic using H. The open and vrfy algorithms validates
the evaluations of t = t1 + t2 + t3 polynomials at 3 distinct evaluation
points, which is the maximal number that our algorithm uses.

– gen(D) - choose uniform x ∈ F. Output srs = ([1]1, [x]1, · · · , [xD−1]1, [1]2, [x]2).

– com(f(X), srs) := [f(x)]1.

– open({cmi, yi, fi(X)}t1i=1, {cm′i, y′i, f ′i(X)}t2i=1, {cm′′i , y′′i , f ′′i (X)}t3i=1, {z, z′, z′′})
1. ξ := H1({cmi, yi}t1i=1, {cm′i, y′i}

t2
i=1, {cm′′i , y′′i }

t3
i=1, {z, z′, z′′}) and ξ′, ξ′′

are computed with the same inputs by using H2 and H3 instead.

2. Let

q(X) :=

t1∑
i=1

ξi−1 · fi(X)− yi
X − z

and q′(X), q′′(X) similarly by using f ′i(X), ξ′, z′, y′i and f ′′i (X), ξ′′, z′′, y′′i
instead respectively.

3. Compute W := [q(x)]1, W ′ := [q′(x)]1, W ′′ := [q′′(x)]1 using srs.

4. Output (W,W ′,W ′′)

– vrfy({cmi, yi}t1i=1, {cm′i, y′i}
t2
i=1, {cm′′i , y′′i }

t3
i=1, {z, z′, z′′}, {W,W ′,W ′′}, [x]2)

1. Computes ξ, ξ′, ξ′′ in the same way as in open.

2. r′, r′′
$← F
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3. Let

Q :=

t1∑
i=1

ξi−1 · cmi −

[
t1∑
i=1

ξi−1 · yi

]
1

andQ′, Q′′ are computed similarly by using cm′i, ξ
′, y′i and cm′′i , ξ

′′, y′′i
instead respectively.

4. Let F := Q+ r′Q′ + r′′Q′′.
5. Outputs accept if and only if

e(F+z·W+r′z′·W ′+r′′z′′·W ′′, [1]2)·e(−W−r′·W ′−r′′·W ′′, [x]2) = 1.

Remark 2. Let t be the number of evaluation points, t∗ the number of
distinct points, di be the maximal degree of polynomials evaluated at the
i-th distinct point zi, then the efficiency of the above scheme is summa-
rized as follows.

– The proof size is t∗ elements in G1.
– For d < D and f(X) ∈ Fd[X], the computation of com is dominated

by d G1 exponentiations.
– The computation of open is dominated by

∑
i∈[t∗] di G1 exponentia-

tions.
– The computation of vrfy is dominated by 2 pairings and t + 2t∗ − 2

G1 exponentiations.

D.2 The zkSNARK for R1CS

Let A,B,C ∈ FH×K be matrices each has at most S nonzero entries.
For an instance x ∈ F`, the zkSNARK VOR1CS generates a proof for the
existence of w ∈ FN−`−1 such that A(1‖x‖w)◦B(1‖x‖w) = C(1‖x‖w).

Setup. Output srs := gen(D) for D ≥ 2K + 6S + 2.

Indexer. The inputs are the sparse representations for the matrices,
i.e., {rowAi , col

A
i , val

A
i }Si=1, {rowBi , col

B
i , val

B
i }Si=1 and {rowCi , col

C
i , val

C
i }Si=1,

where rowi ∈ [H], coli ∈ [K] and vali ∈ F.

1. u := (γrowi)3S
i=1

2. w :=
(
γcoli

)3S
i=1

3. v := (vali)
3S
i=1

4. y := u ◦w
5. cmu := com (fu(X), srs)
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6. cmw := com (fw(X), srs)
7. cmv := com (fv(X), srs)
8. cmy := com (fy(X), srs)
9. Output

– pk := (cmu, cmw, cmv, cmy)
– vk := (u,w,v,y, cmu, cmw, cmv, cmy)

Prover.

1. u1 := (M (1‖x‖w)) ‖1‖x‖w
2. δ

$← F, u(X) := fu1‖δ(X)
3. cmu := com (u(X), srs)
4. µ := H1(cmu, cmw, cmv, cmy, cmu)

5. r :=
(

1
α−γi

)3H

i=1

6. c := rTM
7. s := r‖ (−c)
8. δ1

$← F, s(X) := fs‖δ1(X)
9. cms := com (s(X), srs)

10. ν := H1(cmu, cmw, cmv, cmy, cmu, cms)

11. h :=
(

1
β−γi

)K
i=1
‖
(

1
(α−u[i])(β−w[i]

)3S

i=1

12. δ2
$← F, h(X) := fh‖δ2(X)

13. cmh := com (h(X), srs)
14. β := H1(cmu, cmw, cmv, cmy, cmu, cms, cmh)
15. r1 := the sum of:

