
CARiMoL: A Configurable Hardware Accelerator for Ring
and Module Lattice-Based Post-Quantum Cryptography

Afifa Ishtiaq
Department of Electrical

Engineering
NUST, SEECS

aishtiaq.msee18seecs@seecs.edu.pk

Muhammad Shafique
Department of Electrical

and Computer Engineering
New York University, Abu Dhabi

ms12713@nyu.edu

Osman Hassan
Department of Electrical

Engineering
NUST,SEECS

osman.hasan@seecs.edu.pk

Abstract—CARiMoL is a novel run-time Configurable Hard-
ware Accelerator for Ring and Module Lattice-based post-
quantum cryptography. It’s flexible design can be configured
to key-pair generation, encapsulation, and decapsulation for
NewHope and CRYSTALS-Kyber schemes using same hard-
ware. CARiMoL offers run-time configurability for multiple
security levels of NewHope and CRYSTALS-Kyber schemes,
supporting both Chosen-Plaintext Attack (CPA) and Chosen-
Ciphertext Attack (CCA) secure implementations. To the best
of our knowledge, it is the first systematically designed full scale
hardware accelerator for CCA-complaint multiple LBC schemes
that supports run-time reconfigurability without the use of
processor such as ARM Cortex series or soft core such as popular
RISC-V processors. CARiMol performs logic sequencing on run-
time and eliminates the cycle overhead associated with fetch and
decode instructions. For the simultaneous use of Ring-LWE and
Module-LWE, CARiMoL’s single hardware accelerator has 7×
less area overhead as compared to combined standalone design
of these schemes. CARiMoL exploits parallelism and extensive
resource sharing among the different LBC schemes to achieve
high performance and efficiency. Despite its reconfigurability,
CARiMoL offers substantial speedup compared to the state-of-
the-art, i.e., 9× over NewHope-1024, 10× over NewHope-512,
17× over CRYSTALS-Kyber-1024, and 18× over CRYSTALS-
Kyber-512.

Index Terms—Lattice-Based Cryptography, LBC, Key En-
capsulation Mechanisms, KEM, Learning-With-Errors, LWE,
Module-LWE, Ring-LWE, CRYSTALS-Kyber, NewHope, Post-
Quantum Cryptography, Hardware, Accelerator, Area, Perfor-
mance, Efficiency, Reconfiguration, Reuse.

I. INTRODUCTION

Due to the advances in the field of quantum computing,
by virtue of Shor’s algorithm [1] standardized public key
cryptography primitives, including RSA and Digital Signature
Algorithm (DSA), are becoming vulnerable to attacks. To
overcome these challenges, the National Institute of Standards
and Technology (NIST) initiated a Post-Quantum Cryptogra-
phy (PQC) competition in 2016 to standardize the quantum
resilient cryptosystems [2]. However, most of the proposed al-
gorithms through this effort provide security against either the
Chosen-Plaintext Attacks (CPA) or Chosen-Ciphertext Attacks
(CCA) secure. On the other hand, Lattice-Based Cryptography
(LBC) [2] has emerged as one of the most prominent candidate
accounting for 3 out of 4 Public Key Encryption (PKE)/Key
Encapsulation Mechanism (KEM) schemes, and 2 out of 3
for signature schemes in the round 3 finalists. These LBC

implementations are known for their efficiency, primarily due
to their inherent linear algebra based matrix/vector operations.

A number of hard mathematical problems are used to
develop LBC schemes. Among them, the most commonly
used one is the Learning-With-Errors (LWE) problem. The
LWE or standard lattice based schemes employ matrix/vector
multiplications that are costly in terms of both space and
computational complexity but are considered relatively more
secure. Ring-LWE or ideal lattice-based scheme alternatively
employ vectors in ring lattices and hence require a polynomial
multiplication instead of matrix-vector multiplication, and are
thus more efficient but relatively less secure. Module lattices-
based schemes (Module-LWE) are another variant of standard
lattices, introduced as a trade-off between the security and
efficiency provided by LWE and Ring-LWE, respectively.
Several recently reported attacks exploit the algebraic structure
of lattices, where they state that the dimension of the module
makes a big difference [3]–[5]. Therefore, these attacks are less
effective against Module-LWE as compared to the comparable
Ring-LWE constructions.