– u1
→−3H+3S ◦ s→−3H+3S

– β ·
(
−h→3S ◦ s→−3H+3S − h ◦ v→K

)
16. δ3

$← F, r̃ :=
(∑i

j=1 r1[j]

)K+3S

i=1
‖δ3

17. cmr̃ := com (fr̃(X), srs)
18. α := H1(cmu, cmw, cmv, cmy, cmu, cms, cmh, cmr̃)
19. t := the sum of:

–
(
µ · 13H − γ3H

)
◦ s

– −13H ◦ 13H

–
(
αν · 1K − α · γK

)
◦ h

– −α · 1K ◦ 1K

– α2 · h ◦
(
−µ ·w→K − ν · u→K + y→K + µν · 1K→K

)
– −α2 · 1K ◦ 1K

– α3 · u1
→−H+K+3S ◦ u1

→−2H+K+3S
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– −α3 · 1H→−H+K+3S ◦ u1
→−3H+K+3S

– α5 · u1
→−3H+3S ◦ s→−3H+3S

– −α5β · h→3S ◦ s→−3H+3S

– −α5β · h ◦ v→K
–
(
−α5 · r̃ + α5 · r̃→1

)
◦ 1K+3S

20. δ4
$← F, t(X) := fδ4‖t[K+3S+1..]

(X)

21. cmt := com (t(X), srs)
22. ω := H1(cmu, cmw, cmv, cmy, cmu, cms, cmh, cmr̃, cmt)
23. h1(X) := the sum of:

–
X
(
−µ(X−γω)

(
( ωX )

3H−1
)

+(X−ω)
(
( γωX )

3H−1
))

(X−ω)(X−γω) · s(X)

–
X(X3H−1)

(
( ωX )

3H−1
)

(X−1)(X−ω)

–
Xα
(
−ν(X−γω)

(
( ωX )

K−1
)

+(X−ω)
(
( γωX )

K−1
))

(X−ω)(X−γω) · h(X)

–
Xα(XK−1)

(
( ωX )

K−1
)

(X−1)(X−ω)

– −XKα2µ · h( ωX ) · fw(X)

–
XKα2µν(XK−1)

X−1 · h( ωX )

– −XKα2ν · h( ωX ) · fu(X)
– XKα2 · h( ωX ) · fy(X)

–
Xα2(XK−1)

(
( ωX )

K−1
)

(X−1)(X−ω)

– X−2H+K+3Sα3
(
ω
X

)−H+K+3S · u( ωX ) · u(X)

–
X−3H+K+3S+1α3( ωX )

−H+K+3S
(
( ωX )

H−1
)

X−ω · u(X)

–
α4( ωX )

3H
(
X−ω( ωX )

`
)

X−ω · u(X)

–
X3H+2α4( ωX )

3H
(
( ωX )

`+1−1
)

X−ω · fx(X)

–
X3Hα4( ωX )

3H
(
−X+ω( ωX )

`
)

X−ω
– X−3H+3Sα5

(
ω
X

)−3H+3S · u( ωX ) · s(X)

– −X−3H+3Sα5β
(
ω
X

)3S · h( ωX ) · s(X)
– −XKα5β · h( ωX ) · fv(X)

– −α5(X−ω)(XK+3S−1)
X(X−1) · fr̃( ωX )

– XK+3S−1α6 · fr̃( ωX )

–
XK+3S( ωX )

K+3S
(
( ωX )

3S+1−1
)

X−ω · t(X)

24. h2(X) := h1(X) ·XD mod XD
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25. h3(X) := h1(X)
X −X−D−1 · h2(X)

26. cmh2 := com (h2(X), srs)
27. cmh3 := com (h3(X), srs)
28. z := H1(cmu, cmw, cmv, cmy, cmu, cms, cmh, cmr̃, cmt, cmh2 , cmh3)
29. y := h(ωz ), y1 := u(ωz ), y2 := fr̃(

ω
z )

30. c := the sum of:

–
z
(
µ(γω−z)

(
(ωz )

3H−1
)
−(ω−z)

(
( γωz )

3H−1
))

(ω−z)(γω−z)

– α5y1z
−3H+3S

(
ω
z

)−3H+3S

– −α5βyz−3H+3S
(
ω
z

)3S
31. c1 := the sum of:

– −
z(z3H−1)

(
(ωz )

3H−1
)

(ω−z)(z−1)

– −
αz(zK−1)

(
(ωz )

K−1
)

(ω−z)(z−1)

–
α2µνyzK(zK−1)

z−1

– −
α2z(zK−1)

(
(ωz )

K−1
)

(ω−z)(z−1)

–
α4z3H+1(ωz )

3H
(
−ω(ωz )

`
+z
)

ω−z · fx(z)

–
α4z3H(ωz )

3H
(
−ω(ωz )

`
+z
)

ω−z

–
α5y2(ω−z)(zK+3S−1)

z(z−1)

– α6y2z
K+3S−1

32. c2 :=
αz
(
ν(γω−z)

(
(ωz )

K−1
)
−(ω−z)

(
( γωz )

K−1
))

(ω−z)(γω−z)
33. c3 := −α2µyzK

34. c4 := −α2νyzK

35. c5 := α2yzK

36. c6 := the sum of:
– α3y1z

−2H+K+3S
(
ω
z

)−H+K+3S

–
α3z−3H+K+3S+1(ωz )

−H+K+3S
(

1−(ωz )
H
)

ω−z

–
α4(ωz )

3H
(
ω(ωz )

`−z
)

ω−z
37. c7 := −α5βyzK

38. c8 :=
zK+3S(ωz )

K+3S
(

1−(ωz )
3S+1

)
ω−z

39. c9 := −zD
40. c10 := −z
41. g(X) := c · s(X) + c2 · h(X) + c3 · fw(X) + c4 · fu(X) + c5 · fy(X) +

c6 · u(X) + c7 · fv(X) + c8 · t(X) + c9 · h2(X) + c10 · h3(X) + c1
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42. cmg := c · cms + c2 · cmh + c3 · cmw + c4 · cmu + c5 · cmy + c6 · cmu +
c7 · cmv + c8 · cmt + c9 · cmh2 + c10 · cmh3 + c1 · com(1)

43. (W,W1) := open

{(cmh, y, h(X)) , (cmu, y1, u(X)) , (cmr̃, y2, fr̃(X))},
{(cmg, 0, g(X))},{
ω
z , z
}


44. Output π := (cmu, cms, cmh, cmr̃, cmt, cmh2 , cmh3 , y, y1, y2,W,W1)

Verifier.

1. µ := H1(cmu, cmw, cmv, cmy, cmu)
2. ν := H1(cmu, cmw, cmv, cmy, cmu, cms)
3. β := H1(cmu, cmw, cmv, cmy, cmu, cms, cmh)
4. α := H1(cmu, cmw, cmv, cmy, cmu, cms, cmh, cmr̃)
5. ω := H1(cmu, cmw, cmv, cmy, cmu, cms, cmh, cmr̃, cmt)
6. z := H1(cmu, cmw, cmv, cmy, cmu, cms, cmh, cmr̃, cmt, cmh2 , cmh3)
7. c := the sum of:

–
z
(
µ(γω−z)

(
(ωz )

3H−1
)
−(ω−z)

(
( γωz )

3H−1
))

(ω−z)(γω−z)

– α5y1z
−3H+3S

(
ω
z

)−3H+3S

– −α5βyz−3H+3S
(
ω
z

)3S
8. c1 := the sum of:

– −
z(z3H−1)

(
(ωz )

3H−1
)

(ω−z)(z−1)

– −
αz(zK−1)

(
(ωz )

K−1
)

(ω−z)(z−1)

–
α2µνyzK(zK−1)

z−1

– −
α2z(zK−1)

(
(ωz )

K−1
)

(ω−z)(z−1)

–
α4z3H+1(ωz )

3H
(
−ω(ωz )

`
+z
)

ω−z · fx(z)

–
α4z3H(ωz )

3H
(
−ω(ωz )

`
+z
)

ω−z

–
α5y2(ω−z)(zK+3S−1)

z(z−1)

– α6y2z
K+3S−1

9. c2 :=
αz
(
ν(γω−z)

(
(ωz )

K−1
)
−(ω−z)

(
( γωz )

K−1
))

(ω−z)(γω−z)
10. c3 := −α2µyzK

11. c4 := −α2νyzK

12. c5 := α2yzK

13. c6 := the sum of:

– α3y1z
−2H+K+3S

(
ω
z

)−H+K+3S
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–
α3z−3H+K+3S+1(ωz )

−H+K+3S
(

1−(ωz )
H
)

ω−z

–
α4(ωz )

3H
(
ω(ωz )

`−z
)

ω−z
14. c7 := −α5βyzK

15. c8 :=
zK+3S(ωz )

K+3S
(

1−(ωz )
3S+1

)
ω−z

16. c9 := −zD
17. c10 := −z
18. cmg := c · cms + c2 · cmh + c3 · cmw + c4 · cmu + c5 · cmy + c6 · cmu +

c7 · cmv + c8 · cmt + c9 · cmh2 + c10 · cmh3 + c1 · com(1)

19. vrfy

{(cmh, y) , (cmu, y1) , (cmr̃, y2)} ,
{(cmg, 0)} ,{
ω
z , z
}
{W,W1} , [x]2

 ?
= 1

D.3 The zkSNARK for HPR

Let A,B,C ∈ FH×K be matrices each has at most S nonzero entries,
and d ∈ FH has at most S′ nonzero entries. For an instance x ∈ F`, the
zkSNARK VOHPR generates a proof for the existence of w1,w2,w3 ∈ FN
such that Aw1 +Bw2 +Cw3 + d = x‖0H−` and w1 ◦w2 = w3.

Setup. Output srs := gen(D) for D ≥ 6K + 6S + 2S′ + 4.