Targeted Research Problem: To overcome the evolving
security demands, a run-time configurable yet compact and
unified hardware accelerator for PQC algorithms is required
that can switch between Ring-LWE/Module-LWE schemes and
their different security levels with a very low configuration
overhead, while providing high performance efficiency at a low
area cost. The targeted research problem is important because:

1) A run-time configurable hardware design allows to
change the mode of operation on the fly and saves
the need for different distinct hardware accelerators to
accommodate different security requirements or applica-
tion use-cases, at minimal switching overhead.

2) Multiple functionalities and algorithms on the unified
hardware space save a considerable area.

3) Full-scale hardware accelerator enables execution time
efficiency by accelerating computations as compared to
software implementations.

A. State-of-the-Art and their Limitations

Several works have been reported on LBC accelerators
(targeting both FPGAs and ASIC platforms). They perform
public key exchange and authentication [6]–[11]. Prominent
works are summarized below:



1) ASICs with little/no Flexibility: Most of the reported
LBC hardware implementations target one type (or one
scheme) of lattice structure problem. They lack con-
figurability to support multiple lattice structures, i.e.,
LWE/Module-LWE/Ring-LWE with little or no support
for different security levels [6], [8], [9].

2) Hardware/Software Co-Design: Another implementa-
tion approach couples a RISC/ARM processor with an
FPGA fabric to accelerate the compute-intensive mod-
ules. However, this class supports only certain variants
of LWE/Ring-LWE based schemes [10], [11] and lacks
configurability to Module-LWE scheme.

3) Application Specific Instruction set Processors
(ASIP): A recent work [7] extends a RISC-V core with
application-specific instruction set extensions to support
different Module-LWE/Ring-LWE operations and their
CCA/CPA-secure implementations. However, these are
not run-time configurable rather they are programmable
through instruction sets, and therefore, limits the design
to fully exploit parallelism and maximally share the
hardware resources within and across different process-
ing modules. Also, instruction-based techniques have
their limits on maximum achievable performance, as
they waste quite some during the fetch, decode and
other pipeline stage as compared to a full-scale hardware
design.

Key Scientific Challenges: The state-of-the-art has not ad-
dressed a full-scale hardware accelerator that is run-time con-
figurable to support Module-LWE along with Ring-LWE/LWE
and a CCA-secure key exchange mechanism. To bridge this
gap, the following challenges need to be addressed:

1) Identify and derive the relation between different PQC
modes to support a whole key exchange mechanism
using the same hardware.

2) Identify the structural similarities of Ring-LWE and
Module-LWE and leveraged them to design a unified
hardware accelerator.

3) Exploiting the relation between implementations of dif-
ferent security strengths to support multi-layer security.

4) Designing a full-scale hardware accelerator for run-time
configurability with low configurability overhead.

5) Converting CPA-secure design to CCA-secure KEM
without the need for additional hardware.

B. Motivational Case Study

We present a case study to highlight the resource saving
potential for designing CARiMoL due to reuse of common
hardware between NewHope [12] and CRYSTALS-Kyber [13]
LBC schemes. Also, CARiMoL motivates that use of single
hardware for key-pair generation, key encapsulation, and key
decapsulation will lead to considerable decrease in area over-
head as compared to the sum of areas of their standalone
implementations. We started with a baseline implementation
of the NewHope and CRYSTALS-Kyber operations. This is
comprised of individual hardware modules for key-pair gen-
eration, key encapsulation, and key decapsulation. CARiMoL

is then optimized by exploiting extensive hardware sharing of
common blocks between the two LBC schemes and by reuse
of the blocks between their respective mode of operation (key-
pair generation, key encapsulation, and key decapsulation).
As Fig. 2 shows, considerable FPGA resource savings in
CARiMoL can be achieved by such a fusion of hardware
modules. Comparison with HLS baseline implementation [8]
is also provided. NewHope and CRYSTALS-Kyber have sim-
ilarities in their arithmetic and modular reduction blocks, that
can be combined together in the same hardware, leading to
a considerable decrease in resource utilization of CARiMoL,
besides the configurability. Moreover, it also reduces the
area overhead for the simultaneous support of standalone
implementations of key-pair generation, key encapsulation,
and key decapsulation. Our proposed design uses only one
Hash core configurable to different parameters as compared
to baseline implementations which have an additional Hash
core for CCA support. Thus, it justifies why our utilization
is less as compared to CRYSTALS-Kyber KeyEncaps. with
maximum utilization amongst individual implementations.