Indexer. The inputs are the sparse representations for the matrices,
i.e., {rowAi , col

A
i , val

A
i }Si=1, {rowBi , col

B
i , val

B
i }Si=1 and {rowCi , col

C
i , val

C
i }Si=1,

where rowi ∈ [H], coli ∈ [K] and vali ∈ F.

1. u := (γrowi)3S+S′

i=1

2. w :=
(
γcoli

)3S+S′

i=1

3. v := (vali)
3S+S′

i=1

4. y := u ◦w
5. cmu := com (fu(X), srs)

6. cmw := com (fw(X), srs)

7. cmv := com (fv(X), srs)

8. cmy := com (fy(X), srs)

9. Output

– pk := (cmu, cmw, cmv, cmy)

– vk := (u,w,v,y, cmu, cmw, cmv, cmy)
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Prover.

1. w1 := w‖w1‖w2

2. δ
$← F, w(X) := fw1‖δ(X)

3. cmw := com (w(X), srs)
4. µ := H1(cmu, cmw, cmv, cmy, cmw)

5. r :=
(

1
α−γi

)H
i=1

6. c := rTM
7. s := r‖ (−c)
8. δ1

$← F, s(X) := fs‖δ1(X)
9. cms := com (s(X), srs)

10. ν := H1(cmu, cmw, cmv, cmy, cmw, cms)

11. h :=
(

1
β−γi

)3K+1

i=1
‖
(

1
(α−u[i])(β−w[i]

)3S+S′

i=1

12. δ2
$← F, h(X) := fh‖δ2(X)

13. cmh := com (h(X), srs)
14. β := H1(cmu, cmw, cmv, cmy, cmw, cms, cmh)
15. r1 := the sum of:

–
(
x→−H+3S+S′ +w1

→−H+3S+S′+`+1 + e−H+3S+S′+`+1

)
◦s→−H+3S+S′

– β ·
(
−h→3S+S′ ◦ s→−H+3S+S′ − h ◦ v→3K+1

)
16. δ3

$← F, r̃ :=
(∑i

j=1 r1[j]

)3K+3S+S′+1

i=1
‖δ3

17. cmr̃ := com (fr̃(X), srs)
18. α := H1(cmu, cmw, cmv, cmy, cmw, cms, cmh, cmr̃)
19. t := the sum of:

–
(
µ · 1H − γH

)
◦ s

– −1H ◦ 1H

–
(
αν · 13K+1 − α · γ3K+1

)
◦ h

– −α · 13K+1 ◦ 13K+1

– α2·h◦
(
−µ ·w→3K+1 − ν · u→3K+1 + y→3K+1 + µν · 13K+1→3K+1

)
– −α2 · 13K+1 ◦ 13K+1

– α3 ·w1
→2K+3S+S′+1 ◦w1

→K+3S+S′+1

– −α3 · 1K→2K+3S+S′+1 ◦w1
→3S+S′+1

–
(
α4 · x→−H+3S+S′ + α4 ·w1

→−H+3S+S′+`+1 + α4 · e−H+3S+S′+`+1

)
◦

s→−H+3S+S′

– −α4β · h→3S+S′ ◦ s→−H+3S+S′

– −α4β · h ◦ v→3K+1

–
(
−α4 · r̃ + α4 · r̃→1

)
◦ 13K+3S+S′+1
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20. δ4
$← F, t(X) := fδ4‖t[3K+3S+S′+2..]

(X)

21. cmt := com (t(X), srs)
22. ω := H1(cmu, cmw, cmv, cmy, cmw, cms, cmh, cmr̃, cmt)
23. h1(X) := the sum of:

–
X
(
−µ(X−γω)

(
( ωX )

H−1
)

+(X−ω)
(
( γωX )

H−1
))

(X−ω)(X−γω) · s(X)

–
X(XH−1)

(
( ωX )

H−1
)

(X−1)(X−ω)

–
Xα
(
−ν(X−γω)

(
( ωX )

3K+1−1
)

+(X−ω)
(
( γωX )

3K+1−1
))

(X−ω)(X−γω) · h(X)

–
Xα(X3K+1−1)

(
( ωX )

3K+1−1
)

(X−1)(X−ω)

– −X3K+1α2µ · h( ωX ) · fw(X)

–
X3K+1α2µν(X3K+1−1)

X−1 · h( ωX )

– −X3K+1α2ν · h( ωX ) · fu(X)
– X3K+1α2 · h( ωX ) · fy(X)

–
Xα2(X3K+1−1)

(
( ωX )

3K+1−1
)

(X−1)(X−ω)

– XK+3S+S′+1α3
(
ω
X

)2K+3S+S′+1 · w( ωX ) · w(X)

–
X3S+S′+2α3( ωX )

2K+3S+S′+1
(
( ωX )

K−1
)

X−ω · w(X)

– X−H+3S+S′α4
(
ω
X

)−H+3S+S′ · fx( ωX ) · s(X)