Fig. 1: Hardware overhead in terms of number of LUTs and
FFs for our designed baseline, HLS baseline and CARiMoL
(yellow) implementation of NewHope (blue) and Kyber (red).
FFs are shown in solid colors and LUTs as hashed patterns.

C. Novel Contributions and Concept Overview

To address the above-mentioned scientific challenges, we
make the following key contributions (see an overview in Fig.
1).

Fig. 2: The overview of our CARiMoL’s contributions

1) CARiMoL is a reconfigurable, resource-shared hardware
accelerator designed for two major lattice-based PQC



schemes, i.e., CRYSTALS-Kyber and NewHope KEM.
This is achieved by exploiting the structural and arith-
metic similarities within the two LBC schemes through
efficient hardware reuse.

2) The key-pair generation, encapsulation, and decapsula-
tion in key exchange algorithms share several modules
and are not meant to run simultaneously. To maximally
utilize hardware resources, we undertake the idea of
heavily exploiting the reusability of major blocks within
these PQC modes to achieve area saving.

3) CARiMoL offers a security-performance trade-off by
dynamically switching between any of the four different
user-specified security configurations, i.e., CRYSTALS-
Kyber 512/1024 and NewHope 512/1024 at run time
to facilitate varying application scenarios and security
requirements without the need for separate hardware
accelerators for different security level.

4) CARiMoL, for CRYSTALS-Kyber employs an opti-
mized memory bank layout to enhance parallelism dur-
ing compute intensive operations i.e., Number Theoretic
Transform, matrix/vector multiplications, and addition.

5) CARiMoL allows to support an authenticated-key-
exchange scheme, i.e., CCA-Secure KEM by applying
Fujisaki–Okamoto transformation on the CPA-secure
public key encryption scheme.

CARiMoL performs logic sequencing using control unit, and
require small overhead of few cycles to support run-time
reconfigurability. A thorough verification of CARiMoL is
carried out against the 100 Known-Answer-Tests (KATs) for
each KEM algorithm and their respective security levels. A
benchmarking of its post place-and-route implementation for
the Xilinx ZYNQ-ZCU11 FPGA is carried out against state-of-
the-art, which demonstrates 4× to 18× improved performance
for our proposed design.

II. CARIMOL’S DESIGN METHODOLOGY

The top-level architecture of CARiMoL is shown in Fig.
3 and detailed flow of steps in Fig. 4. The starting point
is the C implementations of CRYSTALS-Kyber [13] and
NewHope [12] that are submitted to the NIST. For all the
operations of these two schemes, first step is to develop the
baseline verilog HDL implementations, capable of standalone
execution. However, there are many modules that are common
not only in the operations of a certain PQC scheme, but
also in the operations of multiple different PQC schemes.
Consequently, a fusion of PQC operations is carried out, as
discussed in Section II-A. To support configurability for the
NewHope and CRYSTALS-Kyber schemes, their structural
similarities at modular and arithmetic level are analyzed while
investigating their area-performance trade-offs (Section II-B).
The obtained hardware accelerator is composed of two parts:
(1) A Control Unit, and (2) A Datapath Unit.

The control unit determines the operational sequencing,
linkage and parameterization of the constituent modules in
the datapath as per the configuration word (Fig. 5). The
configuration word specifies two fields: (1) A 2-bit Mode

determines the operation that the accelerator is configured to
perform, i.e., key-pair generator, encapsulator, or decapsulator.
(2) A 5-bit Opcode specify the selected algorithm (NewHope
or CRYSTALS-Kyber) and the security level.