– X−H+3S+S′α4
(
ω
X

)−H+3S+S′+`+1 · w( ωX ) · s(X)

– X−H+3S+S′α4
(
ω
X

)−H+3S+S′+` · s(X)

– −X−H+3S+S′α4β
(
ω
X

)3S+S′ · h( ωX ) · s(X)
– −X3K+1α4β · h( ωX ) · fv(X)

– −
α4(X−ω)

(
X3K+3S+S′+1−1

)
X(X−1) · fr̃( ωX )

– X3K+3S+S′α5 · fr̃( ωX )

–
X3K+3S+S′+1( ωX )

3K+3S+S′+1
(

( ωX )
2K+3S+S′+2−1

)
X−ω · t(X)

24. h2(X) := h1(X) ·XD mod XD

25. h3(X) := h1(X)
X −X−D−1 · h2(X)

26. cmh2 := com (h2(X), srs)
27. cmh3 := com (h3(X), srs)
28. z := H1(cmu, cmw, cmv, cmy, cmw, cms, cmh, cmr̃, cmt, cmh2 , cmh3)
29. y := h(ωz ), y1 := w(ωz ), y3 := fr̃(

ω
z )

30. y2 := fx(ωz )
31. c := the sum of:
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–
z
(
µ(γω−z)

(
(ωz )

H−1
)
−(ω−z)

(
( γωz )

H−1
))

(ω−z)(γω−z)

– α4z−H+3S+S′−1
(
ω
z

)−H+3S+S′
(
ωy1

(
ω
z

)`
+ y2z + z

(
ω
z

)`)
– −α4βyz−H+3S+S′

(
ω
z

)3S+S′

32. c1 := the sum of:

– −
z(zH−1)

(
(ωz )

H−1
)

(ω−z)(z−1)

– −
α(z3K+1−1)

(
ω(ωz )

3K−z
)

(ω−z)(z−1)

–
α2µνyz3K+1(z3K+1−1)

z−1

– −
α2(z3K+1−1)

(
ω(ωz )

3K−z
)

(ω−z)(z−1)

–
α4y3(ω−z)

(
z3K+3S+S′+1−1

)
z(z−1)

– α5y3z
3K+3S+S′

33. c2 :=
αz
(
ν(γω−z)

(
(ωz )

3K+1−1
)
−(ω−z)

(
( γωz )

3K+1−1
))

(ω−z)(γω−z)
34. c3 := −α2µyz3K+1

35. c4 := −α2νyz3K+1

36. c5 := α2yz3K+1

37. c6 := the sum of:

– α3y1z
K+3S+S′+1

(
ω
z

)2K+3S+S′+1

–
α3z3S+S

′+2(ωz )
2K+3S+S′+1

(
1−(ωz )

K
)

ω−z
38. c7 := −α4βyz3K+1

39. c8 :=
z3K+3S+S′+1(ωz )

3K+3S+S′+1
(

1−(ωz )
2K+3S+S′+2

)
ω−z

40. c9 := −zD
41. c10 := −z
42. g(X) := c · s(X) + c2 · h(X) + c3 · fw(X) + c4 · fu(X) + c5 · fy(X) +

c6 · w(X) + c7 · fv(X) + c8 · t(X) + c9 · h2(X) + c10 · h3(X) + c1

43. cmg := c · cms + c2 · cmh + c3 · cmw + c4 · cmu + c5 · cmy + c6 · cmw +
c7 · cmv + c8 · cmt + c9 · cmh2 + c10 · cmh3 + c1 · com(1)

44. (W,W1) := open

{(cmh, y, h(X)) , (cmw, y1, w(X)) , (cmr̃, y3, fr̃(X))},
{(cmg, 0, g(X))},{
ω
z , z
}


45. Output π := (cmw, cms, cmh, cmr̃, cmt, cmh2 , cmh3 , y, y1, y3,W,W1)

Verifier.

1. µ := H1(cmu, cmw, cmv, cmy, cmw)
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2. ν := H1(cmu, cmw, cmv, cmy, cmw, cms)
3. β := H1(cmu, cmw, cmv, cmy, cmw, cms, cmh)
4. α := H1(cmu, cmw, cmv, cmy, cmw, cms, cmh, cmr̃)
5. ω := H1(cmu, cmw, cmv, cmy, cmw, cms, cmh, cmr̃, cmt)
6. z := H1(cmu, cmw, cmv, cmy, cmw, cms, cmh, cmr̃, cmt, cmh2 , cmh3)
7. y2 := fx(ωz )
8. c := the sum of:

–
z
(
µ(γω−z)

(
(ωz )

H−1
)
−(ω−z)

(
( γωz )

H−1
))

(ω−z)(γω−z)

– α4z−H+3S+S′−1
(
ω
z

)−H+3S+S′
(
ωy1

(
ω
z

)`
+ y2z + z

(
ω
z

)`)
– −α4βyz−H+3S+S′

(
ω
z

)3S+S′

9. c1 := the sum of:

– −
z(zH−1)

(
(ωz )

H−1
)

(ω−z)(z−1)

– −
α(z3K+1−1)

(
ω(ωz )

3K−z
)

(ω−z)(z−1)

–
α2µνyz3K+1(z3K+1−1)

z−1

– −
α2(z3K+1−1)

(
ω(ωz )

3K−z
)

(ω−z)(z−1)

–
α4y3(ω−z)

(
z3K+3S+S′+1−1

)
z(z−1)

– α5y3z
3K+3S+S′

10. c2 :=
αz
(
ν(γω−z)

(
(ωz )

3K+1−1
)
−(ω−z)

(
( γωz )

3K+1−1
))

(ω−z)(γω−z)
11. c3 := −α2µyz3K+1

12. c4 := −α2νyz3K+1

13. c5 := α2yz3K+1

14. c6 := the sum of:

– α3y1z
K+3S+S′+1

(
ω
z

)2K+3S+S′+1

–
α3z3S+S

′+2(ωz )
2K+3S+S′+1

(
1−(ωz )

K
)

ω−z
15. c7 := −α4βyz3K+1

16. c8 :=
z3K+3S+S′+1(ωz )

3K+3S+S′+1
(

1−(ωz )
2K+3S+S′+2

)
ω−z

17. c9 := −zD
18. c10 := −z
19. cmg := c · cms + c2 · cmh + c3 · cmw + c4 · cmu + c5 · cmy + c6 · cmw +

c7 · cmv + c8 · cmt + c9 · cmh2 + c10 · cmh3 + c1 · com(1)

20. vrfy

{(cmh, y) , (cmw, y1) , (cmr̃, y3)} ,
{(cmg, 0)} ,{
ω
z , z
}
{W,W1} , [x]2

 ?
= 1
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D.4 The zkSNARK for PLONK

The zkSNARK VOPLONK generates a proof for the satisfiability of a fan-
in-2 circuit with Cc constant gates, Ca addition gates, Cm multiplication
gates. Let C = Cc + Ca + Cm.

Setup. Output srs := gen(D) for D ≥ 6C − Cm.

Indexer. On input the values of the constant gates d ∈ FCc and the
partition Π over [3C], the indexer computes the permutation σ over [3C]
such that the induced partition of σ is Π.

1. σ :=
(
γσ(i)−1

)3C
i=1

2. cmσ := com (fσ(X), srs)
3. cmd := com (fd(X), srs)
4. Output

– pk := (cmσ, cmd)
– vk := (σ,d, cmσ, cmd)

Prover.

1. w := a[C−Ca−Cm+1..C]‖b‖c
2. δ

$← F, w(X) := fw‖δ(X)
3. cmw := com (w(X), srs)
4. ζ := H1(cmσ, cmd, cmw)
5. ζ1 := H2(cmσ, cmd, cmw)
6. u := w→C−Ca−Cm + ζ · γ3C + ζ1 · 13C

7. v := w→C−Ca−Cm + ζ · σ + ζ1 · 13C

8. r :=
(∏i

j=1

(
u[j]/v[j]

))3C

i=1

9. δ1
$← F, r(X) := fr‖δ1(X)

10. cmr := com (r(X), srs)
11. α := H1(cmσ, cmd, cmw, cmr)
12. t1 := the sum of:

– w→3C−Cm ◦w→2C−Cm

– −1Cm
→3C−Cm ◦w→C−Cm

– α2 · t ◦
(
w→C−Ca−Cm − x

)
–
(
α4 · r→1 + α4 · e1

)
◦
(
w→C−Ca−Cm + ζ · γ3C + ζ1 · 13C

)
– −α4 · r ◦

(
w→C−Ca−Cm + ζ · σ + ζ1 · 13C

)
13. δ2

$← F, t(X) := fδ2‖t1[3C+1..]
(X)
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14. cmt := com (t(X), srs)
15. ω := H1(cmσ, cmd, cmw, cmr, cmt)

16. h(X) := the sum of:

– X2C−Cm
(
ω
X

)3C−Cm · w( ωX ) · w(X)

–
XC−Cm+1( ωX )

3C−Cm
(
( ωX )

Cm−1
)

X−ω · w(X)

– −
Xα( ωX )

2C+Cm
(
( ωX )

Ca−1
)
(X2C+XC−1)

X−ω · w(X)

– XC−Ca−Cmα2 · ft( ωX ) · w(X)

– −α2 · ft( ωX ) · fx(X)

–
Xα3( ωX )

C+Ca+Cm
(

1−( ωX )
C−Ca−Cm

)
X−ω · w(X)

–
XC+Ca+Cm+1α3( ωX )

C+Ca+Cm
(
( ωX )

C−Ca−Cm−1
)

X−ω · fd(X)

– XC−Ca−Cm−1α4ω · r( ωX ) · w(X)