The datapath contains all the critical blocks configurable to
support any Mode and Opcode for KEM (Section II-A). On-
chip memories (i.e., BRAMs in case of FPGA-based designs)
store all intermediate data from various processing blocks,
as well as a public key, secret key, plaintext, and ciphertext.
The processing blocks (Fig. 3) have access to the memory
banks via the Memory Controller. All the processing blocks
are designed to have appropriate interfaces with read ports
(rd en, rd addr, rd data) and write ports (wr en, wr addr,
wr data) to ease the interaction with the Memory Controller.
The Memory Controller controls the reading and writing of
every polynomial in the BRAM based on logic sequencing.
The amount of intermediate data produced by modules during
the KEM process increases dramatically as the security level
increases. The Verify module performs the xor operation
on the shared secrets generated by encapsulation (SS) and
decapsulation (SS’) to check if the output is decoded correctly
or not and raise the pass/fail flag.

Fig. 3: A top-level architectural view of CARiMoL

Fig. 4: Our Design methodology (gray boxes show new design
steps and our accelerators are shown in green boxes)



Fig. 5: Input Word configuration details

A. The Fusion of PQC Modes

The three PQC modes in the key exchange mechanism share
several modules as indicated by numbered states (Fig. 6). To
accommodate these PQC modes in the same hardware design,
and to save additional hardware, we reuse these modules.
Their linkage is done by control unit which performs logic
sequencing based on input Mode, which can be set to 0, 1,
2 specifying that the hardware accelerator operates as a key-
pair generator, encapsulation, and decapsulation, (represented
in Fig. 6 as solid blue, red and yellow lines), respectively.
Whereas, dashed yellow line represents re-encapsulation.

Fig. 6: Logic sequencing for various modes in CARiMoL

B. The Fusion of CRYSTALS-Kyber and NewHope

1) Hash Core with Sampler: In both algorithms, sev-
eral hash functions including SHAKE-128/256 and SHA3-
256/512, used as either pseudorandom number generator or
as Extendable Output Functions, are needed. Hash controller
(Fig.7) configures the hash parameters depending upon the
Mode and Opcode (Fig.3). The base of SHA-3 and its variants
is the Keccak algorithm, which needs 24 rounds of permutation
operations with different round constants. Pseudo-random bits,
generated by the Hash core, are stored in the 1600-bit Keccak
state register. The data produced by the permutation stage is
either fed as it is to generate seeds, hash outputs of keys or
ciphertexts, and shared secrets or are used to perform one of

the following three types of operations – rejection sampling
in [0,q), binomial sampling with standard deviation σ, and
uniform sampling in [-η, η] for η < q. Our design supports
new version of NewHope appeared as a response of the work
presented in [14], which exploits the incorrect oracle cloning
of some NIST KEM PQC candidates to perform key-recovery
attacks. The new version of NewHope includes a domain
separation for the SHAKE calls in order to make each hash call
independent. That is, all hash calls with the same input size
use a domain separator label (e.g., a nonce). Our Hash core
also supports absorption of the input message and squeezing
of output dependent on input shake rates, number of blocks
and message length.

Fig. 7: Unified Hash core with the sampler

2) Memory Layout and Access Optimization: The polyno-
mials A, S, and E are stored in a standard way for NewHope
but an optimized memory layout to enhance parallelism is
adopted to store these polynomials in case of CRYSTALS-
Kyber. True dual port BRAMS are used. In Fig. 8, we compare
the standard memory layout to our memory layout after the
sampling stage. This layout enables extensive parallelism to
process polynomials with multiple vectors undergoing the
same operation simultaneously. Consequently, the computation
cycles for NTT and matrix multiplication are reduced by half.
For instance, during the key-pair generation in CRYSTALS-
Kyber-1024, NTT of the polynomials S and E is computed,
while both S (0, 1, 2, 3) and E (0, 1, 2, 3) comprises of
4 vectors. Our memory layout for S and E polynomials, as
shown in Fig. 8 (on the upper right side) indicates that S0,
S1, and E0, E1 memories are processed in parallel, reducing
the NTT cycle computation time to half. Additionally, this
layout also makes the computation of AS + E more efficient.