–
α4ω(ζ(X−1)((Xγ)3C−1)+ζ1(X3C−1)(Xγ−1))

X(X−1)(Xγ−1) · r( ωX )

– XC−Ca−Cmα4 · w(X)

–
α4(ζ(X−1)((Xγ)3C−1)+ζ1(X3C−1)(Xγ−1))

(X−1)(Xγ−1)

– −XC−Ca−Cmα4 · r( ωX ) · w(X)

– −α4ζ · r( ωX ) · fσ(X)

–
α4ζ1(1−X3C)

X−1 · r( ωX )

– X3C−1α5 · r( ωX )

– −X3Cα5( ωX )
3C

ω

–
X3C( ωX )

3C
(
( ωX )

3C−Cm+1−1
)

X−ω · t(X)

17. h1(X) := h(X) ·XD mod XD

18. h2(X) := h(X)
X −X−D−1 · h1(X)

19. cmh1 := com (h1(X), srs)
20. cmh2 := com (h2(X), srs)
21. z := H1(cmσ, cmd, cmw, cmr, cmt, cmh1 , cmh2)

22. y := w(ωz ), y2 := r(ωz )

23. y1 := ft(
ω
z )

24. c := the sum of:

– yz2C−Cm
(
ω
z

)3C−Cm
–

zC−Cm+1(ωz )
3C−Cm

(
1−(ωz )

Cm
)

ω−z

–
α(ωz )

2C+Cm
(
(ωz )

Ca−1
)
(−z+zC+1+z2C+1)

ω−z
– α2y1z

C−Ca−Cm
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–
α3z(ωz )

C+Ca+Cm
(
(ωz )

C−Ca−Cm−1
)

ω−z
– α4zC−Ca−Cm−1 (ωy2 + z)
– −α4y2z

C−Ca−Cm

25. c1 := the sum of:

– −α2y1 · fx(z)

–
α4(ωy2+z)(ζ(z−1)((γz)3C−1)+ζ1(z3C−1)(γz−1))

z(z−1)(γz−1)

–
α4y2ζ1(1−z3C)

z−1

– α5z3C−1
(
y2 −

(
ω
z

)3C−1
)

26. c2 :=
α3zC+Ca+Cm+1(ωz )

C+Ca+Cm
(

1−(ωz )
C−Ca−Cm

)
ω−z

27. c3 := −α4y2ζ

28. c4 :=
z3C(ωz )

3C
(

1−(ωz )
3C−Cm+1

)
ω−z

29. c5 := −zD
30. c6 := −z
31. g(X) := c · w(X) + c2 · fd(X) + c3 · fσ(X) + c4 · t(X) + c5 · h1(X) +

c6 · h2(X) + c1

32. cmg := c·cmw+c2·cmd+c3·cmσ+c4·cmt+c5·cmh1+c6·cmh2+c1·com(1)

33. (W,W1) := open

{(cmw, y, w(X)) , (cmr, y2, r(X))},
{(cmg, 0, g(X))},{
ω
z , z
}


34. Output π := (cmw, cmr, cmt, cmh1 , cmh2 , y, y2,W,W1)

Verifier.

1. ζ := H1(cmσ, cmd, cmw)
2. ζ1 := H2(cmσ, cmd, cmw)
3. α := H1(cmσ, cmd, cmw, cmr)
4. ω := H1(cmσ, cmd, cmw, cmr, cmt)
5. z := H1(cmσ, cmd, cmw, cmr, cmt, cmh1 , cmh2)
6. y1 := ft(

ω
z )

7. c := the sum of:

– yz2C−Cm
(
ω
z

)3C−Cm
–

zC−Cm+1(ωz )
3C−Cm

(
1−(ωz )

Cm
)

ω−z

–
α(ωz )

2C+Cm
(
(ωz )

Ca−1
)
(−z+zC+1+z2C+1)

ω−z
– α2y1z

C−Ca−Cm

–
α3z(ωz )

C+Ca+Cm
(
(ωz )

C−Ca−Cm−1
)

ω−z
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– α4zC−Ca−Cm−1 (ωy2 + z)
– −α4y2z

C−Ca−Cm

8. c1 := the sum of:
– −α2y1 · fx(z)

–
α4(ωy2+z)(ζ(z−1)((γz)3C−1)+ζ1(z3C−1)(γz−1))

z(z−1)(γz−1)

–
α4y2ζ1(1−z3C)

z−1

– α5z3C−1
(
y2 −

(
ω
z

)3C−1
)

9. c2 :=
α3zC+Ca+Cm+1(ωz )

C+Ca+Cm
(

1−(ωz )
C−Ca−Cm

)
ω−z

10. c3 := −α4y2ζ

11. c4 :=
z3C(ωz )

3C
(

1−(ωz )
3C−Cm+1

)
ω−z

12. c5 := −zD
13. c6 := −z
14. cmg := c·cmw+c2·cmd+c3·cmσ+c4·cmt+c5·cmh1+c6·cmh2+c1·com(1)