3) Unified Polynomial Multiplier: In both NewHope and
CRYSTALS-Kyber algorithm, arithmetic operations over poly-
nomial vector include forward and inverse-NTT, point-wise
multiplication, and polynomial vector addition, etc. These
operations are the most expensive parts in terms of area and
time. A representative formula is A.S + E, which consists of all
the typical polynomial vector operations. The main component
used by NewHope and CRYSTALS-Kyber in the computation
of NTT, barret reduction, and matrix/vector multiplication is



Fig. 8: Optimized memory layout accelerating polynomial
multiplication (NTT/INTT and matrix/vector multiplication)

the montgomery reduction. All these operations are fused
into one unified multiplier hardware (Fig. 9). It comprises
of modular and point-wise multiplications. Multipliers 2 and

Fig. 9: Our unified multiplier block (fqmul)
3 in Fig. 9 do modular multiplication and are implemented
using shifts so this unit consumes only 1 multiplier block. The
architecture (Fig. 10) can be configured on the basis of Mode
and Opcode to support Cooley-Tukey NTT (NewHope) and
the Gentleman-Sande NTT with early abort and special base
case multiplication (Kyber) with fqmul as the bottom module.
This structure process two vectors in parallel for NTT/INTT,
barrett reduction, and matrix/vector multiplication.

Fig. 10: The unified polynomial multiplier for NTT/INTT,
Barrett reduction, and matrix/vector multiplication.

C. Multi-Layer Security

To support different NIST-compliant levels of security for
CRYSTALS-Kyber and NewHope, the configuration and pa-
rameterization of the counters dealing with internal loops and
memory depths is adjusted. Based on the mode of operation

and the security level specified (Opcode [2:0]), the loop
counters are accordingly configured (see details in Table I).

TABLE I: Scalable, configurable loops for multi-layer security
CRYSTALS-Kyber CRYSTALS-Kyber NewHope NewHope

Standard This Work Standard This Work
Generate A Generate A Generate A Generate A
Loop 1&2 : Loop 1&2 : Loop 1&2 : Loop 1&2 :

0 to KYBER K 0 to Opcode[2:0] 0 to NEWHOPE N/64 0 to Opcode[2:0]<<2

• KYBER K= 2 • Opcode[2:0] = 2 • NEWHOPE N= 512 • Opcode[2:0] = 2
for level 1 for level 1 for level 1 for level 1

• KYBER K= 4 • Opcode[2:0] = 4 • NEWHOPE N= 1024 • Opcode[2:0] = 4
for level 5 for level 5 for level 5 for level 5

Generate Noise Generate Noise Generate Noise Generate Noise
Vectors Vectors Vectors Vectors

Loop1 : 0 to 32 Loop1 : 0 to 32 Loop 1&2 : Loop 1&2 :
Loop2 : 0 to 8 Loop2 : 0 to 8 0 to NEWHOPE N/64 0 to NEWHOPE N/64

KeyGen Nonce:Opcode[2:0]/2 KeyGen Nonce: Opcode[2:0]/2
• Nonce: 0 to 3 - 1 + Mode • Nonce: 0 to 1 - 1 + Mode

for level1 • Mode = 0 for level1 • Mode = 0
• Nonce: 0 to 5 for KeyGen • Nonce: 0 to 2 for KeyGen

for level5 • Mode = 1 for level5 • Mode = 1
KeyEncaps. for KeyEncaps KeyEncaps. for KeyEncaps

• Nonce: 0 to 4 • Nonce: 0 to 2
for level1

• Nonce: 0 to 6
for level5

D. Conversion of CPA to CCA-Secure KEM

The fusion and reconfiguration of PQC modes on the same
hardware benefits the conversion of a CPA-secure PKE to
a CCA-secure KEM. An already available Hash core is re-
configured for Fujisaki–Okamoto transformation. Similarly,
decapsulation involves re-encapsulation but only requires re-
configuration to encapsulation mode (see details in Fig. 11a).