15. vrfy

{(cmw, y) , (cmr, y2)} ,
{(cmg, 0)} ,{
ω
z , z
}
{W,W1} , [x]2

 ?
= 1

E Alternative Protocols

Algorithm 8 TripleProductEq Protocol

Input: u(1),u(2),u(3),v(3),v(3),v(3), 1 ≤ ` ≤ n where u
(j)

[i] ,v
(j)

[i] 6= 0

Check:
∏
i∈[`],j∈[3] u

(j)

[i] =
∏
i∈[`],j∈[3] v

(j)

[i]

1: P computes u = u(1) ◦ u(2) ◦ u(3);
2: P computes v = v(1) ◦ v(2) ◦ v(3);

3: P computes r =
(∏i

j=1(u[j]/v[j])
)`
i=1
‖0n−`;

4: P computes s =
(
r[i]/v

(1)

[i] · u
(1)

[i]

)`
i=1
‖0n−`;

5: P computes t =
(
r[i−1]/u

(2)

[i] · v
(2)

[i]

)`
i=1
‖0n−` where r[0] is defined as 1;

6: P submits r, s, t to O;
7: V queries O to check that s ◦ v(1) = r ◦ u(1);
8: V queries O to check that t ◦ u(2) = (e1 + r→1) ◦ v(2);
9: V queries O to check that s ◦ u(3) = t ◦ v(3);

10: V queries O to check that (r − e`) ◦ e` = 0.
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Algorithm 9 TriplePermute Protocol

Input: u(1),u(2),u(3),v(1),v(2),v(3) ∈ Fn, ` ≤ n
Check: (u

(1)

[1..`]‖u
(2)

[1..`]‖u
(3)

[1..`]) ∼ (v
(1)

[1..`]‖v
(2)

[1..`]‖v
(3)

[1..`]).

1: V samples α
$← F∗ and sends α to P;

2: P and V run the protocol TripleProductEq with inputs u(1)+α·1`,u(2)+α·1`,u(3)+
α · 1`,v(1) + α · 1`,v(2) + α · 1`,v(3) + α · 1` and `.

Algorithm 10 TripleCopyCheck Protocol
Index: A partition Π over [3`] Input: a, b, c ∈ Fn
Check: a[1..`]‖b[1..`]‖c[1..`] satisfies the copy constraint of Π.
Preprocessing:

1: I finds σ ∈ Σ([3`]) such that Πσ = Π;
2: I computes σ(1) := (γσ(i)−1)`i=1, σ(2) := (γσ(i)−1)2`i=`+1, σ(3) := (γσ(i)−1)3`i=2`+1

where γ is a generator of the multiplicative group F∗;
3: I sends σ(1),σ(2),σ(3), γ, ` to P, sends γ, ` to V, and submits σ(1),σ(2),σ(3) to O.

Online:

1: V samples β
$← F∗ and sends β to P;

2: P and V run the protocol TriplePermute with inputs a+βγ`, b+βγ` ·γ`, c+βγ2` ·γ`,
a+ βσ(1), b+ βσ(2), c+ βσ(3) and `.

Algorithm 11 VOProof/POV Protocol

Index: d ∈ FCc , Ca, Cm, Ix ⊂ [3C], partition Π over [3C] where C = Cc+Ca+Cm
Instance: x ∈ F3C which is sparse Witness: a, b, c ∈ FC
Check: ((Cc, Ca, Cm,d, Π, Ix) ,x, (a, b, c)) ∈ RPOV

Preprocessing:

1: I runs TripleCopyCheck.I with index Π;
2: I submits d to O, sends d, Cc, Ca, Cm, Ix to P, and Cc, Ca, Cm, Ix to V.

Online:

1: P submits a, c to O;
2: P submits b× = a[1..Cc+Cm], b+ = b− b× to O
3: V queries O to check that 1[Cc+Cm+1..C] ◦ b× = 1[1..Cc+Cm] ◦ b+
4: V queries O to check that a ◦ b× = 1[Cc+1..Cc+Cm] ◦ c
5: V queries O to check that 1[Cc+Cm+1..C] ◦ (a+ b+ − c) = 0
6: V queries O to check that 1[1..Cc] ◦ (c− d) = 0

7: V submits x(1) = x[1..C], x
(2) = x[C+1..2C], x

(3) = x[2C+1..3C] to O
8: V submits t(1) =

∑
i∈[C]∩Ix

ei, t
(2) =

∑
i∈[C+1..2C]∩Ix

ei, t
(3) =

∑
i∈[2C+1..3C]∩Ix

ei to O

9: V queries O to check that
(
a− x(1)

)
◦ t(1) = 0

10: V queries O to check that
(
b× + b+ − x(2)

)
◦ t(2) = 0

11: V queries O to check that
(
c− x(3)

)
◦ t(3) = 0

12: P and V run the protocol TripleCopyCheck with inputs a, b× + b+, c.
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