(a) PQC mode configuration
state machine

(b) Functional verification setup

Fig. 11: CARiMoL configuration and verification for CCA key
exchange mechanism

III. EXPERIMENTAL RESULTS AND COMPARISONS

We implemented and evaluated our design using Vivado
2019.1 on Xilinx Zynq-ZCU111 FPGA board at an operating
frequency of 200MHz with the speed grade -2. We used
NIST provided KATs as input test vectors in simulation for
the functional verification of key exchange mechanism for
both algorithms (Fig.12a & 12b). In Table II, we compare
CARiMoL with existing hardware-accelerated implementa-
tions of NIST Round 2 lattice-based schemes. The last column
of Table II gives a speedup that CARiMoL offers for that
protocol when compared with that implementation. From the
comparison results provided in Table II, we make the following
key observations:

1) A fair comparison of CARiMoL with stand-alone ded-
icated implementations has some inherent difficulties.
These dedicated cryptographic accelerators are designed



TABLE II: Comparison of CARiMoL (post place-and-route results) with state-of-the-art LBC hardware implementations
Algorithm Platform Freq. (MHz) Protocol FFs/LUTs Cycles Thr.(MB/s) Speedup

Chosen-Ciphertext Attakcs (CCA) secure Implementations

CARiMoL
FPGA
(Zynq-
ZCU111)

200

NewHope-512-CCA-KEM-Encaps
20,508
/39,130

34,500 6.3 -
NewHope-1024-CCA-KEM-Encaps 69,000 6.24 -

Kyber-512-CCA-KEM-Encaps 19,891 7.4 -
Kyber-1024-CCA-KEM-Encaps 36,465 8.6 -

Banerjee ASIC
(40nm) 72

NewHope-512-CCA-KEM-Encaps

-

136,077 0.575 10.95x

et al. [7]

NewHope-1024-CCA-KEM-Encaps 236,812 0.661 9.44x
Kyber-512-CCA-KEM-Encaps 131,698 0.40 18.5x

Kyber-1024-CCA-KEM-Encaps 223,469 0.50 17.2x
Basu FPGA-HLS 66.66 NewHope-512-CCA-KEM-Encaps 26,257/135,689 136,077 0.53 11.88x

et al.[8] (Artix-7) Kyber-512-CCA-KEM-Encaps 40,720/230,540 56,345 0.87 8.5x
Chosen-Plaintext Attakcs (CPA) secure Implementations

Order et al.[9] FPGA (Artix-7) 117 NewHope-1024-Simple-Encrypt 4,635/4,498 179,292 1.4 4.45x
Fritzmann et al. [10] FPGA (Zynq-7000) - NewHope-1024-CPA-PKE-Encrypt 7,303/26,606 589,285 - -

with the goal of achieving high performance and often
have little or no flexibility.

2) High-level synthesis (HLS) generated designs in [8] map
large arrays to distributed RAMs, increasing the LUTs
utilization and lack reuse of the modules. Our design
consumes 3× to 4× less LUTs than the HLS designs by
efficiently using BRAMs and hardware reuse. Sequential
execution of functions increases the latency of the HLS
designs, while our design exploits an optimized memory
layout achieving parallelism as well as reduction in the
processing latency resulting in 8× to 11× speedup.

3) The proposed CRYSTALS-Kyber and NewHope imple-
mentations are 9× to 18× faster than [7] that cou-
ples RISC-V with the crypto-core. Our design has its
own logic sequencer and allows parallel processing of
multiple polynomials, whereas, the sequential execution
of instructions in [7] limits the design to fully exploit
parallelism. These designs also have a lower operating
frequency due to a longer critical path.

4) [9] is a CPA only implementation, targeting low-cost
FPGAs with server only and client only implementations
each taking ≈5K LUTs and ≈170K cycles. CARiMoL’s
higher consumption is justified since it supports both
server and client as well as both security levels of
NewHope as well as CRYSTALS-Kyber. Considering
throughput, CARiMoL being CCA-secure, provides 4×
speedup along with support to both security levels as it
involves extensive parallelism.

5) Notably, the design of [10] uses a RISC-V processor
with NTT and SHA accelerators to implement the
NewHope protocol, but our design is a full-scale hard-
ware accelerator and thus takes 8x less cycles.

CARiMoL offers a variety of performance optimizations in
hardware implementations, the amount of total clock cycles
for both encryption and decryption of the proposed design
reduces significantly. Moreover, our design accommodates
key pair generation, encapsulation and decapsulation for both
NewHope and CRYSTALS-Kyber on a single hardware by
exploitation of structural and arithmetic similarities. Parallel
execution and pipelining in hardware, design techniques, such
as the integration of arithmetic functions in a single module,

and reusing most of the functional modules during different
modes and algorithms, use of logic sequencer instead of
programmed instructions lead to the achievement of 4× to
18× performance improvement.

IV. CONCLUSION

This work presents CARiMoL, a fully-functional and con-
figurable hardware accelerator for Ring and Module Lattice-
based post-quantum cryptography. It offers all operations and
security levels of NewHope and CRYSTALS-Kyber lattice
based schemes, that are part of NIST PQC round 2 and
3. CARiMoL supports run-time configurability to switch
to any flavor of these two prominent LBC schemes, i.e.,
any security level and any operation (Key pair genera-
tion/encapsulation/decapsulation), CCA/CPA secure modes, as
per the application requirements. In future, we plan to extend
the flexibility/re-configurability of the proposed design to
support other prominent lattice based schemes including Saber.

(a) CRYSTALS-Kyber-1024 Ver-
ification

(b) Simulation Setup
Fig. 12: Experimental Setup

REFERENCES

[1] P. W. Shor, “Algorithms for quantum computation: Discrete logarithms
and factoring,” in Proc. 35th Annual Symposium on Foundations of
Computer Science, 1994, pp. 124–134.

[2] D. Moody, “Post-quantum cryptography: Nist’s plan for the future,”
in Talk given at PQCrypto 16 Conference, Fukuoka, Japan, February
2016. [Online]. Available: https://pqcrypto2016.jp/data/pqc2016\ nist\
announcement.pdf

[3] P. Campbell, M. Groves, and D. Shepherd, “Soliloquy: A cautionary
tale,” In ETSI 2nd Quantum-Safe Crypto Workshop, pp. 1–9, 2014.

[4] R. Cramer, L. Ducas, C. Peikert, and O. Regev, “Recovering short
generators of principal ideals in cyclotomic rings,” EUROCRYPT 2016.

[5] R. Cramer, L. Ducas, and B. Wesolowski, “Short stickelberger class
relations and application to ideal-SVP,” Advances in Cryptology– EU-
ROCRYPT 2017.



[6] P.-C. Kuo, W.-D. Li, Y.-W. Chen, Y.-C. Hsu, B.-Y. Peng, C.-M. Cheng,
and B.-Y. Yang2a, “High performance post-quantum key exchange on
FPGAs,” Cryptology ePrint Archive, Report 2017/690, 2017.

[7] U. Banerjee, T. S. Ukyab, and A. P.Chandrakasan, “Sapphire: A config-
urable crypto-processor for post-quantum lattice-based protocols,” IACR
Transactions on CHES.

[8] D. S. K. Basu, M. Nabeel, and R. Karri, “In NIST post-quantum
cryptography- a hardware evaluation study.” Cryptology ePrint Archive.

[9] T. Oder and T. Guneysu, “Implementing the NewHope-Simple Key
Exchange on low-cost FPGAs,” Cryptology ePrint Archive, Report
2017/690, 2017.

[10] T. Fritzmann, U. Sharif, D. Müller-Gritschneder, C. Reinbrecht,
U. Schlichtmann, and J. Sepulveda, “Towards reliable and secure post-
quantum coprocessors based on RISC-V,” In 2019 DATE.

[11] A. Jati, N. Gupta, A. Chattopadhyay, and S. K. Sanadhya, “Side-channel
protected post-quantum cryptoprocessor,” Cryptology ePrint Archive:
Report 2019/765.

[12] T. Poppelmann, E. Alkim, R. Avanzi, J. Bos, L. Ducas, A. de la
Piedra, P. Schwabe, D. Stebila, M. R. Albrecht, E. Orsini, V. Osheter,
K. G.Paterson, G.Peer, and N. P. Smart, “Newhope – algorithm specifi-
cations and supporting documentation,” Technical report, NIST, 2019.

[13] J. Bos, L. Ducas, E. Kiltz, T. Lepoint, V. Lyubashevsky, J. M. Schanckk,
P. Schwabe, G. Seile, and D. Stehl, “CRYSTALS – Kyber: a CCA-secure
module-lattice-based KEM,” Technical report, NIST, 2019.

[14] H. D. M. Bellare and F. Günther, “Oracle cloning and read-only
indifferentiability,” Cryptology ePrint Archive.


